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Abstract— In recent years, the threat of profiling attacks using
deep learning has emerged. Successful attacks have been demon-
strated against various types of cryptographic modules. However,
the application of deep learning to side-channel attacks (SCAs) is
often not adequately assessed because the labels that are widely
used in SCAs, such as the Hamming weight (HW) and Hamming
distance (HD), follow an imbalanced distribution. This study
analyzes and solves the problems caused by dataset imbalance
during training and inference. First, we state the reasons for
the negative effect of data imbalance in classification for deep-
learning-based SCAs and introduce the Kullback–Leibler (KL)
divergence as a metric to measure this effect. Using the KL
divergence, we demonstrate through analysis how the recently
reported cross-entropy ratio loss function can solve the problem
of imbalanced data. We further propose a method to solve dataset
imbalance at the inference phase, which utilizes a likelihood
function based on the key value instead of the HW/HD. The
proposed method can be easily applied in deep-learning-based
SCAs because it only needs an extra multiplication of the inverted
binomial coefficients and inference results (i.e., the output prob-
abilities) from the conventionally trained model. The proposed
solution corresponds to data-augmentation techniques at the
training phase, and furthermore, it better estimates the keys
because the probability distributions of the training and test data
are preserved. We demonstrate the validity of our analysis and
the effectiveness of our solution through extensive experiments
on two public databases.

Index Terms— Side-channel attacks, deep learning, imbalanced
data.

I. INTRODUCTION

ANUMBER of side-channel attacks (SCAs) and corre-
sponding countermeasures have been presented since

Kocher et al. discovered this type of attack [1]. Among the
existing SCAs, the profiling attack is considered to be a
powerful variation. A profiling attack consists of a profiling
phase and an attack phase. In the profiling phase, an attacker
extracts the characteristics of a target device. In the attack
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phase, the attacker retrieves secret information using the
side-channel information from the actual target device in
combination with the characteristics extracted in the profiling
phase. Various studies have shown that profiling attacks can
estimate secret information more readily than simple (i.e.,
non-profiling) SCAs, even on cryptographic hardware with
countermeasures such as masking and random delays [2].
In the context of the Internet of Things, where an attacker
can easily access the same type of device as the target, such
profiling attacks are becoming more practical and feasible.

The template attack, which was the first profiling attack to
be proposed, creates a leakage model based on the assumption
that the side-channel information follows a multi-dimensional
Gaussian distribution [3]. In the attack phase, the secret
information is estimated using the likelihood calculated by
the estimated model. Principal component analysis and linear
discriminant analysis are sometimes used as dimensionality
reduction methods to improve the efficiency of this phase
[4]–[7]. One major issue with template attacks is that their
assumptions are sometimes unrealistic; that is, the side-channel
information of many cryptographic devices is not necessar-
ily represented as a multi-dimensional Gaussian distribution,
which makes it difficult to evaluate the potential threats of a
profiling attack to such cryptographic devices.

Recently, a new profiling attack based on deep learning (DL)
was presented as a more efficient alternative [8]–[11]. In the
profiling phase, a deep neural network (DNN) is trained such
that the input is the side channel information from the profiled
device and the output is the probability of an intermediate
value in the cryptographic computation (e.g., the output of
S-box in the AES first round). Next, in the attack phase, the log
likelihood calculated with the trained DNN is used to estimate
the secret information. To reduce the complexity during train-
ing, the output of the DNN (i.e., label) is sometimes given by
the Hamming weight (HW) or Hamming distance (HD) of the
intermediate value [12]. If the intermediate value is directly
estimated, the dimension of the model output exponentially
increases as the bit-length of the intermediate value increases.
Hence, the HW/HD model is more feasible and scalable for
various cryptographic implementations and leakage models.
Unlike the earlier described template attacks, such DL-based
profiling attacks have the advantage that no special (and some-
times unrealistic) assumptions about side-channel information
are required, and their effectiveness has been demonstrated
experimentally [13].

However, there is a notable problem with DL-based profil-
ing attacks called the imbalanced data problem. This problem
causes difficulty during learning due to the imbalance in the
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occurrence probabilities of the HW/HD used for training.
Moreover, when data are imbalanced, conventional machine
learning metrics (e.g., accuracy and precision) become poor
indicators of performance [12]. In [12], the ineffectiveness
of these metrics was demonstrated experimentally and the
Synthetic Minority Oversampling Technique (SMOTE) was
proposed to solve the difficulty in learning. SMOTE is one
of the most well-known augmentation techniques. However,
the effectiveness of this data augmentation technique in the
context of profiling SCAs has not yet been analyzed. In par-
ticular, though it is known that equalizing the occurrence prob-
abilities of the class labels leads to changes in the probability
distributions of the training and test data, the effect of the
changes caused by SMOTE on the success rate of profiling
SCAs is not mentioned in the existing literature.

Another solution to the problem, cross entropy ratio (CER)
was reported in [14]. CER is the ratio of the averaged
negative log likelihood (NLL) of all wrong keys to the
NLL of the correct one. It was found in [14] that profiling
attacks always succeed if the CER is less than 1 and the
number of available traces is sufficient during the attack phase.
In addition, [14] experimentally demonstrated that CER could
solve the ineffectiveness of the performance metrics. How-
ever, it is still unclear why CER is effective for imbalanced
data because the attack assumption used in [14], namely,
independence between the intermediate values of the correct
key and those of other key candidates, does not hold in
general [15].

Thus, while the imbalanced data problem has been solved
experimentally in [12] and [14], no analytical explanation
of why the conventional solutions are effective has yet been
provided, which makes the accurate assessment of DL-based
SCA threats and development of effective countermeasures
difficult.

A. Our Contributions
To address the problems caused by imbalanced data, this

study first clarifies the negative effects of imbalanced data
on DL-based SCAs, using a quantitative evaluation metric.
In addition, we present a new solution to eliminate the
negative effects of imbalanced data at the inference phase. The
contributions of this study are twofold and can be summarized
as follows:

1) Analysis of the negative effects of imbalanced data
using a quantitative evaluation metric
We first show that the degree of imbalance in the output
distribution of neural networks (NNs) can be quantita-
tively assessed by the Kullback–Leibler (KL) divergence
between the output distribution and binomial distribu-
tion. The motivation for the use of the KL divergence
is to quantitatively evaluate the difficulty of DL-based
SCAs directly from the viewpoint of the model’s output
distribution shape. In the proposed metrics, a small KL
divergence means that the model’s output distribution
is close to the binomial distribution, which indicates
a strong influence of the class imbalance. By contrast,
a large KL divergence means that the model’s output
distribution has a steep shape like a one-hot vector.

