
4950 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

High-Potency Models of LDoS Attack
Against CUBIC + RED

Meng Yue , Jing Li, Zhijun Wu , and Minxiao Wang

Abstract— A TCP-targeted Low-rate denial of service (LDoS)
attack exploits the vulnerabilities of TCP congestion control
mechanism. CUBIC is the most widely used TCP congestion
control algorithm today. CUBIC TCP increases the resilience
against LDoS over traditional TCP. This paper explores high-
potency patterns of the LDoS attack against CUBIC TCP under
RED queue management scenario, and accordingly develops
two attack models referring to maximizing attack potency.
Theoretical analyses and extensive experiments are conducted
to validate the proper function of the two models and evaluate
their performance. Test results show that the two attack models
can effectively throttle CUBIC TCP throughput. Under standard-
configured network parameters, the number of TCP units dam-
aged by one attack unit are up to about 21 and 26 respectively for
our proposed two models, which represents an increase in attack
potency of about 20%. And, our proposed models outperform
the traditional attack model in terms of attack potency by at
least 250%. In addition, with variations in different network
parameters, these two models are still efficient and alternatively
maximize the attack potency. Finally, an outline for the attack
countermeasure is discussed. The present study offers a basis to
explore new attack manners which may be exploited by attackers
and excites defenders to develop new measurements against such
attack.

Index Terms— Low-rate denial of service, mathematical model,
congestion control, attack performance.

I. INTRODUCTION

THE low-rate denial of service (LDoS) attack greatly
degrades network services by precisely attacking system

vulnerabilities. Commonly, such attack employs low average
volume traffic to achieve the goal of making greatest dam-
age at least cost, and hide its malicious behaviors. Up to
now, researchers have exposed many sorts of LDoS attacks,
such as TCP-targeted Shrew attacks [1], HTTP-oriented Tail
attacks [2], Economic denial of sustainability (EDoS) attacks

Manuscript received January 7, 2021; revised April 30, 2021 and July 12,
2021; accepted September 17, 2021. Date of publication October 1, 2021; date
of current version October 28, 2021. This work was supported in part by the
National Natural Science Foundation of China under Grant 62172418, Grant
U1933108, and Grant 61802276; in part by the Scientific Research Project
of Tianjin Municipal Education Commission under Grant 2019KJ117; and
in part by the Fundamental Research Funds for the Central Universities of
Civil Aviation University of China (CAUC) under Grant 3122020076. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Mika Ylianttila. (Corresponding author: Zhijun Wu.)

Meng Yue, Jing Li, and Zhijun Wu are with the Department of Cyber-
security, Civil Aviation University of China, Tianjin 300300, China (e-mail:
myue_23@163.com; 17121186390@163.com; zjwu@cauc.edu.cn).

Minxiao Wang is with the Department of Electrical and Computer
Engineering, Southern Illinois University, Carbondale, IL 62901 USA (e-mail:
minxiao.wang@siu.edu).

Digital Object Identifier 10.1109/TIFS.2021.3117066

TABLE I

DEFINITIONS OF COMMONLY USED NOTATIONS

in cloud computing [3], [4], Slow TCAM (ternary content
addressable memory) attacks against software defined network
(SDN) [5]. This paper focuses on the TCP-targeted LDoS
attacks. The traditional LDoS attacks exploit the vulnerabilities
of the retransmission timeout (RTO) mechanism or additive
increase multiplicative decrease (AIMD) mechanism. Attack-
ers periodically send high-rate pulses to induce the packet loss,
consequently, frequently trigger the TCP congestion control.
As such, LDoS attacks greatly throttle the TCP window
growth and severely impact the transmission rate of the victim
TCP connection. Although the LDoS attack sends a high-
rate pulse every period, the duration of the pulse is very
short. Therefore, it has a very low average volume traffic,
which makes it masked in background traffic and difficult
to detect [1], [6], [7]. In practical, LDoS attacks seriously
threaten the security of the internet due to the widespread uti-
lization of TCP in applications and services, and the extremely
hidden nature of LDoS attacks [1], [8].

CUBIC is the most widely used TCP congestion control
algorithm in current operating system [9]. For example, Linux
kernel after 2.6.18 and Windows 10 use CUBIC as the
default TCP congestion control algorithm [10]. The random
early detection (RED) algorithm is a typical active queue
management algorithm used in routers [11]. CUBIC and RED
cooperate to form a network congestion control feedback

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1473-3729
https://orcid.org/0000-0002-0691-1767
https://orcid.org/0000-0003-3646-9479

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4951

system, which makes the congestion window to quickly and
steadily converge to the available bandwidth, thus improving
the transmission performance of TCP connections.

In contrast, attackers face severe challenges in the new
scenario of CUBIC combined with RED.

1) Compared to traditional congestion control algorithms,
CUBIC increases the TCP transmission rate and improves the
link utilization. Even if the network is severely congested,
CUBIC TCP can fast recovery its window [10]. Moreover,
current operating systems usually use a shorter RTO [12]. The
above two folds make the traditional RTO-based attacks less
efficient [13], [14].

2) Since the RED algorithm does not make the router
buffer full, the traditional full-buffer LDoS attack is no longer
applicable [15].

3) The primary target of LDoS attacks is to maximize attack
potency (i.e., take the lowest cost making the greatest damage).
Here, potency represents how many TCP bits can be damaged
by a single attack bit cost. To do so, attackers need to design
precise attack models in the new scenario and explore the
conditions for achieving the attack target.

Currently, few researchers paid attentions to LDoS attacks
against CUBIC TCP. This paper devotes to reveal the patterns
of the LDoS attack in the CUBIC + RED scenario, and
accordingly explores attack models referring to maximizing
attack potency. The main contributions of this paper can be
summarized as follows.

1) We develop a double-pulse attack model by analyzing
the TCP window behaviors, in the case of CUBIC congestion
control combined with RED queue management.

2) We improve the double-pulse model by adjusting the
attack period to form the single-pulse model which further
simplifies the attack implementation and further upgrades the
upper bound of the attack potency in some specific network
configurations.

3) We conduct extensive measurements to assess the attack
performance and reveal the effect of network parameter vari-
ations on the proposed two models.

Our study has practical significance, as CUBIC has replaced
the traditional congestion control algorithms such as Reno,
New Reno and BIC in current networks. It can be expected
that this study will be of help in evaluating the extent of the
attack’s damage and the extent that existing countermeasures
can mitigate the impact of the attack, and inspire defenders to
develop new solutions against such attack.

The rest of this paper is organized as follows. Section II
presents related works. Section III briefly reviews the CUBIC
congestion control algorithm and the RED queue manage-
ment mechanism, which are regarded as foundations of this
study. Section IV proposes two attack models by analyzing
the window behaviors of CUBIC TCP. Section V conducts
NS-2 experiments to validate the effectiveness of the proposed
models, and presents a comparison in their potencies. And
then, it expands our experiments via extensive variations of
network parameters to further evaluate the performance of the
proposed two models. Section VI presents a brief discussion
about attack countermeasures. Section VII finally concludes
our contributions, and presents future research plans.

II. RELATED WORKS

The LDoS attack was first identified on the Internet2 Abi-
lene backbone in 2001, and was official named in 2003 [1].
This attack has attracted widespread attentions since its
appearance. So far, researchers have devoted many efforts
to defending against such attacks [16], [17]. Recently, new
technologies such as game theory [18], deep learning [19],
cloud computing [20]–[22], and SDN [23]–[25] have been
commonly used to construct LDoS detection and mitigation
frameworks.

Meanwhile, it is also worth concerning the study on attack
models, as it is closely related to the evaluation of the
attack performance and the extent to which countermeasures
have abilities in mitigating the impact of such attacks. Next,
we specially review existing typical studies on attack models.

Kuzmanovic and Knightly [1] modeled the LDoS attack by
periodic square pulses. And then, they extended the original
model to form a double-rate model which can minimize the
number of bytes transmitted by the attacker. The attacker
firstly transmits the attack pulse at the maximum possible
rate. Once the buffer fills, the attacker decreases its rate to the
bottleneck rate to ensure continued packet loss using the lowest
possible rate. Although the double-rate LDoS attack minimize
the resources required by the attacker, authors unfortunately
failed to discuss the relationship between the attack parameters
and the network parameters and to present attack performance
in detail. This results in inaccurate performance assessment in
different network environment.

