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Abstract— Soft-biometrics play an important role in face
biometrics and related fields since these might lead to biased
performances, threaten the user’s privacy, or are valuable for
commercial aspects. Current face databases are specifically con-
structed for the development of face recognition applications.
Consequently, these databases contain a large number of face
images but lack in the number of attribute annotations and
the overall annotation correctness. In this work, we propose
a novel annotation-transfer pipeline that allows to accurately
transfer attribute annotations from multiple source datasets to
a target dataset. The transfer is based on a massive attribute
classifier that can accurately state its prediction confidence.
Using these prediction confidences, a high correctness of the
transferred annotations is ensured. Applying this pipeline to the
VGGFace2 database, we propose the MAAD-Face annotation
database. It consists of 3.3M faces of over 9k individuals and
provides 123.9M attribute annotations of 47 different binary
attributes. Consequently, it provides 15 and 137 times more
attribute annotations than CelebA and LFW. Our investigation on
the annotation quality by three human evaluators demonstrated
the superiority of the MAAD-Face annotations over existing
databases. Additionally, we make use of the large number of
high-quality annotations from MAAD-Face to study the via-
bility of soft-biometrics for recognition, providing insights into
which attributes support genuine and imposter decisions. The
MAAD-Face annotations dataset is publicly available.

Index Terms—Face recognition, database, facial attributes,
soft-biometrics,  annotation-transfer, human evaluation,
biometrics.

I. INTRODUCTION

OFT-BIOMETRIC characteristics play a major role in
face recognition research and applications [7]. Recently,
there is a high interest in studying these attributes and miti-
gating their effects on recognition performances for fair face
recognition systems [9]. Soft-biometrics are also a key factor
for privacy-enhancing face recognition technologies, either by
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recognizing individuals based on soft-biometrics only [24]
or by suppressing privacy-sensitive characteristics to prevent
function creep [49]. However, most of these research efforts
focus on demographic aspects only. One possible reason can
be the lack of annotated data. Recent face databases are specif-
ically constructed for the development of face recognition
systems. Consequently, these contain large numbers of faces
under diverse settings but lack annotations.

This work closes this gap by proposing the MAAD-Face
dataset. MAAD-Face is a novel face annotations database
that is characterized by its large number of high-quality face
annotations. Utilizing our novel annotation-transfer pipeline,
we transfer the attribute annotations from two source databases
(LFW [21] and CelebA [29]) to the target database VGGFace?2
[4]. The pipeline trains a massive attribute classifier (MAC)
per source database to accurately predict the attributes of
the source. Since the MAC makes use of prediction reli-
abilities [47], the pipeline neglects annotations origin from
less-confident predictions and thus, ensures a high correctness
of the transferred annotations. MAAD-Face consists of 3.3M
faces of over 9k individuals, which is significantly higher
than related annotated datasets such as CelebA (0.2M faces
of 10k individuals with 40 different attributes) and LFW (13.2k
faces of 5.7k individuals with 74 different attributes). With
123.9M attribute annotations of 47 different binary attributes,
MAAD-Face provides 15 and 137 times more attribute anno-
tations than CelebA and LFW. To analyse the quality of
the attribute annotations, three human evaluators investigated
the correctness of the annotations of CelebA, LFW, and
MAAD-Face. The results demonstrate the superiority of the
MAAD-Face annotations over the other databases. Finally,
we investigated the viability of using soft-biometrics attributes
for recognition using MAAD-Face. We show the relevance of
each attribute for genuine and imposter decisions and analyse
how many of the most important attributes are necessary to
achieve a certain recognition performance. The MAAD-Face
dataset is publicly available under the following link.!

To summarize, this work presents four main contributions:

1) A novel annotation-transfer pipeline is proposed that
can transfer attribute annotations from multiple source
databases to a target database while ensuring a high
correctness of the transferred annotations. We use this
pipeline to create MAAD-Face.

1 https://github.com/pterhoer/MAAD-Face
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2) We propose the MAAD-Face annotations dataset based
on VGGFace2 [4]. MAAD-Face is a new face annota-
tions database consisting of 123.9M attribute annotations
of 47 different binary attributes. It provides 15 and
137 times more annotations than CelebA and LFW, while
the attribute annotations are of higher quality.

3) The third contribution is a human evaluation of the
annotation correctness of three large-scale annotation
face databases, LFW, CelebA, and MAAD-Face. These
demonstrate the superiority of the MAAD-Face annota-
tions over the other investigated databases.

4) The last contribution is a study on how well these facial
attributes can be used for verification and identification
based on soft-biometrics only.

The rest of the paper is structured as follows. Section II pro-
vides an overview of annotated face datasets and a human eval-
uation of the annotation-correctness of three highly-annotated
datasets. In Section III, the annotation-transfer pipeline is
explained and how this is used to create MAAD-Face.
Section IV-A provides statistical properties of MAAD-Face
and in Section V, the soft-biometric annotations of
MAAD-Face are used to evaluate how well these attributes
can be utilized to recognize individuals.

II. RELATED WORKS
A. Review of Annotated Face Datasets

In recent years, many face databases have been released.
These mainly aimed at providing a large dataset for developing
face recognition solutions. With the use of deep-learning
techniques in face recognition, the required data for training
these solutions has grown strongly and thus, the sizes of face
databases. However, less attention was given to the estimation
of facial attributes. These soft-biometric characteristics can be
of high importance in applications such as access control [7],
human-computer interaction [47], and law enforcement [12].
Current face databases only provide insufficient numbers of
training annotations for training accurate solutions. Moreover,
these annotations often lack in their correctness and thus,
prevent the development of soft-biometric solutions. In the
following, we discuss popular face databases that also contain
attribute information.

ColorFeret [34] consists of 14.1k images of 1.2k different
individuals with different poses under controlled conditions.
The dataset includes a variety of face poses, facial expressions,
and lighting conditions. Each image contains annotations of
the individual’s gender, ethnicity, head pose, age, glasses, and
beard. In total, ColorFeret provides around 183k soft-biometric
annotations.

The Adience dataset [10] consists of over 26.5k images of
over 2.2k different individuals in unconstrained environments.
In total, the dataset provides around 263k annotations for
gender and age. These images were manually annotated.

The Morph dataset [36] contains 55.1k frontal face images
of more than 13.6k individuals. For each image, it provides
information about the person’s gender, ethnicity, age, beard,
and glasses. 80.4% of the faces belong to the ethnicity black,
19.2% to white, and 0.4% to others. The individuals’ age varies
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from 16-77 years. 79.4% of the faces are within an age-range
of [20, 50]. In total, the Morph database provides over 0.5M
annotations for soft-biometric attributes.

VGGFace [33] and VGGFace2 [4] are two databases from
the University of Oxford. VGGFace [33] contains 2.6M
images from 2.6k individuals and provides information about
the head pose (frontal, profile). VGGFace2 [4] contains faces
from over 9k subjects with over 3M images. The dataset
contains a large variety of pose, age, and ethnicity. Over 40%
of the face are frontal and over 50% are half-frontal. Most
images belong to individuals over 18 years old and around
40% belong to the age group of [25,34]. For each image,
gender annotations are available. A subset of 30k images of
celebrities was additionally annotated with 10 further attributes
about the individual’s hair, beard, glasses, and hat. In total,
VGGFace? provides 3.6M annotations about the person’s face.

Labelled Faces in the Wild (LFW) [21] contains 13.2k
images of 5.7k different identities from unconstrained environ-
ments. It contains variability in pose, lighting, expression, and
demographics. With 74 binary attributes, it provides a large
diversity on binary attribute annotations, such as attributes
belonging to demographics, hair, skin, accessories, and capture
environment. However, as we will show in Section IV-C,
the correctness of these annotations are often weak (72%
accuracy compared to human annotations). In total, LFW
provides over 0.9M attribute annotations. Moreover, it should
be mentioned that LFW and VGGFace2 have some overlap-
ping subjects since both databases contain many images of
celebrities [42].

The CelebFaces Attributes Dataset (CelebA) [29] contains
over 202k images of 10.0k different subjects. It covers large
pose variations and background clutter and provides rich anno-
tations for 40 binary attributes. In total, CelebA provides over
8M annotations for soft-biometric attributes. These include
attributes belonging to demographics, hair, face geometry, and
accessories.

A summary of related face annotation databases are shown
in Table I. There, the number of subjects and face images
are shown along with the number of attributes and the total
number of annotations.

