
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021 4895

Finely Tunable Bitcuboid-Based Encryption With
Exception-Free Signed Binarization for

JPEG Standard
Kosuke Shimizu and Taizo Suzuki , Senior Member, IEEE

Abstract— We propose a finely tunable JPEG format-
compliant perceptual encryption (FE) with two novel strategies:
(i) bitcuboid-based encryption (BE) and (ii) exception-free signed
binarization (ESB). BE is an intra- and inter-bitplane encryption
technique that provides finely tunable perceptual degradation by
encrypting constrained subspaces (‘bitcubes’) of a cuboid-shaped
bit set (‘bitcuboid’). ESB is a binarization technique that redec-
imalizes encrypted binary sequences into signed decimal coeffi-
cients without any exception-handling by shifting the negative
binary sequences one-by-one. BE with ESB (BEESB) is applied
to the quantized discrete cosine transform (QDCT) domain in
JPEG compression. The results of our first experiment show
that the BE attains fine tunability, which means scalability of the
perceptual degradation level with a single encryption method,
by encrypting bitcubes of various types and sizes combinatorially.
The results of our second experiment show that the BEESB
suppresses the bitrate overheads and that BEESB with one of
the most secure options suppresses approximately 0.80-187.58 %
more of the bitrate overheads in terms of Bjøntegaard delta (BD)-
rate compared with conventional methods except for some ones.
The results of our third experiment show that BEESB has high
resilience against attacks.

Index Terms— Bitcuboid-Based encryption, exception-free
signed binarization, format-compliant encryption, JPEG, tunable
encryption, tunability.

I. INTRODUCTION

PERCEPTUAL encryption (PE) is an encryption technique
that visually protects image and video content. Many

format-compliant PEs (FEs)1 produce encrypted-encoded con-
tent in the same format as the original for image and video
coding standards such as the JPEG and H.26x series [1], [2].

Manuscript received March 25, 2021; revised July 15, 2021; accepted
August 27, 2021. Date of publication September 16, 2021; date of current
version October 25, 2021. This work was supported by Grant-in-Aid for
JSPS Fellows, Grant Number 20J14599. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Lejla
Batina. (Corresponding author: Kosuke Shimizu.)

Kosuke Shimizu is with the Department of Computer Science,
University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan (e-mail:
kshimizu@wmp.cs.tsukuba.ac.jp).

Taizo Suzuki is with the Faculty of Engineering, Information and Sys-
tems, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan (e-mail:
taizo@cs.tsukuba.ac.jp).

Digital Object Identifier 10.1109/TIFS.2021.3113510
1Although the cryptosystems are classified into symmetric and asymmetric

ones, this study focuses on the symmetric ones, which are more suitable
for “image” encryption, not the asymmetric ones commonly used for “key”
encryption, because the latter requires relatively high computational complex-
ity while involving the risks to the man-in-the-middle attacks to be solved by
the signature solutions.

The existing decoders can display encrypted content with
imperceptible changes in visual quality without any modi-
fication or any decryption key, unlike format-noncompliant
encryptions such as the pure Advanced Encryption Standard
(AES) [3]2 and the compressed sensing-based approach [5].
FEs have extensive applications in fields such as social net-
working services (SNSs), including Twitter and Facebook, and
subscription-aware broadcasting services (SBSs), including
video on demand (VOD) and stock photo. In such applications,
the desired level of perceptual degradation provided with the
FEs are different, and they are classified into a range from
transparent encryption [6] to confidentiality encryption [7].
To meet various security demands, any FE method should
be able to tune the perceptual degradation level, and thus
many tunable encryptions have been proposed in the past
two decade. The tunable FEs proposed for AVC and HEVC
[8]–[10] handle the specific coded elements (e.g., intra predic-
tion modes and motion vector differences) among the multiple
video frames using the parameter that specifies how many
number of them is encrypted. However, the video stream-
specific syntax elements cannot be exploited to the tunable
encryption for JPEG file interchange format (JFIF) syntax
domain, despite the JPEG is a de-facto image coding standard.
Although many JPEG FEs have been presented [11]–[24], they
have not paid attention to ‘tunability,’ which means the scal-
ability of perceptual degradation level achieved with a single
FE method in this study. They tend to cherish that distortions
generated with decoding and decrypting after encrypting and
encoding are completely the same as ones generated without
encrypting and decrypting and that the bitrate overheads of the
encrypted-encoded content are small or zero compared with
the normally encoded ones.

In the past decade, the JPEG FEs in the pre- and
post-compression domain have been the focus of atten-
tion because these FEs hardly or moderately affect the
coding efficiency [11]–[18]. The FEs that work before
JPEG (FBJs) [11]–[13] apply four encryption modules (scram-
bling, rotation/inversion, nega-posi transformation, and com-
ponent shuffling) to the original image or multiple video
frames (or three encryption modules except for component
shuffling to a grayscale image [14]) to achieve high con-
fidentiality and good or moderate compression friendliness.

2AES can be part of a format-compliant encryption as presented in [4].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1665-7934
https://orcid.org/0000-0002-9943-679X

4896 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE I

ADVANTAGES OF JPEG FES: (I) TUNABILITY, (II) BITRATE OVERHEAD, AND (III) ATTACK RESILIENCE

The FEs that work after JPEG (FAJs) [15]–[18] apply XOR
operations or permutations to specific syntax elements of the
compressed bitstream to achieve different types of percep-
tual degradation, e.g., luma-only degradation and DC-and-AC
degradation. However, the FBJs and FAJs have no or less
tunability.

