
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021 3859

Compcrypt–Lightweight ANS-Based
Compression and Encryption

Seyit Camtepe , Senior Member, IEEE, Jarek Duda , Arash Mahboubi , Paweł Morawiecki , Surya Nepal ,

Marcin Pawłowski , and Josef Pieprzyk

Abstract— Compression is widely used in Internet applications
to save communication time, bandwidth and storage. Recently
invented by Jarek Duda asymmetric numeral system (ANS) offers
an improved efficiency and a close to optimal compression. The
ANS algorithm has been deployed by major IT companies such
as Facebook, Google and Apple. Compression by itself does not
provide any security (such as confidentiality or authentication
of transmitted data). An obvious solution to this problem is an
encryption of compressed bitstream. However, it requires two
algorithms: one for compression and the other for encryption.
In this work, we investigate natural properties of ANS that
allow to incorporate authenticated encryption using as little
cryptography as possible. We target low-level security commu-
nication and storage such as transmission of data from IoT
devices/sensors. In particular, we propose three solutions for joint
compression and encryption (compcrypt). The solutions offer
different tradeoffs between security and efficiency assuming a
slight compression deterioration. All of them use a pseudorandom
bit generator (PRBG) based on lightweight stream ciphers. The
first solution is close to original ANS and applies state jumps
controlled by PRBG. The second one employs two copies of ANS,
where compression is switched between the copies. The switch
is controlled by a PRBG bit. The third compcrypt modifies the
encoding function of ANS depending on PRBG bits. Security and
efficiency of the proposed compcrypt algorithms are evaluated.
The first compcrypt is the most efficient with a slight loss of
compression quality. The second one consumes more storage but
the loss of compression quality is negligible. The last compcrypt
offers the best security but is the least efficient.

Manuscript received January 14, 2021; revised April 18, 2021 and
May 19, 2021; accepted June 25, 2021. Date of publication July 9, 2021;
date of current version August 3, 2021. The work of Paweł Morawiecki
and Marcin Pawłowski was supported by the Polish National Science
Center (NCN) under Grant 2018/31/B/ST6/03003. The work of Josef
Pieprzyk was supported in part by the Australian Research Council (ARC)
under Grant DP180102199 and in part by the Polish National Science
Center (NCN) under Grant 2018/31/B/ST6/03003. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Lejla Batina. (Corresponding author: Josef Pieprzyk.)

Seyit Camtepe and Surya Nepal are with Data61, CSIRO,
Sydney, NSW 1466, Australia (e-mail: sayit.camtepe@data61.csiro.au;
surya.nepal@data61.csiro.au).

Jarek Duda is with the Institute of Computer Science and Computer
Mathematics, Jagiellonian University, 30-348 Krakow, Poland (e-mail:
dudajar@gmail.co).

Arash Mahboubi is with the School of Computing and Mathemat-
ics, Charles Sturt University, Bathurst, NSW 2795, Australia (e-mail:
amahboubi@csu.edu.au).

Paweł Morawiecki and Marcin Pawłowski are with the Institute of Computer
Science, Polish Academy of Sciences, 01-248 Warsaw, Poland (e-mail:
pawel.morawiecki@gmail.com; pawlowski.mp@gmail.com).

Josef Pieprzyk is with the Institute of Computer Science, Polish Academy
of Sciences, 01-248 Warsaw, Poland, and also with Data61, CSIRO, Sydney,
NSW 1466, Australia (e-mail: josef.pieprzyk@csiro.au).

Digital Object Identifier 10.1109/TIFS.2021.3096026

Index Terms— Asymmetric numeral system, compression,
lightweight encryption, authentication.

I. INTRODUCTION

AMAJORITY of Internet transmission is highly redundant.
Popular video/audio streaming applications such as radio,

TV, Skype/Zoom/Webex teleconferencing, Netflix/Stan enter-
tainment providers, Facebook social platforms, medical remote
diagnosis and monitoring, and remote teaching are all good
examples Internet applications, which transmit and process
highly redundant data. To save communication bandwidth and
make transmission faster, a redundant stream is compressed.
Upon reception, the receiver recovers the original (redundant)
stream. The focus of the paper is lossless compression, where
a receiver is able to fully recreate the original/uncompressed
data. However, video/audio compression is usually lossy.

Theoretical underpinning of compression is deeply rooted in
Information Theory initiated by Shannon’s seminal work [22].
Huffman codes (HC) [9] show optimal compression for sym-
bol streams, whose probabilities follow very specific patterns
(i.e. natural powers of 1

2 ). Arithmetic coding (AC) (and its
variants – see [14], [17], [21]) offers compression of symbols
with an arbitrary probability distribution and is close to
optimal. Its main drawback is a low efficiency as it requires
complex arithmetics and heavy computational overhead. In
contrast, an asymmetric numeral system (ANS) invented by
Jarek Duda [5] and Duda et al. [6] gives a close to optimal and
efficient compression. The efficiency gain is achieved by repre-
senting coding/decoding operations by their tables that define
corresponding finite-state machine transition functions. This
allows to avoid expensive arithmetic operations. This variant
is called the tabled ANS or simply tANS, where expensive
arithmetics is replaced by lookup operation. Since 2015, tANS
has been applied in Facebook Zstandard, Linux kernel and
Android operating system to name a few.1 A wide adoption
of ANS by the IT industry makes it an attractive option for
lightweight IoT applications. To the best of our knowledge,
this paper is the first that deals with joint compression and
encryption for ANS. There are, however, many published
works that address the problem but for different compression
algorithms (see for example [10], [11], [20], [23]).

The generic research question posed here is whether it
is possible to design a single algorithm that simultaneously

1See https://en.wikipedia.org/wiki/Asymmetric_numeral_systems

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6353-8359
https://orcid.org/0000-0002-0487-0615
https://orcid.org/0000-0002-3289-6599
https://orcid.org/0000-0002-1917-6466
https://orcid.org/0000-0001-9559-809X
https://orcid.org/0000-0003-3349-8645
https://orcid.org/0000-0002-5145-9220


3860 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

compresses and encrypts (called compcrypt). The work
addresses its variant when compression is based on ANS and
there is no encryption per se but instead, internal states of
ANS are controlled by random bits. To make implementation
easy, we use PRBG to provide the requested randomness. We
expect that

cost(compcrypt) = cost(ANS)+ cost(PRBG),

comp_rate(compcrypt) ≈ comp_rate(ANS),

security(compcrypt) > security(ANS),

where comp_rate stands for compression rate.
Motivation: One of the emerging ANS applications is com-

pression of data gathered, stored and transmitted by the Inter-
net of things (IoT) devices. It is predicted that by 2025, the IoT
infrastructure will include more than 75 billion devices [13].
Those Internet-enabled devices will be able to produce and
consume a large amount of data. For example, one of the
missions of 5G is to provide connectivity for data-intensive
machines such as IoT devices forming the foundation of
the fourth industrial revolution. Resource limitations on the
most IoT devices restrict deployment of both compression and
encryption algorithms, especially in real-time applications.

The work aims to extend ANS compression with crypto-
graphic features to address this gap. The idea is to identify the
natural properties of ANS, which, together with lightweight
cryptographic tools, can provide a “decent” level of security
for confidentiality and integrity [3]. This topic has been
previously investigated in [7] by Duda and Niemiec. The
authors consider a plain ANS with a (pseudo)randomly chosen
encoding function. However, once it has been chosen (as a part
of initialisation), it is fixed for the whole compression session.
Due to an inherent cyclic nature of compression, this leaves
a door ajar for possible integrity attacks, where an adversary
may inject/remove parts of output bits without detection by the
receiver. Note that in many application, data integrity is much
more important than confidentiality. For example, environment
sensing (temperature/pollution) or smart parking.

In contrast, we cryptographically change behaviour of an
underlying ANS during symbol processing so the above men-
tioned integrity attacks fail with high probability. In particular,
we investigate joint compression and encryption (compcrypt)
for low-level security IoT communications. By low-level secu-
rity, we mean IoT applications whose compromise causes
relatively low damages or alternatively, an adversary attacking
IoT communication has a limited computing resources. Our
work is guided by the following requirements for lightweight
compcrypt algorithms, i.e. (1) minimal use of cryptogra-
phy, (2) security against ciphertext-only adversaries and (3)
integrity checking mechanism,

Contributions: The work

• analyses confidentiality and integrity of data provided by
a plain ANS (without any cryptography). The analysis
is done for ciphertext-only and known-plaintext attacks.
It also discusses integrity of output streams,
• provides three compcrypt solutions. First one is based

on state jumps. This is a very basic solution that
applies a plain ANS, where state transition is controlled

cryptographically. It has a similar efficiency as a plain
ANS with a slightly reduced compression quality. The
second one applies two plain ANS algorithms with tran-
sition between the two controlled by PRBG bits. It is as
efficient as the first solution but uses two encoding tables
so it needs twice as much storage as the first compcrypt.
Compression quality is almost the same as the one in
ANS. The third one uses PRBG bits to modify ANS
encoding function. This solution is the most secure but
the least efficient,
• evaluates security and efficiency of the proposed com-

pcrypt algorithms.
The rest of the work is structured as follows. Section II

introduces the plain ANS. We first give a bird-eye view
of ANS followed by a formal description of its algorithms.
The section is complemented by an example of a toy
ANS. Section IV analyses confidentiality and integrity of
the plain ANS under ciphertext-only and known-plaintext
attacks. Section V describes our three lightweight compcrypt
algorithms. Section VI evaluates security and efficiency of the
proposed algorithms. Section VII concludes the work.