In this work, we propose the MAAD-Face annotation
database. Using our novel annotation-transfer technique we
are able to create highly accurate face annotations building
upon VGGFace2. Consequently, it contains over 3.3M face
images from over 9.1k different subjects with a large variety of
poses, ages, and ethnicities. MAAD-Face provides annotations
for 47 binary attributes. In total, it consists of over 123.9M
attribute annotations, which is over 15 times higher than the
second-largest face annotation dataset.

B. Soft-Biometrics From Faces

Recently, research on the estimation of soft-biometric
attributes from face images has shifted from the use of
handcrafted features to the use of deep convolutional neural
networks [7]. These kinds of approaches often surpass human-
level performance, e.g. for age [19], gender [14], or race
estimation [20]. Due to the high performance of automatic
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TABLE I

STATISTICS OF RELATED FACE ANNOTATION DATABASES. DISTINCTIVE ATTRIBUTES REFERS TO THE NUMBER OF DIFFERENT ATTRIBUTES THAT ARE
ANNOTATED WHILE THE NUMBER OF ANNOTATIONS REFERS TO THE TOTAL NUMBER OF (ATTRIBUTE) ANNOTATIONS IN THE DATABASE.
TO MAKE THE NUMBER OF ATTRIBUTES BETWEEN DIFFERENT DATABASES COMPARABLE, CATEGORICAL ATTRIBUTES ARE
TRANSFORMED TO BINARY VIA ONE-HOT ENCODING. THESE ARE MARKED A (*). COMPARED TO RELATED DATABASES,
MAAD-FACE PROVIDES THE HIGHEST NUMBER OF ATTRIBUTE ANNOTATIONS

Num. of images

Attribute annotations

Distinctive attributes ~ Total number of annotations

Database Num. of subjects
ColorFeret [35] 1.2k
Adience [10] 2.3k
Morph [37] 13.6k
VGGFace [34] 2.6k
VGGFace?2 [4] 9.1k
LFW [22] 5.7k
CelebA [30] 10.0k
MAAD-Face (this paper) 9.1k

14.1k 13%* 0.2M
26.6k 10%* 0.3M
55.1k 10% 0.6M
2.6M 1 2.6M
3.3M 11 3.6M
13.2k 74 0.9M
0.2M 40 8.0M
3.3M 47 123.9M

approaches, several works demonstrated the benefits of
soft-biometrics for recognition. Recent works demonstrated
that soft-biometric information only, extracted from face
images, can be successfully used to verify [39], [40] and
identify [1], [13], [35] individuals. This is especially useful
when facing low-quality capture, such as images from great
distances [50]. Moreover, soft-biometric information can also
support primary biometric modalities such as face recognition
[15], [16], [54].

The basis for these successes is the developments of accu-
rate soft-biometric estimators. The solutions cover a wide
range of mechanisms such as domain-adaption [18], [37], [38],
[46], [47], cascade CNN’s [5], [18], [31], autoencoders [53],
stacked model [51], and deep regression trees [43].

Taking into account the current pandemic conditions,
Alonso-Fernandez et al. [2] demonstrated that soft-biometric
attributes can still be accurately states from faces wear-
ing masks. In [45], Terhorst et al. showed that 74 out
of 113 analysed soft-biometric attributes are encoded in face
templates demonstrating a strong need for privacy-enhancing
methods. In [48], it was shown that soft-biometric attributes,
in general, have a strong influence on the face recognition per-
formance demonstrating the need for bias mitigating solutions
beyond demographics.

Building on the reliability measure developed in [47], this
work proposes a novel annotation transfer pipeline that is able
to do the transfer task with a high annotation correctness.
This pipeline is used to create the MAAD-Face annotations
dataset. This dataset provides the required data for the devel-
oping and evaluating of privacy-enhancing and bias-mitigating
face recognition solutions to mitigate the privacy and bias
issues mentioned in [45], [48]. For developing these solu-
tions, it provides the required training data. For evaluating
privacy-enhancing and bias-mitigating face recognition solu-
tions, it provides a solid basis of data that can serve as the
test set.

III. ANNOTATION-TRANSFER PIPELINE

In this section, we will present one of the main contribu-
tions of this work, a novel annotation-transfer pipeline that
can create highly reliable and accurate attribute annotations.

We will explain this pipeline based on the example of the
MAAD-Face annotations database. The MAAD-Face database
was created by transferring the attribute annotations of CelebA
and LFW on the images of VGGFace2.

An overview of the proposed annotation-transfer pipeline is
shown in Figure 1. The pipeline consists of five steps that aim
to transfer the annotations of source databases to the target
database.

1) A massive attribute classifier (MAC) is trained on the
training part of each source dataset. Besides making
predictions about the estimated annotations of a given
image, the MAC is able to additionally providing a
reliability statement that states the model’s prediction
confidence for each annotation.

2) The MAC predicts the annotations on the test-parts of the
source datasets including the prediction reliabilities.

3) Based on this performance, the reliability threshold for
each attribute is determined. Moreover, a performance-
reliability mapping is calculated that allows assign-
ing an attribute-reliability with its expected correctness
(performance).

4) The MAC predicts the attribute annotations as well as
the corresponding reliabilities for each image in the
target dataset. Predicted annotations below the attribute
threshold will be rejected to guarantee a high quality of
the transferred source annotations.

5) Finally, the source annotations (with their reliabilities)
are aggregated using the corresponding performance-
reliability mapping. If the source annotations for an image
produces different annotations, the annotation is used
as the target annotation that has the higher expected
correctness.

In the following sections, we describe how (a) the MAC
training procedure is conducted on the source datasets, (b) the
prediction reliability statements of the MAC are calculated,
and (c) how this results in the final annotations for the target
database.

A. The Massive Attribute Classifier (MAC)

To transfer the annotations for each attribute from source
databases to a target database, we (a) train a MAC jointly
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Overview of the proposed annotation-transfer pipeline. (1) A MAC is trained on the training part of each source dataset. (2) The MAC

produces predictions and prediction reliabilities on the test set. (3) These are used to determine the reliability thresholds per attribute and to calculate
the performance-reliability mapping. (4) The MAC and the reliability thresholds are used to create (source) attribute annotations for the target dataset. Finally,
(5) the source annotations from each source dataset are aggregated using the corresponding performance-reliability mappings to construct the final target

annotations for the target dataset.

on all attributes of a source database to make use of a
shared embedding space and (b) construct the MAC such
that it can produce accurate reliability measures for each
attribute-annotation prediction.

The MAC is a neural network that is trained to predict the
attributes of the source dataset. The network architecture is
chosen to maximize the prediction accuracy. As it will be
demonstrated in Section III-B, the only requirement for the
MALC is to train with at least one dropout-layer [44]. We will
need this layer to determine the reliability of a prediction.
Each source database is subject-exclusively divided into a 80%
training set and a 20% test set. A separate MAC is trained for
each source training set. To construct MAAD-Face, we use
VGGFace2 as the target database and CelebA and LFW as
source databases for training two MACs.

In the following, we describe the structure and the training
details of the MAC, as well as the data cleaning process used.
As we demonstrated in Section II-A, many annotations of
LFW are wrongly assigned. To prevent confusion of the MAC
trained on these annotations, we filter out annotations that are
wrongly assigned with a high probability.

1) MAC Training: Generally, the training of the MAC can
vary and should be task and data-dependent. In order to
prepare the MAC for our annotation-transfer pipeline, it needs
to be trained with at least one dropout-layer [44] and consists
of a soft-max layer as the output.

For the construction of MAAD-Face, we build the MAC
on the templates of face images. As shown in the work of
Terhorst et al. [45], one can easily and accurately predict
many attributes from such templates. Based on these results,
we trained a neural network model that takes FaceNet [41]
embeddings as an input to jointly predict multiple attributes
of the source database. However, a MAC can also be trained
end-to-end or by fine-tuning an existing network. The utilized
network structure follows the one used by Terhorst ef al. [45].
It consists of two initial layers, the input layer of size n;,

and the second dense layer of size 512. The size of the
utilized face embedding is denoted by n;;, and for our FaceNet
model® refers to 128 dimensions. Starting from the second
layer, each attribute a has an own branch consisting of two
additional dense layers of size 512 and n%), where n'?), refers
to the number of attributes per class. Each layer has a ReLU
activation, except for the output-layers. These have softmax
activations. Moreover, Batch-Normalization [22] and dropout
[44] (parop = 0.5) is applied to every layer. The dropout
allows achieve a generalized performance and also enables
us to derive reliability statements about the predictions as we
will describe in Section III-B. The training of the MAC was
done in a multi-task learning fashion by applying a categorical
cross-entropy loss for each attribute branch and use an equal
weighting between each of these attribute-related losses. For
the training, an Adam optimizer [25] was used with e = 200
epochs, an initial learning rate & = 1073, and a learning-rate
decay of f = a/e. The parameter choices followed [45]. The
batch size b was chosen according to the amount of available
training data, b = 1024 for CelebA and b = 16 for LFW.