The older JPEG FEs had been designed within the
codec [19]–[24]. The FE that works within JPEG (FWJ)
using randomized zig-zag scan (RANDZZ) [19]3 is resilient
to the replacement attack, which overwrites the encrypted
portions with a constant value (e.g., 0) to disclose the other
unencrypted portions at the decoder stage, at the expense
of significant bitrate overheads. Also, the FWJ embedding
random sign-flips (RSF) [23], [24]4 suppresses the bitrate
overheads, at the expense of resilience against the replacement
attack. However, the RANDZZ and RSF have no or less
tunability. On the other hand, some FWJs [20]–[22] have the
potential to achieve some level of tunability. An FWJ using
intra-bitplane shuffling (IBS) [20] achieves a certain level of
tunability for resilience against the replacement attack at the
expense of bitrate overheads. Moreover, an FWJ using full
inter-block shuffling (FIBS) [21] and one using inter-block
DC bitplane shuffling and intra/inter-block AC coefficient
shuffling (DCACS) [22] achieve a certain level of tunability
and suppress the bitrate overheads efficiently. However, they
are still vulnerable against the replacement attacks. On the
other hand, the FWJs are resilient to the sketch attacks [16],
which reveal the global outline information of images, because
they protect the blockwise detailed local texture information.
For the same reason, the FWJs are commonly resilient to
the jigsaw puzzle solver attack [25], which connects the
unencrypted texture information. So far, we introduced the
conventional FWJs, but they have not received much attention
recently because they affect coding efficiency and are vul-
nerable to attacks as described above. Nevertheless, carefully
encrypting the partially selected bits in the quantized discrete
cosine transform (QDCT) domain in accordance with the old
methods, we found that our FWJ can attain the fine level of
tunability for JPEG while preserving the coding efficiency and
attack resilience as described below.

3Although this method was originally for MPEG, we can easily apply it to
JPEG.

4Although the newer approach uses alternative transforms, it corresponds
to randomly flip the signs of transform coefficients, as stated in [23].

We propose a finely tunable FWJ, which contributes to
meeting more security demands on image and video content
than the existing methods while suppressing the bitrate over-
heads and sustaining the resilience against attacks, as shown
in Table I. The proposed FWJ consists of the following
novel strategies: (i) bitcuboid-based encryption (BE) and (ii)
exception-free signed binarization (ESB). BE is an IBS-
inspired encryption technique with the cuboid-shaped bit set
(‘bitcuboid’) of the QDCT coefficient block. It consists of
intra- and inter-bitplane encryptions in binary spaces, which
are constrained by subdividing the bitcuboid into several
smaller subsets (‘bitcubes’). ESB is a binarization technique
that redecimalizes a binarized sequence losslessly without
any exception-handling to suppress the bitrate overheads.
Experiments with encryption in JPEG show that the proposed
BE with ESB (BEESB) achieves finer tunability in terms of
the sizes of the bitcubes and their encryption percentages,
more efficient bitrate overhead suppression of the encrypted-
encoded content compared with conventional methods, and
high resilience against attacks.

We presented a constrained BE in our preliminary
study [26]: the size of the encrypted bitcube was con-
strained by using nonoverlapping 2 × 2 × 2 (23) subsets.
Moreover, the previous study used a fixed-length signed
binarization (FSB), whose exception-handling increases the
bitrate overheads of the encrypted-encoded content. This
study unconstrains the size of the bitcube to achieve finer
tunability and proposes ESB to further suppress the bitrate
overheads.

The remainder of this paper is organized as follows:
Section II describes JPEG and FSB. Section III describes
BEESB. Section IV discusses the experiments aimed at assess-
ing the fine tunability, compression efficiency, and resilience to
attacks of our method compared with the conventional FWJs.
Section V summarizes this paper.

II. REVIEW AND DEFINITIONS

A. JPEG

The JPEG encoder converts a large (noncompressed) orig-
inal image into a compact size of compressed bitstream. The
encoding procedure is as follows:

a) Apply an RGB-to-YCbCr color transform to an input
image and then downsample the Cb and Cr planes often
to quarters of the original spatial sizes.

SHIMIZU AND SUZUKI: FINELY TUNABLE BE WITH ESB FOR JPEG STANDARD 4897

b) Apply a DCT to each 8×8 nonoverlapping block of the
Y, Cb, and Cr planes and quantize them. Each resulting
QDCT coefficient block consists of one DC coefficient
and 63 AC coefficients.5

c) Apply differential pulse-code modulation (DPCM) and
run-length encoding (RLE) to the DC and AC coeffi-
cients, further compact them with Huffman coding, and
packetize them byte-wisely.

On the other hand, the JPEG decoder reconstructs the
image from the encoded bitstream by performing the inverse
processing of the above JPEG encoding. Note that the
reconstructed image is distorted by the downsampling and
quantization.

B. Fixed-Length Signed Binarization

By partially encrypting the binarized space, the conventional
FWJs [20], [22] can provide a certain level of tunability to
the encrypted-decoded images. A frequently-used binarization
technique for the conventional FWJs is D-bit (D ∈ N) FSB
of a signed decimal number c to an n-bit binary sequence b,
as

b = sgn(c)|(abs(c))2,n−1, (1)

sgn(x) =
{

0 if x ≥ 0

1 otherwise
, (2)

abs(x) =
{

x if x ≥ 0

−x otherwise
, (3)

(x)2,η = bη−1 · · · b0, (4)

where bi ∈ {0, 1}, which is used in the coding parts of
JPEG2000 EBCOT [28], HEVC CABAC [29], etc; here, (4) is
an well-known decimal-to-binary conversion that generates an
η-bit fixed-length binary sequence. When a binary sequence
is encrypted before any variable length coding, which encodes
decimal numbers, such as Huffman coding, the encrypted
binary sequence should be redecimalized for the encoding.
However, when the encrypted binary sequence consists of one
negative sign bit and D − 1 all-zero absolute bits, as

1
negative
sign bit

| 0 · · · 0
D − 1

absolute bits

, (5)

the encrypted coefficients cannot be decrypted in the decoder
stage because the binary sequence in (5) is redecimalized as
−1 × 0 = 0; i.e., the negative sign bit in (5) is deleted with a
normal redecimalization converting b to c, as

c = (−1)bn−1

(
n−2∑
i=0

bi × 2i

)
. (6)

One of the strategies for handling this exception is to excep-
tionally redecimalize the binary sequence in (5) into −2D−1.

5In the case of the JPEG reference software libjpeg [27], the QDCT
coefficients can be stored as 10-bit signed variables when the quality factor
Q is less than 96.