In this case, the model would be less influenced by
the imbalanced data and would perform better for the
key recovery in the attack phase. Next, we analyze
the negative effects of imbalanced data using the KL
divergence. In particular, we explain why CER can
mitigate the negative effects of imbalanced data.

2) A solution for the imbalanced data problem in the
inference phase
We propose a new key estimation method based on the
key-based likelihoods obtained during inference. The
aim is to eliminate the negative effects of imbalanced
data and yield a more efficient key estimation approach
than the conventional HW/HD-based ones.1 We then
clarify the differences between the proposed method
(i.e., the use of key-based likelihoods) and conven-
tional data augmentation methods, such as SMOTE,
which equalize the occurrence probabilities of the labels.
Through experiments, we demonstrate that the proposed
solution performs better than the conventional solutions
such as data augmentation and the CER loss function
because it does not shift the model’s output away from
the true distribution. In particular, we show that the
problem caused by imbalanced data can be substantially
reduced by the proposed method even when the KL
divergence is small.

B. Paper Organization
The remainder of this paper is organized as follows.

Section II describes profiling attacks using DNNs and the
imbalanced data problem. In Section III, we state the reasons
for the negative effects caused by imbalanced data on SCAs
and use the KL divergence to analyze these effects in a
quantitative manner. In Section IV, we explain the reason why
the CER loss can mitigate the negative effects of imbalanced
data from the viewpoint of KL divergence. Section V presents
the proposed inference phase-based solution to the imbal-
anced data problem and describes the differences between
the proposed solution and the conventional data augmentation.
Section VI presents a set of experimental results to evaluate
the claims of this paper, and finally, Section VII concludes the
paper.

II. PRELIMINARIES

This section presents a brief overview of profiling attacks
using DNNs. We then describe the problems caused by imbal-
anced data in both the training and inference phases.

A. DL-Based Profiling Attacks
This study mainly focuses on DL-based SCAs against AESs.

A typical DL-based attack exploits the output of the S-box in
the first round of AES and estimates a secret key in a similar
manner to common non-profiling SCAs.

First, we describe the profiling (or training) phase.
An attacker acquires training data from a device for profiling

1Note that this does not mean that the key values are the outputs of the
NNs; HW/HD values are output by the NN, and the probability of each key
is estimated using the outputs.
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in advance. Training data SP can be defined as

SP = {(ki , mi , xi ) | 1 ≤ i ≤ NP }, (1)

where ki denotes the one-byte partial key of a full key at i th
observation, mi denotes the one-byte plain text corresponding
to ki , xi is the trace obtained from the device for profiling,
and NP denotes the number of traces in the profiling phase.
In DL-based profiling attacks, the value (label) predicted by
the DNN is the HW (or HD) computed using the secret
key and plaintext. Therefore, the label is often set to li =
HW(Sbox(ki ⊕ mi )); that is, in the profiling phase, we train
an NN to predict the probability of the HW/HD determined
by the intermediate value from the corresponding trace x.
If byte-wise prediction is used, the output of the NN is a
nine-class probability obtained from the softmax layer because
the HW/HD takes values from zero to eight. Note that the
value of ki is not important for the training because the NN
estimates the HW/HD of the intermediate value.

The purpose of the profiling phase is to train an NN to
estimate the correct label with high probability from the
input traces in the following attack phase. Let θ represent
the model parameters of the NN (e.g., the weights of a
multilayer perceptron or CNN) and let q(l | x; θ) be the output
probability represented by the NN. In the profiling phase, θ is
determined such that the probability q(l | x; θ) matches the
true probability p(l | x). Now, let X denote the set of possible
values of trace x and L denote the set of possible values of
label l; then, we can formulate the determination of θ as the
minimization problem of the cross-entropy function

H (p, q) = E
(l,x)∼p

− log(q(l | x; θ))

= −
�
X

�
l∈L

p(l, x) log (q(l | x; θ)) d x, (2)

where (l, x) ∼ p means the (random) variables l and x follow
the true distribution p. Because the cross-entropy function
takes its minimum value only when q = p, we should
determine θ such that the function is minimized. However,
(2) cannot be evaluated directly because it involves the integral
and summation of an unknown distribution p(l, x). Therefore,
we approximate it with a finite number of sample points (i.e.,
training data) as follows:

H (p, q) ≈ NLL(q)

= 1

Np

Np�
i=1

− log(q(li | xi ; θ)). (3)

The right-hand side of (3) is called NLL, and it is commonly
used in machine learning [16], [17]. It is well known that (3)
converges in probability towards (2).

The intuitive meaning of (3) becomes clear by transforming
the NLL function as follows:

NLL(q) = − 1

Np
log

⎛
⎝

Np�
i=1

q(li | xi ; θ)

⎞
⎠ , (4)

where the joint probability with the argument of the log
function is called the likelihood function. Here, let us consider

the case in which trace xi is observed. If the intermediate value
is calculated from the corresponding key value ki and plaintext
mi , then we obtain the likelihood as a HW/HD by li , which can
be estimated from the trace. Moreover, this likelihood suggests
that the estimated probability q(li | xi ; θ) should be large. This
also suggests that the true probability distribution p(l | x) has
a high probability at p(li | xi ).

In the attack phase, an attacker uses the NLL value derived
from the likelihood function to estimate a key. That is,
the sequence of labels l1, l2, . . . , lNA calculated for a key
candidate k with different plaintexts must be plausibly esti-
mated from actually observed traces x1, x2, . . . , x NA , where
NA indicates the number of traces observed during the attack
phase. The NLL for key candidate k can be written as

NLLk(q, θ̂) = − 1

NA

NA�
j=1

log q(l = g(k, m j ) | x j ; θ̂ ), (5)

where the estimated parameter θ̂ is given from the preceding
profiling phase and function g outputs the HW/HD of the
intermediate value from the key and plaintext. The likelihood
function in (5) is expected to have a maximum value when
the correct key k∗ is used. Thus, the attacker computes the
likelihoods for all the key candidates in advance and estimates
that the key with the largest likelihood value is the correct key.