2) Cleaning Training Attribute Annotations: For the
annotation-transfer pipeline, this step is only necessary if a
source database consists of attribute annotations of low quality.
As we demonstrated in Section II-A, this is the case for
LFW. However, the quality of the input data of a model is
important for the quality of its output data as demonstrated by
Geiger et al. [11]. Therefore, in this section we will describe an
annotation-cleaning process that was used on the LFW dataset.

While in CelebA the attributes are of binary nature,
the annotations in LFW originate from the prediction probabil-
ities of a binary classifier [21]. Therefore, these annotations are
continuous and measure the degree of the attribute [27], [28].
Positive values represent “true” annotations and negative val-
ues represent “false” annotations. A positive annotation for an

2https://github.com/davidsandberg/facenet
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attribute a of an image means that the face in the image has
the attribute a. For instance, a face with a positive annotation
for Beard represents a face with a beard. In contrast, a negative
annotation for an attribute a of an image means that the face in
the image has not the attribute a. However, using the prediction
probabilities of a binary classifier does not necessarily reflect
the correctness of the prediction as shown in recent works [17],
[26], [32]. Consequently, a wide range of the LFW annotations
centred around a value of zero is unreliable.

To ensure that our MAC learns on meaningful
LFW-annotations, we manually removed these centred
annotations as described in the work of Terhorst et al. [45].
Therefore, we assigned an upper and lower score threshold for
each attribute. Images with a score over the upper threshold
are assigned as true, images with a score under the lower
threshold are assigned as false, images with scores within
the range are rejected. The upper and lower thresholds for
one attribute are manually determined by moving potential
thresholds away from zero. At each potential threshold, ten
images with the closest attribute scores are investigated. Here,
the original LFW annotations of the images are manually
investigated for correctness. If only eight or fewer attributes
are investigated as correct, the potential threshold is further
moved away from the starting point and the procedure is
repeated. If a potential threshold returns images with 9 or
more correct annotations, it is chosen as the limit. Repeating
this over all attributes will result in a lower and an upper
threshold for each of these attributes. By binaryzing the
scores with these upper and lower thresholds, reduces the
number of annotations by 51,7%. However, it also ensures an
error-minimizing data basis of the MAC. Thus, it allows us to
train the MAC on meaningful and mostly correctly annotated
data.

B. Deriving Reliability Statements

To ensure that the target database will only get annota-
tions of high quality, the prediction reliability is additionally
estimated for each prediction (target annotation). Therefore,
we follow the methodology described in [47] to enable
our MAC to accurately state its own prediction confidence
(reliability). To derive the reliability statement additionally to
an attribute prediction, m = 100 stochastic forward passes are
performed. In each forward pass, a different dropout-pattern
is applied, resulting in m different softmax outputs vi(a) for
each attribute a. Given the outputs of the m stochastic forward
passes of the predicted class ¢ denoted as x@ = vl.(aé),
the reliability measure is given as ’

1 o m m
) = L S0 S

with a = 0.5, following the recommendation in [47]. The first
part of the equation is a measure of centrality and utilizes the
probability interpretation of the softmax output. A higher value
can be interpreted as a high probability that the prediction
is correct. The second part of the equation is the measure
of dispersion and quantifies the agreement of the stochastic
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outputs x. In [47], this was shown to be an accurate reliability
measure.

C. Attribute Annotation Generation

In this section, we combine the MAC models of the source
datasets and the reliability measure to create high-quality
target annotations. First, we will describe how to set the reli-
ability thresholds for each attribute and MAC. Then, we will
describe how this can be used to create the annotations on the
target dataset.

1) Defining Reliability Thresholds: For each source data-
base, a MAC model M was already trained on the training
part as described in Section III-A. Now, the MAC predicts
the source annotations on the test-part including the prediction
reliabilities. Moreover, the MAC repeats this step on the target
database. For each attribute a of the source database, the reli-
ability threshold thr(Si))W e 18 chosen such that the (balanced)
prediction accuracy of a is over accyin% and at least dy,in %
of the target samples are over this threshold. Consequently,
accpyin defines the quality of the target annotations while dy;,
define the amount of the annotations in the target database. If
an attribute does not accomplish this requirement, the attribute
is discarded.

For the creation of MAAD-Face, we set accyin = 90% and
dmin = 50% to receive a large number of high-quality anno-
tations. This results in manually chosen reliability thresholds
thr(cae)leb 4 and thr(La}W for each attribute a € A.

2) Creating Target Annotations: After defining the reliabil-
ity thresholds for each MAC and attribute a € A, we can
create the target annotations. Therefore, each MAC computes
its predictions pgsource and prediction reliabilities 7goyurce ON
the target dataset. The prediction True is defined as 1, the pre-
diction False is defined as -1. If an attribute-prediction p(S[;;)r ce
for an image i has a prediction-reliability below the threshold
ré‘(lmlz e < thr(sao)u +ce» the annotation is set to 0 (undefined). In
this case, the MAC is not confident enough about its prediction
and rejecting these predictions guarantee high-quality remain-
ing annotations. For each source dataset, this procedure results
in a set of annotations Ig,,c. for the target dataset images.
Finally, this set of annotations have to be combined to create
the target annotations. If an attribute just appears in one of the
source datasets, the source annotations /5,,c. are directly used
for the target dataset. If an attribute appears in multiple source
datasets, we have to decide which annotation to use as the
target annotation. In this case, the reliability 75,,,c. is mapped
back to the performance of the test set acc(rsource) and the
annotation assigned with the highest map-back performance
is used for the target annotation. Please note that such a
decision cannot be made based on the reliability-level only
since the range of the reliability values vary between each
MAC. Mapping back the reliability values to the test-set
performances allow an aligned comparison of the annotation-
quality.

Algorithm 1 summarizes the annotation generation proce-
dure. The inputs are the predictions { psource}, the correspond-
ing reliabilities {rsource}, the reliability thresholds {thrsource}s
as well as a set of all attribute .4. The output of the algorithm
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Algorithm 1 Annotation Generation
Input: {pSource}7 {rsource}> {thrsource} A
Output: target dataset annotations /7;,ges
1: for a € A do

2: for each source dataset do

(a) (a) (a) (a)
lSource <~ transfer(pSource’ T'Source? thrSource)

3

4:  end for

5: end for

6: lmaap = zeros(|Al, | Z1)
7: for a € A do

8: fori eZ do

9

l(a,i) (a,i)

< highest({lg,,..}, lacc (Véf,’,jzce)})

: Target
10: end for
11: end for
12: I7arger <— obtainPlausibility(Izurger, A)

13: return /7 ger

is the annotations I74,¢¢; Of the target dataset. The transfer
function transforms the predictions pgs,urce into the source
annotations /g,,,c. based on the prediction reliabilities gy, ce
and the corresponding attribute reliability thresholds thrsoyce-
If an attribute appears in multiple source databases, the highest
function maps back the reliability to the test-set performance
acc (rg;’;zce and returns the annotation léi’;)rce with the highest
map-back performance.

The last step (obtainPlausability) performs a plausibility
check including required corrections, given the target anno-
tations I7u.¢er, the attribute classes A, and the correspond-
ing attributes. For each class, at maximum one attribute
can be true. For instance, for the class gender, either the
attribute male or female can be true. A list of the classes
with the corresponding attributes is shown in Table III.
Due to this restriction, we set all attribute annotations for
an image i to undefined (0) if more than one attribute
showed true before. This aims at maintaining high-quality
annotations.