TABLE II

FSB AND ESB BINARY SEQUENCES (A SIGN BIT | D − 1 ABSOLUTE
BITS) OF THE CORRESPONDING SIGNED DECIMAL NUMBERS

IN THE CASE OF D = 10

In the decryption stage, the exceptionally-redecimalized coef-
ficient −2D−1 is exception-freely binarized to

1
negative
sign bit

| �1
one highest
absolute bit

to be ignored

0 · · · 0
D − 1

absolute bits

⇒ 1|0 · · · 0, (7)

by one-time sign-extraction and (D − 1)-times absolute-
extraction in (1) so that we obtain the same binary sequence
as in the encryption stage and decrypt it completely.

However, we must note that the above exception has a
negative effect on the JPEG compression: since it is clear
that the redecimalized irregular value −2D−1 increases the
Huffman code length and Huffman table size, it affects the
bitrate overhead of the encrypted-encoded bitstream. More-
over, this exception easily occurs because many encrypted
binary sequences have many 0 absolute bits because of the
JPEG characteristic, which exploits many zero bits (spar-
sity) in the binarized QDCT coefficients. For example,
when the least significant bits (LSBs) of the binary
sequences (1|000000001, 0|000000000) that have been bina-
rized from their decimal versions (−1, 0) are replaced
with (1|000000000, 0|000000001), they are redecimalized to
(−512, 1), as shown in the second column of Table II.

III. BITCUBOID-BASED ENCRYPTION WITH

EXCEPTION-FREE SIGNED BINARIZATION

A. Strategy

JPEG’s entropy coding attains a more efficient compres-
sion when the QDCT domain is sparser, whereas bitwise
encryptions tend to make the domain denser without taking
any measure. Among them, inter-coefficient bit-shuffling may
generate nonzero coefficients, whose number is equivalent to
the total number of nonzero bits (i.e., 1s) contained in the

4898 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 1. Bitcuboid and its bit subset.

coefficient set. For instance, if the bits within an n-bit binary
sequence containing m nonzero bits

b0 := bn−1 · · · b0 where
n−1∑
i=0

bi = m (8)

are shuffled among m+1 sequences {bt }m
t=0 (b1, · · · , bm = 0),

any m sequences of the {bt }m
t=0 may contain nonzero bits and

be converted to nonzero coefficients with redecimalization.
However, as described in Section II-B, increasing the number
of the nonzero coefficients affects the compression efficiency.
The bitwise fine shuffling allows for fine tunability in the
encrypted-decoded images, but to maintain the compression
efficiency, the number of nonzero coefficients should be the
same as before the encryption. On the other hand, if nonen-
crypted nonzero bits representing the original image features
remain, these features may be extracted by removing some of
the other encrypted bits. Therefore, to be able to resist attacks
and maintain compression efficiency at the same time, this
study randomly shuffles the nonzero bits in binary subspaces
which are smaller subsets of the binary space.

B. Bitcuboid-Based Encryption

BE is a method that changes an H×V D-bit (H, V , D ∈ N)
decimal coefficient block into an H × V × D cuboid-shaped
bit set (‘bitcuboid’) and then randomly shuffles the bitwise
relationships in each subdivided h × v × d (≥ 2; h ≤ H, v ≤
V , d ≤ D) bit set, as shown in Fig. 1. Although the bitcuboid
and its subsets can be set to the above arbitrary sizes, this study
sets H = V = 8 and D = 10 and h = v = d (‘bitcube’) for
simplicity and effective JPEG compression. Let ‘m-cube’ be
the h3 bitcube containing m nonzero bits as follows:

Bm := bh3−1 · · · b0 where
h3−1∑
i=0

bi = m. (9)

The encrypted m-cube B′
m is given by

B′
m = BmPh3, (10)

where Ph3 is an h3×h3 random permutation matrix calculated
by using a pseudo-random number generator (PRNG) [30].

Since the bitwise relationships can be changed according
to the internal number of bits in each bitcube, BE provides
fine tunability of the encrypted-decoded images. In addition,
it does not affect the compression efficiency significantly.

The encrypted m-cube B′
m also satisfies

∑h3−1
i=0 bi = m,

as does the nonencrypted one Bm in (9). Since the QDCT
domain is composed of quite sparse coefficients, even if the BE
converts a zero coefficient into a nonzero one, the correspond-
ing one tends to be converted into a zero coefficient; i.e., the
zero coefficient ratio, which affects the compression efficiency,
is hardly changed. The actual effectiveness is proved in
Section IV-B.

C. Exception-Free Signed Binarization

BE requires a binarization and a redecimalization before
and after the actual encryption/decryption, as follows:

• To bitwise encrypt/decrypt the QDCT coefficients, they
must be binarized before the encryption/decryption.

• To easily input the encrypted/decrypted QDCT coeffi-
cients to the subsequent processing, they must be redec-
imalized after the encryption/decryption.

However, in Section II-B, we problematized that a simple BE
with FSB (BEFSB) presented in [26] needs an exception-
handling in the redecimalization process. To resolve the
exception-handling problem, we propose ESB.

ESB binarizes a signed decimal number c into an n-bit
binary sequence b as

b = sgn(c)| (abs(c) − sgn(c))2,n−1 , (11)

The subtraction of the binarized sign sgn(c) in (11) implies
that negative binary sequences are shifted one-by-one. b is
redecimalized to the original c, as

c = (−1)bn−1

((
n−2∑
i=0

bi × 2i

)
+ bn−1

)
. (12)

By adding the binarized sign bn−1 = sgn(c) subtracted in (11)
to the redecimalized absolute value

∑n−2
i=0 bi × 2i in (12), b

can be redecimalized completely to a signed decimal number
c without any exception-handling.

Since ESB redecimalizes the binary sequence 1|0 · · · 0 to
the signed negative −1 as shown in the third column of
Table II, the redecimalized number is packetized as the shortest
length of negative binary amplitude in the entropy coded
segment (ECS) of the JFIF syntax structure [31]. Therefore,
ESB can suppress the adverse effects on the compression
efficiency better than the simple FSB does.

Remark: Since ESB is a simple binarization algorithm,
it can also be easily applied to certain conventional FWJs,
e.g., RANDZZ [19], IBS [20], and DCACS [22].