II. DESCRIPTION OF ASYMMETRIC NUMERAL SYSTEM

Let m be the size of an alphabet S (or m = |S|), n – the
number of symbols in a sequence, and N – the number of
bits in a sequence. Given a source that generates a sequence
S = {s j }nj=1 of symbols with their probabilities Pr(si ) =
pi ≈ |{ j : s j = i}|/n. In entropy coding, we would like to
uniquely translate S into bit sequence B = {b j }Nj=1. Shannon
defines entropy of the source as H (p) = ∑m

i=1 pi lg2(
1
pi

).
Roughly saying, entropy gives the average number of bits per
symbol for a given probability distribution. This implies that
ideally N/n ≈ H (p) when n→∞. The Huffman code (HC)
is the first attempt to encode a symbol sequence S into a
binary sequence B. Note that HC works well for probability
distributions described by natural powers of 1

2 . Otherwise,
N/n moves away from H (p). Both AC and ANS address
the problem of encoding symbols with an arbitrary probability
distribution. They allow to achieve encoding that is as close
to Shannon entropy as needed.

A. Bird-Eye View of ANS

ANS [5] allows to achieve a close to optimal compression
for a source of an arbitrary probability distribution. The ANS
encoding and decoding can be done very efficiently. When
describing ANS operations, it is helpful to think about ANS as
a finite state machine (FSM), optimised for a given probability
distribution, whose states are labelled by integers [16]. We
describe building blocks of ANS without giving rationale for
their design. This is enough to understand the encryption part
of the paper. The reader interested in ANS details is referred
to [5], [18].

The main data structure is determined by the number of
states L. For simplicity, we assume that L = 2R , where
R ∈ N+ is a parameter, which determines the quality of
compression. Let Ls denote the number of occurrences of
symbol s, where

∑
s Ls = L and Ls is an approximation



CAMTEPE et al.: COMPCRYPT–LIGHTWEIGHT ANS-BASED COMPRESSION AND ENCRYPTION 3861

of probabilities of Pr(s) = ps . Define the following sets
L = {L, L+1, . . . , 2L−1} and Ls = {Ls, Ls+1, . . . , 2Ls−1},
where s ∈ S. Given a state is xi and a symbol si . ANS needs
to determine the next state xi+1 and the output bits bi . If one
looks at ANS as FSM, then the state-transition function is
defined by the following two steps:

1) the current state xi is re-normalised by truncating enough
least significant bits (LSB) so the truncated integer y
belongs to Lsi ,

2) calculates a new state xi+1 by applying an encod-
ing function C(si , y) and outputs the binary sequence
bi =LSB(xi ), which is a binary encoding of si .

The crux of ANS is its encoding function x = C(s, y) that
assigns a state/integer x ∈ L that encodes s ∈ S using the
integer y ∈ Ls . A symbol spread function s̄ : L → S

is closely connected to the encoding function C(s, y). It
determines the symbol s that is encoded in x or s̄(x) = s.
The encoding function C : Ls → L is constructed so the
following conditions hold:

• The approximation Ls
L ≈ ps determines quality of com-

pression. This means that there are Ls different integers
x ∈ L that encode s.
• By construction, for a given symbol s, C(s, y) accepts

integers y ∈ Ls . The function C(s, y) can be represented
by a table, whose rows are indexed by a symbol s and
columns by an integer y ∈ Ls . The columns are indexed
by all consecutive integers starting from ymin = mins Ls .
The last column index is 2R − 1. The entries of the s-th
row for consecutive columns Ls, Ls + 1, . . . , 2Ls − 1
create a set �s of states arranged in an increasing order.
�s is also called symbol spread for s.
• The integers x ∈ �s can be chosen at random from L as

long as any symbol spread pair is disjoint, i.e. �s∩�s ′ = ∅
as long as s 	= s′, where �s = {x ∈ L|x = C(s, y);
y ∈ Ls} and

⋃
s Ls = L.

A decoding function D : L → S × Ls takes an integer
x ∈ L and returns the corresponding symbol s and an integer
y, which is a re-normalised state from Ls . In fact, D(x) can
be seen as the inverse of C(s, y). By construction, the integer
x points out a unique pair (s, y). Note that if x ∈ �s , then it
cannot occur in any other �s ′ , otherwise the condition �s ∩
�s ′ = ∅ is violated.

Encoding – given a state x ∈ �s that is an encoding of s,
the number of bits of bs is computed as

k = ks(x) = 
log2(x/Ls)� −→ bs = x mod 2k .

The binary string bs is sent to the output. Now for the next
symbol s′ ∈ S, the state x is updated as follows

x −→ x ′ = C(s′, 
x/2k�).
Note that x ∈ �s but 
x/2k� ∈ Ls .
Decoding – for a state x ∈ L and an output binary string B,

the decoding function D(x) = (s, y) determines the symbol s
and integer y ∈ Ls . Next, the number of bits that needs to be
read from B is calculated as ks = ks(x) = R − 
log2 x�. The
ks-bit string is read from B or bs = M SB(B)ks , where M SB

stands for the most significant bits. The string B is updated
by removing bs and the state is modified x ′ = 2k · y+bs . The
full description of ANS is given below.

B. ANS Algorithms

The tANS compression can be seen as a triplet 〈I, C, D〉,
where I is an initialization algorithm executed once before
compression by communicating parties. However, if sym-
bol statistics changes, the algorithm may need to be
rerun. C is a compression algorithm performed by a
sender and D is a decompression algorithm used by a
receiver.

Initialisation I

Input: A set S of symbols, their probability distribution p : S →
[0, 1], ∑

s ps = 1 and a parameter R ∈ N
+.

Output: Instantiation of
• the encoding functions C(s, y) and ks(x) and
• the decoding functions D(x) and ks(x).

Steps: Initialisation proceeds as follows:
• calculate the number of states L = 2R ;
• determine the set of states L = {L , . . . , 2L − 1};
• for each symbol s ∈ S, compute integer Ls ≈ Lps , where

ps is probability of s;
• define the symbol spread function s : L → S, such that
|{x ∈ L : s(x) = s}| = Ls ;
• establish the coding function C(s, y) = x for the integer

y ∈ Ls = {Ls, . . . , 2Ls − 1}, which assigns states x ∈ L

according to the symbol spread function;
• compute the function ks (x) = 
lg(x/Ls )� for x ∈ L and s ∈

S. The function shows the number of output bits generated
during a single encoding step;
• construct the decoding function D(x) = (s, y), which for

a state x ∈ L assigns its unique symbol (given by the
symbol spread function) and the integer y ∈ Ls . Note that
C(D(x)) = x and D(C(s, x)) = (s, x).
• calculate the function ks(x) = R−
lg(x)�, which determines

the number of bits that need to be read out from the bitstream
in a single decoding step.

The algorithm C takes a sequence of symbols further called
a symbol frame and generates a stream of bits also called
binary frame.
Symbol Frame Encoding C

Input: A symbol frame S = (s1, s2, . . . , sn) and an initial state
xn ∈ L; where n = |S |.

Output: A binary frame B = (b1, b2, . . . , bn), where bi is a binary
encoding of si ; |bi | = ksi (xi ) and xF is the final state.

Steps: For i = n, n − 1, . . . , 2, 1 do (encoding has to be in
reverse direction)
{
s := si ;
ks(x) = 
lg(x/Ls )�; (compute the number of bits to
be extracted)
bi = x mod 2k ; (send ks LSB of current state x = xi
to the output)
x := C(s, 
x/2k �); (update the state xi → xi−1)
};
Store the final state xF ;

The next algorithm takes a binary frame and the final state
and produces symbols of the corresponding frame.



3862 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Binary Frame Decoding D

Input: A binary frame B and the final state x = xF ∈ L of the
encoder.

Output: A symbol frame S .
Steps: while |B| 	= 0

{
(s, y) = D(x); (produce the corresponding symbol s
and integer y)
ks(x) = R − 
lg(x)�; (compute the number of bits to
be read)
bs = M S B(B)ks ; (extract k MSB from B)
B := L S B(B)|B|−ks ; (update the stream of bits to
be processed)
x := 2k y + bs ; (update the state xi−1 → xi)
}

Check x
?= xn (integrity check)

Note that LSB(B)� and M SB(B)� stand for the � least and
most significant bits of B, respectively.

C. Example

Design compression and decompression algorithms for a
source with m = 3 symbols, where S = {s0, s1, s2}, p0 = 3

16 ,
p1 = 8

16 , p2 = 5
16 and a free parameter R = 4. Note that

R determines quality of compression. The higher R the better
compression but the algorithm is less efficient. The number of
states L = 2R = 16 and the state set L = {16, 17, . . . , 31}.

Determine symbol spread function s : L→ S such that

s(x) =
⎧⎨
⎩

s0 if x ∈ {18, 22, 25} = �0
s1 if x ∈ {16, 17, 21, 24, 27, 29, 30, 31} = �1
s2 if x ∈ {19, 20, 23, 26, 28} = �2

where L0 = |{18, 22, 25}| = 3, L1 = |{16, 17, 21, 24, 27,
29, 30, 31}| = 8 and L2 = |{19, 20, 23, 26, 28}| = 5. Note
that sets �s need to be arranged in increasing order.