B. Imbalanced Data Problem

In this section, we briefly describe the imbalanced data
problem of DL-based SCAs and explain the previous methods
for solving it. The occurrence probability of labels such
as HW/HD that are used in profiling attacks, is obviously
imbalanced. Data in which the occurrence probability of
the labels deviates from the uniform distribution are called
imbalanced data. It has been noted that profiling attacks are
often difficult to learn and infer because of the effects of
imbalanced data [12]. In fact, it was shown in [12] that
most metrics used in conventional machine learning, such as
accuracy and precision, are not useful in SCAs because of the
imbalanced data. The imbalanced data problem has often been
solved in machine learning by augmenting the minority class
data, removal of majority class data, or the introduction of a
penalty term to a loss function [18].

In SCAs, the effectiveness of SMOTE, which is a general-
purpose data augmentation technique, has also been exper-
imentally demonstrated in [12]. In contrast, the low-quality
samples added during data augmentation can lead to low
accuracy because the actual probability distribution of the
observed data is generally not known during augmentation.
In addition, because such data augmentation may artificially
increase the number of minority data, there is a possibility that
it could result in different data distributions during training
and inference and substantially affect the success rate (SR) of
SCA. For these reasons, a quantitative analysis on the effect
of data augmentation in profiling SCAs is required.

Another approach to solving the imbalanced data problem
uses a recent indicator called the cross-entropy ratio (CER),2

2A formal definition of CER is given in Section IV.
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which was reported and evaluated in [14]. CER is defined as
the ratio of the expected value of the log-likelihoods for all
wrong keys to the log-likelihood of the correct key. Therefore,
it is expected that minimizing the CER is equivalent to making
the NLLs of other key candidates larger than the NLL of the
correct key, which can help estimate the correct key. In [14],
the SR converged to 1 in probability when the CER was less
than 1.3 However, the proof validating CER in the literature
is based on an assumption that does not hold in practice [15].
As a result, the rationale for the CER loss is still unclear.

III. EVALUATION OF THE IMBALANCED DATA PROBLEM

In this section, we first state the reasons for the negative
effects of imbalanced data for DL-SCAs in a qualitative
manner, and then use the KL divergence to quantify the degree
of these effects.

A. Negative Effects of Imbalanced Data
The negative effects of imbalanced data in DL-SCAs orig-

inate from the following two factors specific to SCAs.

1) There is not always a strong relationship between
the side-channel information (e.g., the EM radiation
and power consumption) and the intermediate value of
interest.

2) The occurrence probability of labels (i.e., the HW/HD)
used for SCAs commonly follows a binomial
distribution.

First, classification tasks in conventional machine learning
(e.g., image and speech recognition) usually assume that a
given input (e.g., image and speech waveforms) generally
contains sufficient information for classification. The class
labels for these tasks are clearly interpretable and explainable
by humans, and in this sense, most data have clear criteria for
classification. However, in the case of SCAs, it is not always
possible to uniquely identify the intermediate value from
the side-channel information for some specific reasons (e.g.,
the algorithmic noise, the presence of countermeasures, and/or
a lower signal-to-noise ratio (SNR) at the measurement). As a
result, the side-channel information of a single trace may be
insufficient for estimating the values of the HW/HD. If the
side-channel information and the corresponding intermediate
value are close to independent, the probability distribution to
be estimated by the NN (i.e., p(l | x)) is close to p(l). Second,
the HW/HD of uniformly distributed random values follows a
binomial distribution; hence, p(l) = Bin(l), where Bin(l) is
a binomial distribution. Therefore, the true probability distri-
bution is sometimes very close to p(l | x) ≈ Bin(l). Because
of these two factors, the output distribution of an NN is often
heavily distorted towards the binomial distribution, which is a
major issue when using machine learning techniques in SCAs.

To explain how the bias induced by the binomial distribution
(i.e., the imbalanced data problem) affects DL-based SCAs,
consider a case in which the S-box output of the AES is
used as the intermediate value. In this case, the NN output

3This means that given an infinite number of traces at the time of key
estimation, SR will be 1 with infinitely high probability.

distribution (i.e., q(l = g(k, mi ) | xi ; θ)) represents the con-
ditional probability of the HW of the intermediate value given
trace xi . Here, the HW value is given as an integer from 0 to
8 according to the output of the S-box. To estimate the correct
key k∗, the output distribution of the NN should assign a high
probability to the correct label g(k∗, mi ). However, when the
output distribution is close to a binomial distribution, the NN
output distribution is strongly biased towards the binomial
distribution, especially when the relationship between the trace
and the HW value is weak. In this case, independent of the
correct label (i.e., the HW of the S-box output with a correct
key guess) for a given trace, the NN output probability is
biased such that the probability of HW = 4 is the highest and
that of HW = 0 or 8 is the lowest.

Moreover, when we estimate the S-box output for all key
candidates given a specific trace, the hypothetical HW for
each key candidate is determined by a binomial distribution
depending on the plaintext. If an infrequent label (e.g., HW =
0 or 8) is guessed with the correct key g(k∗, mi ), the estimated
likelihood of the correct key is lower than that of the wrong
key guesses that include frequent labels (e.g., HW = 4).
Such effects are not a problem in the ideal case, where an
infinite number of traces are available for the attack phase,
because all the key candidates will have the same amount of
bias.4 However, this negative effect is non-trivial in practice
because the number of available traces is finite. In particular,
the effect increases as the number of traces available for an
attack decreases.

B. Quantitative Evaluation Metric

For quantitative evaluation of the effect of imbalanced data,
we employ the KL divergence as an evaluation metric. The
basic idea of our metric is to address the problems mentioned
in the previous section by evaluating the distance between the
conditional probability p(l | x) and occurrence probability
of labels Bin(l) (i.e., the binomial distribution). The KL
divergence is given as a function that takes two probability
distributions and returns a real number greater than or equal
to zero (the KL divergence equals zero if and only if the two
distributions are identical) [16].