D. Encryption and Decryption Algorithms

We apply BEESB to JPEG QDCT domain after initializing
the 19936-bit state vector of Mersenne twister (MT) with
256-bit SHA-2 digest as shown in Fig. 2. In the QDCT domain,
we apply the ESB binarization, core encryption/decryption
(permutation) of the detected m-cubes using (10) and MT
random numbers, and ESB redecimalization for each 8 × 8
coefficient block. The encryption and decryption are exactly
the same because the bits encrypted with the permutation can
be decrypted with the same permutation based on the same
encryption key.

SHIMIZU AND SUZUKI: FINELY TUNABLE BE WITH ESB FOR JPEG STANDARD 4899

Fig. 2. Bitcuboid-based encryption and decryption embedded in the JPEG encoding and decoding; here, a), b), and c) correspond to the ones of section II-A.

Fig. 3. Perceptual degradation induced by different types of 23 m-cubes in BEESB (JPEG Q = 70): (a) particular areas of nonencrypted ucid00059,
(b) �

[2]
1 = 100, (c) �

[2]
2 = 100, and (d) �

[2]
3 = 100.

TABLE III

BD METRICS OF BEESBS AND THE CONVENTIONAL METHODS IN THE CASE OF UCID DATASET [32]: (A) BEESB (�[2]
1,··· ,7 = 100), (B) BEESB

(�[3]
1,··· ,26 = 100), (C) BEESB (�[4]

1,··· ,63 = 100), (D) RANDZZ [19], (E) IBS [20] (�e = 64), (F) FIBS [21] (�e = 64), (G) DCACS [22]
(�DC = 7, �AC = 5), (H) RSF [24], AND (I) GBE (FBJ) [14]

Fig. 4. Perceptual degradation induced by all 23 m-cube types in the full
BEFSB and BEESB (JPEG Q = 70 and �

[2]
1,··· ,7 = 100): (a) BEFSB and

(b) BEESB.

E. Fine Tunability

BEESB achieves fine tunability by encrypting only specific
kinds of bitcubes, as follows:

• Encrypt arbitrary types of m-cubes (m ≤ h3 − 1) combi-
natorially.

• Encrypt �m(∈ Z[0 100]) % of all m-cubes contained in all
bitcuboids.

Encrypting the l types of m-cubes with the above two tunings
allows for

L =
l∏

i=1

max �mi = 100l (mi ∈ Z[0 h3], l ≤ h3 − 1) (13)

ways of tunability. Even m-cubes that are contained in only a
few bitcuboids provide some tunability.

Remarks: There are many other self-evident ways of achiev-
ing tunability, for example, different selections of the �m per
bitcuboid, random construction of the bitcubes, alteration of
the way to encrypt bitcubes, and so on.

4900 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 5. Perceptual degradation induced by m-cubes of different sizes in BEESB (JPEG Q = 70): (a-d) particular areas of ucid00059, (e-h) particular areas of
ucid00069, (i-l) particular areas of r00444b95t, (m-p) particular areas of r00b8d4a2t, (a,e,i,m) nonencrypted, (b,f,j,n) �

[2]
1,··· ,7 = 100, (c,g,k,o) �

[3]
1,··· ,26 = 100,

and (d,h,l,p) �
[4]
1,··· ,63 = 100.

F. Resilience to Attacks
There are several ciphertext-only attacks (COAs), such

as replacement attack, brute-force attack, sketch attack, and
jigsaw puzzle solver attack, that can recover the encrypted

information without using any keys. We will theoretically
consider the resilience of our method against these COAs
in this subsection and experimentally show its actual attack
resilience and statistical analyses in Section IV-C.

SHIMIZU AND SUZUKI: FINELY TUNABLE BE WITH ESB FOR JPEG STANDARD 4901

Fig. 6. Perceptual degradation induced by m-cubes of different sizes and their probabilities in BEESB (JPEG Q = 70): (a) �
[2]
1 = 50, (b) �

[2]
1 = 70,

(c) �
[2]
1 = 90, (d) �

[2]
2 = 50, (e) �

[2]
1,2,3 = 50, (f) �

[2]
1 = 70, �

[2]
2 = 90, �

[2]
3 = 100, (g) �

[2]
1,2,3 = 50 & �

[3]
1,2,3 = 50 & �

[4]
1,2,3 = 50, and

(h) �
[2]
1,2,3 = 80 & �

[3]
1,2,3 = 60 & �

[4]
1,2,3 = 40.

Fig. 7. Bitrate overhead analyses with the BEESB or BEFSB: (a) �
[2]
0 , · · · , or �

[2]
3 = 100, (b) �

[3]
0 , · · · , or �

[3]
3 = 100, (c) �

[4]
0 , · · · , or �

[4]
3 = 100,

(d) �
[2]
4 , · · · , or �

[2]
7 = 100, (e) �

[3]
4 , · · · , or �

[3]
7 = 100, and (f) �

[4]
4 , · · · , or �

[4]
7 = 100.

First, let us guess its resilience against the replacement
attack, which overwrites the encrypted portions with a constant
value (e.g., 0) in order to disclose the other unencrypted
portions at the decoder stage. BEESB encrypts the m-cubes
containing many original image features and the replacement
attack overwrites the encrypted m-cubes. As a result, since
the overwritten ones are the characteristic ones, BEESB can
protect the original image features from the replacement

attack. At lower compression, it is clear that the BEESB
more resiliently protects the original image features from the
replacement attack than does the higher compression, thanks to
the ability to encrypt more number of characteristic m-cubes.

Next, let us guess the resilience against the brute-force
attack. BEESB has more resilience against this attack as the
number of encrypted m-cubes increases. Since it takes 23h

attacks to determine the correct internal bit arrangement of

4902 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 8. R-D curves of JPEG compression with BEESB and the conventional methods: (a) UCID dataset [32] and (b) RAISE dataset [33].

Fig. 9. Perceptual degradation and recovery for BEESBs with the various types and sizes of m-cubes: (a) 23 bitcubes, (b) 33 bitcubes, and (c) 43 bitcubes.