Write the encoding function C(s, y) as the following table

s\y 3 4 5 6 7 8 9 10 11 12 13 14 15
s0 18 22 25 − − − − − − − − − −
s1 − − − − − 16 17 21 24 27 29 30 31
s2 − − 19 20 23 26 28 − − − − − −

The top row of the table defines L0 = {3, 4, 5}, L1 =
{8, 9, 10, 11, 12, 13, 14, 15} and L2 = {5, 6, 7, 8, 9}.

Construct the encoding table E(xi , si ) = (xi+1, bi )
def≡(xi+1

bi

)
as follows:

si\xi 16 17 18 19 20 21 22 23

s0
(22

00

) (22
01

) (22
10

) (22
11

) (25
00

) (25
01

) (25
10

) (25
11

)
s1

(16
0

) (16
1

) (17
0

) (17
1

) (21
0

) (21
1

) (24
0

) (24
1

)
s2

(26
0

) (26
1

) (28
0

) (28
1

) (19
00

) (19
01

) (19
10

) (19
11

)
si\xi 24 25 26 27 28 29 30 31

s0
( 18

000

) ( 18
001

) ( 18
010

) ( 18
011

) ( 18
100

) ( 18
101

) ( 18
110

) ( 18
111

)
s1

(27
0

) (27
1

) (29
0

) (29
1

) (30
0

) (30
1

) (31
0

) (31
1

)
s2

(20
00

) (20
01

) (20
10

) (20
11

) (23
00

) (23
01

) (23
10

) (23
11

)

To illustrate calculations, assume that we have xi = 25 and
input symbol is s0. First we determine the number of bits that
need to be extracted ks0 = 
lg(xi/L0)� = 
lg(25/3)� = 3,
compute xi+1 = C(s0, 
 xi

2k �) = C(s0, 3) = 18 and
bi = xi mod 2k = 25 mod 8 = 1 −→ 001. Given an initial
state x0 = 19 (normally chosen at random), compress the
following symbol frame S = (s1, s1, s2, s1, s2, s1, s1, s0, s2).
Applying the encoding table for consecutive symbols, we get

(19)→
(19

s1

)
↓
1
→

(17
s1

)
↓
1
→

(16
s2

)
↓
0
→

(26
s1

)
↓
0
→

(29
s2

)
↓
01
→

→
(23

s1

)
↓
1
→

(24
s1

)
↓
0
→

(27
s0

)
↓

011
→

(18
s2

)
↓
0
→ (28)

The output bits are B = 110001100110 and the final state
is 28.

Build the decoding table. The decoding function D(x) =
(s, y) can be obtained from C(s, y) = x and is

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
y 8 9 3 5 6 10 4 7 11 5 8 12 9 13 14 15

The decoding table D(xi , bi ) can be represented as follows

xi 16 17 18 19 20 21 22 23
si s1 s1 s0 s2 s2 s1 s0 s2

k 1 1 3 2 2 1 2 2

xi+1 16+bi 18+bi 24+bi 20+bi 24+bi 20+bi 16+bi 28+bi

xi 24 25 26 27 28 29 30 31
si s1 s0 s2 s1 s2 s1 s1 s1

k 1 2 1 1 1 1 1 1

xi+1 22+bi 20+bi 16+bi 24+bi 18+bi 26+bi 28+bi 30+bi

Note that xi+1 = 2k y + bi , where bi is an integer that
corresponds to binary encoding of si . Given the binary frame
B = 110001100110 and the final state 28, we recover the
corresponding sequence of symbols, where the binary string
needs to be read from right to left.

(28)→
(28

0

)
↓
s2

→
( 18

011

)
↓
s0

→
(27

0

)
↓
s1

→
(24

1

)
↓
s1

→
(23

01

)
↓
s2

→

→
(29

0

)
↓
s1

→
(26

0

)
↓
s2

→
(16

1

)
↓
s1

→
(17

1

)
↓
s1

→ (19)

III. PSEUDORANDOM BIT GENERATION

For many IT protocols and simulations, there is a need
for a source of random bits. A typical solution applies a
pseudorandom bit generator (PRBG). Unfortunately, generated
bits are no longer truly random. Many applications can be
run successfully as long as pseudorandom sequences “look”
random. Looking random can be equated to passing some
statistical tests (such as the ones recommended by NIST [19]).
However, a choice of statistical tests is highly arbitrary and
having many tests to choose from, one can ask which test
is really important and which ones can be ignored. Yao in



CAMTEPE et al.: COMPCRYPT–LIGHTWEIGHT ANS-BASED COMPRESSION AND ENCRYPTION 3863

his work [24] argues that there is an universal test, which,
if passed, assures that all other statistical tests hold. This
is the well known next-bit test. Given an adversary with
polynomially-bounded computing resources who can observe
a polynomial-size output sequence generated by PRBG. Then
PRBG passes the next-bit test if the adversary is able to predict
the next bit with probability no better than 1/2 + ε, where ε
is negligible. A distinguisher is an algorithm that implements
the next-bit test. PRBG is called cryptographically strong (or
CSPRBG) if it passes the next-bit test or alternatively, there
is no distinguisher that can tell apart it from a truly random
source.

There are two classes of CSPRBG: one whose security
is anchored to a heuristic argument and the other – to an
intractability assumption. The first class includes numerous
designs based on nonlinear feedback shift registers (NFSR).
For example, Trivium, Snow and Sober (see eStream portfolio
https://www.ecrypt.eu.org/stream/). The second class includes
a RSA-based PRBG that assumes intractability of integer
factorisation [1] and a Bum-Blum-Shub PRBG, whose security
rests on intractability of quadratic residuosity [2]. Needless to
say, CSPRBG based on an intractability assumption tends to
be inherently slow and, thus, not appropriate for devices (such
as IoT) with limited computing resources.

In the context of this work, we target PRBG, whose security
is heuristic as they are very efficient and can be easily
implemented in both software and hardware. More secure
candidates include winners of the eStream competition. Less
secure PRBGs should not be discounted as they can be a
viable option for lower-end security applications especially if
one requires a security against a ciphertext-only adversary. In
this circumstances, PRBG solutions based on linear feedback
registers and linear congruences [12] can be used.

IV. ANALYSIS OF PLAIN ANS

A symbol frame S is compressed at the sender side. A
binary frame B together with the final state xF is sent to a
receiver who decompresses the stream back to the symbol
frame S. Both the sender and the receiver know a sym-
bol source statistics and parameters of the ANS including
an encoding function C(s, y). It is important to distinguish
between different views of binary frames, namely

• a view of a receiver who knows C(s, y). It sees
sequence of encodings for consecutive symbols, i.e. B =
(b1, . . . , bn), where bi is an encoding of si . In other
words, it knows how to divide a binary frame into
encodings bi . As each bi may have a different length,
we can define a window frame W = (k1, . . . , kn), where
ki indicates the number of bits in bi or ki = |bi |. In other
words, the receiver knows both frames B and W ,
• a view of an adversary A who does not know C(s, y). A

deals with a binary frame B and it does not know how to
extract particular encodings bsi . In other words, A knows
B but does not know the window frame W (this is also
called a synchronisation problem). Note that, in general,
a window frame does not determine symbols as the same
symbol s can be encoded into bs of different lengths.

TABLE I

PLAIN ANS ADVERSARIAL MODELS

Note that we ignore active adversaries who may access
to an ANS encoder/decoder (or to oracles OE/OD). In this
case, an adversary is able to extract states and encodings
by inputting short symbol frames to OE and reconstruct the
encoding function C(s, x). In our analysis, we assume that an
adversary is passive and can observe behaviour of ANS. The
table below shows attack scenarios investigated in this section.

The above scenarios are most common in IoT applica-
tions. The ciphertext-only attack is relevant to any adversary
who is able to see the traffic generated by an IoT device.
This is true if an IoT device uses broadcast communication
(such as Bluetooth or Wi-Fi) to interact with a server. The
known-plaintext attack can be launched if an adversary has
additionally an access to source of symbols. For instance,
it is easy to determine symbols for a temperature sensor by
installing an adversarial sensor nearby that hopefully replicates
the temperature readings.

A. Ciphertext-Only Attack Against ANS

A majority of IoT devices that use ANS for compression
communicates with their servers via broadcasting channels
(such as Bluetooth or WiFi). This makes them vulnerable
to eavesdropping (alternatively called ciphertext-only attacks).
The main difficulty for an adversary is to guess a window
frame. After it has guessed it, it can upload an observed binary
frame B into consecutive windows and recover a sequence of
encodings. Our task here is to determine an upper bound for
probability of guessing the window frame and evaluate a lower
bound of security provided by a plain ANS.

1) Symbol Versus Window Statistics: A typical source
includes all 28 ASCII symbols. Its statistical properties are
approximated by geometric probability distribution truncated
to 28 events. To recall, geometric probability distribution is
defined as P( j) = (1 − p) j p, where 0 < p < 1 is a
parameter and j = 1, 2, · · · are the events. In practice, instead
of infinite number of events, j has to be equal to the number
of all symbols produced by the source. It is important to note
that, in general, a symbol can be assigned to binary encodings
of different lengths. In our example, s2 can be compressed
into either 1-bit or 2-bit encoding. In general, a symbol s
with probability ps gets either 
log 1/ps� or �log 1/ps� bits.
Consequently, the statistics of windows of different lengths is
different from the source statistics. This is illustrated below.