D. Discussion

The proposed annotation transfer pipeline is related to
homogenous discrepancy-based domain adaptation methods
[30], [52]. Since the feature spaces between the source and
target domains are identical and only differ in terms of data
distribution, it is similar to homogeneous domain adapta-
tions [52]. Since the reliability measure of the transferred
labels can be interpreted as the distance between the source
and the target domain, the proposed pipeline is also similar to
discrepancy-based domain adaption methods [30]. In contrast
to classical domain adaptation methods that utilize labeled data
in the source domains to execute new tasks in a target domain
[52], the proposed approach solves the same task in the target
domain. However, it measures the discrepancy (reliability)
in the target domain to prevent false decision (annotations).
This might only lead to decisions when the target and source
domain share a specific similarity but also ensures a high
correctness of the decisions (annotations).
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TABLE II

ANALYSING THE MAC PREDICTION PERFORMANCE IN COMPARISON TO
MICROSOFT AZURE UNDER DIFFERENT HEAD POSES AND LIGHTING
CONDITIONS. THE VALUES REPORTED ARE THE BALANCED ACCURACIES
BASED ON COLORFERET UNDER FRONTAL AND (ARTIFICIAL) LIGHTING
FROM THE SIDE. MOREOVER, THE PERFORMANCE UNDER DIFFERENT
HEADPOSE FROM FRONTAL (0°) TO PROFILE (90°). WHILE THE MAC
CLASSIFIER CAN PREDICT 47 ATTRIBUTES, IN THIS EVALUATION ONLY
SHARED ATTRIBUTES BETWEEN COLORFERET AND AZURE ARE CON-
SIDERED. THE REJECTED RATE DESCRIBES THE RATIO OF IMAGES THAT
CouLD NOT BE PROCESSED BY THE ALGORITHM. IN GENERAL, BOTH
APPROACHES PERFORM WELL. HOWEVER, FOR NON-FRONTAL IMAGES
AND IMAGES WITH SIDE LIGHTING, AZURE REJECTS MOST OF THE
IMAGES WITHOUT ANY PREDICTIONS

MAC (ours) Microsoft Azure

0° 45° 90° avg 0° 45° 90° avg

Young 075 0.81 0.77 0.78 0.55 0.51 049 0.52
Middle_Aged 0.54 053 051 053 0.73 0.72 0.66 0.70

20 Senior 087 086 0.84 0.85 0.84 0.82 0.83 0.83
% Male 094 093 0.83 090 0.99 0.99 1.00 0.99
=  Eyeglasses 097 099 0.96 097 0.99 099 1.00 0.99
‘g Beard 0.89 0.88 091 090 0.86 0.85 0.84 0.85
£ Mustache 098 097 090 095 0.56 0.55 0.61 0.58
Average (avg) 0.85 085 0.82 084 0.79 0.78 0.78 0.78
Rejected images 0.00 0.00 0.02 0.01 0.04 0.13 0.85 0.34
Young 0.75 080 0.73 0.76 0.56 0.52 0.92 0.67
Middle_Aged 0.54 052 049 052 0.69 0.72 0.88 0.76

o Senior 0.87 0.84 0.79 0.83 0.77 0.81 096 0.85
E Male 089 092 0.86 0.89 0.99 0.99 1.00 0.99
2 Eyeglasses 097 098 091 095 0.99 0.99 1.00 0.99
S Beard 089 0.89 096 091 0.87 091 1.00 093
9 Mustache 098 095 0.67 0.87 0.58 0.60 0.48 0.55
Average (avg) 0.84 0.84 0.77 0.82 0.78 0.79 0.89 0.82
Rejected images 0.00 0.03 032 0.12 0.13 050 0.99 0.54

IV. MAAD-FACE

A. MAAD-Face Statistics

The biggest advantage of MAAD-Face is its large number
of high-quality attribute annotations. Since it builds on the
VGGFace2 database, it consists of over 9.1k identities with
over 3.3M face images of various poses, ages, and illumina-
tions. MAAD-Face has annotations for 47 distinctive attributes
with a total of 38.3M annotations. On average 37.5 £ 3.7
annotations are defined per image. Figure 3 shows the anno-
tation distribution of MAAD-Face for all 47 attributes. For
each attribute, green indicates the percentage of positive anno-
tations, red indicates the percentage of negatively annotated
images, and grey represents the percentage of images with
undefined annotations. Some attributes have a low number
of positive annotations, such as Mustache (16.6k) or Goatee
(9.2k) and instead, a higher number of undefined annotations.
This way, we can ensure the high correctness of the annota-
tions as explained in Section III-C (accuracy Mustache 98%,
accuracy Goatee 95%). In total, this leads to MAAD-Face
having 23.1% positive, 56.6% negative, and 20.3% undefined
annotations. A list of all attributes with the correctness analysis
was already discussed with Table III in Section IV-C. The
high quality of the attribute annotations is also observable
in Figure 4. There, five random sample images are shown
with their corresponding attribute annotations.
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Male 1 Bangs -1 Round Face -1 Big Lips 0
Young 0  Sideburns -1 Double Chin -1 Big Nose 0
Middle Aged 1 Black Hair 1 High Cheekbones -1 Pointy Nose 1
Senior -1 Blond Hair -1 Chubby -1  Heavy Makeup -1
Asian -1 Brown Hair 0  Obstructed Forehead 0 Wearing Hat -1
White 1 Gray Hair -1 Fully Visible Forehead 0  Wearing Earrings -1
Black -1 No Beard 0  Brown Eyes 0  Wearing Necktie 1
Rosy Cheeks -1 Mustache 0  Bags Under Eyes 1 Wearing Lipstick -1
Shiny Skin 0 5 o Clock Shadow 0  Bushy Eyebrows 1 No Eyewear 1
Bald -1 Goatee 0  Arched Eyebrows -1 Eyeglasses -1
Wavy Hair -1 Oval Face 0  Mouth Closed -1 Attractive -1
Receding Hairline 0  Square Face 1 Smiling 1

Male 1 Bangs -1 Round Face 0  Big Lips 0
Young -1 Sideburns 1 Double Chin 1 Big Nose 1
Middle Aged -1 Black Hair 0  High Cheekbones 0  Pointy Nose -1
Senior 1 Blond Hair -1~ Chubby 1 Heavy Makeup -1
Asian -1 Brown Hair -1 Obstructed Forehead 1 Wearing Hat 1
‘White 0  Gray Hair 1 Fully Visible Forehead -1  Wearing Earrings -1
Black -1 No Beard -1 Brown Eyes 0 Wearing Necktie -1
Rosy Cheeks 0  Mustache 1 Bags Under Eyes 0  Wearing Lipstick -1
Shiny Skin 1 50 Clock Shadkow -1  Bushy Eyebrows 1 No Eyewear 1
Bald -1 Goatee -1 Arched Eyebrows -1 Eyeglasses -1
Wavy Hair -1 Oval Face -1~ Mouth Closed 0 Attractive -1
Receding Hairline 0  Square Face 1 Smiling 0

Male -1 Bangs 1 Round Face 0  Big Lips 0
Young 1 Sideburns -1 Double Chin -1 Big Nose -1
Middle Aged -1 Black Hair -1 High Cheekbones 1 Pointy Nose 1
Senior -1 Blond Hair -1~ Chubby -1 Heavy Makeup 1
Asian -1 Brown Hair 1 Obstructed Forehead 0 Wearing Hat -1
White 1 Gray Hair -1 Fully Visible Forehead -1  Wearing Earrings 1
Black -1 No Beard 1 Brown Eyes 0 Wearing Necktie -1
Rosy Cheeks 0  Mustache -1 Bags Under Eyes -1 Wearing Lipstick 1
Shiny Skin 0 5 o0 Clock Shadow -1  Bushy Eyebrows -1  No Eyewear 1
Bald -1 Goatee -1 Arched Eyebrows -1 Eyeglasses -
Wavy Hair 1 Oval Face 0  Mouth Closed 0  Attractive

Receding Hairline -1  Square Face -1 Smiling 0

Male -1 Bangs -1 Round Face -1 Big Lips -1
Young 1 Sideburns -1 Double Chin -1 Big Nose -1
Middle Aged -1 Black Hair 0  High Cheekbones 1 Pointy Nose 1
Senior -1 Blond Hair 0  Chubby -1 Heavy Makeup 1
Asian -1 Brown Hair 0  Obstructed Forehead -1 Wearing Hat -1
White 1 Gray Hair 0  Fully Visible Forehead 1 Wearing Earrings 1
Black -1 No Beard 1 Brown Eyes -1 Wearing Necktie -1
Rosy Cheeks 0  Mustache -1 Bags Under Eyes -1 Wearing Lipstick 1
Shiny Skin 0 5 o0 Clock Shadow -1  Bushy Eyebrows -1  No Eyewear 1
Bald -1 Goatee -1 Arched Eyebrows 0  Eyeglasses -1
Wavy Hair 1 Oval Face 1 Mouth Closed 0  Attractive 1
Receding Hairline -1  Square Face -1 Smiling 1