Fig. 10. Images encrypted with BEESB (�[2]
1,··· ,7 = 100), DCACS (�DC = 7, �AC = 5), and RSF (DC and AC) and ones produced by the replacement

attack: (a) BEESB (Q = 50), (b) attacked (a), (c) DCACS [22] (Q = 50), (d) attacked (c), (e) RSF [24] (Q = 50), (f) attacked (e), (g) BEESB (Q = 90),
(h) attacked (g), (i) DCACS [22] (Q = 90), (j) attacked (i), (k) RSF [24] (Q = 90), and (l) attacked (k).

each bitcube packed with h3 bits, it takes (23h)
N = 23hN

attacks to do so on N encrypted m-cubes. Suppose that the
SHA-256 hash digest [34] requiring 2256 attacks is the secure
criterion; then, the resilience is ensured when 3h N ≥ 256.
In addition, since the encrypted bit sequences are difficult to
distinguish from the nonencrypted ones in the QDCT domain,
the correct QDCT coefficients cannot be found from only the
following hints:

• The differences between the DC coefficient and the AC
coefficients in each block are explicitly large.

• The DC coefficient in each block usually cannot be
negative without any offsetting.

The above information rather ensures that the original QDCT
coefficients cannot be found. Consequently, it is very difficult
for an attacker to find even a plausible QDCT coefficient
set. Nonetheless, since the encrypted QDCT coefficients may

SHIMIZU AND SUZUKI: FINELY TUNABLE BE WITH ESB FOR JPEG STANDARD 4903

TABLE IV

BD METRICS OF BEESBS AND THE CONVENTIONAL METHODS IN THE CASE OF RAISE DATASET [33]: (A) BEESB (�[2]
1,··· ,7 = 100), (B) BEESB

(�[3]
1,··· ,26 = 100), (C) BEESB (�[4]

1,··· ,63 = 100), (D) RANDZZ [19], (E) IBS [20] (�e = 64), (F) FIBS [21] (�e = 64), (G) DCACS [22]
(�DC = 7, �AC = 5), (H) RSF [24], AND (I) GBE (FBJ) [14]

TABLE V

MEANINGS OF THE TUNABILITY PARAMETERS
USED IN CONVENTIONAL FWJS

Fig. 11. Key sensitivity analysis when each bit of encryption key is different.

unfortunately be recovered with an incorrect decryption key,
we should analyze the sensitivity when the wrong keys are
exploited. We do so in Section IV-C.

Finally, let us guess the resilience against the sketch and
jigsaw puzzle solver attacks. Note that the BEESB encrypts the
blockwise detailed local textures. Although the sketch attack
may reveal the outline formed by 8 × 8 encrypted blocks,
it cannot recover each encrypted block clearly, i.e., it means
that each detailed texture per block is still protected locally.
Also, it is clear that the jigsaw puzzle solver attack cannot
correctly connect the encrypted blocks. Therefore, this work
will not mention the sketch and jigsaw puzzle solver attacks
anymore.

On the other hand, since the histograms of the encrypted-
decoded images may help that the attackers infer the original
information, we should analyze the histograms through the
experiments. We will show the analyses in Section IV-C.

TABLE VI

SSIM INDICATORS SUMMARIZED IN THE LITERATURE [35]

IV. COMPARATIVE EXPERIMENTS

We show three experimental results to demonstrate
the superiority of BEESB to the conventional methods.
In Section IV-A, we analyze the fine tunability afforded by
different types and sizes of m-cubes with various �

[h]
m s, which

are arbitrary parameters with which to encrypt �m % of
the m-cubes subdivided into h3 bitcubes. In Section IV-B,
we evaluated the actual compression efficiency of the bit-
streams encrypted with BEESB in comparison with the
conventional methods [14], [19]–[22]. In Section IV-C,
we evaluated its resilience against the replacement attack
and brute-force attack by overwriting the encrypted por-
tions and exploiting incorrect keys and analyzed the his-
tograms, which were encrypted with BEESBs. The exper-
iments were based on the 100 full-color images from
UnCompressed Image Dataset (UCID) [32], 20 full-color
images from RAISE [33] dataset, and mid-standardized JPEG
encoder/decoder software libjpeg [27]; hereafter, results of
experiments were based on the UCID dataset unless otherwise
noted. In the case of BEESBs and the conventional FWJs
[19]–[22], the results were obtained by commonly iterating
the following procedure:

1) JPEG-encode an input image while internally encrypt-
ing/nonencrypting the QDCT coefficients using the
FWJs with the quality factor Q = 10, 20, · · · , 90.

2) Measure the bitrates of the encrypted-encoded and nor-
mally encoded bitstreams obtained in 1).

3) JPEG-decode them while internally decrypt-
ing/nondecrypting the QDCT coefficients.

4) Measure the PSNRs and SSIMs [35] of the decrypted
encrypted-decoded, nondecrypted encrypted-decoded,
and normally decoded images obtained in 3).

5) Iterate from 1) to 4) for all input images to calculate the
mean results.

Unlike the FWJs, the recent conventional FBJ [14] was applied
to the pixel domain, i.e., outside the JPEG coder.

A. Fine Tunability

First, we confirmed the perceptual degradation induced by
BEESB. In this experiment, we set an 8 × 8 × 8 bitcuboid,

4904 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 12. Resilience against attacks with the wrong keys (JPEG Q = 70 and �
[3]
1,··· ,26 = 100): (a-d) particular areas of ucid00059, (e-h) particular areas

of ucid00069, (i-l) particular areas of r00444b95t, (m-p) particular areas of r00b8d4a2t, (a,e,i,m) nonencrypted, (b,f,j,n) decrypted with the wrong key F1
completely different from the correct key F0, (c,g,k,o) decrypted with an wrong key F3 whose LSB is different from F0, and (d,h,l,p) decrypted with F0.

which was shaped from an 8 × 8 10-bit QDCT coefficient
block without the most significant bit (MSB) (sign bit)- and
LSB-planes and subdivided it into the nonoverlapping 64 23

bitcubes. This setting allowed for encryption of seven types of
m-cubes (m = 1, · · · , 7), where the internal bitwise relation-

ships of the 0- and 8-cubes cannot be modified because they
are just bitcubes filled with only 0s or only 1s. Different levels
of perceptual degradation were provided to the encrypted-
decoded image by changing the m-cubes to be encrypted
as shown in Fig. 3. Since the 1-, 2-, and 3-cubes caused

SHIMIZU AND SUZUKI: FINELY TUNABLE BE WITH ESB FOR JPEG STANDARD 4905

Fig. 13. Resilience against attacks with random numbers very close to the
original ones used for the encryption.

more perceptual degradation while the other ones did so in
negligible amounts, we omitted the case of 4- to 7-cubes here.
As shown in Fig. 4, their combinations induced the largest
perceptual degradation. BEFSB presented in [26] drastically
changed both the colors and the textures due to the irregular
values used by the exception-handling in FSB, whereas the
BEESB did not do so as drastically because it does not use
irregular values. The unpleasant degradation caused by BEFSB
may risk attacks exploiting the explicit magnitude difference of
the irregular value from the other QDCT coefficients, whereas
the appropriate degradation by BEESB does not pose any risks.