Source Statistics Window Statistics
P(s1) = p1 P(W = 0) = P0

... → ANS→ ...
P(sm) = pm P(W = α) = Pα



3864 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

P(W = i) = Pi gives probability that ANS produces a
window of the length i , where i = 1, . . . , α and α is the
longest window used by ANS. In our example, ANS translates
the source probabilities ( 3

16 , 1
2 , 5

16 ) into window probabilities
(P1, P2, P3) = ( 37

64 , 21
64 , 6

64 ).
Remark 1: Given ANS window probabilities Pi ;

i = 1, . . . , α and the number n of symbols processed
by ANS, then an adversary can guess the window frame for
the symbols with probability no better than PGWF,n ≤ 2−n·HW ,
where HW =∑α

i=1 Pi log2 P−1
i is an entropy of W .

2) Guessing Window Frames: Assume that n symbols are
generated according to the source statistics and processed by
ANS. The resulting window frame is a random variable, which
is a described by concatenation of n window random variables.
In practice, ANS accepts 28 possible symbols described by
an appropriate probability distribution and processes it into
a window probability distribution {P(W = i) = Pi |i =
1, 2, . . . , α}. To simplify our considerations, we assume that
the window variable W is defined for three events {1, 2, 3}
only, where P(W = 1) = P1, P(W = 2) = P2 and
P̂3 = P(W = 3) = ∑α

i=3 Pi . To enumerate possible window
frames and find the probability of guessing the right one, we
use the binomial theorem [12] that says that

(x + y)r =
∑

k

(
r

k

)
xk yr−k .

Let us illustrate the connection between the theorem and our
problem. Assume that we are dealing with window frames that
are built from n window variables. We have 3n possible win-
dow frames (events) containing 1-bit, 2-bit and 3-bit windows.
The binomial theorem asserts us that

3n = (1+ 2)n =
n∑

k=0

(
n

k

)
2k =

(
n

0

)
· 20 +

(
n

1

)
· 21 + . . .

+
(

n

n − 1

)
· 2n−1 +

(
n

n

)
· 2n.

Note that the term
(n

k

)
2k gives the number of window frame

events that consists of k either 2-bit or 3-bit windows and
(n−k) 1-bit windows. The probability that a randomly chosen
window frame contains (n−k) 1-bit windows and k either 2 or
3-bit windows is(

n

k

)
2k · Pn−k

1 ·
(

P2 + P̂3

2

)k

.

The total length of window frames ranges from n + k to
n + 2k, where k = 0, . . . , n.

Remark 2: It is reasonable to assume that an adversary
knows the length n of symbol frame and the length N of
binary frame. This helps the adversary as the space of events
is restricted to N-bit window frames. It knows that

n1 + n2 + · · · + nα = n

n1 + 2 · n2 + · · · + α · nα = N, (1)

where ni ∈ N is the number of i -bit windows; i = 1, . . . , α.
It is easy to determine a space of solutions (n1, . . . , nα)

for which Equation (1) holds. For a given (n1, . . . , nα), the
adversary needs to look through(

n

n1, n2, . . . , nα

)
= n!

n1!n2! · · · nα ! (2)

equally probable events (window frames). Equation (2) repre-
sents a multinomial coefficient [12].
Let us make the following observations about ANS resistance
against ciphertext-only attack.
• The adversary has a “good” chance to guess relatively

short window frames. It may attempt to determine such
frames at any position of binary stream as symbols are
independently generated. As the number n of symbols
grows, the probability of success quickly becomes neg-
ligible. Note that this observation is consistent with the
conclusion made by Gillman et al. [8] about cryptanalysis
of compression with Huffman codes that is “surprisingly
difficult”.
• If the length N of binary frame is known and very close to

either n or α · n, then it is possible to guess the window
frame with a non-negligible probability. Note however
that probability of such events is negligible for a large
enough n.

B. Known-Plaintext Attack Against ANS

For a given symbol, ANS assigns binary encod-
ings/windows of different lengths. The following observa-
tion can be used to determine the window lengths for each
symbol.

Fact 1: Given a symbol s ∈ S and its Ls ≈ 2R · ps ,
then the window length ks satisfies the following
condition


log2
2R

Ls
� ≤ ks ≤ 
log2

2R+1 − 1

Ls
�.

When the approximation Ls ≈ 2R · ps can be replaced by
equality Ls = 2R · ps , the above condition can be re-written
as


log2 p−1
s � ≤ ks ≤ 
log2 p−1

s (2− 1

2R
)�.

�
A closer look at the above conditions reveals the following

properties of window lengths:
• If ps = (1/2)i , then ANS assigns a i -bit window.
• If ps > 1/2, then ANS assigns a window of the length

either 0 or 1.
• Otherwise, ANS assigns a window of the length ks ∈
{i, i + 1}, where i = 
log2 p−1

s �.
From now on, we assume that for each symbol s ∈ S, ANS
assigns an encoding bs , whose length is either ks or ks + 1
with the probabilities P(ks) = βs and P(ks + 1) = 1 − βs ,
respectively. In cases, where there is only one length ks , the
probability distribution becomes trivial, i.e. P(ks) = 1 and
P(ks + 1) = 0 (or vice versa). A probabilistic model of ANS
is illustrated below. Note that symbols are listed according
to decreasing order of their probabilities, i.e. s1 is the most



CAMTEPE et al.: COMPCRYPT–LIGHTWEIGHT ANS-BASED COMPRESSION AND ENCRYPTION 3865

probable while sm – the least.

Symbol s Length ks Probability βs

s1 {0, 1} βs1

s2 {1, 2} βs2
...

sm−1 {m − 2, m − 1} βsm−1

sm {m − 1, m} βsm

Consider ANS from our example. For s1, it assigns a
window of length 1 with probability 1. For s2, it allocates a
window of the length either 1 or 2, where βs2 = 1/4. For s0,
it points a window of the length either 2 or 3, where βs0 = 1/2.

1) Guessing Window Frames: This time our adversary
knows both a symbol frame S = (si )

n
i=1 and a binary frame

B of N bits. To determine a corresponding window frame, the
adversary
• finds a space of all solutions of the following relation

k1 + k2 + . . .+ kn = N, (3)

where ki is the length of a window used by ANS to
encode si ; i = 1, . . . , n. Note that ki can take on two
values only so we can write that ki = ci + γi , where a
constant ci is known to the adversary and γi ∈ {0, 1} is
unknown. Equation (3) can be re-written as

n∑
i=1

γi = N −
n∑

i=1

ci .

The integer
∑n

i=1 γi is the number of times when γi = 1
and it is known to the adversary,
• enumerates all possible patterns of (γi )

n
1, whose weight

is N −∑n
i=1 ci . It is obvious that the number of patterns

is (
n

N −∑n
i=1 ci .

)
To maximise chances, the adversary tries from most
probable. This can be done as it knows probabilities βs .

In general, guessing of window frames can be difficult or even
impractical for some ANS instances. There is, however, a word
of caution. If some probabilities of symbols are powers of
(1/2) or close to it, then ANS assigns to them a window with
a single length. This increases chances of guessing a widow
frame. In an extreme case, when all probabilities are powers
of 1/2, the adversary can determine a window frame with
probability 1.

2) Adaptive Attack Against ANS: We assume that an adver-
sary knows a symbol frame S = (si )

n
i=1 together with the cor-

responding binary frame B and a guessed (correctly) window
frame. In other words, A knows all encodings (bi )

n
i=1 and a

final state xF . Her goal is to find an encoding function C(s, y).
However, one can argue that instead of finding C(s, y), the
adversary can design (adaptively) her own ANSA, which is
fully/partially “isomorphic” to the analysed ANS. In other
words, the adversary intends to find a function that translates
output bits of the original (attacked) ANS into output bits of
the adversary ANSA. Note that the adversary does not known
the current state of the original ANS. In fact, the adversary

does not need to know the original ANS as long as her
ANSA produces a bitstream that can be translated to bitstream
generated by the original ANS. In this sense, both ANS and
ANSA are isomorphic. In other words, we are looking for a
function F such that

ANS ANSA
↓ ↓
bi

F←→ b′i for i = 1, 2, · · ·
The adaptive attack proceeds along the following steps:

1) The adversary A designs her ANSA applying the same
parameters as the original ANS.

2) A chooses an initial state x ′1 at random. For the first
observation (s1, b1), it finds b′1 from the encoding table
of ANSA. It records

(s1, x1, b1)
F−→ (s1, x ′1, b′1).

3) A continues with subsequent observations and builds
the function (table) F . This process is successful if the
function is fully determined for all symbols and states.
If the original ANS or ANSA contain cycles then the
algorithm fails. If a cycle occurs in the original ANS, A
needs to “re-design” ANSA by introducing the cycle of
an appropriate length. On the other hand, if ANSA hits
a cycle, it needs re-design to remove the cycle.

C. Integrity of ANS Binary Frames

ANS is normally represented by its encoding table E(xi , si ).
Equivalently, it can be described by a directed graph with 2R

vertices that correspond to states and edges that are labelled by
symbols. An edge s from a vertex xi to xi+1 shows transition
determined by the encoding function xi+1 = C(s,

⌊
xi

2ks

⌋
)). For

a fixed symbol s ∈ S, the function C(s, ·) assigns one of Ls

states. This implies that the following sequence of transitions

xi
s−→ xi+1 = C(s,

⌊ xi

2ks

⌋
)

s−→ xi+2 = C(s,
⌊ xi+1

2ks

⌋
)

s−→ · · · s−→ xi+ j = C(s,
⌊ xi+ j−1

2ks

⌋
)

has to be periodic for j ≥ Ls . This also means that the ANS
graph has to be cyclic. For each fixed symbol s ∈ S, there
may be a single cycle of up to the length Ls or a collection
of shorter ones. The cycle includes different binary encoding
of s.