Sarat and Terzis [26] presented the effect of the router
buffer size on the LDoS attack performance in 2005. They
used a fluid model to correlate the router buffer size with
the attack pulse rate required to cause damage. Mathematical
analysis combined with simulation tests presented that smaller
buffer size is indeed vulnerable to LDoS attacks, and a
slight increment of the buffer size is able to mitigate the
attack’s impact. As the increment of the buffer size, LDoS
attack has to increase its transmitting rate to fill a larger
buffer to induce packet loss. In this case, attacker’s resource
cost is greatly increased as the attack is not low-rate any
longer. The advantage of this strategy is simple to implement.
However, the over-buffered router will cause extra queuing
delay and consequently decline network throughput under
normal situation.

Guirguis et al. [27] exposed two variants of the classic
LDoS attack in 2006. Authors defined the damage-to-cost ratio
as the attack potency, and proposed the full-capacity model
and the full-buffer model to increase this metric. These two
models first allow the normal TCP packets to occupy the pipe
between the TCP sender and the receiver. And then, once
the bottleneck link or the router buffer is full, the attacker
only needs to fill the rest of the pipe vacancy to cause TCP
packet loss. Therefore, the cost involved to mount the attack
is reduced. The advantage of this work is to propose the
metric of the attack potency to measure the attack perfor-
mance, not just focus on the maximum absolute damage. The
disadvantage of this work is its neglect of the queuing delay
devoting to round trip time, which leads to several inaccurate
assessments [28].

4952 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Zhang et al. [29] extended the LDoS attack to the Border
Gateway Protocol (BGP) in 2007. BGP’s routing session is
established over the TCP connection between neighboring
border routers, so BGP is also threatened by the TCP-targeted
LDoS attack. Authors indicated that the LDoS attack could
lead to session resets and delayed routing convergence, seri-
ously impacting routing stability and network reachability.
Moreover, authors proposed a distributed LDoS attack model
that synchronized multiple attack streams with different round
trip time aggregating at the victim to form the expected pulse
shape for improving attack effectiveness and enhancing attack
concealment.

Luo et al. [30] challenged the traditional LDoS model in
2014. Authors indicated that the model proposed by [1]ignored
TCP’s congestion window adaption, which inevitably failed
to consider the impact of network environment (such as the
bottleneck bandwidth, and one way delay) on TCP through-
put. In consequence, many important properties about LDoS
attack’s effect cannot be revealed accurately by the traditional
models. To overcome this problem, authors proposed a new
mathematical model to reveal the relationship between attack
properties and network parameters. This model can analyze
LDoS attack’s performance in a more precise way and reveal
novel attack’s properties. This work motived researchers to
explore different attack patterns that may be utilized by an
attacker, so that more effective defense strategies can be
designed accordingly.

Ficco and Rak [31] improved the traditional LDoS attack to
orchestrate the slowly-increasing-polymorphic DDoS Attack
(SIPDA) against applications running in cloud. The main
objective of SIPDA is affecting the cloud customer more
on financial aspects than on the service availability. Authors
modeled such attack as incremental rate pulses rather than
constant rate. With this pattern, attacker can slowly enhanced
the attack potency to inflict significant financial losses, and
evade or greatly delay the detection. The main inspiration
given by this work is considering the tradeoff between the
damage (service degradation and cloud resources consumed
caused by the attack) and the budget (cost of mounting such
attack) from the perspective of cost-effectiveness.

Shan et al. [2] evolved the classic LDoS attack into the Tail
Attack in 2017. The Tail attack exploited resource contention
with dependencies among distributed nodes. Attacker dis-
guised attack packets as legitimate hypertext transfer protocol
requests and intermittently sent them to the victim to trigger
millibottlenecks and cross-tier queue overflow. By doing so,
the attack caused the long-tail latency problem in n-tier web
applications while the servers are far from saturation. Authors
modeled the attack impact based on queuing network theory to
effectively conceal attack behaviors. Also, authors adopted a
feedback control-theoretic framework that allowed such attack
to fit the dynamics of background requests and system state
by dynamically tuning the optimal attack parameters.

Cao et al. [32] utilized the classic LDoS attack to implement
the CrossPath attack in SDN. In the in-band controlled SDN,
the shared links between data traffic and control traffic expose
vulnerabilities. Attackers can inject malicious data traffic to
the shared links, which forces the TCP connection of the

control channel to repeat retransmission timeout. Since the
delivery of the control message is disrupted, the services
and the applications in SDN controller are severely impacted.
In addition, as the data traffic does not enter the controller,
such attack is stealthy and difficult to be perceived by the
controller.

Pascoal et al. [5] offered and investigated two types of slow
attacks in SDN. The first one is the slow ternary content-
addressable memory (Slow TCAM) attack, which exploits
the vulnerabilities of the timeout mechanism of the flow
rule. The attacker first injects malicious flow rules, and
then reactivates them whenever the timeout timer overflows.
By doing so, switch’s TCAM memory is always occupied
by these malicious flow rules, consequently, new legitimate
rules are not allowed to be installed. The second attack is
the slow saturation attack, which is formed by combining the
slow TCAM and a low-rate saturation attack [33]. The slow
saturation attack extends the impact of slow TCAM from the
data plane to the control plane.

The above mentioned works present that many new attacks
are based on the classic LDoS attack, and researchers have
been paying attentions to the research of LDoS attack models.
Existing studies mainly focuses on two folds: exploring avail-
able models in new scenarios and optimizing existing attack
models to improving attack performance.

Rebecca and Hope [13] and our team [14] conducted exper-
iments to test the effectiveness of the traditional LDoS attack
on CUBIC TCP. Test results indicated that the traditional
RTO-based LDoS attack model was less efficient for CUBIC.
In experiments, the RTO was set to 1 s, the Droptail queue
management was adopted, and the TCP throughput was used
as a metric to assess the attack performance. Actually, RTO
is often shorter (around 200–300 ms) in modern operation
systems, and RED is commonly used for queue management.
These cases make the attack more inefficient. In addition,
these two works did not consider the attack potency, nor
did accordingly give specific models in the CUBIC + RED
scenario. As the wide use of CUBIC and RED challenges
the traditional LDoS attack models, it is worth developing a
new attack model suitable for the CUBIC + RED scenario.
In addition, attack and defense is a dynamic game process (the
winner is who consumes less resources), which inspired us to
explore the upper-bound of the attack potency.

III. BACKGROUND

The combination of CUBIC congestion control protocol
and RED queue management algorithm plays a role in TCP
utilization improvement and network congestion avoidance.
In this section, we briefly review CUBIC and RED.

A. CUBIC Window Growth Function

CUBIC is the default TCP congestion control algorithm
used in the Linux after kernel 2.6.18 and Windows 10. CUBIC
relies on the time between consecutive packet loss events
to adjust window. Compared with previous TCPs, CUBIC
mainly modified the window growth pattern in the congestion
avoidance state [34]. CUBIC uses a cubic function of the

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4953

Fig. 1. Window growth function of CUBIC.

elapsed time from the last congestion event. A cycle of the
CUBIC window growth includes a steady phase and a max
probing phase, respectively corresponding to the convex profile
and concave profile in Fig. 1 [10].

CUBIC defines Wmax as the saturation point of the win-
dow, and ensures the window size to dynamically remain
almost constant around Wmax by a convex-concave alternating
profile [10]. During the steady phase, the window increases
fast initially when the windows size is far away from the
saturation point. And then, when the window size is close
to the saturation point, it switches to a slower increment as
the network bandwidth is considered to approach saturation.
During the max probing phase, the window size exceeds
the saturation point, so it considers that the previous round
saturation point is not accurate and a new saturation point
need to be probed. In this case, the window increases slowly
at the beginning to find the new saturation point, and if no
packet loss, then it guesses the new saturation point is further
away so it gradually increases its growth rate [10].

The details of CUBIC window behaviors can be described
as follows. On packet loss, it registers Wlost to be the window
size where the loss event occurred and sets the current window
size cwnd to be β × Wlost , where β is a constant factor used
for decreasing window. The saturation point Wmax depends
on the phase where the packet loss event occurs. It can be
expressed as follows [10].

Wmax =
⎧⎨
⎩

Wlost in max probing phase
1 + β

2
× Wlost in steady phase

(1)

In Fig. 1, the window growth function is defined as
follows [10].

W (t) = C × (t − K)3 + Wmax (2)

where C is a constant, t is the elapsed time from the last
congestion event, and K = 3

√
(1 − β) × Wmax/C represents

the time period for the window to increase from W (t) to Wmax ,
if no further packet loss.