Next, we evaluated the effect of different bitcube sizes. One
can see that the BEESB reinforces the perceptual degradation
level by varying the bitcube size, as shown in Fig. 5. The full
encryption in the case of 23 bitcubes slightly preserved the out-
line of the image, because BEESB did not modify the bitwise
relationships of the LSB plane. The full encryption in the case
of 33 bitcubes encrypted the bits even in the LSB plane and
provided relationally stronger visual confidentiality. The full
encryption in the case of 43 bitcubes did not encrypt the LSB
plane as in the case of 23 bitcubes, but provided a significantly
strong perceptual degradation, because the BEESB varied the
bitwise relationships in the larger constrained subspaces more
than the one with 23 bitcubes.

Finally, we evaluated the effect of various settings in com-
bination. By varying the sizes of the m-cubes, overlapping the
bitcube subdivisions, and/or setting different encryption proba-
bilities, BEESB provided excellently fine tunability, as shown
in Fig. 6. In the case of 23 bitcubes, encryption with only
the 1- or 2-cubes provided limited tunability (Fig. 6(a-d)), but
encryption with the different probabilities of the 1-, 2-, and
3-cubes attained finer tunability (Fig. 6(e, f)). Furthermore,
encrypting m-cubes of various bitcube sizes and overlapping
them yielded very fine tunability (Fig. 6(g, h)).

B. Compression Efficiency

First, we compared the bitrate overheads of the encrypted-
encoded bitstreams generated by using BEESB and BEFSB.
Regardless of the bitcube sizes, the BEESB compressed the
bitstreams more efficiently than the BEFSB did (Fig. 7). In the

TABLE VII

ENCRYPTION SPACES [BITS] OF BEESB

(EACH OF �
[2]
1,··· ,7 , �

[3]
1,··· ,26, AND �

[4]
1,··· ,63 = 100)

cases of 1-, 2-, and 3-cubes, although the BEFSB suppressed
the bitrate overheads, BEESB did so even more, with bitrate
overheads approximately half as large (Fig. 7(a-c)). In the
cases of 4-, 5-, 6-, and 7-cubes, although BEFSB still affected
the bitrate overheads to some extent, BEESB no longer did
so, as shown in Fig. 7(d-f).

We also compared the bitrate overheads of BEESBs and
the conventional FWJs by drawing their rate-distortion (R-D)
curves and calculating their Bjøntegaard delta (BD) met-
rics [36]. We selected RANDZZ [19], IBS [20], FIBS [21],
DCACS [22], and RSF [24] as conventional FWJs and
grayscale block-based encryption (GBE) [14] as a recent
conventional FBJ and used the proposed ESB for binarization
in the conventional FWJs except for FIBS and RSF. One
can see that BEESBs outperformed RANDZZ and IBS as
shown in Fig. 8 and Tables III and IV; here, Table V shows
the meanings of the tunability parameters �e, �DC , and �AC .
In particular, the case of 23 bitcubes outperformed GBE in

4906 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 14. Histogram analyses of BEESB-encrypted-decoded images (JPEG Q = 70): (a-d) ucid00059, (e-h) ucid00069, (i-l) r00444b95t, (m-p) r00b8d4a2t,
(a,e,i,m) nonencrypted, (b,f,j,n) �

[2]
1,··· ,7 = 100, (c,g,k,o) �

[3]
1,··· ,26 = 100, and (d,h,l,p) �

[4]
1,··· ,63 = 100.

both image datasets and FIBS in UCID dataset. Note that
DCACS and RSF, which outperformed BEESBs, are not
subjectively resilient against the replacement attacks as shown
in Section IV-C and their less tunability cannot meet the goal
of this study: the fine tunability. Also, although FIBS tended
to outperform BEESBs especially for high resolution images
such as RAISE dataset, the FIBS cannot achieve the fine
tunability like DCACS and RSF.

C. Resilience Against Attacks

First, we compared the attack resilience against the replace-
ment attack in terms of the mean SSIMs [35] between the
encrypted-decoded attacked/nonattacked images and the orig-
inal ones. In the case of 23 bitcubes, the resilience of the
BEESB with three types of m-cubes was preserved even in
lower compression, whereas the resilience of the one with
seven types of the m-cubes was further reinforced (Fig. 9(a))
because of the increased number of characteristic m-cubes.
In the case of 33 bitcubes, the resilience of the BEESBs with
up to seven types of m-cubes was low, but the resilience
increased rapidly with 13 or more types of m-cubes (Fig. 9(b)).
In the case of 43 bitcubes, the resilience of the BEESBs with
more than 26 types of m-cubes were high enough (Fig. 9(c)).
In addition, Fig. 10 shows images encrypted with BEESB

(�[2]
1,··· ,7 = 100), DCACS (�DC = 7, �AC = 5), and RSF

as well as attacked ones in the case of Q = 50 and 90.
It is clear that DCACS and RSF, which achieved the highest
bitrate overhead suppression in Section IV-B, sacrificed the
subjective resilience. If a reasonable level of security is to be
expected, as in the SBSs, since the distorted content, whose
SSIMs are smaller than 0.9, are subjectively regarded as ‘really
ugly’ from Table VI, the distorted content, whose SSIMs are
smaller than 0.5 as shown in Fig. 9, are ugly enough; i.e., not
enough content can be recovered even if they are attacked.
Furthermore, �[2]

1,··· ,7, �
[3]
1,··· ,26, and �[4]

1,··· ,63, which are stronger
at lower compression, are recommended for the higher security
when a strict level of security is required, as in the SNSs.