Consider ANS from our Example. Assume that ANS starts
from an initial state x = 19 and processes a long sequence
of s2. ANS produces the following (periodic) sequence of
binary stream:

(19)→
(28

s2

)
↓
1
→

(23
s2

)
↓
00
→

(19
s2

)
↓
11
→

(28
s2

)
↓
1︸ ︷︷ ︸

cycle

→
(23

s2

)
↓
00
→

(19
s2

)
↓
11
→ · · ·

An adversary can inject/delete/replace the cycle and a
receiver fails to detect it as the other bits are correctly decom-
pressed and ANS reaches the correct final state. The deletion



3866 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

is illustrated below.

(19)→
(28

s2

)
↓
1
→

(23
s2

)
↓
00
→

(19
s2

)
↓
11
→ · · ·

The periodic nature of ANS has the following security and
design implications.
• Cycles in ANS are unavoidable. A designer of ANS can

avoid loops (cycles of the length 1) making sure that for
each state xi and any symbol s ∈ S

xi+1 = C(s j ,
⌊ xi

2ki

⌋
) 	= xi .

Getting rid of longer cycles requires more and more
computation overhead as the designer has to consider
different combinations of states and symbols. This also
means that the entropy of state selection drops, which
means that an adversary does not need to enumerate
encoding functions C(s, y) that have short cycles.
• Cycles are easy to identify by searching binary frame for

repeating sequences. A detection of a concatenation of
two or more bit patterns allows the adversary to remove
or insert arbitrary number of times the bit pattern without
detection by the receiver. This is true as injection/removal
of bit pattern repetition correspond to adding/removing a
cycle without disturbing decoding process for other parts
of the binary frame (before and after injection/removal).
• If a ciphertext-only adversary A can remove/inject binary

patterns from/into the binary frame, then a decoder recov-
ers an incorrect symbol frame. A typical integrity check
applied in ANS that checks correctness the final state
fails.
• For an observed binary cycle in B, a known-plaintext

adversary can ensemble a relation for encoding function
C(s, y). This reduces entropy of the encoding function.
• A can increase its chances of guessing lengths of possible

cycles by experimenting with random instances of ANS
for a known R and a symbol statistics. A hopes that
cycles of a target ANS follow the statistics gathered from
random instances.

V. LIGHTWEIGHT ENCRYPTION WITH ANS

The analysis given in Section IV identifies strengths and
weaknesses of ANS and is a major driver for our design
of a cryptographically strengthened ANS-based compcrypt.
Note that it is easy to design a very secure compcrypt
algorithm when one can use a full range of cryptographic tools.
A price to pay for increase of security is a heavy resource
overhead, which discourages potential users from using them.
This is true if ANS is applied for a relatively low-security
communication (such as collecting data from IoT devices).
In general, IoT devices have very restricted CPU and storage
resources and adding extra encryption algorithm may not be
practical. As IoT devices communicate with their servers via
broadcasting (Bluetooth and Wi-Fi), the data can be subject
to both eavesdropping and tampering with its contents. Our
constructions are guided by the following design principles:
• Minimal application of cryptographic tools so com-

pcrypt preserves its efficiency and compression quality.

In other words, our designs must be lightweight avoiding
“heavy” cryptography and encouraging potential user to
adopt the designs for protection of data collected by IoT
devices.
• Secure against a ciphertext-only adversary who addi-

tionally can modify binary frames by injecting/removing
bit cycles. In other words, detection of a cycle in a binary
frame is a “false positive” with overwhelming probability.
• Repair of the existing ANS authentication/integrity

checking mechanism so any bit stream modification is
detected with probability ≈ (1−2−R). Note that the plain
ANS allows to check equality of a (pre-agreed) encoding
initial states on both communicating sides. As discussed
in Section IV, this may involve a careful selection of
encoding function C(s, y) with no short cycles.

Interestingly enough, our analysis indicates that there is no
need for encryption of bit stream under the assumption of
ciphertext-only adversary. The main security feature already
provided by plain ANS is a variable length of binary encod-
ings, which are glued together when sending to the decoder.
So any attempt to recover symbol frame amounts to guessing
a correct window frame. As shown in Section IV, probability
of a successful guess is negligible even for short sequences
of symbols and decreases exponentially with the number of
compressed symbols.

A. Compcrypt With State Jumps

This solution follows close the original ANS. The only
change is pseudorandom selection of the next state. Con-
sequently, it preserves the efficiency of ANS and enhances
resistance against confidentiality and integrity attacks. The
main cryptographic tool used here is a pseudorandom bit
generator (PRBG), whose seed K is a secret cryptographic
key that is shared between encoder and decoder. PRBG is
used to produce sequence of integers state_cor, where 0 ≤
state_cor ≤ 2R . The integer state_cor determines a jump from
the current state x ∈ L to a new one

x := (x + state_cor) mod 2R + 2R . (4)

The integer state_cor := P RBG(i, K ) is a state correction
at the i th iteration. To make implementation easier, we assume
that the distance between two consecutive jumps denoted by an
integer length is fixed for the duration of frame encoding. The
integer should be kept secret and known to the communicating
parties. Below there is a pseudocode for frame coding. A
pseudocode for frame decoding can be easily reconstructed.

A simple illustration of compcrypt with state jumps is given
below.

· · · si−1−→ xi−1
si−→ xi

jump←− xi + state_cor
si+1−→ xi+1 · · ·

Implementation of the algorithm seems to introduce a
relatively light overhead. Few points are relevant here.
• State jumps tend to have a negative impact on quality of

compression. This implies that jumps should not occur
too often. Consequently, very short cycles of output bits
may be observable. To avoid such cycles, ANS should be
carefully designed to exclude short cycles.



CAMTEPE et al.: COMPCRYPT–LIGHTWEIGHT ANS-BASED COMPRESSION AND ENCRYPTION 3867

Algorithm 1 Frame Coding C for State Jumps
Input: A symbol frame S = (s1, s2, . . . , sn), an initial

state x = xn ∈ L and a secret key K for PRBG.
Output: A binary frame B = (b1, b2, . . . , bn), where

|bi | = ksi (xi ) and xi is state at i -th step.
begin

offset := n mod length; (jump if offset is zero)
no_jumps := 
n/length�; (number of jumps)
state_cor := P RBG(no_jumps, K ); (state
correction)
for i = n, n − 1, . . . , 2, 1 do

s := si ; (new symbol to be compressed)
if offset 	= 0 then

offset−−; (decrease the variable by 1)
else

x := (x + state_cor) mod 2R + 2R ; (jump)
offset := length; (reset offset)
no_jumps−−; (decrease the variable by 1)
state_cor := P RBG(no_jumps, K ); (next
state correction)

k := ks(x) = 
lg(x/Ls)�; (the number of output

bits)
bi := x mod 2k ; (output k LSB of current

state x = xi )
x := C(s, 
x/2k�); (update the state xi → xi−1)

Store the final state;

• Consider a state jump. Note that a binary encoding bi has
to be computed for the state after jump, i.e. xi+state_cor.
Otherwise, decoding fails.
• The only cryptographic component used is PRBG.

It could be as simple as a linear feedback shift register
(LFSR), whose seed (or initial state) is K . It could be
also cryptographically strong PRBG based on nonlinear
feedback shift register (NFSR) or block cipher or hashing.
• Generation of integers PRBG(i, K ) for state correction

should be easy in both directions: backward (for encoding
where i decreases) and forward (for decoding where i
increases).

B. Compcrypt With Double ANS

This solution is more expensive than the first one, offers
better security especially against a known-plaintext adversary
and preserves compression quality. The idea is to design two
copies of ANSi with their encoding functions Ci (s, y), where
i = 1, 2. So we have two symbol encoding tables Ei (x, s).
Consider entries (s, xi ) from E1(x, s) and E2(x, s). They can
be merged as shown below:

xi+1 = C1(s, 
 xi
2ks �)

bi = xi mod 2ks
+ xi+1 = C2(s, 
 xi

2ks �)
bi = xi mod 2ks

merge−→

merge−→ xi+1
$← {C1(s, 
 xi

2ks �), C2(s, 
 xi
2ks �)}

bi = xi mod 2ks

Note that ks and bi for both ANS copies (and the
merged ANSD) are the same. Compcrypt selects the next

state (pseudo) randomly from two possibilities. As before,
we use a pseudorandom bit generator controlled by a seed
K that is a secret key shared by both encoder and decoder. A
pseudocode for compcrypt with double ANS is given below.

Algorithm 2 Frame Coding C for Double ANS
Input: A symbol frame S = (s1, s2, . . . , sn), an initial

state x = xn ∈ L and a secret key K for PRBG.
Output: A binary frame B = (b1, b2, . . . , bn), where

|bi | = ksi (xi ) and xi is state at i -th step.
begin

for i = n, n − 1, . . . , 2, 1 do
s := si ; (new symbol to be compressed)
k := ks(x) = 
lg(x/Ls)�; (the number of output

bits)
bi := x mod 2k ; (output k LSB of current

state x = xi )
if P RBG(i, K ) = 0 then

x := C1(s, 
x/2k�); (update the state

xi → xi−1)
else

x := C2(s, 
x/2k�); (update the state

xi → xi−1)

Store the final state;

We assume that PRBG generates a single bit for each
call P RBG(i, K ). The pseudocode is written for the case
when compcrypt chooses next state from two possibilities
for each symbol. Clearly, we can allow compcrypt to run a
single encoding function (single ANS) for longer sequence of
symbols before the next pseudorandom toss. Let us make the
following observations.