CUBIC updates the window depending on the value of
current window size cwnd. Upon receiving an acknowledg-
ment (ACK), CUBIC sets W (t+ RTT) as the target window
size, meanwhile, checks whether the current window size
cwnd is less than Wtcp(t), where RTT is the round trip time,
and Wtcp(t) represents the window size of standard TCP
in terms of the elapsed time t . If this is true, CUBIC sets
cwnd as Wtcp(t) for the TCP-friendliness. Otherwise, CUBIC
adjusts the growth rate of window according to cnt. The above

mentioned behaviors can be expressed as follows [10].

cwnd =
⎧⎨
⎩

Wtcp(t) if cwnd < Wtcp(t)

cwnd + 1

cnt
else

(3)

Here, Wtcp(t) is defined as follows [10].

Wtcp(t) = β × Wmax + 3 × 1 − β

1 + β
× t

RT T
(4)

And, cnt represents a count of ACKs that needs to be
received before the window growth, and it depends on cwnd
and the target size. cnt can be expressed as follows [10].

cnt =
⎧⎨
⎩

cwnd

W (t + RT T) − cwnd
if cwnd < W (t + RT T)

100 × cwnd else

(5)

Equation (4) implies that CUBIC window follows a linear
growth in TCP-friendliness mode, which behaves very sim-
ilarly to standard TCP [35]. Equation (5) implies that the
window is allowed to increase to the target size per RTT,
meanwhile, the window increases by one segment every time
cnt ACKs are received. This presents the CUBIC window
growth independent of RTT [36].

The effectiveness of CUBIC outperforms other traditional
TCPs in terms of transmission rate and stability, mainly due
to two reasons: 1) the cubic window growth function is faster
than the traditional linear growth (additive increase) func-
tion (except the TCP-friendliness mode); 2) when congestion
occurs, the window size is no longer halved but set to be
β × Wlost , where β is commonly greater than 0.5.

B. RED Packet Drop Mechanism

RED is the most classic AQM algorithm which is recom-
mended by Internet Engineering Task Force (IEIF), and has
also been widely implemented in network devices [37], [38].
Many variants of RED (e.g., ERED [39], LRED [40],
DRED [41]) also inherit the core framework of RED.

The primary target of RED is to provide congestion avoid-
ance depending on the average queue length which is calcu-
lated by a low-pass filter with an exponential weighted moving
average (EWMA). For each packet arrival, RED updates the
average queue as follows [11].

avg = (1 − w) × avg + w × q (6)

where avg is the average queue length, q is the instantaneous
queue length, and w is the weight.

After that, avg is compared with a minimum threshold minth

and a maximum threshold maxth . Based on this, RED adjusts
the packet dropping probability Pb as follows [11].

Pb =

⎧⎪⎪⎨
⎪⎪⎩

0 avg <minth

Pmax × avg − minth

maxth − minth
minth ≤ avg < maxth

1 avg ≥ maxth

(7)

4954 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 2. Modeling of the classic LDoS attack: pulse rate δ, pulse width L ,
and pulse period T .

Finally, RED calculates the final packet dropping probability
Pa as follows [11].

Pa = Pb

1 − count × Pb
(8)

where count is the number of packets received since the last
dropping. If avg ≥ maxth, count is set to zero.

Equation (7) and (8) indicate that, RED will drop all of
packets when avg is greater than maxth , so the router buffer
will not be full. Therefore, it is impossible to implement a
full-buffer attack by completely filling the router buffer.

IV. ATTACK MODELS

Fig. 2 presents the classic LDoS attack model which is
described by a sequence of square-pulse with triple para-
meters: a high rate δ, a short width L, and an appropriate
period T [1]. Although the LDoS attack in this study follows
the above mentioned model, we will specifically give a quan-
titative design for the triple parameters to maximize the attack
potency in the CUBIC + RED scenario.

The essential task in this section is to discuss how to
well configure these three parameters to achieve expected
attack effects. We first analyze the packet drop probability
model under RED queue. And then, we present two attack
models, where a double-pulse model (D-model) forces the
TCP congestion window to frequently alternate between max
probing phase and steady phase, and a single-pulse model
(S-model) is simpler to implement because it only sends one
pulse per period.

A. Packet Loss Probability Model

CUBIC and RED form a congestion feedback system. The
attack strategy is to cause packet loss in RED queue, and
then the congestion signal is fed back to the end system to
trigger CUBIC congestion control. Accordingly, TCP sender’s
window size is forced to remain at a low level. We assume
that the RED packet dropping probability is Pa which can
be calculated by (7) and (8). Under Pa , the probability that
guarantees at least one TCP packet loss is Pt . Pt can be
expressed as follows.

Pt = 1 − (1 − Pa)
cwnd (9)

where cwnd represents the window size when the packet loss
occurs.

Equation (9) can be explained as follows. The dropping
rate of each packet is Pa , so the probability of not being

Fig. 3. D-Model: triggering packet loss in the max probing phase and the
steady phase alternatively. Fig. 3 depicts the variation of the cwnd with respect
to t . We divide the attack period T � into two sub-periods T �

1 and T �
2 to analyze

the window behaviors under attack conditions.

dropped is 1 – Pa . TCP sends cwnd packets per RTT,
so the probability that all TCP packets are not dropped is
(1 – Pa)cwnd , and the probability of ensuring that at least one
packet is dropped is 1 – (1 – Pa)cwnd . Equation (9) implies
that the LDoS attacker must guarantee Pa large enough to
obtain sufficient Pt . Meanwhile, a large cwnd facilitates Pt to
be satisfied. Based on the above analysis, the attack pulse rate
and the pulse width can be set as follows.⎧⎨

⎩δ = Cb

1 − Pa
L = RT T

(10)

where Cb is the bottleneck link capacity given in bits per sec-
ond [bps]. First, each attack packet is also dropped with
probability Pa . Some of these attack packets are dropped by
RED, and the remaining attack packets not dropped should
guarantee to fill the bottleneck link capacity. After that, extra
packets can be buffered to maintain Pa , so that the required
Pt given by (9) can be obtained (i.e., guarantee at least one
TCP packet loss). Second, the pulse width should set to be at
least one RTT duration to guarantee sufficient Pt , since TCP
employs the RTT duration as the time scale to send cwnd
packets.

Here, we only explore the pulse rate δ and the pulse width
L. Next, we will design two attack models by adjusting the
pulse period T .

B. Double-Pulse Model

Equation (1) implies that the congestion event will alterna-
tively occur in the max probing phase and the steady phase.
This inspired us to design a double-pulse attack model with
alternate pulse intervals. Fig. 3 depicts the window behaviors
during an attack period.

In order to limit the growth of the CUBIC window,
the attacker sends two pulses with intervals of T �

1 and T �
2

during each period T � (T � = T �
1 + T �

2). We assume the
first packet loss (triggered by the first pulse) occurs at the
window size of cwnd�

1 corresponding to the max probing
phase, and the second packet loss (triggered by the second
pulse) occurs at the window size of cwnd�

2 corresponding to the
steady phase. According to CUBIC algorithm (see Fig. 1 and
equation (1)), in order to allow the packet loss to alternately
occur between the stated phases, cwnd�

2 should be set to be

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4955

less than cwnd�
1. Additionally, cwnd�

2 should be set as large
as possible according to (9). Therefore, cwnd�

2 should be
quantified as cwnd�

2 = cwnd�
1 – 1. Next, we analyze window

behaviors during T �
1 and T �

2.
T�

1: In the max probing phase where the window size
is cwnd�

1, the attacker launches the first pulse with well-
configured δ and L given by (3). This pulse will induce
TCP packet loss and cause cwnd to be β × cwnd�

1 and
Wmax1 to be cwnd�

1. After that, the window enters the steady
phase and increases following the cubic function given by (2).
As expected, the window size will increase to cwnd�

2 after
the time period of T �

1. Therefore, cwnd�
2 can be expressed as

follows.

cwnd �
2 = max[cwnd(T �

1), cwndtcp(T �
1)]

= max[C × (T �
1 − K)3 + Wmax , β × Wmax

+3 × 1 − β

1 + β
× T �

1

RT T
] (11)

where K = 3
√

(1 − β) × cwnd �
1/C . According to (11), T �

1 can
be deduced as follows.