The KL divergence between p(l | x) and Bin(l) is defined
as follows:

DKL(Bin || p) = E
x∼p

E
l∼Bin

log

	
Bin(l)

p(l | x)




=
�
X

p(x)
�
l∈L

Bin(l) log

	
Bin(l)

p(l | x)



d x. (6)

This equation cannot be computed directly because probability
distribution p(l | x) is generally unknown. Instead, probability
p(l | x) is replaced by estimated probability q(l | x; θ)
of NNs. In addition, the expected value for the side-channel
information x is approximated from the finite number of

4For any key candidate, the number of traces when HW = 0 converges
to 1

256 of all the traces used in the attack phase. Similarly, when HW = 1,

the number of traces asymptotically converges to 8
256 = 1

8 of all traces. These
ratios are determined according to the binomial distribution.
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samples obtained during the profiling phase. Using these
approximations, (6) can be simplified to

D̂KL(Bin || q) = 1

NP

NP�
i=1

�
l∈L

Bin(l) log

	
Bin(l)

q(l | xi ; θ)



. (7)

Here, binomial distribution Bin(l) is given by

Bin(l) =
�r

l

�
2r

, (8)

where r denotes the bit length of the target intermediate value
(r = 8 in standard SCAs on AES) and

�r
l

�
is the binomial

coefficient.
A smaller KL divergence indicates that the NN is more

affected by imbalanced data because p(l | x) (i.e., the distri-
bution of the NN output) is close to the binomial distribution.
Here, an SCA is impossible in principle when the KL diver-
gence is zero because p(l | x) = Bin(l) ⇔ L ⊥⊥ X , where L
and X denote the random variables of the label and trace,
respectively. This indicates that the attacker can obtain no
information about the HW/HD of intermediate values from
side-channel traces. In contrast, a one-hot vector-like distribu-
tion has a high KL divergence,5 which is an ideal NN output
(if the NN is well-trained and sufficiently accurate). In fact,
as the KL divergence increases, the NN output becomes closer
to a one-hot vector-like distribution, where the likelihood of
a correct label is far greater than those of the wrong labels.
Thus, the evaluation of KL divergence values can estimate
the difficulty of DL-based SCAs. In other words, we can
efficiently perform a DL-based SCA by training an NN such
that the KL divergence increases. Moreover, the use of the
CER loss corresponds to such a training approach, as noted
in the next section.

IV. ANALYSIS OF THE CER LOSS USING

THE KL DIVERGENCE

In this section, we explain why the CER loss mitigates the
imbalanced data problem in DL-SCAs using the KL diver-
gence introduced above. It is mentioned in [14] that the reason
for effectiveness of the CER loss for imbalanced data problems
is the success of profiling SCA for CER < 1. However,
the attack assumption, which is that the intermediate values
of the correct and wrong key candidates are independent,
does not always hold [15]. In other words, there must be
another reason for the CER loss to be able to mitigate the
effects of the imbalanced data problem in DL-based SCAs.
To explain this reason, we first show that the increase in
the KL divergence between the binomial distribution and the
model’s output during the training phase helps to reduce
the negative effects of imbalanced data. We then show that
the CER loss is an example of this case, that is, training
a model using the CER loss substantially increases the KL
divergence.

5If the shape of p(l | x) is like a one-hot vector, p(l | x) takes a very small
value when l 
= l∗ , where l∗ is the correct label. The KL divergence becomes
large in this case because the argument of the log function in (6) is increased.

A. Effect of Increasing KL Divergence

As described in Section III, the imbalanced data problem
in DL-based SCAs comes from the bias (which follows the
binomial distribution) in the probabilities of label occurrence,
and results in an over-estimation of an incorrect label’s
probability. This suggests that the imbalanced data problem
can be solved if a model is trained to eliminate this bias.
Such training can be achieved by maximizing the KL diver-
gence in addition to the usual minimization of the NLL loss
function.

To explain the effect of maximizing the KL divergence
precisely, consider the following deformation of (7).

D̂KL(Bin || q) =
�
l∈L

Bin(l) log (Bin(l))

− 1

NP

NP�
i=1

�
l∈L

Bin(l) log (q(l | xi ; θ)) . (9)

In this equation, we focus on the second term because the
first one is a constant value (i.e., the entropy of binomial
distribution). The term allow us to confirm that maximizing
the KL divergence makes output probability q(l | xi ; θ) close
to zero; maximization of the KL divergence decreases the
probabilities of frequent labels (e.g., HW = 4) more heavily
than those of infrequent labels because (9) contains the inner
product of the binomial distribution and q(l | xi ; θ). This
means that training a model to increase the KL divergence
can reduce the negative effects of class imbalance. Note that
∀l ∈ L, q(l | xi ; θ) 
= 0 holds because the sum of q(l | xi ; θ)
for all l must be one.

B. Relationship Between the CER Loss and KL Divergence

We first describe the formulation of the CER loss. As noted
in Section II-A, the cross-entropy function shown in (2) is
an objective function for rendering an NN output probability
q(l | x; θ) close to true probability p(l | x). In addition,
the NLL in (3) is alternatively used in practice for evaluating
the cross-entropy function. Here, the NLLs calculated with a
wrong key guess do not necessarily converge to (2) in proba-
bility because the NLL in (3) is defined as an approximation
of the cross-entropy function where the labels are calculated
with the correct key k∗. If we compute the NLLs from labels
with a wrong key guess, we should take into account that these
labels have been sampled from a distribution that is different
from the distribution of true probability p(l | x).