• Intuitively, switching encoding functions should not have
an impact on compression quality.
• Compared to a single ANSi , compcrypt requires larger

memory (twice as much) to store two encoding func-
tions C1(s, y) and C2(s, y). The same size of memory
is enough to store encoding function C(s, y) for ANS
with a double number of states, which allows better
approximation of symbol statistics and consequently bet-
ter compression.
• An adversary who detects a cycle in the bit stream is

unlikely to succeed in injecting it into the stream without
detection.

C. Compcrypt With Encoding Function Evolution

Compcrypt based on two ANS can be seen a graph built
from two subgraphs. Each subgraph represents a plain ANS.
Compression is done by using both subgraphs, where transition
between them is controlled by PRBG. As already noted that
may be perceived as a waste of resources. An option could
be to modify an encoding function C(s, y) after a few steps
of compression. To make the presentation simpler, we assume
that we modify the function after processing a single sym-
bol. In practice, the function modification can be done less



3868 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

frequently. The idea is depicted below.

xi−1

si−1−−−−−→
C(s,y)

xi x ′i = xi + PRBG(i, K )
si−−−−−→

C ′(s,y)
xi+1

The symbol si−1 is processed using C(s, y), where D(x)
is its inverse. Next compcrypt generates a pseudorandom
integer PRBG(i, K ) that modifies xi according to the following
equation

x ′i = xi + PRBG(i, K ) mod 2R + 2R,

where 0 ≤ PRBG(i, K ) ≤ 2R . The states xi , x ′i are swapped
and the resulting encoding function is denoted by C ′(s, y).
Its inverse D′(xi ) satisfies two relations, namely D′(x ′i ) =
D(xi ) and D′(xi ) = D(x ′i ). Otherwise, D(x) = D′(x) for
x /∈ {xi , x ′i }. A sketch of pseudocode for compression is given
below.

Algorithm 3 Frame Coding C for Compcrypt With Encod-
ing Function Evolution
Input: A symbol frame S = (s1, s2, . . . , sn), an initial

state x = xn ∈ L and a secret key K for PRBG.
Output: A binary frame B = (b1, b2, . . . , bn), where

|bi | = ksi (xi ) and xi is state at i -th step.
begin

for i = n, n − 1, . . . , 2, 1 do
s := si ; (new symbol to be compressed)
k := ks(x) = 
lg(x/Ls)�; (the number of output

bits)
bi := x mod 2k ; (output k LSB of current

state x = xi )
xnew := x + P RBG(i, K ); (new pseudorandom

state)
C(s, y) with x and xnew swapped; (update
encoding function)
x := C(s, 
xnew/2k�); (update the state

xi → xi−1)
Store the final state x0 = x ;

This variant has interesting properties. Let us discuss some of
them.

• As the encoding function is constantly updated, it seems
to be difficult to extend attacks, whose goal is its recovery.
Additionally, insertion/deletion of binary cycles into/from
binary frame is very likely to be detected with high
probability.
• Quality of compression could suffer and this aspect needs

more investigation.
• As we have already noted, the C(s, y) update does not

need to be done for every symbol. It looks reasonable to
allow longer runs of compression without C(s, y) update.
If the interval between two consecutive updates is too
long, then one can expect that short cycles could be
detectable. However, we do not know how this can be
exploited by an adversary.

VI. SECURITY AND EFFICIENCY OF LIGHTWEIGHT

ENCRYPTION WITH ANS

Our goal is to strengthen a plain ANS using as little
cryptography as possible. In our three compcrypt versions we
use a cryptographically strong PRBG (for possible solutions
see [4], [15]). This is the only cryptographic tool needed. Note
that we assume that the adversary knows our ANS algorithm
details except the cryptographic key K that is applied in
PRBG.

A. Security of Compcrypt With State Jumps

We start from a lemma that sets up the background for our
security discussion.

Lemma 1: Given a plain ANS as described in Section II.
Then for a symbol s ∈ S, ANS generates

• 1-bit encodings and for the symbol s, the encoding
table row contains equal number of zeros and ones if
Ls = 2R−1,
• either empty-bit or 1-bit encodings and for the symbol s,

the encoding table row contains equal number of zeros
and ones if Ls > 2R−1,
• either ks-bit or (ks +1)-bit encodings and for the symbol

s, the encoding table row includes multiples of 2ks and
2ks+1 if Ls < 2R−1, where all 2ks and 2ks+1 entries run
through all possible ks-bit or (ks + 1)-bit strings.

Proof: According to the frame coding algorithm (see
Section II), for a state x , the algorithm extracts ks(x) =

lg(x/Ls)� bits. As the state x ∈ {2R, . . . , 2R+1 − 1}, we can
write that


log2
2R

Ls
� ≤ ks ≤ 
log2

2R+1 − 1

Ls
� (5)

Case 1 If Ls = 2R−1, then Equation (5) becomes


log2
2R

2R−1 � ≤ ks ≤ 
log2
2R+1 − 1

2R−1 �.
There is a single value ks = 1, for which the above
relation holds. As states x are chosen from the range
{2R, . . . , 2R+1 − 1}, it is easy to see that encodings are
equal 1 if x is odd or 0, otherwise. The numbers of zeros
and ones are the same (x runs through all consecutive
integers from the interval).

Case 2 If Ls > 2R−1, then the left side of Equation (5)
gives ks = 0, while the right side equals to ks = 1.
We can find the smallest x , for which ks(x) = 1. It
is easy to see that x = 2Ls . ANS produces empty
encodings for x ∈ {2R, . . . , 2Ls − 1}. The other states
output 1-bit encodings. As the number of states in the
set {2Ls, . . . , 2R+1 − 1} is even, the encodings contains
equal number of zeros and ones.

Case 3 if Ls < 2R−1, then ks = 
lg(2R/Ls)�. The smallest
x that yields (ks + 1)-bit encoding is x = 2ks+1 Ls .
All states x ∈ {2R, . . . , 2ks+1 Ls − 1} generate ks-bit
encodings, while x ∈ {2ks+1 Ls , . . . , 2R+1 − 1} produce
(ks + 1)-bit encodings. The number of states in the set



CAMTEPE et al.: COMPCRYPT–LIGHTWEIGHT ANS-BASED COMPRESSION AND ENCRYPTION 3869

{2i+1 Ls , . . . , 2R+1 − 1} equals to

2R+1 − 2ks+1 Ls = 2ks+1(2R−ks − Ls),

where (2R−ks − Ls) ≥ 1 is a multiplier and it has to be
positive as the expression is positive. The encoding table
row contains a multiple of 2ks+1 entries. Any 2ks+1 con-
secutive entries cover all possible ks+1-bit strings as they
correspond to consecutive states in the interval. Similarly,
the number of states in the set {2R, . . . , 2i+1 Ls − 1} can
be calculated as 2ks+1 Ls−2R = 2ks (2Ls−2R−ks ). Using
similar arguments, we argue that the entries cover all
possible ks-bit strings and they are repeated (2Ls−2R−ks )
times.

We are ready to prove security of the compcrypt algorithm.
Assume that we deal with a chosen-plaintext adversary A,
which can be defined as a known-plaintext adversary with
extra ability to choose a symbol frame at will. A goal is
to recover a pseudorandom sequence. This is a necessary
prerequisite step for a possible attack against PRBG aiming at
the secret key K recovery.

Theorem 1: Given ANS with state jumps described by
Algorithm 1 and a chosen-plaintext adversary A, who wants
to recover a pseudorandom sequence. Assume further that A
inputs n symbol frame and observes N-bit binary frame. Then
A is able to guess state_cor integers with probability

• 2−n(R−1) if ps = 1/2;
• ( N

N−n

)−1
L−(N−n)

s (2R−1 − Ls/2)−n if ps > 1/2;

• (n
α

)−1 (
2−(R−1)Ls − 2−ks

)α (
2−ks − Ls2−R

)n−α
if ps <

1/2, where α is the number of ks-bit encodings.

Proof: As A controls the input, it can apply different
strategies for choosing symbols. Assume that A sends a
symbol frame that repeats n times the same symbol s. There
are the following three possible cases:
• If ps = 1/2, A knows that each bi is either 0 or 1 for i =

1, . . . , n. Assume that PRBG generates random jumps
state_cor uniformly at random. A needs to identify a
state_cor from the values of two consecutive output
bits bi , bi+1. A knows an encoding table and according
to Lemma 1, A can guess state_cor with probability
2−(R−1) as precisely half of states produce the correct
bi , bi+1. For n symbols, A succeeds with probability
2−n(R−1).
• If ps > 1/2, A observes output of N < n bits with

N−n bits empty encodings ∅. It can compute all possible( N
N−n

)
binary frames, where each frame includes n bits

and (N − n) empty encodings ∅. Only one of them
is correct. It is easy to verify that we have Ls distinct
state_cor values when moving from bi to bi+1. They
are 0 → ∅, 1→ ∅ and ∅→ ∅. Each of the other six
options (i.e. 0→ 0, 0→ 1, 1→ 0, 1→ 1, ∅→ 0 and
∅→ 1) involves 2R−1−Ls/2 possible state_cor values.
The probability of guessing correct values of state_cor
is therefore equal to(

N

N − n

)−1

L−(N−n)
s (2R−1 − Ls/2)−n .