Male -1 Bangs -1 Round Face 0  Big Lips 1
Young 0  Sideburns -1 Double Chin -1 Big Nose -1
Middle Aged 1 Black Hair 1 High Cheekbones 1 Pointy Nose 0
Senior -1  Blond Hair -1 Chubby -1  Heavy Makeup 1
Asian 1 Brown Hair 0  Obstructed Forehead -1 Wearing Hat -1
‘White -1 Gray Hair -1 Fully Visible Forehead 1 Wearing Earrings 1
Black -1 No Beard 1 Brown Eyes 1 Wearing Necktie -1
Rosy Cheeks -1 Mustache -1 Bags Under Eyes -1 Wearing Lipstick 1
Shiny Skin 1 5 o0 Clock Shadow -1  Bushy Eyebrows -1  No Eyewear 0
Bald -1 Goatee -1 Arched Eyebrows 1 Eyeglasses -1
Wavy Hair 1 Oval Face 0 Mouth Closed -1 Attractive 1

Receding Hairline

-1

Square Face

-1

Smiling

-1

Samples images from MAAD-Face with the corresponding 47 attribute-annotations.

B. Evaluating MAC Performance Under Pose and Lighting

In this section, we evaluate the performance of the MAC
against the industry product Microsoft Azure® under differ-
ent headposes and lighting conditions. The experiment was

3 https://azure.microsoft.com/en-us/services/cognitive-services/face

conducted on the ColorFeret database [34] consisting of over
11k images with different poses such as frontal (2.7k), profile
(2.7k) and head poses in between (5.9k). Figure 4 shows
some sample images visualizing the head poses and lighting
conditions. While our MAC classifier is able to accurately
state 47 different attributes, we focus on the attributes that
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ATTRIBUTE ANNOTATION ANALYSIS OF MAAD-FACE BASED ON THE GROUND TRUTH OF THREE HUMAN EVALUATORS. THE ANNOTATION

TABLE III

QUALITY IS REPORTED IN TERMS OF ACCURACY, PRECISION, AND RECALL. MAIN SOURCE DESCRIBE FROM
WHICH DATASET MOST OF THE ANNOTATIONS ARE TRANSFERRED FROM

Main source  Category Class Attribute Accuracy  Precision  Recall
CelebA Demographics Gender Male 0.99 0.98 1.00
CelebA Age Young 0.99 1.00 0.98
LFW Middle Aged 0.93 0.98 0.89
LFW Senior 0.97 0.96 0.98
LFW Race Asian 0.90 0.88 0.92
LFW White 0.89 1.00 0.82
LFW Black 0.94 0.90 0.98
CelebA Skin Rosy Cheeks Rosy Cheeks 0.99 0.98 1.00
LFW Shiny Skin Shiny Skin 0.77 0.84 0.74
CelebA Hair Hairstyle Bald 0.96 0.92 1.00
CelebA Wavy Hair 0.99 1.00 0.98
CelebA Receding Hairline =~ Receding Hairline 0.77 0.54 1.00
CelebA Bangs Bangs 0.98 0.96 1.00
CelebA Sideburns Sideburns 0.93 0.88 0.98
CelebA Haircolor Black Hair 0.98 0.96 1.00
CelebA Blond Hair 1.00 1.00 1.00
CelebA Brown Hair 0.97 0.94 1.00
CelebA Gray Hair 0.95 0.90 1.00
CelebA Beard Beard No Beard 0.98 1.00 0.96
CelebA Mustache 0.98 0.98 0.98
CelebA 5 o Clock Shadow 0.97 0.94 1.00
CelebA Goatee 0.95 0.90 1.00
LFW Face Geometry  Face Shape Oval Face 0.81 0.90 0.76
LFW Square Face 0.80 0.78 0.81
LFW Round Face 0.69 0.56 0.76
CelebA Double Chin Double Chin 0.94 0.88 1.00
CelebA High Cheekbones High Cheekbones 0.92 0.92 0.92
CelebA Chubby Chubby 0.94 0.88 1.00
LFW Forehead visibility ~ Obstructed Forehead 0.91 0.94 0.89
LFW Fully Visible Forehead 0.80 0.75 1.00
LFW Periocular Brown Eyes Brown Eyes 0.68 0.44 0.85
LFW Bags Under Eyes Bags Under Eyes 0.68 0.40 0.91
CelebA Bushy Eyebrows Bushy Eyebrows 0.95 0.94 0.96
CelebA Arched Eyebrows Arched Eyebrows 1.00 1.00 1.00
LFW Mouth Mouth Closed Mouth Closed 0.84 0.80 0.87
CelebA Smiling Smiling 0.95 1.00 0.91
LFW Big Lips Big Lips 0.70 0.50 0.83
CelebA Nose Nose type Big Nose 0.97 0.98 0.96
LFW Pointy Nose 0.88 0.88 0.88
CelebA Accessories Heavy Makeup Heavy Makeup 0.98 0.98 0.98
CelebA Wearing Hat Wearing Hat 0.92 0.84 1.00
CelebA Wearing Earrings Wearing Earrings 0.83 0.70 0.95
LFW Wearing Necktie Wearing Necktie 0.91 0.84 0.98
CelebA Wearing Lipstick Wearing Lipstick 0.95 0.90 1.00
LFW Eyeglasses No Eyewear 0.98 0.98 0.98
CelebA Eyeglasses 0.90 0.80 1.00
CelebA Other Attractive Attractive 1.00 1.00 1.00

Total 0.91 0.87 0.94
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Microsoft Azure and the ColorFeret dataset have in common.
This allows a comparison of our approach with an industry
product under several conditions.

Table II shows the described analysis. In general, our
MAC classifier reaches high performances on most attributes
and additionally turns out to be relatively robust against the
changes in the head poses as well as the lighting. The weakest

performance is observed for the only vaguely-defined age
classes. Similar to our MAC approach, Microsoft Azure turns
out to have accurate and robust predictions under both lighting
conditions. However, Microsoft Azure tends to reject many
images when it comes to non-frontal poses or difficult lighting
conditions. Under optimal lighting conditions, 85% of the
profile images are rejected and in combination with the more
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Fig. 3. Annotation distribution of the proposed MAAD-Face database. For each of the 47 attributes, green indicates the percentage of positive annotations,

red indicates the percentage of negatively annotated images, and grey represents the percentage of images that have an undefined annotation for the attribute.

(a) (b) (© ()] (e)

Fig. 4. Sample Images [34] for the pose and lighting evaluation. Three differ-
ent head poses are considered from frontal to profile images. To also analyse
the effect of lighting, artificial lighting was introduced (see Figures d-f).

®

challenging lighting, over 99% of the images are rejected
without any predictions. This short analysis showed that our
MAC classifier used for the proposed annotation transfer
pipeline is well suited and reaches comparable performances
to the industry product Microsoft Azure.

C. Evaluating Annotation-Correctness

In this section, we evaluate the quality of attribute
annotations from three face datasets, LFW, CelebA, and
MAAD-Face. The quality refers to the correctness of the
annotations compared to the annotations of human evalua-
tors. The annotation-correctness of each attribute in LFW,
CelebA, and MAAD-Face was manually evaluated by three
human evaluators. For each attribute, the evaluators got
50 positively-annotated and 50 negatively-annotated images to
prevent a bias evaluation due to unbalanced testing data. Since
the choice of the images submitted to the evaluators affect the
correctness evaluation, the selection of these images is based
on a randomized process to prevent a human-bias in the choice
of these images. Then, each evaluator was asked to carefully
annotate these images for the given attribute. This led to
over 16k manually created annotations.* The manually created
annotations are used to compute the accuracy, precision, and
recall for each attribute of the database. The accuracy refers
to the percentage of correct annotations, where the ground

4Please note that this only represents a small fraction of all annotations and
additionally reflects the subjective opinion of the three evaluators. Therefore,
the results should not be considered as absolute values but should rather be
used as indicators.

truth is determined by the human evaluators. Precision is
defined as the number of true positives over the number of true
and false positives In our context, precision refers to “What
proportion of positive annotated samples in the database is
also positively annotated by the human evaluators?”. Recall is
defined as the number of true positives over the number of true
positives and false negatives. In our context, recall refers to
“What proportion of positive human annotations are identified
correctly?”. Tables V, VI, and III present the results for this
analysis on LFW, CelebA, and MAAD-Face.