Let pk(l, x) be the probability distribution of labels for a
key candidate k. We define the cross entropy between pk(l, x)
and the output probability of NN as

H (pk, q) = E
(l,x)∼pk

− log(q(l | x; θ))

=
�
X

�
l∈L
−pk(l, x) log(q(l | x; θ))d x, (10)

where we assume that NLLk(q) converges in probability
towards (10) when an infinite number of samples are given.
In addition, pk is equal to p if k = k∗. With pk , the CER can
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be defined as

CER(q) = H (pk∗, q)

E
k 
=k∗

H (pk, q)
. (11)

Using the above definition, we analyze the CER loss mini-
mization from the viewpoint of KL divergence. We now focus
on the denominator of the CER because the numerator is
equivalent to the common cross entropy. The expected value is
equal to the average, and therefore the denominator is rewritten
as

E
k 
=k∗

H (pk, q) = 1

|K| − 1

�
k 
=k∗

H (pk, q)

= |K|
|K| − 1

E
k

[H (pk, q)]− 1

|K| − 1
H (pk∗, q),

(12)

where K is the set of all key candidates (i.e., K = {k | 0 ≤ k ≤
255, k ∈ N} for typical SCAs on AES), and |K| denotes the
number of key candidates (i.e., 256). The coefficient of the first
term |K|/(|K|−1) is close to one. In addition, the second term
is far smaller than the first term because the NN is trained such
that H (pk∗, q) of the second term (i.e., the cross entropy for
the correct key) is minimized. The value of H (pk∗, q) is also
divided by |K|− 1(i.e., 255). Thus, (12) can be approximated
as

E
k 
=k∗

H (pk, q) ≈ E
k

H (pk, q). (13)

As a result, the cross entropy of the right-hand side of (13)
can be expanded with respect to plaintext m as follows:
H (pk, q) = E

(l,x)∼pk
− log(q(l | x; θ))

= −
�
X

�
l∈L

pk(l, x) log(q(l | x; θ))d x

= −
�
X

�
m∈M

pk(m, x) log(q(l = g(k, m) | x; θ))d x

= −
�
X

�
m∈M

p(m, x) log(q(l = g(k, m) | x; θ))d x

= E
(m,x)∼p

− log(q(l = g(k, m) | x, θ)). (14)

Here, M is the set of all plaintexts, and pk(m, x) =
p(m, x) because the relationship between the plaintext and
side-channel information sampled from the device does
not depend on the hypothetical key value. Therefore,
the cross-entropy function can be rewritten as

E
k

H (pk, q) = − E
(m,x)∼p

E
k

log(q(l = g(k, m) | x, θ))

= − E
(m,x)∼p

1

|K|
�
k∈K

log(q(l = g(k, m) | x, θ)).

(15)

We then separate the set of key candidates into subsets as
follows:

K =

l∈L

Kl , (16)

where Kl = {k | l = g(k, m)}. Because |Kl | =
�r

l

�
and g(k, m)

is constant against l, (15) can be represented as follows:
E
k

H (pk, q) = DKL(Bin || q)+ H (Bin), (17)

where H (Bin) denotes the entropy of the binomial distribution.
Consequently, the CER is approximated as

CER(q) ≈ H (p, q)

DKL(Bin || q)+ H (Bin)
. (18)

Thus, the minimization of the CER loss is equivalent to max-
imizing the KL divergence between the binomial distribution
and NN output distribution, and this explains the reason for the
effectiveness of CER loss for training with imbalanced data.

V. SOLVING THE IMBALANCED DATA PROBLEM

DURING INFERENCE

In this section, we propose an effective solution for the
imbalance data problem that is implemented during the infer-
ence phase (i.e., during the secret key estimation in the attack
phase). The basic idea of our method is to estimate the secret
key using the likelihood function based on the key value
probability (and inferred HW/HD) instead of the conventional
HW/HD-based likelihood function. The use of the key-based
likelihood removes the bias of binomial distribution in the
output distribution of the NNs during inference. Note that
we still use the NN for inferring the HW/HD; the NN does
not directly infer the 256 class labels that represent key
candidates as its output. In the proposed method, the network
first classifies a trace into r+1 labels representing the HW/HD
(e.g., r = 8 in the typical case of DL-SCAs on AES) and then
estimates the correct key using the key-based likelihood.

The existing solutions at the training phase described in the
previous sections, which forcibly increase the KL divergence
between the binomial distribution and the model output, may
move the output distribution of the model further away from
the true distribution p. In contrast, the proposed solution
makes the occurrence probabilities of class labels uniform.
This is similar to the approach in data augmentation; however,
our solution preserves dataset quality and cause no difference
in the distributions of the training and test data. This section
first presents the formulation and algorithm of the proposed
method, and then describes the relationship between conven-
tional data augmentation and the proposed method.

A. Inference Using Key-Based Likelihoods

The proposed key estimation method employs the NLL
function of key value probability instead of the NLL of the
HW/HD. As mentioned in Section III, when the network out-
put distribution is almost equal (or quite similar) to a binomial
distribution (i.e., when the KLD is close to zero), it has a
strong negative effect on conventional key estimation using
(5) because the conventional method does not compensate for
any bias. In other words, we cannot avoid the imbalanced data
problem as long as (5) (i.e., the HW/HD-based likelihood of
NLL) is used to estimate the key. To address this problem,
we focus on the key value probability, which should always
be uniformly distributed in the context of SCAs.
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The NLL of key value probability (key-based NLL or
KNLL) is defined as follows:

KNLLk(p) = − 1

NA

NA�
j=1

log p(k | m j , x j ), (19)

where k denotes the key candidate and NA represents the
number of traces used in the attack phase. Note here that
the key value probability p(k | m j , x j ) has no inherent bias,
unlike the HW/HD probability.

To calculate the key value probability from the model’s out-
put, we rewrite (19) with the joint probability p(k, l | m j , x j ).
Let l j be the label determined by m j and k. Equation (19) is
then given as follows:

KNLLk(p) = − 1

NA

NA�
j=1

log p(k, l j | m j , x j )

= − 1

NA

NA�
j=1

log p(k | m j , l j , x j )p(l j | x j )

= − 1

NA

NA�
j=1

log p(k | m j , l j )p(l j | x j ), (20)

where we utilize the fact that a key value and a trace have
conditional independence given a label and a plaintext (i.e.,
p(k | m j , l j , x) = p(k | m j , l j )). Here, p(k | m, l) is the
probability that a value of k is selected from the uniform
distribution given an HW/HD, and therefore is given by the
inverse of the binomial coefficient, i.e.,

p(k | m, l) =

⎧⎪⎨
⎪⎩

1� r
g(k,m)

� (l = g(k, m))

0 (otherwise)
, (21)

where r is the bit length of the intermediate value. The
posterior probability of the class label given a trace (i.e.,
p(l j | x j )) can be approximated by the output distribution
of the NN (i.e., q(l j | x j ; θ̂ )) as described in Section III, and
therefore (20) is estimated as follows:

KNLLk(p) ≈ KNLLk(q, θ̂)

= − 1

NA

NA�
j=1

log
q(l = g(k, m j ) | x j ; θ̂ )� r

g(k,m j )

� . (22)

Consequently, in contrast to the conventional HW/HD-based
NLL of (5), (22) includes the inverse of the binomial coef-
ficients, which indicates that the KNLL cancels out the bias
of the binomial distribution. Therefore, (22) can efficiently
estimate the correct key even when the probability estimated
by the NN q(l | x; θ̂ ) is close to the binomial distribution.
In other words, the use of KNLL essentially solves the
imbalanced data problem even when the traces do not contain
sufficient information about the intermediate value of interest.