T �
1 =min

⎡
⎣ 3

√
cwnd �

2 − cwnd �
1

C
+ K ,

cwnd �
2 − β × cwnd �

1
1−β
1+β × 3

RT T

⎤
⎦
(12)

T�
2: In the steady phase where the window size is cwnd�

2,
the second pulse is launched to induce TCP packet loss again.
The TCP sender decreases cwnd to be β× cwnd�

2 and sets
Wmax2 to be (1 +β)× cwnd�

2 /2. And then, the window
behaves from the steady phase to the max probing phase given
by (2). After the time period of T �

2, once the window size
returns to cwnd�

1, the next round of attacks will be initiated.
As analysis above, cwnd�

1 can be expressed as follows.

cwnd �
1 = max[W (T �

2), Wtcp(T �
2)]

= max[C × (T �
2 − K)3 + Wmax2, β × Wmax2

+3 × 1 − β

1 + β
× T �

2

RT T
] (13)

where K = 3
√

(1 − β) × cwnd �
2/(2 × C). Accordingly, T �

2 can
be deduced as follows.

T �
2 = min

⎡
⎣ 3

√
cwnd �

1 − (1+β
2) × cwnd �

2

C
+ K ,

cwnd �
1 − β × cwnd �

2
1−β
1+β × 3

RT T

]
(14)

Note that, (12) and (14) consider the TCP-friendliness
mode. This is because that attack pulses force the window
to remain at a low level, which may cause cwnd is less than
Wtcp(t). Experiment results in Section V will reveal this.

C. Single-Pulse Model

Since the window size is given in packets, the calculated
cwnd is rounded down (i.e., downwards to the nearest inte-
ger) [42]. In this case, although the window enters the max

Fig. 4. S-Model: simplicity of D-model by exploiting the rounding.
Fig. 4 depicts the variation of the cwnd with respect to t .

probing phase where cwnd = Wmax , the window size will not
increase immediately, that is, it will increase by one segment
after a certain time. Accordingly, we design the single-pulse
model shown in Fig. 4.

We assume that the window size is cwnd” when the attack
pulse triggers the packet loss. Here, the window is in max
probing phase, so we get Wmax = cwnd”, and cwnd =
β× cwnd”. In order to extend the attack period as long as
possible, the attack pulse causes the packet loss to occur within
an RTT before the window size is close to cwnd” + 1. Here,
cwnd” + 1 is the calculated window value, while the practical
window size remains cwnd” until the next packet loss.

Since the window takes T �� to increase from β× cwnd” to
cwnd” + 1, cwnd” + 1 can be expressed as follows.

cwnd �� + 1 = max[cwnd(T ��), cwndtcp(T ��)]
= max[C × (T �� − K)3 + Wmax , β × Wmax

+3 × 1 − β

1 + β
× T ��

RT T
] (15)

where K = 3
√

(1 − β) × cwnd ��/C . Accordingly, T �� can be
deduced as follows.

T �� = min

[
3

√
(cwnd �� + 1) − Wmax

C
+ K ,

(1 − β) × cwnd �� + 1
1−β
1+β × 3

RT T

]
(16)

As long as attack pulses are launched with the period T ��,
the TCP window size will be limited. Although the double-
pulse model is not difficult to implement, the single-pulse
model further simplifies the implementation of the attack as it
only sends one pulse per period.

V. EXPERIMENTS AND ASSESSMENTS

This section establishes a NS-2 simulation environment with
a standard network configuration to validate the effectiveness
of our two models, and to compare their attack performance.
NS2 is commonly used by relevant studies to conduct experi-
ments [1], [26], [43]. We can use it to conveniently config-
ure networks and measure performance. More importantly,
NS2 provides substantial support for simulations of CUBIC
and RED. The experimental network topology and related
parameters settings are shown in Fig. 5.

4956 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 5. Network topology of NS-2 simulations to verify the proper
functioning of D-model and S-model, and to assess their attack performance.

Fig. 6. The window and queue behaviors under normal conditions.

Here, a typical dumb-bell topology is established, where
a single CUBIC TCP flow passing through a bottleneck link
between two routers. The bottleneck link capacity is set as
15 Mbps and the round trip time is set as 120 ms. The router
buffer size is set as the bandwidth-delay product (BDP). The
RED parameters are set as minth = 50, maxth = 150, Pmax =
0.06, and w = 0.002. A legitimate CUBIC TCP connection is
established between TCP sender and TCP receiver. The packet
MTU size of TCP is set as 1000 bytes [1], [16], [44]. Attacker
in Fig. 5 is in charge of sending LDoS attack stream which is
formed by user datagram protocol packets. The attack packet
MTU size is set as 50 bytes [1], [16], [44]. In addition, the
attack parameters δ and L are set according to (8).

In our experiments, the TCP window and router queue
behaviors are first traced under normal conditions. The simu-
lation results are shown in Fig. 6, which are consistent with
theoretical behaviors.

Fig. 6 shows that the window growth follows the cubic
function referring to time t . Packet loss alternately occurs
between the max probing phase and the steady phase, so that
the window is dynamically stabilized at the saturation state.
Fig. 6 also depicts queue behaviors referring to time t . The
queue length is closely related to the window size. The
increasing window gradually fills the queue until RED’s packet
dropping mechanism triggers a packet loss event, and then the
queue length quickly decreases to almost zero. In addition, the
queue length is always small, which implies small queuing
delay and no severe network congestion. Also, the queue
always has packet to drain (not empty), which implies the
queue is fully utilized. Therefore, the given RED parameters
works well in our experimental scenario.

A. Verification of Attack Models

The congestion control is triggered by packet loss, so the
attacker first needs to select an appropriate window size to

Fig. 7. Pt obtained as a function of cwnd.

guarantee the packet loss. According to (9), Pt depends on
Pa and cwnd. During the attack pulse, the packet dropping
probability will reach its upper-bound, so we assume Pa equal
to Pmax . When Pt is determined, a larger Pa can decrease the
value of the required cwnd. Fig. 7 presents Pt obtained based
on (9) as a function of cwnd.

As shown in Fig. 7, if it is believed that Pt is sufficient
large when Pt is greater than 0.95, the corresponding minimum
cwnd is about 50 under the given Pmax . Therefore, we trigger
the packet loss at cwnd = 50 (i.e., cwnd�

2 = 50 for D-model
and cwnd” = 50 for S-model). Note that, a smaller cwnd has
advantages in overwhelming the TCP throughput. In contrast,
a larger cwnd can increase Pt and extend the attack period,
thereby reducing the cost of attack bits.

To verify D-model, we let two attack pulses to trigger
packet loss respectively at cwnd�

1 = 51 and cwnd�
2 = 50,

and set the pulse intervals according to (12) and (14).
In Fig. 8, the window behaviors during a single attack period
is traced. Compared to Fig. 6, the window size presented
in Fig. 8 is restricted at a low level, which reflects the attack’s
effectiveness.

Fig. 8 (a) indicates that the test results are consistent with
the theoretical analysis presented in Fig. 3 referring to a
single attack period. First, as shown in Fig. 8 (b), the period
42.73–44.31 s corresponding to T �

1 lasts 1.58 s which is
consistent with the theoretical value given by (12). During
this period, the window is in the steady phase. As cwnd is
not less than cwndtcp, the window follows the cubic function
increase from 40 to 50, which agrees with the theoretical value
given by (11). Second, as shown in Fig. 8 (c), the period
44.51–48.52 s corresponding to T �

2 lasts 4.01 s which is
consistent with the theoretical value given by (14). During
this period, the window increases from the steady phase to the
max probing phase. During the steady phase, cwnd is not less
than cwndtcp, the window follows the cubic function increment
from 39 to 45. Once the window size increases to the critical
point at 46.32 s, the window enters into the max probing phase.
After that, as the theoretical cwnd given by (13) is less than
cwndtcp, the practical cwnd presents the TCP-friendliness that
the window follows the linear increment from 45 to 51.

To verify the S-model, we let the attack pulse to trigger
packet loss at cwnd” = 50, and set the pulse period according
to (16). Fig. 9 shows the window behaviors traced in a single

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4957

Fig. 8. Test results for D-model. (a) Overview of the window during an attack
period. (b) Detailed behaviors over 42.73–44.31 s. (c) Detailed behaviors over
44.51–46.32–48.52 s.

attack period. Compared to Fig. 6, the window growth in Fig. 9
has been severely restricted.

Fig. 9 (a) indicates that the test results are consistent with
the theoretical behaviors shown in Fig. 4 referring to a single
period. As shown in Fig. 9 (b), the period 48.41–52.51 s
corresponding to T �� lasts 4.10 s which agrees fairly well
with the theoretical value given by (16). During this period,
the window is in the steady phase. As cwnd is not less than
cwndtcp, the window follows the cubic function increment
from 39 to 50, which agrees with the theoretical value cal-
culated by (15). In addition, Fig. 9 (b) verifies the rounding
mechanism, based on which, the window size remains 50 for

Fig. 9. Test results for S-model. (a) Overview of the window behaviors
during an attack period. (b) Detailed behaviors over 48.41–52.51 s.

a period of time until 52.51 s. At 52.51 s, the window should
have increased by one segment, but the attack pulse causes
the packet loss, so the window decreases to 39.