1) LFW: For LFW (Table V), many attributes show a
very weak performance and thus, a low correlation with
the annotations of the human evaluators. Young age group
annotations (baby, child, youth) are close to a random accuracy
and additionally often have a small precision. This is also
observed e.g. for frowning, chubby, curly hair, wavy hair,
bangs, goatee, and square face. Moreover, annotations for
attractive man are mostly placed on female faces. In general,
there is a big mismatch between the annotations of LFW and
the annotations of the human evaluators. The accuracy for most
attributes is below 80% and only 5 out of 76 attributes have
an accuracy of over 90%. Over all attributes, this leads to
an accuracy of 72%, a precision of 61%, and a recall of 84%.
The high gap between the low precision and the relatively high
recall indicates that there are a lot of false-positive annotations
in LFW.

CelebA: The attribute performance for CelebA is shown
in Table VI. It has annotations for 40 binary attribute, which
is a lower number than on LFW. However, these annotations
are of much higher quality. Only 2 attributes have an accuracy
of less than 70% and 14 attributes even reach over 90%. Over
all attributes, the accuracy is 85%, the precision is 83%, and
the recall is 89%. Similar to LFW, there is a tendency that
most of the wrong annotations are within the positives.

MAAD-Face: Table Il shows the attribute performance of
MAAD-Face. MAAD-Face has 47 binary attributes. In the
evaluation against the human annotations, 3 attributes reach a
performance of below 70%. However, also 34 attributes reach
over 90% accuracy with the majority of close to 100%. Over
all attributes, this leads to an accuracy of 91%, a precision
of 87%, and a recall of 94%.
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TABLE IV

ANALYSIS OF THE ATTRIBUTE ANNOTATION CORRECTNESS. THE CORRECTNESS OF THE ATTRIBUTE ANNOTATIONS IS SHOWN FOR THE MOST
RELEVANT DATABASES, LFW, CELEBA, AND MAAD-FACE, SINCE THESE CONTAIN ANNOTATIONS FOR A HIGH NUMBER OF
DISTINCT ATTRIBUTES. THE CORRECTNESS WAS EVALUATED BY THREE HUMAN EVALUATORS. IN TOTAL, MAAD-FACE
DOES NOT ONLY PROVIDE THE HIGHEST NUMBER OF ATTRIBUTE ANNOTATIONS, IT ADDITIONALLY
PROVIDES ANNOTATIONS OF MUCH HIGHER QUALITY THAN RELATED DATABASES

Attribute annotations Attribute annotation correctness

Database Num. of subjects  Num. of images  Distinctive attributes ~ Number of annotations  Accuracy  Precision  Recall
LFW 5.7k 13.2k 74 0.9M 0.72 0.61 0.84
CelebA 10.0k 0.2M 40 8.0M 0.85 0.83 0.89
MAAD-Face (this paper) 9.1k 3.3M 47 123.9M 0.91 0.87 0.94

Summary: Table IV shows the properties of the inves-
tigated databases including the overall performance of our
annotation-correctness study. Even though LFW provides the
highest number of binary attributes, it provides the lowest
number of attribute annotations with the lowest annotation
qualities. Only 72% of the investigated annotations match
the annotations of the human evaluators. CelebA consists
of 8.0M attribute annotations of 40 binary attributes. Moreover,
with an accuracy of 85%, the quality of these annotations is
significantly higher. In terms of numbers of annotations and
annotation-quality, MAAD-Face exceeds the other databases.
It provides 47 binary attributes with a total of 123.9M anno-
tations. This is 15 times higher than CelebA and 137 times
higher than LFW. Moreover, the annotations quality (in terms
of accuracy, precision, and recall) is significantly higher than
the other databases. 91% of the MAAD-Face annotations
match the annotations of the human evaluators. Consequently,
MAAD-Face provides significantly more and higher-quality
attribute annotations.

V. SOFT-BIOMETRIC BASED IDENTITY RECOGNITION

In this section, we evaluate the discrimination strength of
soft-biometric attributes for identity verification and identifica-
tion. The use of these attribute might be especially interesting
for identity recognition applications with short time windows
between the reference and probe images, such as person re-
identification. In the following of this section, we describe
the experimental setup. Afterwards, the results are presented,
discussed, and summarized.

A. Experimental Setup

The high number of face annotations with sufficient qual-
ity in MAAD-Face allow us to investigate the usefulness
of soft-biometrics for face recognition. For the experiments,
the MAAD-Face database is divided into a 20% training and
a 80% test set in a subject exclusive manner. As a result,
the training set contains around 630k samples while the test
set contains around 2.5M instances. This test/train division
allows to make the use of a large test set while the training
set size is still suitable for training a linear (logistic regression)
model [3].

For the identification experiments, the test set is further
divided into a reference and a probe set. From each identity,
one sample with the most annotated attributes is placed in

o o °
ks > ®

Probability of valid comparison

°
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10 15 20 25 30 35 40 a5 a7
# used attributes

Fig. 5. Probability that a comparison is valid depending on the number
of (most important) attributes used for the comparison. A comparison is
considered as valid if at least 10 attributes are annotated in both, the probe
and the reference sample.

the reference. All the others are placed in the probe set. The
identification performance is reported in terms of Cumulative
Match Characteristic (CMC) curves [8]. It measures the iden-
tification performance based on the relative ordering of match
scores corresponding to each biometric sample in a closed-set
identification scenario. For the verification experiments, all
samples pairs are considered. The face verification perfor-
mance is reported in terms of false non-match rate (FNMR)
at a fixed false match rate (FMR). These measures are spec-
ified for biometric verification evaluation in the international
standard [23].

To ensure that the comparison of two samples will contain
a sufficient number of attributes that jointly appear in both
samples, we neglect comparisons with less than 10 overlapping
attribute annotations (not valid). We set this constraint of at
least 10 overlapping attributes since we see a direct relation
between the number of considered attributes and the expected
accuracy of the made decision. For a low number of over-
lapping attribute annotations, the decision is made based on
less information and thus, a false decision is more likely. For
a high number of overlaps, the decision takes into account
more information and therefore, it is more likely that the
decision will be correct. Figure 5 shows the probability that a
comparison is valid depending on the number of used (most
important) attributes. It can be seen that if a comparison
is made using 20 or more of the most important attributes,
the probability that the comparison is neglected is very low.

The comparison of two samples is made with a joint fea-
ture representation. Therefore, a joint (soft-biometric) feature
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TABLE V

ATTRIBUTE ANNOTATION ANALYSIS OF LFW BASED ON THE GROUND TRUTH OF THREE HUMAN EVALUATORS.
THE ANNOTATION QUALITY IS REPORTED IN TERMS OF ACCURACY, PRECISION, AND RECALL