Fig. 1 illustrates the process of our method when the correct
label is zero for a trace and the correct key value is 47.
Ideally, the probability of the correct HW/HD label in the
NN output should be much higher than that of the others,
as in a one-hot vector. However, in practice, the network

Algorithm 1 Secret key estimation using KNLL
Require: Data for profiling: SP , Data for attack: SA , Set of

key candidates: K, Bit-length of intermediate value: r
Ensure: Estimated secret key: k �
1: θ ← Train(SP)
2: for k ∈ K do
3: KNLLk ← 0
4: end for
5: invcoef = [1/

�r
0

�
, 1/

�r
1

�
, . . . , 1/

�r
r

�]
6: for k ∈ K do
7: for (m, x) ∈ SA do
8: l ← g(k, m)
9: KNLLk ← KNLLk − (log(q(l | x; θ)) +

log(invcoef[l]))
10: end for
11: KNLLk ← KNLLk/|SA|
12: end for
13: k � ← arg min

k
KNLLk

14: return k �

output will be close to a binomial distribution, as Fig. 1(a)
shows, in which the probability of the correct label (red) is not
necessarily high. To address this problem, we first divide the
NN output probabilities by the binomial coefficients, as shown
in Fig. 1(b). Note that the sum of the divided outputs is not
equal to one at this stage. Next, we distribute these divided
outputs to all the key candidates, as shown in Fig. 1(c); the
probability of each key candidate is given accordingly. As a
result, the sum of probabilities for all key candidates becomes
one, and we obtain the key value probabilities for the trace.
Finally, we calculate KNLLk using the key value probabilities
given by the traces of the attack phase.

Algorithm 1 shows the pseudo code of the proposed method,
where the inputs are the data for profiling and attack phases,
and the output is the estimated secret key k � obtained by
the model. In Line 1, we train the model using the profiling
data with the conventional HW/HD-based NLL. In Lines 2–5,
we initialize two variables KNLLk and invcoef. Here K is
the key space, KNLLk is a variable to store the key-based
NLL of a key candidate k, and invcoef is the array of
inverted binomial coefficients. In Lines 6–12, we calculate
the key-based NLL of each key candidate using the trained
model. Note that this algorithm is the same as conventional
HW/HD-based secret key estimation except for the subtraction
of the logarithm in invcoef (i.e., − log(invcoef[l])). Finally,
in Lines 13–14, we return the key candidate with the smallest
key-based NLL as the estimated key k �. Hence, our method
is easily implemented using only small modifications to the
conventional inference phase.

B. Relationship to Data Augmentation

We explain the relationship between data augmentation
techniques and the proposed method based on the key-based
likelihood. As an example, we consider SMOTE, which is
one of the most well-known data augmentation algorithms for
increasing minority data when training an NN [19]. In machine
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Fig. 1. Illustration of the proposed method: (a) NN output, (b) NN output probabilities divided by the binomial coefficients, and (c) key value probability
(The values in this figure are not real values by experiment, but are derived from hypothetical models).

learning, various data augmentation algorithms have been
presented based on SMOTE. SMOTE first randomly selects
a sample from the minority label data and then selects a
other samples in the vicinity of the sample, where a is a
predetermined parameter given as an integer. Next, a point
between these a randomly selected neighborhood points and
the first sample point is added to the data as a new point. This
procedure is repeated until the occurrence probabilities of the
labels are equalized.

As shown in [15], a SMOTE-based data augmentation could
also improve DL-based SCAs if the side-channel information
does not contain much information about the HW/HD. One of
the major reasons this would work is that SMOTE-based data
augmentation would help move the network output distribution
further from a binomial one and closer to a uniform distribu-
tion. This can be described by Bayes’ theorem as follows:

p(l | x) = p(x | l)
p(x)

p(l). (23)

When the relationship between the side-channel information
and the label is weak, the right-hand side of (23) is equivalent
to label occurrence probability p(l) under the approximation
of p(x|l)

p(x) ≈ 1. This suggests that SMOTE can mitigate the
negative effects of imbalanced data by making the occurrence
probability p(l) uniform. We note that the use of the proposed
key probability corresponds to dividing both sides of (23)
by p(l), and therefore it can reduce the negative effect of
imbalanced data. Thus, the two methods would have a similar
effect on the imbalanced data problem.

However, data augmentation methods such as SMOTE
never consider the specific features of side-channel informa-
tion, such as the jitter included in traces [9], and do not
guarantee the quality of the added data because the true
distribution of the data is generally unknown. As a result,
added samples may be far from actual traces and may not
necessarily be effective for DL-SCAs. In fact, it was reported
that a SMOTE-like data-augmentation technique sometimes
decreased the performance of a model because it often added
unnatural samples [20], [21]. In addition, samples added by the
interpolation of minority class samples could make a model
overfit the data. In contrast, the proposed method does not
require any additional samples; therefore, the trained NN is
not affected by the dataset quality. The advantages of the
proposed method over SMOTE-based data augmentation are
experimentally demonstrated in Section VI.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup
In this section, we present the results of our evaluation of

the proposed method and the arguments presented in this paper
through a set of experiments. We employed the following two
datasets for the evaluation of SCAs.

1) AES_RD Dataset: The AES_RD dataset contains power
traces obtained from a software 128-bit AES implemented
on an 8-bit AVR microcontroller with a random-delay-based
countermeasure [22]. The countermeasure consists of an
insertion of instructions to randomly generate delay, which
dynamically changes the point of interest and reduces the
signal-to-noise ratio to an extremely low value. In this exper-
iment, the 50,000 traces in the AES_RD dataset are divided
into two sets of 25,000 traces. One set is used for training,
and another is used for testing.