We also analyzed the resilience against the brute-force
attack. As described in Section III-F, this study assumed the
SHA-256 hash digest [34] as a long enough encryption key.
Since the encrypted content may unfortunately be decrypted
into the plausible content with the wrong key, we analyzed
the key sensitivity when each bit of the key is different from
the correct one. From MSB to LSB, we confirmed that the
wrong key cannot obtain the original image quality as shown
in Fig. 11; even subjectively, several images decrypted with
the wrong keys obviously do not approximate the correct
decryption results as shown in Fig. 12. Moreover, we also

SHIMIZU AND SUZUKI: FINELY TUNABLE BE WITH ESB FOR JPEG STANDARD 4907

showed the resilience in an extremely-rare situation that an
attacker generates and exploits random numbers very close to
the original ones used for the encryption in Fig. 13. In this
case, BEESBs achieved sufficient resilience even when only
the LSBs of the random numbers were different from the
original ones. As the proof of the resilience, we counted the
bits in the encryption spaces of BEESBs. We confirmed that
there were larger encryption space of the QDCT domain in
each image when the quality factor became larger, as shown
in Table VII. This is because the higher compression quality
preserves much more nonzero bits that can be encrypted with
BEESB. �[4]

1,··· ,63 had the most amount of encryptable bits,
because the 43 bitcube contains more amount of zero/nonzero
bits in itself than any of 23 and 33 one. Since the above
encryption spaces were obviously larger than the 256-bit
encryption key and the 19936-bit MT state vector, the key
space related to the encryption space was not smaller than the
original key space 2256 and the vector space 219936. Therefore,
one can see that the BEESB using larger bitcube size and
multiple blocks definitely guarantees the attack resilience.

Otherwise, we analyzed the histograms of images encrypted
by BEESB (Fig. 14). Even when we chose any bitcube sides
from h = 2, 3, 4, the pixel values encrypted by BEESB
tended to come closer to min/max pixel values. Moreover,
larger bitcube sizes suppressed the center upheaval. There-
fore, we can see that the BEESBs with larger bitcube sizes
conceal the larger amount of original color information, while
preserving the reasonable structure information.

V. CONCLUSION

We proposed BEESB, a JPEG format-compliant percep-
tual encryption with bitcuboid-based encryption (BE) and
exception-free signed binarization (ESB). BE is an encryption
technique that provides fine tunablility by encrypting bitcubes
obtained by constraining the bitcuboid. ESB is a binarization
technique that redecimalizes encrypted binary sequences into
signed decimal coefficients without any exception-handling by
shifting the negative binary sequences one-by-one. We applied
BEESB to the QDCT domain in JPEG compression. Experi-
ments with encryption in JPEG showed that BEESB achieved
finer tunability, more efficient bitrate overhead suppression
of the encrypted-encoded content compared with the conven-
tional methods, and high resilience against attacks.

ACKNOWLEDGMENT

The authors would like to thank Armstrong (from Human
Global Communications Company, Ltd.) for many time
checks, advises, and rewrites of this paper, and also would
like to thank peer-reviewers for many recommendations and
thoughtful comments regarding to this paper.

REFERENCES

[1] Information Technology—Digital Compression and Coding of
Continuous-Tone Still Images—Requirements and Guidelines,
document ITU-T Recommendation T.81, 1993.

[2] Series H: Audiovisual and Multimedia Systems Infrastructure of Audio-
visual Services—Coding of Moving Video, document ITU-T Recommen-
dation H.265, 2013.

[3] FIPS PUB 197: Advanced Encryption Standard (AES), Nat. Inst. Stan-
dards Technol., Gaithersburg, MD, USA, Nov. 2001.

[4] W. Puech and J. M. Rodrigues, “Crypto-compression of medical images
by selective encryption of DCT,” in Proc. EUSIPCO, Antalya, TR, USA,
Sep. 2005, pp. 1–4.

[5] G. Ye, C. Pan, Y. Dong, K. Jiao, and X. Huang, “A novel multi-image
visually meaningful encryption algorithm based on compressive sensing
and Schur decomposition,” Trans. Emerg. Telecommun. Technol., vol. 32,
no. 2, pp. 1–14, Feb. 2021.

[6] H. Hofbauer, A. Uhl, and A. Unterweger, “Transparent encryption for
HEVC using bit-stream-based selective coefficient sign encryption,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Florence, Italy, May 2014, pp. 1986–1990.

[7] D. Engel, T. Stütz, and A. Uhl, “A survey on JPEG2000 encryption,”
Multimedia Syst., vol. 15, no. 4, pp. 243–270, Jan. 2009.

[8] G. Hong, C. Yuan, Y. Wang, and Y. Zhong, “A quality-controllable
encryption for H.264/AVC video coding,” in Proc. Pacific-Rim Conf.
Multimedia, Hangzhou, China, Nov. 2006, pp. 510–517.

[9] Y. Wang, M. O’Neill, and F. Kurugollu, “A tunable encryption scheme
and analysis of fast selective encryption for CAVLC and CABAC in
H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 9,
pp. 1476–1479, Sep. 2013.

[10] F. Peng, X. Zhang, Z.-X. Lin, and M. Long, “A tunable selective encryp-
tion scheme for H.265/HEVC based on chroma IPM and coefficient
scrambling,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 8,
pp. 2765–2780, Aug. 2020.

[11] K. Kurihara, M. Kikuchi, S. Imaizumi, S. Shiota, and H. Kiya,
“An encryption-then-compression system for JPEG/motion JPEG stan-
dard,” IEICE Trans. Fundamentals Electron., Commun. Comput. Sci.,
vol. 98, no. 11, pp. 2238–2245, 2015.

[12] K. Shimizu, T. Suzuki, and K. Kameyama, “Cube-based encryption-
then-compression system for video sequences,” IEICE Trans. Fun-
damentals Electron., Commun. Comput. Sci., vol. 101, no. 11,
pp. 1815–1822, Nov. 2018.