B. Performance Comparison

This subsection compares the attack performance of the
proposed models. To this end, three basic indicators used for
the assessment of the attack effect are defined.

The first indicator is the attack damage (termed as Damage)
which represents the volume of bits that could have been sent,
but were not successfully transmitted. Damage is defined as
follows.

Damage = TPo − −TPa (17)

Here, TCP throughput (TP) denotes the average number of
successfully transmitted TCP bits per second, and accordingly,
TPo and TPa denote the TCP throughput under normal condi-
tions and attack conditions. The damage depends on window
behaviors, because the window size determines how many
TCP packets can be successfully transmitted. Under normal
conditions, as long as the RED parameters are well configured,
it can be guaranteed that the router queue is not empty, that
is, the link bandwidth can be fully utilized. Therefore, TPo is
equal to Cb .

The second indicator is the attack cost (termed as Cost)
that represents the average number of attack bits required

4958 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

per second. Cost is defined as follows.

Cost = L × δ

T
(18)

Accordingly, we define the third indicator as the attack
potency (termed as Potency) which is expressed as follows.

Potency = Damage

Cost
(19)

Potency represents the ratio of the damage induced by the
attack to the attacker’s cost for mounting the attack. In other
words, it represents how many TCP units can be damaged by a
single attack unit. This indicator reflects the tradeoffs between
damage and cost. For D-model, TP�

a can be given as follows.

T P �
a = packetsi zetcp × G�

1 + G�
2

T �
1 + T �

2
(20)

where G�
1 and G�

2 can be expressed in (21) and (22), as shown
at the bottom of the page.

T �
1 and T �

2 are given by (12) and (14). packetsizetcp repre-
sents the TCP packet size. In addition, the cost of D-model
can be given as follows.

Cost � = L × δ

T �
1 + T �

2
(23)

For S-model, TP��
a can be given as follows.

T P ��
a = packetsi zetcp × G��

T �� (24)

where G�� can be expressed in (25), as shown at the bottom
of the page.

T �� is given by (16). And, the cost of S-model can be given
as follows.

Cost �� = L × δ

T �� (26)

Next, five attack periods are randomly selected in experi-
ments to report Damage and Potency. Simulation results are
shown in Figs. 10 and Fig. 11.

We note from Fig. 10 that D-model induces average
12.15 Mbps TCP damage, and S-model induces average
11.99 Mbps TCP damage. These results demonstrate that the
D-model and S-model reduce TCP throughput by approxi-
mately 81% and 80%, respectively, in the given experimental
scenario. Also, we note from Fig. 11 that about 18 CUBIC

Fig. 10. Comparison of Damage for D-model and S-model.

Fig. 11. Comparison of Potency for D-model and S-model.

TCP bits are damaged by one attack bit of D-mode, and about
23 CUBIC TCP bits are damaged by one attack bit of S-model.

In order to validate the effectiveness and assess the perfor-
mance of the two models in a practical scenario, we establish
a test-bed experimental environment with the same network
topology and parameter configurations as Fig. 5. We use
two multi-network-card PCs with Linux Red Hat operation
system (version 2.6.39) to replace the two routers. We use
two tools iproute and tc installed in the PC to configure the
queue, the propagation delay, and the bottleneck link capacity.
All machines are configured with Intel Xeon Quad-Core
CPU E5504 @ 2.0GHz and 4GB RAM. We records the
averages of ten attack periods of tests performed in the test-
bed experiments. The average Potency obtained for D-model
and S-model is 17.77 and 23.43 respectively. These test-bed
experimental results are similar to NS-2 experimental results,

G�
1 =

T �
1∫

0

max[C × (t − K)3 + Wmax1, β × Wmax1 + 3 × 1−β
1+β × t

RT T]
RT T

dt (21)

G�
2 =

T �
2∫

0

max[C × (t − K)3 + Wmax2, β × Wmax2 + 3 × 1−β
1+β × t

RT T]
RT T

dt (22)

G�� =
T ��∫
0

max[C × (t − K)3 + Wmax , β × Wmax + 3 × 1−β
1+β × t

RT T]
RT T

dt (25)

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4959

Fig. 12. Comparison of Potecny for D-model and S-model with respect
to cwnda .

Fig. 13. Comparison between our proposed models and the traditional
RTO-base attack model.

and validate the effectiveness of the proposed two models.
In the following subsection, for simplicity, we will use NS-2
simulation to conduct more extensive experiments.

Next, we let cwnda denote the window size when triggering
packet loss. And then, we explore the maximum attack potency
of D-model and S-model by varying cwnda from 20 to 240.

Fig. 12 plots the curves of the attack potency obtained
for D-model and S-model according (17)–(26) versus cwnda,
meanwhile, presents the simulation values for comparison. The
simulation values are consistent with the theoretical values.
In addition, one attack bit of D-model can damage up to
21.07 TCP bits at cwnda = 81 (Potency = 21.07), while this
metric of S-model is 25.80 obtained at cwnda = 60. Therefore,
they represent an increment in the upper-bound attack potency
of about 20%.

In practice, in order to determine the optimal cwnda at
which the attack model can obtain the maximum potency,
the attacker can calculate this metric in theory, and then
use network measurement techniques [45]–[50] to trace the
practical window size. Alternatively, the attacker can induce
the target TCP connection to be time out, and then trace
the window behaviors from the slow start to obtain the
expected cwnda .

Next, we compare our proposed models with the tradi-
tional RTO-based attack model. We implement the traditional
RTO-based attack in the same experimental environment as
shown in Fig. 5. We set attack parameters δ and L according to
(8), and T = RTO. Fig. 13 reports the average potency of five

Fig. 14. The variation of the optimal window size cwndo with Cb.

attack periods. We note that, for traditional RTO-based attack
model, about 8 CUBIC TCP bits are damaged by one attack bit
when RTO is 1 s (recommended value in RFC 6298 [51]), and
less than 2 CUBIC TCP bits are damaged when RTO is 200 ms
(actual value in modern systems [13]). Test results show that,
in the worst case, our proposed attack models outperform the
traditional attack model in terms of attack potency by at least
250%. Especially, this attack is no longer a low-rate attack
when RTO is 200 ms, and therefore loses its concealment and
is easier to detect.

C. Effect of Network Parameters on Attack Performance

In order to further validate the effectiveness of the two
models and assess the effect of network parameters on their
attack performance, this subsection conducts more extensive
experiments in different network environments. We use the
same network topology as Fig. 5, but with varying network
parameters. In addition, as our study is focused towards worst-
case scenarios, we define the optimal window size where the
model can maximize attack potency under a given network
parameter as cwndo. In the following experiments, all analysis
are conducted at cwndo.

1) Effect of Bottleneck Link Capacity: this part explores
the effect of Cb on the performance of D-model and S-model.
In our analysis, RTT is fixed at 120 ms, and the bottleneck
link capacity Cb ranges from 10 Mbps to 1 Gbps.

Fig. 14 presents the optimal window size cwndo under a
given Cb . We note that cwndo increases with increasing Cb.
This is because that the increment of link capacity makes the
CUBIC TCP increase its congestion window size in normal
case, which allows the attacker to select a larger window size
at which trigger packet loss to obtain the maximum attack
potency.

Fig. 15 plots the curves of the theoretical attack period T
obtained for D-model and S-model according to (12), (14)
and (16), respectively, versus Cb. We can observe that T
increases more rapidly for D-model than it does for S-Model.
When Cb exceeds 150 Mbps, T for D-model is more than
twice the length of that for S-model.

Fig. 16 plots the curves of the theoretical attack
cost obtained for the proposed two models according to
(23) and (26), respectively, versus Cb . We observe that the cost
increases with increasing Cb as the attacker needs to increase
the attack rate to congest the bottleneck link. Also, we observe

4960 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 15. Attack period as a function of Cb.

Fig. 16. Attack cost as a function of Cb .

Fig. 17. Throughput as a function of Cb .

that D-model requires the cost approximately the same as
S-model at relatively small Cb values, while S-model increases
its cost more rapidly than D-model does. The cost of D-model
is obviously lower than that of S-model when Cb is greater
than 150 Mbps. This is because that D-model significantly
extends its attack period (see Fig. 15), although it sends two
pulses every period.