2) ASCAD: The ASCAD dataset [23] is a public dataset
for assessing SCAs using machine learning and has been used
in many previous studies on DL-based SCAs [14], [24]. The
ASCAD dataset contains power traces of AES software imple-
mentation running on ATmega8515 with a Boolean-masking to
counter first-order attacks. The dataset consists of two subsets:
variable-key and fixed-key subsets. Similar to many previous
studies, we used the fixed-key set in this study. The number
of traces in the fixed-key set was 50,000 for training and
10,000 for testing. In addition, 10% of the traces used for
training were used for validation, and the remainder were used
for practical training (i.e., updating the model parameters).

The proposed and conventional DL-based SCAs were
applied to the datasets under the following conditions.
We employed a model recommended in [24] because the
network architecture is dependent on the dataset. The Adam
optimizer [25] was used with a learning rate of 0.0001. The
batch size and the number of training epochs were basically
set to 50 and 100, respectively. The trained model was used
at each epoch for key estimation because the purpose of this
experiment is to show the relationships among the following
metrics in SCAs: the NLL loss, KL divergence, and SR. The
labels are given as the HWs of the first-round AES S-box
output computed from the plaintext and secret key. To calculate
SRs, we estimated the sub-key value 1,000 times and counted
the number of times when the first rank is that of the correct
key. At each evaluation, we choose 500 traces from the test
data randomly and uniformly. We used Intel Xeon W-2145
CPU with 128 GB memory, GeForce GTX 2080 Ti, and
TensorFlow 2.4.1 for the experiments.
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Fig. 2. NLL loss and KL divergence.

B. Comparison of Likelihoods

We first evaluated the proposed method and arguments in
Sections III and V through an experimental attack using the
key- and HW-based likelihoods. The conventional (HW-based)
NLL loss was used for training the NN. Note here that
the learning rate for ASCAD was set to 0.005 only in this
experiment in order to avoid underfitting the training set. The
training times for AES_RD and ASCAD datasets were 278 and
300 seconds, respectively.

Fig. 2 shows the NLL loss and KL divergence in training
the models, where the horizontal axes represent the number
of epochs, and the vertical axes represent the values of loss
and KL divergence in Figs. 2(a) and (b), respectively. Fig. 3
shows the SRs of the trained models on AES_RD and ASCAD
datasets with (a) the HW-based likelihood and (b) the proposed
key-based likelihood for various numbers of epochs and traces.
Fig. 4 shows an example of the cross-section view of Fig. 3
for 500 traces.

From Fig. 2(b), we confirm that the KL divergence is very
small at the beginning of training and gradually increases as
the training progresses for both the AES_RD and ASCAD
datasets. This indicates that the model first fits the binomial
distribution at the early stage of training, and then trains
such that the probability of the correct label increases. The
results validate our arguments 1) and 2) in Section III; for
these reasons, the KL divergence is initially very close to
the binomial distribution. In addition, Fig. 2(a) shows that the
validation loss of the trained model for ASCAD is the lowest
at approximately 20 epochs and then increases gradually. This
increase shows the model is overfitting. However, the SR
on ASCAD dataset with the HW-based NLL continues to
improve even after 20 epochs, as shown in Fig. 3(a). This
indicates that overfitting cannot always be negative in the case
of DL-based SCAs. This further validates our argument; as
the KL divergence increases even after 20 epochs, as shown
in Fig. 2(b), the model overfitting reduces the negative effect of
imbalanced data by moving the model output far away from a

Fig. 3. Success rate of the conventional and proposed methods.

Fig. 4. Success rate of the conventional and proposed methods for the
AES_RD dataset (left) and ASCAD dataset (right) for 500 traces.

binomial distribution. More precisely, for the HW-based NLL,
the negative effect of the imbalanced data may be higher than
that of overfitting; and therefore, the increase in KL divergence
can improve the attack performance even under overfitting.

Next, we confirm from Figs. 3 and 4 that the SR result of the
proposed key-based likelihood is clearly superior to that of the
HW-based likelihood. The results show that the key estimation
using KNLL is better than HW-based NLL for any value of
KL divergence. In addition, Fig. 4 shows that smaller values
of KL divergence lead to larger differences in the SR values
of the HW-based likelihood and key-based likelihood. This
suggests that the proposed KNLL has a larger advantage over
the conventional HW-based NLL on DL-based SCAs when
the output distribution of the model is closer to the binomial
distribution.

C. Analyzing Data Augmentation Method

We then analyze the effect of data augmentation from the
viewpoints of KL divergence and the NN output probability.
In this experiment, we used SMOTE as a typical data aug-
mentation method and used the implementation provided in
an open-source library “imbalanced-learn” as a conventional
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Fig. 5. NLL loss and KL divergence with SMOTE.

Fig. 6. Success rate of SMOTE for the AES_RD dataset (left) and ASCAD
dataset (right).

method in [12]. The number of nearest neighbors used to
augment the data points was set to five, and the number of
minority labels was increased until the occurrence frequencies
for all labels became the same. In this paper, we reproduced
the settings of [12] as much as possible, although its para-
meters are not available due to the lack of description in the
paper and the public source code. Note that we calculated
the validation loss during training using the original samples,
and therefore the validation loss and KL divergence show how
well the trained model fits the test data. At the inference phase,
we used the conventional HW-based likelihood to estimate the
secret key. The training times of AES_RD and ASCAD with
SMOTE are 661 and 680 seconds, respectively.

Fig. 5 shows the NLL loss and KL divergence of the trained
model using datasets augmented using SMOTE. The results
confirm that the KL divergences of these models generally
become larger than those trained with the original datasets
(Fig. 2(b)). This is because increasing the number of minority
class data using SMOTE makes the probability distribution for
label occurrence uniform, as described in Section V-B. In addi-
tion, the results show that the validation loss also increases
because the probability distribution of training is different from
that of validation because of the data augmentation.

Fig. 6 shows the SR of key estimation using the trained
models. We confirm here that SMOTE improves the SR of the

Fig. 7. CER loss and KL divergence.

Fig. 8. Success rate of models trained using the CER loss for the AES_RD
dataset (left) and ASCAD dataset (right).