• If ps < 1/2, A observes output of N > n bits, where
each encoding bi can be either ks or (ks + 1)-bit long.
Let α and β be the numbers of encodings with the length
ks and (ks + 1), respectively. A can compute α and β by
solving the following two equations: (1) α+β = n and (2)
ksα+(ks+1)β = N . A does not know partition of output
bits into encodings or in other words, it does not know
the correct window frame. Clearly, there are

(n
α

) = (n
β

)
possibilities and only one correct. For each guess of a
window frame, we analyse possible state_cor values that
lead to correct transition of bi to bi+1. If bi+1 is ks-bit
long, then there are (2Ls − 2R−ks ) possibilities (out of
2R) that are consistent with the observation (Lemma 1).
If bi+1 is (ks + 1)-bit long, then there are (2R−ks − Ls)
possibilities aligned with the observation (Lemma 1).
Wrapping up, the probability of a successful guess of
A is(

n

α

)−1 (
2−(R−1)Ls − 2−ks

)α (
2−ks − Ls2−R

)n−α
.

Few points are relevant here.

• Theorem 1 proves security when state_cor have the
same length as the ANS states. It means that each
jump is chosen independently at random from the full
range of 2R states. Probabilities of guessing pseudoran-
dom bits state_cor are the smallest and they give the
upper bound on security. Should state_cor be shorter,
guessing probabilities are growing. In the case when
state_cor is a single bit, guessing probabilities are equal
to 1.
• In Lemma 1, A is free to choose an arbitrary strategy of

symbol selection. However, it is expected that for a given
instance of the algorithm, A first evaluates its chances
by computing the relevant success probabilities from
Lemma 1 and then A chooses the one that maximises
its success probability.
• State jumps have a negative impact on compression. The

reason for this is a flat probability distribution of states
forced by PRBG. Note that probability distribution of a
plain ANS follows ≈ 1/x , where x is a state. So a plain
ANS favours states with shorter encodings.
• Let us compare the compcrypt with state jumps with

a plain ANS, whose output is XOR-ed with a PRBG
keystream (ANS⊕PRBG). From the efficiency point
of view, both solutions are more or less equivalent.
A major difference lays in security. Note that for
ANS⊕PRBG, a chosen-plaintext adversary A can extract
whole keystream generated by PRBG. This may have
grave implications for integrity as A can create valid but
fake binary frames. For the compcrypt in hand, this is
still possible but with a probability that quickly becomes
negligible (see Lemma 1). Additionally, because A is
forced to make guesses about state_cor generated by
PRBG, it is possible to use PRBG with a lower security
level that is more efficient.



3870 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

B. Security of Compcrypt With Double ANS

Consider a chosen-plaintext adversary A, who can input a
symbol frame of its choice and can observe a corresponding
binary frame. Again we assume that the compcrypt is public
and the only unknown part is a secret key (or seed of PRBG).
A knows the two ANS encoding tables and can use the least
probable symbol to create a symbol frame that repeats the
symbol. It can identify a (hopefully) unique states for both
ANS copies. Now it has to consider four possible cases: (1)
both symbols are encoded by ANS1, (2) both symbols are
encoded by ANS2, (3) first by ANS1 and the second by ANS2
and (4) first by ANS2 and the second by ANS1. If the tables
are “sufficiently” different, A can identify the PRBG bit. This
is to say that the algorithm leaks information of PRBG bits.
Nevertheless, the leak is probabilistic and for long symbol
frames, a chosen-plaintext adversary loses the guessing game
most of the time.

C. Security of Compcrypt With Encoding Function Evolution

As this compcrypt algorithm needs recalculation of encod-
ing table every time the states are swapped, it is reasonable
to expect that the swapping is not frequent. This assumption
allows the adversary to launch the following attack. Our
chosen-plaintext adversary A starts from the initial and known
encoding table and identify the state just before the first
swap. After the first state swap, it guesses the second state
(or equivalently PRBG bits). For each guess, it recalculates
the encoding table and checks if it is consistent with sequence
of observed symbols and their encodings. This costs it 2R−1

guesses on the average. The probability of success depends
on the number of symbols encoded between two consecutive
swaps. This attack fails if the state swaps are done too
frequently.

D. Other Cryptographic Attacks

Because of its internal structure, ANS is difficult to analyse
using standard tools such man-in-the-middle, differential and
linear attacks. The main difficulty seems to be irregular
lengths of binary encodings that are assigned to symbols. The
encodings are glued together with a single binary frame. To do
any meaningful analysis, an adversary needs to split the frame
into separate encodings. This unavoidably leads to guessing.
There is, however, an exception – algebraic cryptanalysis. The
heart of ANS is its symbol spread function. If the function
can be represented by short polynomials or short Boolean
expressions, then there is a hope that this analysis can work.

E. Efficiency Evaluation

Our implementation of tabular version of ANS was written
in the Go language (version 1.15.2). Throughout our exper-
iments, we have used an OpenBSD 6.8 installed on a Dell
Precision T3610 desktop PC with 32 GB of RAM and an Intel
Xeon E5-1650 with 6 physical cores running at 3.5 GHz and
hyper-threading enabled, which makes 12 threads available
in total. All our compcrypt algorithms invoke PRBG. The
impact of the PRBG on the execution time of the encoding and

decoding heavily depends on its implementation. Our imple-
mentation use standard Go function provided by math/rand.

Let us discuss briefly some implementation details of our
compcrypt algorithms with:

• state jumps – our experiments assume that state jumps
are performed for each input symbol. The initial encod-
ing/decoding tables are created precisely as in the plain
ANS.
• double ANS – there are two plain ANS algorithms. The

switch between the two is done by PRBG for each input
symbol. The execution time should not be much different
from the previous algorithm. A significant difference
relates to an extra memory needed to store two encod-
ing/decoding tables. Consequently, loading time may
impact overall execution time. This may be noticeable
when processing short streams of symbols.
• encoding function evolution – the algorithm is initialised

to a plain ANS and then its encoding table is modified
for each symbol by swapping the current state with a
random one (chosen by PRBG). The swap might look
like a computationally cheap operation but, in fact, each
non-trivial swap involves recomputation of the encoding
table. This means that for each symbol, we may expect
up to 2R table operations.

Our experiments are performed for geometric probability
distributions with p = 0.5. The number of states in ANS
is 2R , where R = 14 and the parameter m = 10, which
indicates the number of symbols in the source alphabet. We
have processed 1024, 2048, 4096, 8192, 16394 randomly
generated symbols and counted the output bits and execution
times. Each experiment is executed 1000 times with a random
initial state. Average numbers of both output bits and encoding
execution time have been computed. Figure 1 compares effi-
ciency of our three compcrypt algorithms with the plain ANS.
Clearly, compcrypt with encoding function evolution is the
least efficient (observe the multiplier 105 for the vertical axis
reflecting the execution time). The efficiency loss is attributed
to state swaps and as expected, it is especially noticeable
when processing a large number of symbols. On the average,
compared to a plain ANS, compcrypt with double tables incurs
extra overhead of 50 ms. It is caused by processing the second
table. As one can expect, efficiency of compcrypt with state
jumps is comparable to the one offered by a plain ANS.

Let us consider quality of compression provided by the three
compcrypt algorithms. We use a plain ANS as a reference.
Figure 2 describes our results. We observe that compcrypt
with encoding function evolution lengthens output stream by
< 10% in comparison to the plain ANS. Compcrypt with
double tables increases the length of output bits by less
than 1%. Compression quality of compcrypt with state jumps
is similar to the one of a plain ANS.

F. Comparison of ANS Algorithms

Table II summarizes our security and efficiency discussion.
A plain ANS with a secret symbol spread function is a good
option, when ciphertext-only security is required and integrity
is not important. The ANS-AES compcrypt provides strong



CAMTEPE et al.: COMPCRYPT–LIGHTWEIGHT ANS-BASED COMPRESSION AND ENCRYPTION 3871

Fig. 1. Comparison of execution times of plain ANS (blue ) and compcrypt
algorithms with: double tables (red ), encoding function evolution (green )
and state jumps (brown ).

Fig. 2. Quality of the compression (measured by the number of output bits)
for plain ANS (blue ) and compcrypt algorithms with: double tables (red ),
encoding function evolution (green ), state jumps (brown ).

security and if implemented as authenticated encryption can
support strong integrity. Its Achilles heel is poor efficiency that

TABLE II

COMPARISON OF COMPCRYPT ALGORITHMS

TABLE III

IOT IMPLEMENTATION OF COMPCRYPT ALGORITHMS

precludes it from IoT applications. ANS⊕PRBG is defenceless
against a chosen-plaintext adversary, which can recover a
PRBG sequence and reuse it to launch integrity attacks such
as sending fake binary frames. ANS with state jumps offers
chosen-plaintext security. It allows to check binary frame
integrity that finds fakes with probability (1 − 2−R). State
jumps, however, interfere with state probability distribution
causing a slight deterioration of compression measured by
entropy. This weakness can be mitigated by restricting swaps
to states that differ on least significant bits. Needless to
say, this has security implications. The double ANS tends to
leak pseudorandom bits to a chosen-plaintext adversary at the
beginning of a session. It maintains compression rate as for a
plain ANS. It consumes twice as memory as a plain ANS. The
ANS with state evolution provides chosen-plaintext security
and integrity. Its compression rate is as good as for a plain
ANS. However, its main weakness is low efficiency due to the
need of redesigning encoding table after each state evolution
step.

Table III shows results of IoT implementations for com-
pcrypt algorithms. Experiments have been done for frames
of 1000 symbols generated by a source of 256 symbols
according to the geometric probability distribution with p =
0.5. Instead of random selection of states, evolution light



3872 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

swaps randomly chosen neighbouring states so an encoding
table does not need to be re-built.