Fig. 17 plots the curves of theoretical TCP throughput
obtained for D-model and S-model according to (20)–(22),
(24) and (25), versus Cb, meanwhile, presents the simulation
values for comparison. The simulation values are consis-
tent with the theoretical values. We observe that the TCP
throughput increases with the growth of Cb, and S-model

Fig. 18. Attack potency as a function of Cb.

Fig. 19. The variation of the optimal window size cwndo with RTT.

damages more than D-model because S-model allows the
window size to be lower than D-model does.

Fig. 18 plots the curves of the maximum Potency for
D-model and S-model according to (17)–(26), versus Cb,
meanwhile, presents the simulation values for comparison. The
simulation values are consistent with the theoretical values.
The attack potency for both models increases with the growth
of Cb over its entire given range. The maximum Potency of
D-model is lower than that of S-model at relatively small Cb

values. Whereas, D-model increases its Potency more rapidly
than S-model does, and D-model makes greater Potency than
S-model when Cb exceeds 150 Mbps.

The above discussions illustrate that TCP would benefit
from increasing the network bandwidth to improve its trans-
mission efficiency. However, high bandwidth contributes to the
attack potency, especially for D-model, where an increment
of Cb makes a more negative impact. Here, the attack effect
of D-model becomes more and more prominent in high-
bandwidth networks. In practice, in order to obtain the upper-
bound of the attack potency, the attacker can flexibly select
these two attack models according to the target network
scenario.

2) Effect of Round Trip Time: this part explores the effect of
RTT on the performance of our two models. Cb is also set as
15 Mbps, and RTT is varied from 20 ms to 400 ms [52], [53].

Fig. 19 presents the optimal window size cwndo under
a given RTT. We observe that cwndo gradually increases
with increasing RTT. This is because that the increment
of round trip time allows the CUBIC TCP to increase its

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4961

Fig. 20. Attack period as a function of RTT.

Fig. 21. Attack cost as a function of RTT.

congestion window size to fully utilize the network bandwidth.
Consequently, the attacker can select a larger window size at
which trigger the packet loss to obtain the maximum attack
potency.

Fig. 20 plots the curves of the theoretical attack period T
for D-model and S-model according to (12), (14) and (16),
respectively, versus RTT. We observe that T increases with
the growth of RTT for both models. T for D-model is never
more than twice the length of that for S-model. Therefore,
it can be predicted that D-model will cost more resources than
S-model over the given range of RTT. Moreover, T sharply
increases initially with the growth of RTT, then, when RTT
is larger than 80 ms, T slowly increases with further growth
in RTT. This behaviors can be explained as follows. CUBIC
mainly works at the TCP-friendly mode under short RTTs.
In this case, the window growth is dependent of RTT, and
consequently, T increases with increasing cwnda and RTT.
Whereas, the window growth is independent of RTT under
long RTTs. In this case, T increases with increasing cubic
root of cwnda .

Fig. 21 plots the curves of the theoretical attack cost for
D-model and S-model according to (23) and (26), versus RTT,
meanwhile, presents the simulation results for comparison.
We can observe that the simulation values are consistent with
the theoretical values. As is expected, D-model required a
greater cost than S-model over the entire variation range of
RTT. Also, the cost reduces initially before the value of RTT
increases to 80 ms. This behavior also results from the TCP-
friendly mode. According to (13), (14) and (16), if the window

Fig. 22. Throughput as a function of RTT.

growth always follows the TCP-friendly mode (limit case)
under short-RTTs, then RTT in the numerator and denominator
is reduced, leaving only cwnda in the denominator, so the
cost decreases with increasing cwnda . In contrast, the window
growth gradually becomes independent of RTT under long-
RTTs. In this case, the value of Cost should increase with
increasing RTT and decrease with increasing cubic root of
cwnda . Because the RTT increment is particularly prominent,
the value of Cost gradually increases.

Fig. 22 plots the curves of the theoretical TCP through-
put for D-model and S-model according to (20)–(22), (24)
and (25), versus RTT, meanwhile, presents the simulation
results for comparison. We can observe that the simulation
values are consistent with the theoretical values. In Fig. 22,
the TCP throughput presents an overall downward trend with
increasing RTT, and S-model induces greater damage than
D-model because S-model allows the window size to be
lower than D-model does. Furthermore, we observe from
Fig. 22 that the TCP throughput presents a sharp decline at
RTT = 80 ms. This indicates that our attack models make
relatively slight damage on CUBIC TCP connections with
relatively short RTTs up to 80 ms due to the TCP-friendly
mode, beyond which CUBIC TCP connections with longer
RTTs are obviously greater damage.

Fig. 23 plots the curves of the maximum Potency for
D-model and S-model according to (17)–(26), versus RTT,
meanwhile, presents the simulation values for comparison.
We can observe that the simulation values are consistent with
the theoretical values. Also, the maximum Potency of D-model
is lower than that of S-model over the given range of RTT.
The maximum attack potencies appear in the range of 80 ms
to 120 ms. During this period of time, CUBIC transmissions
run both the TCP-friendly mode and the cubic window growth
mode.

The above analysis illustrates that the value of RTT has an
effect on the vulnerability of CUBIC TCP to LDoS attacks.
CUBIC could have improved the transmission efficiency of
long-RTT flows, but larger values of RTT will lead to more
damage. Moreover, the use of the S-model can benefit attack-
ers in enhancing the maximum attack potency.

3) The Case of Multiple TCP Flows: this part explores the
effect of the two models on multiple TCP flows. When TCP
always has data available from the application layer to send,

4962 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 23. Attack potency as a function of RTT.

Fig. 24. Window behaviors of homogeneous CUBIC flows under D-model.

Fig. 25. Window behaviors of homogeneous CUBIC flows under S-model.

the only difference between TCP flows is their round trip
times.

First, we discuss the effect of our models on two homoge-
neous CUBIC flows with identical RTT = 120 ms sharing a
bottleneck link of capacity Cb = 15 Mbps.

As two CUBIC flows have an identical RTT, their behaviors
related to congestion control will be exactly synchronous.
Fig. 24 and Fig. 25 show the window behaviors of these
two flows under our proposed attack models. We can obverse
that CUBIC flows simultaneously enter the steady phase and
the max probing phase, and increase their windows at the
same time, and when packet loss occurs, they synchronously
reduce their windows. The throughput on the bottleneck link
decreases 61.20% under D-model attack, while this metric
under S-model decreases 48.47%. Moreover, one attack bit
of D-model can damage up to 11.35 TCP bits (Potency =
11.35), while this metric of S-model is 17.58.

Fig. 26. Window behaviors of heterogeneous CUBIC flows under D-model.

Fig. 27. Window behaviors of heterogeneous CUBIC flows under S-model.

Second, we extend our experiments for two heterogeneous
CUBIC flows, where RTTs are set as 120 ms and 400 ms
respectively, and the bottleneck link capacity Cb is set as
15 Mbps. Previous studies have indicated that the fairness of
CUBIC is not enough [54]–[56]. When two CUBIC flows have
different RTTs, the flow with shorter RTT will obtain higher
throughput than that with longer RTT [57]. Therefore, in order
to obtain a better attack effect, we select the flow with shorter
RTT as the attack target.

Fig. 26 and Fig. 27 present the window behaviors of these
two flows under our proposed attack models. We can obverse
that the shorter-RTT based attack not only limit the window
growth of the CUBIC flow with the shorter RTT, but also
force that with the longer RTT to remain at a low level. The
throughput on the bottleneck link decreases 38.97% under
D-model attack, while this metric under S-model decreases
31.27%. And, one attack bit of D-model can damage up
to 17.98 TCP bits (Potency = 17.98), while this metric of
S-model is 23.43.

Next, we fix the RTT of the first flow as 120 ms, and
vary that of the second flow from 4 ms to 400 ms [1], [10],
[54], [58]. Also, we always select the flow with the shorter
RTT as the target, and configure the attack parameters referring
to the target flow. In Fig. 28, the horizontal axis represents
RTTs of the second flow, and the vertical axis shows the
maximum attack potency obtained for D-model and S-model.
We can observe that, in the scenario of heterogeneous flows,
if the RTT of one flow is fixed, the attack potency will
increases with the growth of the RTT of another flow. This is

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4963

Fig. 28. The maximum attack potency as a function of the RTT of the second
flow.

because the flow with the longer RTT decreases its congestion
window more under the attack, which reduces the link utiliza-
tion more significantly.