Attribute Acc  Precision  Recall Attribute Acc  Precision  Recall
Male 0.89  0.96 0.84 Eyes Open 0.73  0.96 0.66
Asian 0.86 0.74 0.97 Big Nose 0.75 0.54 0.93
White 0.74  0.98 0.66 Pointy Nose 0.80 0.82 0.79
Black 091 0.84 0.98 Big Lips 0.73  0.56 0.85
Baby 0.54  0.08 1.00 Mouth Closed 086 0.82 0.89
Child 0.55 0.10 1.00 Mouth Slightly Open 0.79 0.88 0.75
Youth 056 0.14 0.88 Mouth Wide Open 093 0.88 0.98
Middle Aged 0.67  0.90 0.62 Teeth Not Visible 086 0.78 0.93
Senior 0.87 0.94 0.82 No Beard 0.69 1.00 0.62
Black Hair 0.78 0.88 0.73 Goatee 0.62 0.24 1.00
Blond Hair 091 0.84 0.98 Round Jaw 0.77  0.76 0.78
Brown Hair 0.70  0.60 0.75 Double Chin 0.66 0.34 0.94
Bald 0.74  0.50 0.96 Wearing Hat 0.69 040 0.95
No Eyewear 091 0.98 0.86 Oval Face 059 0.78 0.57
Eyeglasses 091 0.88 0.94 Square Face 0.55 0.12 0.86
Sunglasses 086 0.72 1.00 Round Face 081 0.72 0.88
Moustache 0.84 0.72 0.95 Color Photo 0.57 1.00 0.54
Smiling 0.87  0.80 0.93 Posed Photo 0.64 0.32 0.89
Frowning 0.61 0.22 1.00 Attractive Man 0.62 0.26 0.93
Chubby 0.53 0.16 0.62 Attractive Woman 0.75 0.50 1.00
Blurry 0.69  0.90 0.63 Indian 0.65 0.32 0.94
Harsh Lighting 0.64 0.92 0.59 Gray Hair 0.89 0.94 0.85
Flash 0.73  0.66 0.77 Bags Under Eyes 0.75 0.76 0.75
Soft Lighting 0.75  0.66 0.80 Heavy Makeup 0.88 0.76 1.00
Outdoor 0.83 0.82 0.84 Rosy Cheeks 0.63  0.30 0.88
Curly Hair 0.51  0.02 1.00 Shiny Skin 0.66 044 0.79
Wavy Hair 0.50  0.08 0.50 Pale Skin 0.82  0.90 0.78
Straight Hair 0.60 0.78 0.54 5 o Clock Shadow 059 0.18 1.00
Receding Hairline 0.75 0.62 0.84 Strong Nose-Mouth Lines 0.86  0.88 0.85
Bangs 0.54 0.08 1.00 Wearing Lipstick 0.81 0.64 0.97
Sideburns 0.61 0.40 0.69 Flushed Face 0.61 0.28 0.82
Fully Visible Forehead 0.79  1.00 0.70 High Cheekbones 0.81 0.70 0.90
Partially Visible Forehead 0.82  0.80 0.83 Brown Eyes 044 046 0.44
Obstructed Forehead 0.62 0.24 1.00 Wearing Earrings 0.79 0.58 1.00
Bushy Eyebrows 0.64 042 0.75 Wearing Necktie 0.76  0.66 0.83
Arched Eyebrows 0.79  0.80 0.78 Wearing Necklace 0.61 0.22 1.00
Narrow Eyes 0.69 0.46 0.85 Total 0.72  0.61 0.84
representation relation between different attributes. Two simple comparison
x(Erefs Eprope) = Dr, x%1, x%1, x%2, 282 @2 (1) models are used for the experiments that exploit the joint

is computed and a hamming-based and a logistic regression
model is utilized for the comparison process itself. The joint
feature representation for the attribute a

ifi=1& xfef :x;mbe = True
ifi=2& xfef = xgmbe = False

if i =3 & X[ # X000,

)C;l (xref, xprobe) =

O = = =

otherwise
(2)

of a reference sample x,.r and a probe sample x,ope is
defined binary by the relation of a depending if the attribute of
both samples is annotated as both as True (x{), both as False
(x9), or differently (x5). We chose this kind of representation
to ensure that the comparison models can additionally learn the

feature representation. The first one is a hamming-based
model that simply determines the number of equally-annotated
attributes in a normalized manner. The comparison score of
this model is given by

s(x) =1—NHD(x), 3)

where NHD counts the number of 1’s in x and divides it by
the number of attributes |.A|. The second one makes use of the
training set and trains a logistic regression model on the joint
feature representations. The choice of a simple linear model
prevents overfitting and additionally allows to determine the
importance of each soft-biometric attribute.

B. Results

To evaluate the discriminateness of soft-biometric attributes
for recognition, in Section V-Bl the attribute importance
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TABLE VI

ATTRIBUTE ANNOTATION ANALYSIS OF CELEBA BASED ON THE
GROUND TRUTH OF THREE HUMAN EVALUATORS. THE
ANNOTATION QUALITY IS REPORTED IN TERMS OF
ACCURACY, PRECISION, AND RECALL

Attribute Acc  Precision  Recall
5 o Clock Shadow 0.85 0.74 0.95
Arched Eyebrows 0.89 0.92 0.87
Attractive 0.81 0.74 0.86
Bags Under Eyes 0.80  0.80 0.80
Bald 0.84  0.68 1.00
Bangs 0.75  0.50 1.00
Big Lips 0.73 0.84 0.69
Big Nose 0.79 0.86 0.75
Black Hair 0.87 0.96 0.81
Blond Hair 094 0.94 0.94
Blurry 0.88 0.78 0.98
Brown Hair 0.90 0.88 0.92
Bushy Eyebrows 0.81 0.78 0.83
Chubby 0.83  0.66 1.00
Double Chin 0.76  0.58 0.91
Eyeglasses 0.96 0.92 1.00
Goatee 093 094 0.92
Gray Hair 098 0.98 0.98
Heavy Makeup 0.90 0.92 0.88
High Cheekbones 0.88 0.86 0.90
Male 1.00  1.00 1.00
Mouth Slightly Open  0.90  0.88 0.92
Mustache 095 094 0.96
Narrow Eyes 0.86 0.82 0.89
No Beard 091 1.00 0.85
Oval Face 0.62 0.92 0.58
Pale Skin 085 0.92 0.81
Pointy Nose 0.83 0.94 0.77
Receding Hairline 0.66 0.38 0.86
Rosy Cheeks 0.78 0.70 0.83
Sideburns 0.84 0.88 0.81
Smiling 094 092 0.96
Straight Hair 0.83  1.00 0.75
Wavy Hair 0.82  0.66 0.97
Wearing Earrings 093 0.88 0.98
Wearing Hat 1.00  1.00 1.00
Wearing Lipstick 091 0.90 0.92
Wearing Necklace 0.86 0.80 0.91
Wearing Necktie 0.85 0.72 0.97
Young 0.75 0.52 0.96
Total 0.85 0.83 0.89

for the recognition decision is presented. In Section V-B2
the verification and identification performance based on the
attribute information is reported. Section V-B3 demonstrates
how well these attributes can support hard face biometrics in
verification and identification tasks. Finally, the findings are
summarized in Section V-B4.

1) Attribute Importance: To get an understanding of which
attributes support making accurate genuine and imposter deci-
sions, Figure 6 shows the attribute importance derived from the
logistic regression model. A green bar refers to the contribu-
tion of an attribute for genuine decisions while a red bar indi-
cates the contribution of an attribute for imposter decisions.
The top figure shows the feature importance for True-True
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annotations, the middle figure for False-False annotations, and
the bottom figure demonstrates the feature importance if the
attribute annotation for one attribute is different (True-False)
for the probe and the reference sample.

In Figure 6 it can be clearly seen that the top two fig-
ures show mostly green bars while the figure on the bottom
is mostly red. This indicates that if the probe and reference
faces share the same soft-biometric attributes, it supports
a genuine decision while not sharing an attribute strongly
supports imposter decisions. It turns out that the attribute
“gender” has the strongest discriminative strength of all inves-
tigated attributes. This is reasonable since (a) it is the most
annotated attribute, (b) it helps to eliminate many potential
candidates, and (c) it is hard to change this attribute. But also
hairstyle, haircolor, and wearing a beard have a significant
impact on the recognition decision as well as more permanent
factors of the face such as bushy eyebrows, big lips, and a
pointy nose. Surprisingly wearing eyeglasses strongly supports
genuine decisions but not wearing eyeglasses is of no real
significance. This might be explained by the fact that only a
smaller percentage of the faces in the database have glasses but
if people wear glasses they usually wear them permanently.

Please note that, although the database is of significant size,
these results should only be interpreted as indications since
(a) the underlying annotation distributions affects the results
and (b) the utilized logistic regression model might lead to
oversimplified (linear) conclusions.

2) Identity Recognition Based on Soft-Biometrics Only:
To analyse how well soft-biometric attributes can be used
for identity recognition, Figure 7 shows the face recogni-
tion performance using soft-biometric annotations only. In
Figure 7a, the verification performance is reported as an ROC
curve including area under the curve (AUC) and equal error
rate (EER) values. Figures 7b and 7c shows the closed- and
open-set identification performance in terms of CMC and
DET curves. The plots follow the definitions of the inter-
national standards [23]. The performance is reported using
the logistic regression model on all attributes and using the
hamming-based model on different numbers of the most rel-
evant attributes. Moreover, considering the current pandemic
times, a special subset of soft-biometric attributes is considered
that can be reliably extracted in the presence of a face mask.
This excludes attributes related to beards, mouth, nose, and
face geometry ...as well as the attributes Wearing Lipstick,
Rosy Cheeks, Bangs, and Heavy Makeup. In total, 25 attributes
are included in this subset.