[13] K. Shimizu, T. Suzuki, and K. Kameyama, “Lapped cuboid-based
perceptual encryption for motion JPEG standard,” in Proc. Asia–
Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC),
Honolulu, HI, USA, Nov. 2018, pp. 2022–2026.

[14] T. Chuman, W. Sirichotedumrong, and H. Kiya, “Encryption-then-
compression systems using grayscale-based image encryption for
JPEG images,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 6,
pp. 1515–1525, Nov. 2019.

[15] A. Unterweger, K. V. Ryckegem, D. Engel, and A. Uhl, “Building a post-
compression region-of-interest encryption framework for existing video
surveillance systems,” Multimedia Syst., vol. 22, no. 5, pp. 617–639,
Oct. 2016.

[16] K. Minemura, K. Wong, X. Qi, and K. Tanaka, “A scrambling framework
for block transform compressed image,” Multimedia Tools Appl., vol. 76,
no. 5, pp. 6709–6729, Mar. 2017.

[17] V. Itier, P. Puteaux, and W. Puech, “Recompression of JPEG crypto-
compressed images without a key,” IEEE Trans. Circuits Syst. Video
Technol., vol. 30, no. 3, pp. 646–660, Mar. 2020.

[18] J. Ting, K. Wong, and S. Ong, “Format-compliant perceptual encryption
method for JPEG XT,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Taipei, Taiwan, Sep. 2019, pp. 4559–4563.

[19] L. Tang, “Methods for encrypting and decrypting MPEG video data
efficiently,” in Proc. 4th ACM Int. Conf. Multimedia (MULTIMEDIA),
Boston, MA, USA, Nov. 1996, pp. 219–229.

[20] Y. Mao and M. Wu, “A joint signal processing and cryptographic
approach to multimedia encryption,” IEEE Trans. Image Process.,
vol. 15, no. 7, pp. 2061–2075, Jul. 2006.

[21] W. Li and Y. Yuan, “A leak and its remedy in JPEG image encryption,”
Int. J. Comput. Math., vol. 84, no. 9, pp. 1367–1378, Sep. 2007.

[22] M. I. Khan, V. Jeoti, and M. A. Khan, “Perceptual encryption of
JPEG compressed images using DCT coefficients and splitting of
DC coefficients into bitplanes,” in Proc. Int. Conf. Intell. Adv. Syst.,
Kuala Lumpur, Malaysia, Jun. 2010, pp. 1–6.

[23] B. Zeng, S.-K.-A. Yeung, S. Zhu, and M. Gabbouj, “Perceptual encryp-
tion of H.264 videos: Embedding sign-flips into the integer-based trans-
forms,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 2, pp. 309–320,
Feb. 2014.

[24] P. Li and K.-T. Lo, “Joint image compression and encryption based
on order-8 alternating transforms,” J. Vis. Commun. Image Represent.,
vol. 44, pp. 61–71, Apr. 2017.

[25] D. Bridger, D. Danon, and A. Tal, “Solving jigsaw puzzles with eroded
boundaries,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Seattle, WA, USA, Jun. 2020, pp. 3526–3535.

4908 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[26] K. Shimizu and T. Suzuki, “Flexibly-tunable bitcube-based percep-
tual encryption within JPEG compression,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Barcelona, Spain, May 2020,
pp. 2702–2706.

[27] T. Richter. (2019). ThorFDBG/libJPEG: A Complete Implementation
of 10918-1 (JPEG) Comming From JPEG.org (the ISO Group) With
Extensions for HDR Standardized as 18477 (JPEG XT). Accessed:
Mar. 25, 2020. [Online]. Available: https://github.com/thorfdbg/libjpeg

[28] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Analysis and
architecture design of block-coding engine for EBCOT in JPEG 2000,”
IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 219–230,
Dec. 2003.

[29] V. Sze and M. Budagavi, “High throughput CABAC entropy coding
in HEVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1778–1791, Dec. 2012.

[30] M. Matsumoto and T. Nishimura, “Mersenne twister:
A 623-dimensionally equidistributed uniform pseudo-random number
generator,” ACM Trans. Model. Comput. Simul., vol. 8, pp. 3–30,
Jan. 1998.

[31] H. T. Sencar and N. D. Memon, “Identification and recovery of JPEG
files with missing fragments,” in Proc. 9th Annu. DFRWS Conf.,
Sep. 2009, pp. 88–98.

[32] G. Schaefer and M. Stich, “UCID: An uncompressed color image
database,” Proc. SPIE, vol. 5307, pp. 472–480, Dec. 2004.

[33] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “RAISE:
A raw images dataset for digital image forensics,” in Proc. 6th ACM
Multimedia Syst. Conf., Mar. 2015, pp. 219–224.

[34] FIPS PUB 180-4: Secure Hash Standard (SHS), Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Aug. 2015.

[35] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[36] G. Bjøntegaard, Calculation of Average PSNR Differences Between
RDcurves, document VCEG-M33, 2001.

Kosuke Shimizu received the B.E. degree in
Computer Science Program of the Advanced Course
from Tokyo Metropolitan College of Industrial Tech-
nology (TMCIT), Japan, in 2017, and the M.E.
degree from the Department of Computer Science,
University of Tsukuba, Japan, in 2019, where he
is currently pursuing the Ph.D. degree. His current
research interest is image and video processing.

Taizo Suzuki (Senior Member, IEEE) received the
B.E., M.E., and Ph.D. degrees in electrical engi-
neering from Keio University, Japan, in 2004, 2006,
and 2010, respectively. From 2006 to 2008, he was
with Toppan Printing Company, Ltd., Japan. From
2008 to 2011, he was a Research Associate with
the Global Center of Excellence (G-COE), Keio
University. From 2010 to 2011, he was a Research
Fellow with Japan Society for the Promotion of
Science (JSPS) and a Visiting Scholar with the Video
Processing Group, University of California at San

Diego, La Jolla, CA, USA. From 2011 to 2012, he was an Assistant Professor
with Nihon University, Japan. In 2012, he joined the University of Tsukuba,
Japan, as an Assistant Professor, where he has been an Associate Professor
since 2019. His current research interests include signal processing and
filter banks/wavelets for image and video. From 2017 to 2021, he was an
Associate Editor of the IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