The above discussions illustrate that our proposed attack
models can achieve excellent attack performance in the sce-
nario of multiple CUBIC flows. Especially, for heterogeneous
CUBIC flows, the attack can force these flows to lose packets
at the same time and recover windows synchronously.

VI. A BRIEF DISCUSSION ABOUT ATTACK

COUNTERMEASURES

To launch successful LDoS attacks, attackers needs to probe
the bottleneck link in advance. If the network can actively
identify such potential target links, and then dynamically
adjust them, it will make attackers harder to locate a target
link. Accordingly, such attacks become blind and inefficient.
Even if attackers can probe the bottleneck link again, they
will take more time and resources. Therefore, this strategy
can effectively mitigate LDoS attacks without being restricted
by the TCP congestion control version. To implement the
above mentioned idea, we are currently working on a SDN-
based Moving Target Defense (MTD) approach. The SDN
controller can easily identify target links that are potentially
exploited by the attacker, since it has a globe view of the
network. Also, based on SND’s globe view, it is easy to
implement an optimal MTD strategy to reroute the network
traffic before attacks [59], [60], thus changing the bottleneck
link and making it highly expensive to launch a successful
attack. The exact details of this countermeasure is outside the
scope of this paper.

VII. CONCLUSION

CUBIC has replaced the traditional TCP congestion control
protocols and become the default algorithm used in most
of current operating systems, and RED is the most typical
active queue management algorithm. CUBIC combined with
RED challenges traditional LDoS attacks. Inspired by this,
we develop new LDoS attack models in the CUBIC + RED
scenario, and accordingly explores the effects of network
parameters to the attack performance. This paper first pre-
sented the normal congestion window behaviors in the absence

of attacks, and then accordingly proposed two attack mod-
els. D-model was designed to alternatively limit the window
growth in both the steady phase and the max probing phase of
CUBIC. Then, D-model was further simplified by exploiting
the rounding mechanism to form S-model. To verify the effec-
tiveness of these two models and compare their performance,
we first conduct theoretical analysis and simulation tests in
a standard-configured network. Moreover, we vary different
network parameters to further access the attack performance
of these two models. Experimental results are consistent with
theoretical analysis. In addition, test results indicate that these
two models that these two models outperform the traditional
attack model and alternatively maximized the attack potency
under different network scenarios. As CUBIC has been widely
used in today’s internet, this study has practical positive
application significance: 1) this study reveals the potential
security vulnerability of CUBIC + RED, which will aid
CUBIC users to be alert to such attack, or to select appro-
priate TCP congestion control algorithms for their upper-layer
applications, 2) this study will aid DoS defenders to recognize
the new attack manner which may be exploited by attackers.
Further, this study will be of help in evaluating the extent of the
attack’s damage and the extent that existing countermeasures
can mitigate the impact of the attack, and inspire defenders
to develop effective solutions against such attack. In essence,
DoS can be regarded as a game between attack and defense.
The victorious balance will tend to the side that costs less but
gains more. Therefore, this study finally proposed an outline
for an attack countermeasure from the perspective of making
attacks harder. In the future, two aspects are worth researching:
exploring available models for other TCP congestion control
protocol and developing effective measurements against LDoS
attacks. Specifically, we are going to develop the attack model
for bottleneck bandwidth and RTT (BBR) TCP, and deeply
investigate defense strategies against such attack using MTD
combined with SDN.

REFERENCES

[1] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: The shrew vs. the mice and elephants,” in Proc. ACM
SIGCOMM Comput. Commun. Rev., Kalrushe, Germany, Aug. 2003,
pp. 75–86.

[2] H. Shan, Q. Wang, and C. Pu, “Tail attack on web applications,” in
Proc. ACM SIGSAC Conf. Comp. Commun. Secur., Dallas, TX, USA,
Nov. 2017, pp. 1725–1739.

[3] Z. A. Baig, S. M. Sait, and F. Binbeshr, “Controlled access to cloud
resources for mitigating economic denial of sustainability (EDoS)
attacks,” Comput. Netw., vol. 97, pp. 31–47, Mar. 2016.

[4] A. Shawahna, M. Abu-Amara, A. Mahmoud, and Y. E. Osais, “EDoS-
ADS: An enhanced mitigation technique against economic denial of
sustainability (EDoS) attacks,” IEEE Trans. Cloud Comput., vol. 8, no. 3,
pp. 790–804, Jul./Sep. 2020.

[5] T. A. Pascoal, I. E. Fonseca, and V. Nigam, “Slow denial-of-service
attacks on software defined networks,” Comput. Netw., vol. 173,
May 2020, Art. no. 107223.

[6] Y. Chen and K. Hwang, “Collaborative detection and filtering of shrew
DDoS attacks using spectral analysis,” J. Parallel Distrib. Comput.,
vol. 66, no. 9, pp. 1137–1151, Sep. 2006.

[7] Y. Tang, X. Luo, Q. Hui, and R. K. C. Chang, “Modeling the vul-
nerability of feedback-control based internet services to low-rate DoS
attacks,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 3, pp. 339–353,
Mar. 2014.

4964 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[8] H. Li, J. Zhu, Q. Wang, T. Zhou, H. Qiu, and H. Li, “LAAEM:
A method to enhance LDoS attack,” IEEE Commun. Lett., vol. 20, no. 4,
pp. 708–711, Apr. 2016.

[9] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion
avoidance algorithm identification,” IEEE/ACM Trans. Netw., vol. 22,
no. 4, pp. 1311–1324, Aug. 2014.

[10] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[11] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[12] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “Mitigating incast-
TCP congestion in data centers with SDN,” Ann. Telecommun., vol. 73,
nos. 3–4, pp. 263–277, Apr. 2018.

[13] W. Rebecca and C. A. Hope. (Jun. 2017). CS244 ’17: Low-
Rate TCP-Targeted Denial of Service Attacks. [Online]. Available:
https://reproducingnetworkresearch.wordpress.com/2017/06/05/cs244-
17-low-rate-tcp-targeted-denial-of-service-attacks/

[14] W. Zhijun, L. Wenjing, L. Liang, and Y. Meng, “Low-rate DoS attacks,
detection, defense, and challenges: A survey,” IEEE Access, vol. 8,
pp. 43920–43943, 2020.

[15] M. Yue, M. Wang, and Z. Wu, “Low-high burst: A double
potency varying-RTT based full-buffer shrew attack model,” IEEE
Trans. Dependable Secure Comput., vol. 18, no. 5, pp. 2285–2300,
Sep./Oct. 2019.

[16] Z. Wu, L. Zhang, and M. Yue, “Low-rate DoS attacks detection based on
network multifractal,” IEEE Trans. Dependable Secure Comput., vol. 13,
no. 5, pp. 559–567, Sep. 2016.

[17] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Power spectrum entropy
based detection and mitigation of low-rate DoS attacks,” Comput. Netw.,
vol. 136, pp. 80–94, May 2018.

[18] A. Dahiya and B. B. Gupta, “A reputation score policy and Bayesian
game theory based incentivized mechanism for DDoS attacks mitigation
and cyber defense,” Future Gener. Comput. Syst., vol. 117, pp. 193–204,
Apr. 2021.

[19] A. Praseed and P. S. Thilagam, “Modelling behavioural dynamics
for asymmetric application layer DDoS detection,” IEEE Trans. Inf.
Forensics Security, vol. 16, pp. 617–626, 2021.

[20] A. Dahiya and B. B. Gupta, “Multi attribute auction based incentivized
solution against DDoS attacks,” Comput. Secur., vol. 92, May 2020,
Art. no. 101763.

[21] A. Tewari and B. B. Gupta, “Security, privacy and trust of different
layers in Internet-of-Things (IoTs) framework,” Future Gener. Comput.
Syst., vol. 108, pp. 909–920, Jul. 2020.

[22] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan,
“Scale inside-out: Rapid mitigation of cloud DDoS attacks,” IEEE Trans.
Dependable Secure Comput., vol. 15, no. 6, pp. 959–973, Nov. 2018.

[23] R. Xie, M. Xu, J. Cao, and Q. Li, “SoftGuard: Defend against the low-
rate TCP attack in SDN,” in Proc. ICC, Shanghai, China, May 2019,
pp. 1–6.

[24] A. Mishra, N. Gupta, and B. B. Gupta, “Defense mechanisms against
DDoS attack based on entropy in SDN-cloud using POX controller,”
Telecommun. Syst., vol. 77, no. 1, pp. 47–62, Jan. 2021.