VII. CONCLUSION AND FUTURE RESEARCH

The work investigates joint compression and encryp-
tion for lightweight applications, where natural behaviour
of ANS is enhanced using as little cryptography as pos-
sible. Consequently, resulting compcrypt algorithms offer
low-security level for both confidentiality and integrity (against
ciphertext-only adversaries). The only cryptographic tool used
is PRBG, which can be chosen depending on efficiency and
security requirements. For applications that require a decent
security level, a PRBG based on a good quality stream cipher
(such as Trivium [4]) is recommended. As hinted in the
work, PRBG can be removed all together and replaced by a
cryptographic key and make the encoding table dynamic (using
encoding function evolution). This is an attractive direction for
future research.

We propose three compcrypt algorithms. The first one
applies a single ANS with state jumps controlled by PRBG.
The second one uses two copies of ANS, where PRBG man-
ages transition between copies. The third compcrypt deploys
encoding function evolution that modifies encoding tables.
Assuming a ciphertext-only adversary, the security level for
confidentiality is mainly determined by the probability of
guessing input symbols. It is significant for small number
of symbols but diminishes exponentially when the number
grows. This is true for all three algorithms. But when the
guess is correct we deal with a known-plaintext attack. Under
the attack, compcrypt with encoding function evolution offers
best security. With the exception of compcrypt with encoding
function evolution, the algorithms offer similar efficiency and
compression quality as the plain ANS.

Note that compcrypt with encoding function evolution can
be slightly modified so it preserves good security features and
has “almost” the same efficiency and compression quality as
the plain ANS. Instead of swapping states after processing
any single symbol, compcrypt starts as the original algorithm
(swapping states frequently) and then it gradually increases
number of symbols between two consecutive swaps.

REFERENCES

[1] W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, “RSA and Rabin
functions: Certain parts are as hard as the whole,” SIAM J. Comput.,
vol. 17, pp. 194–208, Apr. 1988.

[2] L. Blum, M. Blum, and M. Shub, “A simple unpredictable
pseudo-random number generator,” SIAM J. Comput., vol. 15, no. 2,
pp. 364–383, May 1986.

[3] W. J. Buchanan, S. Li, and R. Asif, “Lightweight cryptography meth-
ods,” J. Cyber Secur. Technol., vol. 1, nos. 3–4, 2017, pp. 197–201.

[4] C. D. Cannière, “Trivium: A stream cipher construction inspired
by block cipher design principles,” in Information Security. Berlin,
Germany: Springer, 2006, pp. 171–186.

[5] J. Duda, “Asymmetric numeral systems as close to capacity low state
entropy coders,” CoRR, vol. abs/1311.2540, pp. 1–24, Oct. 2013.

[6] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, “The use of
asymmetric numeral systems as an accurate replacement for Huffman
coding,” in Proc. Picture Coding Symp. (PCS), Cairns, QLD, Australia,
2015, pp. 65–69.

[7] J. Duda and M. Niemiec, “Lightweight compression with encryp-
tion based on asymmetric numeral systems,” 2016, arXiv:1612.04662.
[Online]. Available: http://arxiv.org/abs/1612.04662

[8] D. W. Gillman, M. Mohtashemi, and R. L. Rivest, “On breaking a
Huffman code,” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 972–976,
May 1996.

[9] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[10] J. Kelley and R. Tamassia, “Secure compression: Theory & prac-
tice,” Cryptol. ePrint Arch., IACR, Santa Barbara, CA, USA, Tech.
Rep. 2014/113, 2014.

[11] M. O. Kulekci, “On scrambling the Burrows–Wheeler transform to
provide privacy in lossless compression,” Comput. Secur., vol. 31, no. 1,
pp. 26–32, 2012.

[12] D. Knuth, The Art of Computer Programming, vol. 2. Reading, MA,
USA: Addison-Wesley, 1973.

[13] X. Liu, Y. Yang, K.-K. R. R. Choo, and H. Wang, “Security and privacy
challenges for Internet-of-Things and fog computing,” in Proc. Wireless
Commun. Mobile Comput. London, U.K.: Hindawi, 2018, pp. 1–3.

[14] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636,
Jul. 2003.

[15] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 2001.

[16] S. Mihov and K. U. Schulz, “Finite-state techniques: Automata, trans-
ducers and bimachines,” Cambridge Tracts Theor. Comput. Sci., 1st ed.,
vol. 60. Cambridge, U.K.: Cambridge Univ. Press, 2019.

[17] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”
ACM Trans. Inf. Syst., vol. 16, no. 3, pp. 256–294, Jul. 1998.

[18] A. Moffat and M. Petri, “Large-alphabet semi-static entropy coding via
asymmetric numeral systems,” ACM Trans. Inf. Syst., vol. 38, no. 4,
pp. 1–33, 2020.

[19] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications,” NIST Special Publication 800-22, Gaithersburg,
MD, USA, May 2001, vol. 800, p. 163.

[20] V. Pudi, A. Chattopadhyay, and K. Lam, “Secure and lightweight
compressive sensing using stream cipher,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 65, no. 3, pp. 371–375, Mar. 2018.

[21] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM
J. Res. Develop., vol. 20, no. 3, pp. 198–203, May 1976.

[22] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Oct. 1948.

[23] D. Xie and C.-C. Kuo, “Secure Lempel-Ziv compression with embed-
ded encryption,” Electron. Imag., Int. Soc. Opt. Photon., vol. 5681,
Mar. 2005, pp. 318–327.

[24] A. C. Yao, “Theory and application of trapdoor functions,” in Proc. 23rd
Annu. Symp. Found. Comput. Sci. (SFCS), Chicago, IL, USA, Nov. 1982,
pp. 80–91.

Seyit Camtepe (Senior Member, IEEE) received the
Ph.D. degree from Rensselaer Polytechnic Institute
in 2007. He is currently a Principal Research Sci-
entist and the Team Leader with CSIRO Data61.
He was with Technische Universitaet Berlin as
a Senior Researcher and QUT as a Lecturer.
He was among the first to investigate the security
of android smartphones and inform society for the
rising malware threat. His research interests include
autonomous security, malware detection and pre-
vention, smartphone security, applied and malicious

cryptography, and CII security.

Jarek Duda received the M.Sc. degree in mathemat-
ics, the Ph.D. degree in computer science, and the
Ph.D. degree in physics. He is currently an Assistant
Professor with Jagiellonian University. He is mainly
focused on information theory and statistical analy-
sis, and is known from introduction of asymmetric
numeral systems.



CAMTEPE et al.: COMPCRYPT–LIGHTWEIGHT ANS-BASED COMPRESSION AND ENCRYPTION 3873

Arash Mahboubi received the B.E. degree(Hons.)
in computer science specializing in computer secu-
rity from Staffordshire University, Kuala Lumpur,
Malaysia, in 2012, the master’s degree in infor-
mation security from the University of Technology
Malaysia, Johor Bahru, Malaysia, in 2013, and the
Ph.D. degree in computer science from the Queens-
land University of Technology (QUT), Brisbane,
Australia, in 2018. From 2016 to 2019, he was a
Sessional Academic with the School of Electrical
Engineering and Computer Science, QUT. Since

2019, he has been a Lecturer with the School of Computing and Mathematics,
Charles Sturt University, NSW, Australia. His research interests include
computer/mobile malware, ransomware, malware analysis, modeling, and
malware epidemic.

Paweł Morawiecki is currently an Associate Pro-
fessor with the Institute of Computer Science, Pol-
ish Academy of Sciences, where he has been the
Head of the Cryptography Group since 2017. His
field of expertise includes cryptanalysis and crypto-
graphic algorithms design. Recently he is involved in
research at the intersection of security and artificial
intelligence, particularly deep neural networks.

Surya Nepal is currently a Senior Principal
Research Scientist with CSIRO’s Data61. He also
leads the distributed systems security group com-
prising more than 30 research staff and more
than 50 postgraduate students. He is also the Team
Leader of the Cybersecurity Cooperative Research
Centre (CRC), a national initiative in Australia.
His main research focus is in the development
and implementation of technologies in the area of
cybersecurity and privacy, and AI and cybersecurity.
He has more than 300 peer-reviewed publications to

his credit. He is a member of the Editorial Board of IEEE TRANSACTIONS
ON SERVICES COMPUTING, ACM Transactions on Internet Technology, IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, and Frontiers
of Big Data Security Privacy, and Trust.

Marcin Pawłowski received the Ph.D. degree from
the Warsaw University of Technology. His Ph.D.
thesis was on the security of Internet of Things.
He currently holds a post-doctoral position at the
Institute of Computer Science, Polish Academy of
Sciences. He is also a consultant working for startups
from blockchain and the Internet of Things indus-
tries, where he crosses scientific theories with real-
world applications. His main research interests lie
around design and analysis of security, network, and
cryptographic protocols, especially with applications

to distributed systems.

Josef Pieprzyk is currently a Senior Principal
Research Scientist with Data61, CSIRO, and a Pro-
fessor with the Institute of Computer Science, Polish
Academy of Sciences. He has published 5 books,
and edited 10 books (conference proceedings), 6
book chapters, and more than 300 articles in refereed
journals and refereed international conferences. His
main research interests are cryptology and infor-
mation security, including design and analysis of
cryptographic algorithms (such as encryption, hash-
ing, and digital signatures), secure multiparty com-

putations, cryptographic protocols, copyright protection, e-commerce, web
security, and cybercrime prevention.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