The results demonstrate that it is possible to use
soft-biometric attributes for both, verification and identifica-
tion. Previous works [1], [13], [35] on person identification
based on soft-biometrics only reported higher performances
than in our experiments. However, these works operate on
data captured in strongly controlled conditions only. We fill
this research gap by using data that were captured in strongly
uncontrolled conditions and thus, possess large variations.
Most annotations used in the experiments are non-permanent
and the images used for the comparisons are captured with
larger time differences. Even if such accuracy may not
be enough for specific applications, we provide a starting
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Importance for each soft-biometric attribute derived from a logistic regression model. Green indicate the importance of genuine decisions while

Fig. 6.

red indicates the importance of imposter decisions. The top figure shows the feature importance for True-True annotations, the middle figure for False-False
annotations, and the bottom figure demonstrates the feature importance if the attribute annotation for one attribute is different (True-False) for the probe and

the reference sample.

scenarios. Moreover, the strongest performances are observed
with the logistic regression based model since it is able to

weight the importance of each attribute.

point for further research that consider real life scenarios.

In general, a higher number of considered attributes for the
hamming-based model increases the performance in all three



TERHORST et al.: MAAD-FACE: MASSIVELY ANNOTATED ATTRIBUTE DATASET FOR FACE IMAGES 3955

Q Q
= 10 1.0 = 1.0
o o
e c
g08 ©0.8 S
© =
S o © 0.8
£ 0.6 c &
5 506 =
< g 5
Q 0.4 Lo‘g'stcRegress jon model AUC=0.9080 EER=0.1763 =04 E 06
0 === Logisti i =0 =0. = Y. = ookt n w= L ogistic Regression model
© / HB-model (pandemic attributes) AUC=0.8873 EER=0.1694 € :’Bg:i:e(i::;gi:‘ ;‘::Lu‘es) g HB-model (pandemic attributes)
™ 0.2 g~ HB-model (10 attributes) AUC=0.5689 EER=0.3966 % HB-model (10 attrbutes) = HB-model (10 attributes)
«& 7" e HB-model (20 attributes) AUC=0.8498 EER=0.2245 202 —— HB-model (20 attributes) ® e HB-model (20 attributes)
| === HB-model (30 attributes) AUC=0.8791 EER=0.2111 —— HB-model (30 attributes) D (0.4 = HB-model (30 attributes)
— === HB-model (40 attributes) AUC=0.8944 EER=0.1950 HB-model (40 attributes) (] e HB-model (40 attributes)
00 HB-model (47 attributes) AUC=0.9003 EER=0.1610 0 0 HB-model (47 attributes) =z HB-model (47 attributes)
. Q
-2 -1 0
10 10 10 0 20 40 60 80 100 % 0.00 0.25 0.50 0.75 1.00
False Match Rate Rank [%] w False Positive Identification Rate

(a) Verification

(b) Closed-set identification

(c) Open-set identification

Fig. 7. Analysis of the verification and identification performance based on different choices of soft-biometrics only. The verification performance is reported
as an ROC curve with area under the curve (AUC) and equal error rate (EER) values. The identification performance is reported as a CMC curve for closed-set
identification and as a DET curve for open-set identification. Pandemic attributes refer to attributes reliably detectable from a face in presence of a face mask.
In general, the performance increases with a higher number of considered attributes.

@ 1.00 1.00 210

& o

e« c

G095 o 0.95 508

- Y. -~ =

g i g

< & 0.90 £ 06
E=] c

Z° 0.90 § 9

© = 0.85 D04

%) ___ Face Embeddings = Y ®

— AUC=0.9778 EER=0.0685 c

@© Face Embeddings + HB-model (47 attributes) [0) =

w 0.85 AUC=0.9799 EER=0.0656 ke © .

Face Embeddings + HB-model (pandemic attributes) - 0.80 e Face Embeddings @ 0.2  —— Face Embeddings
| AUC=0.9796 EER=0.0660 . Face Embeddings + HB-model (47 attributes) j* Face Embeddings + HB-model (47 attributes)
— ___ Face Embeddings + Logistic Regression model Face Embeddings + HB-model (pandenmic attributes) % Face ings + HB-model ttributes)
0.80 AUC=0.9503 EER=0.0652 + Face Embeddings + Logistic Regression model (.0 [\ Face Embeddings + Logistic Regression model
N [N
2 = 0 0.75
10 10 10 5 10 15 20 25 % 0.00 0.25 0.50 0.75 1.00
False Match Rate Rank [%] w False Positive Identification Rate
(a) Verification (b) Closed-set identification (c) Open-set identification
Fig. 8. Analysis on how well soft-biometrics can support hard face biometrics. The verification performance is reported as an ROC curve with area under
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curve for open-set identification. The performance using face embeddings only is reported as well as in combination with soft-biometrics. The combined
approaches are achieved through a simple weighted-score fusion approach. For verification and closed-set identification, soft-biometric information enhances

the performance.

3) Face Biometrics Supported by Soft-Biometrics: To
analyse how well soft-biometrics can support hard face bio-
metrics, Figure 8 shows the face verification and identification
performance using face embeddings only and in combination
with soft-biometrics. The verification performance is reported
as an ROC curve with area under the curve (AUC) and equal
error rate (EER) values. The identification performance is
reported as a CMC curve for closed-set identification and
as a DET curve for open-set identification. For the face
embeddings, we utilized the widely-used FaceNet model® [41].
The performance using face embeddings only is reported as
well as in combination with soft-biometrics. The combined
approaches are based on a simple EER-based weighted-score
fusion approach as described [6]. The results show that
for open-set identification, the score-fusion approach with
soft-biometric attributes does not show significant differences
compared to using the face embeddings only. However, for
the verification and closed-set identification scenarios, the
additional soft-biometric information is able to enhance the
recognition performance.

5https://github.com/davidsandberg/facenet

4) Recognition With Soft-Biometrics - Summary: In this
section, we analysed how well soft-biometrics can be used
for recognition. The annotations came from the proposed
MAAD-Face annotations database. First, we determined the
attribute importance for genuine and imposter decisions.
Second, we investigated how many of these attributes are
needed to achieve certain verification and identification per-
formances given the soft-biometrics only. Despite that the
data was collected over large time-windows and the anno-
tations are mainly of non-permanent nature, a decent verifi-
cation and identification performance observed using 25 and
more attribute annotations. These results might be useful for
re-identification scenarios or description-based identity search.
Lastly, we demonstrated that soft-biometrics can support hard
face biometrics in verification and closed-set identification
scenarios.

VI. CONCLUSION

Soft-biometric attributes play a major role in the devel-
opment of various face recognition topics, such as bias-
mitigating, information fusion, and privacy-preserving face
recognition solutions. To support the developments in these
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fields, in this work, we presented four contributions.
(1) A novel annotation transfer pipeline is proposed that
allows to transfer attribute annotations of high accuracy from
multiple source datasets to a target dataset. This pipeline
is used to create MAAD-Face. (2) MAAD-Face is a novel
face annotations database that provides over 3.3M faces
with 123.9M annotations of 47 different attributes. To the
best of our knowledge, MAAD-Face is the publicly avail-
able database that provides the largest number of attribute
annotations. (3) We analyse the correctness of the attribute
annotations of three annotated face databases, CelebA, LFW,
and MAAD-Face. The evaluation was performed manually by
three human evaluators and demonstrated that the attribute
annotations of MAAD-Face are of significantly higher qual-
ity than related databases. (4) Finally, the large number of
high-quality annotations of MAAD-Face are used to study how
well soft-biometrics can be used for identity recognition. The
advantage of the proposed annotation-transfer pipeline is that
it allows transferring arbitrary attributes from a database to
images while it ensures a high correctness of the transferred
annotations. This leads to attribute annotations of higher
quality than related databases as the annotation correctness
evaluation showed. The high correctness is ensured by the
use of accurate prediction reliabilities. However, the use of
this reliability might also lead to annotations correlating with
specific situations in which the classifier is confident about
its predictions. This has to be addressed by future work. We
hope that this work will support the development of novel face
recognition technologies.
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