[25] K. Bhushan and B. B. Gupta, “Distributed denial of service (DDoS)
attack mitigation in software defined network (SDN)-based cloud com-
puting environment,” J. Ambient Intell. Hum. Comput., vol. 10, no. 5,
pp. 1985–1997, May 2019.

[26] S. Sarat and A. Terzis, “On the effect of router buffer sizes on low-rate
denial of service attacks,” in Proc. 14th Int. Conf. Comput. Commun.
Netw., San Diego, CA, USA, Oct. 2005, pp. 281–286.

[27] M. Guirguis, A. Bestavros, and I. Matta, “On the impact of low-rate
attacks,” in Proc. IEEE ICC, Istanbul, Turkey, Jun. 2006, pp. 2316–2321.

[28] M. Yue, Z. Wu, and M. Wang, “A new exploration of FB-shrew attack,”
IEEE Commun. Lett., vol. 20, no. 10, pp. 1987–1990, Oct. 2016.

[29] Y. Zhang, Z. M. Mao, and J. Wang, “Low-rate TCP-targeted DoS attack
disrupts internet routing,” in Proc. Netw. Distrib. Syst. Secur. Symp.
(NDSS), Feb. 2007, pp. 1–15.

[30] J. Luo, X. Yang, J. Wang, J. Xu, J. Sun, and K. Long, “On a math-
ematical model for low-rate shrew DDoS,” IEEE Trans. Inf. Forensics
Security, vol. 9, no. 7, pp. 1069–1083, Jul. 2014.

[31] M. Ficco and M. Rak, “Stealthy denial of service strategy in cloud
computing,” IEEE Trans. Cloud Comput., vol. 3, no. 1, pp. 80–94,
Jan./Mar. 2015.

[32] J. Cao et al., “The crosspath attack: Disrupting the SDN control channel
via shared links,” in Proc. 28th USENIX Secur. Symp., Aug. 2019,
pp. 19–36.

[33] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction
in TCAM for power aware SDN,” in Proc. Int. Conf. Distrib. Comput.
Netw. Berlin, Germany: Springer, Jan. 2013, pp. 439–444.

[34] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
“A survey on recent advances in transport layer protocols,” IEEE
Commun. Surveys Tuts., vol. 21, no. 4, pp. 3584–3608, 4th Quart., 2019.

[35] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, The NewReno
Modification to TCP’s Fast Recovery Algorithm, document RFC 6582,
Internet Engineering Task Force, Apr. 2012.

[36] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger,
CUBIC for Fast Long-Distance Networks, document RFC 8312, Internet
Engineering Task Force, Feb. 2018.

[37] G. Fairhurst and F. Baker, IETF Recommendations Regarding Active
Queue Management, document RFC 7567, Jul. 2015.

[38] N. Kuhn, P. Natarajan, N. Khademi, and D. Ros, Characterization
Guidelines for Active Queue Management (AQM), document RFC 7928,
Jul. 2016.

[39] S. Liu, T. Basar, and R. Srikant, “Exponential-RED: A stabilizing AQM
scheme for low and high-speed TCP protocols,” IEEE/ACM Trans.
Netw., vol. 13, no. 5, pp. 1068–1081, Oct. 2005.

[40] C. Wang, J. Liu, B. Li, K. Sohraby, and Y. T. Hou, “LRED: A robust
and responsive AQM algorithm using packet loss ratio measurement,”
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 1, pp. 29–43, Jan. 2007.

[41] M. Cheng, H. Wang, and L. Yan, “Dynamic RED: A modified random
early detection,” J. Comput. Inf. Syst., vol. 7, no. 14, pp. 5243–5250,
Dec. 2011.

[42] L. Brett, C. Mark, and K. Robert, “A TCP CUBIC implementation in
NS-3,” in Proc. WNS3, Atlanta, GA, USA, May 2014, pp. 1–8.

[43] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in Proc. ACM SIGCOMM Comput. Commun. Rev., Portland, OR, USA,
Aug. 2004, pp. 281–292.

[44] C. Zhang, J. Yin, Z. Cai, and W. Chen, “RRED: Robust RED algorithm
to counter low-rate denial-of-service attacks,” IEEE Commun. Lett.,
vol. 14, no. 5, pp. 489–491, May 2010.

[45] C. Dovrolis, P. Ramanathan, and D. Moore, “What do packet dispersion
techniques measure?” in Proc. 20th Annu. Joint Conf. Comput. Commun.
Soc., Anchorage, Alaska, Apr. 2001, pp. 905–914.

[46] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput,” IEEE/ACM
Trans. Netw., vol. 11, no. 4, pp. 537–549, Aug. 2003.

[47] J. Liu and M. Crovella, “Using loss pairs to discover network properties,”
in Proc. IEEE/ACM SIGCOMM Int. Meas. Workshop, San Francisco,
CA, USA, Nov. 2001, pp. 127–138.

[48] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation using
network-wide measurements,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2710–2724, Jun. 2006.

[49] A. Vakili and J.-C. Gregoire, “Accurate one-way delay estimation:
Limitations and improvements,” IEEE Trans. Instrum. Meas., vol. 61,
no. 9, pp. 2428–2435, Sep. 2012.

[50] L. Xue, X. Ma, X. Luo, E. W. W. Chan, T. T. Miu, and G. Gu,
“LinkScope: Toward detecting target link flooding attacks,” IEEE Trans.
Inf. Forensics Security, vol. 13, no. 10, pp. 2423–2438, Oct. 2018.

[51] V. Paxson, M. Allman, J. Chu, and M. Sargent, Computing TCP’s
Retransmission Timer, document RFC 6298, Jun. 2011.

[52] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times,”
ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 75–88,
Jul. 2002.

[53] S. Floyd and E. Kohler, “Internet research needs better models,” ACM
SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp. 29–34, Jan. 2003.

[54] T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving RTT fairness on
CUBIC TCP,” in Proc. 1th CANDAR, Matsuyama, Japan, Dec. 2013,
pp. 162–167.

[55] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Commun. ACM, vol. 60,
no. 2, pp. 58–66, 2017.

[56] S. Lee, D. Lee, M. Lee, H. Jung, and B.-S. Lee, “Randomizing TCP
payload size for TCP fairness in data center networks,” Comput. Netw.,
vol. 129, pp. 79–92, Dec. 2017.

[57] G. Vardoyan, C. V. Hollot, and D. Towsley, “Towards stability analysis
of data transport mechanisms: A fluid model and an application,” in
Proc. IEEE INFOCOM- IEEE Conf. Comput. Commun., Honolulu, HI,
USA, Apr. 2018, pp. 666–674.

YUE et al.: HIGH-POTENCY MODELS OF LDoS ATTACK AGAINST CUBIC + RED 4965

[58] H. Young and H. Bradley. (Oct. 2020). Round-Trip Time Internet
Measurements from CAIDA’s Macroscopic Internet Topology Mon-
itor. [Online]. Available: https://www.caida.org/research/performance/
rtt/walrus0202/

[59] S. Sengupta, A. Chowdhary, A. Sabur, A. Alshamrani, D. Huang, and
S. Kambhampati, “A survey of moving target defenses for network
security,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1909–1941,
3rd Quart., 2020.

[60] J.-H. Cho et al., “Toward proactive, adaptive defense: A survey on
moving target defense,” IEEE Commun. Surveys Tuts., vol. 22, no. 1,
pp. 709–745, 1st Quart., 2020.

Meng Yue received the Ph.D. degree in information
and communication engineering from Tianjin Uni-
versity, China, in 2017. He is currently an Associate
Professor with the Department of Cybersecurity,
Civil Aviation University of China. His current
research interests include network security and cloud
computing.

Jing Li received the B.S. degree in communication
engineering from the Hebei University of Science
and Technology, China, in 2019. She is currently
pursuing the master’s degree in communication and
information system with the Civil Aviation Univer-
sity of China. Her current research interests include
network security and information security.

Zhijun Wu received the Ph.D. degree in cryp-
tography from the Beijing University of Posts and
Telecommunications, China, in 2004. He is currently
a Professor with the Department of Cyberspace
Security, Civil Aviation University of China. He is
also the Supervisor of Ph.D. candidates at Tianjin
University, China, and the Civil Aviation University
of China. His current research interests include net-
work security and cloud computing.

Minxiao Wang received the B.S. degree in com-
munication engineering and the M.S. degree in
information and communication engineering from
the Civil Aviation University of China in 2014 and
2018, respectively. He is currently pursuing the
Ph.D. degree with the Department of Electrical and
Computer Engineering, Southern Illinois University,
USA. His research interests include network secu-
rity, NDN, and autonomous and connected vehicles.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