Fig. 9. Success rate of models trained using the CER loss for the AES_RD
dataset (left) and ASCAD dataset (right) when the number of traces varies
from 100 to 500.

HW-based NLL when compared with the results in Fig. 3(a).
In contrast, the results are not better than those obtained by
the proposed key-based likelihood, as shown in Fig. 3(b).
This is because, whereas SMOTE is able to mitigate the
negative effects of imbalanced data, the reduction in dataset
quality caused by the artificial examples added by SMOTE
negatively affects the SR results. Thus, the proposed method
is more likely to obtain better results than data augmentation
techniques because the key estimation using KNLL does not
cause a deterioration in dataset quality.

D. Comparison of Loss Functions

We analyze the results of the key estimation using the model
trained with the CER loss. We computed the CER loss based
on the approximation presented in [14]. Here, we set the
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Fig. 10. Success rate of models trained on AES_RD dataset with trained traces varying from quarter to whole.

Fig. 11. Success rate of models trained on ASCAD dataset with trained traces varying from quarter to whole.

number of repetitions for averaging NLLs to 100 throughout
our experiments because detail on how to set this number was
not given in the literature. The training times of AES_RD and
ASCAD datasets with CER loss were 723 and 1034 seconds,
respectively.

Fig. 7 shows the CER loss and KL divergence of the model
training on the datasets. We used the HW-based NLL for key
estimation, similarly to [14]. The results confirm that the KL
divergence of the models increases rapidly and the CER loss
decreases rapidly as the training progresses. This is consistent
with the analysis of the CER loss in Section IV. Fig. 8 shows
the SR using the models trained with the CER loss. The
result shows that the SR results are clearly better than their
counterparts trained with the NLL loss in Fig. 3(a). This is
because the increase of KL divergence between the model
output and the binomial distribution mitigates the negative
effect of imbalanced data.

In contrast, as shown in Figs. 7(a) and 8, although the
validation loss decreases monotonically, the SR does not nec-
essarily increase. Fig. 9 shows an example of a cross-section
view of Fig. 8 for 100, 200, 300, 400, and 500 traces.
In particular, the figure clearly shows that the SR decreases at
around 100 epochs in the AES_RD dataset. This is inconsistent
with the statement in [14] that the CER loss is a valid metric
for DL-based SCAs. As mentioned in Section IV, one of
the reasons for this is the assumption that the intermediate
values computed from the correct and incorrect keys are
independent [15].

Finally, the SR results are worse than those obtained using
the proposed method, as shown in Fig.3(b). This indicates that
the use of the proposed key-based likelihood is more effective
than that of CER loss for imbalanced data problems under
the conditions of this experiment. Note here that the result,
in which a monotonically increasing KL divergence does not
necessarily improve the SR, is not inconsistent with the claim

in this study. This is because the KL divergence is only a
metric of the impact of imbalanced data (i.e., how much the
model output is biased toward the binomial distribution), and
not a metric for estimating the SR of DL-based SCAs.

E. Effect of Decreasing the Number of Trained Traces
We finally analyze the effect of decreasing the number of

trained traces on the SR. To investigate this effect, we per-
formed key estimations using models trained on half and quar-
ter the numbers of traces of AES_RD and ASCAD datasets.
We used the same hyper-parameters as Section VI-B–VI-D in
this experiment. Fig. 10 and 11 show the SRs using models
training on original, half, and quarter of the training data.
Because the number of iterations per epoch (i.e., the number
of parameter updates) decreases when the training data is
reduced, we increased the number of epochs according to
the amount of reduced training data. For example, we dou-
bled the number of epochs when the training data are half.
Fig. 10 and 11 show the SRs of the best performing trained
model for all epochs. “Baseline” in the figures is the case
where conventional HW-based NLL is used for both training
and inference.

The results confirm that the performance of all methods
is degraded as the number of traces decreases. In particular,
the data-augmentation method SMOTE does not achieve suc-
cessful key recovery when the training data is small. Because
SMOTE is a linear interpolation-based data-augmentation
method, the variation of the augmented data is reduced when
the training data is small, which would yield a rapid over-
fitting of the augmented traces. The performance of models
using CER loss is generally better than that of the baseline
models and models with SMOTE. However, the result for
the 6,250 traces in the AES_RD dataset shows that the
performance with CER loss can be significantly degraded
when the number of traces is small. Finally, the proposed
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method achieves the best performance except for 12,500 traces
in the ASCAD dataset. In addition, the reduction in per-
formance with respect to the reduced number of traces is
almost constant. In this sense, the proposed method is robust
to the decrease in training data. These results allow us
to conclude that the proposed method has the best overall
performance in this experiment. Although CER loss has a
comparable performance to the proposed method in several
settings, the performance of CER loss is not convincing for
some settings. Thus, the proposed method can efficiently
eliminate the negative effects of imbalanced data while being
robust to varying experimental settings in comparison with the
conventional methods.

VII. CONCLUSION

In this study, we presented an analysis of the imbalanced
data problem, which is one of the main issues hampering the
application of DL to SCAs. In particular, we argued that the
imbalanced data problem is caused by two factors: 1) the weak
relationship between side-channel information and the inter-
mediate value to be estimated, and 2) the occurrence proba-
bility of labels biased by a binomial distribution. To evaluate
the negative effects quantitatively, we employed an evaluation
metric based on the KL divergence between the model’s output
distribution and the binomial distribution. We then used the KL
divergence to describe why data augmentation (like SMOTE)
and the CER loss at the training phase can effectively mitigate
the negative effect of imbalanced data.

In addition, we proposed a new solution to mitigate the
imbalanced data problem at the inference phase and explained
the relationship between the proposed solution and the conven-
tional ones. The proposed key estimation method is based on
the key-based likelihood function instead of the conventional
HW/HD-based one, and its aim is to efficiently estimate the
correct key even when the KL divergence is small (i.e., when
application of the conventional method is difficult).

Subsequently, we demonstrated the validity and effective-
ness of our analysis and solution through experiments using
two datasets under various conditions. From our experimental
results, we obtained the following conclusions:

1) The outputs of trained models are sometimes strongly
biased toward the binomial distribution in DL-based
SCAs.

2) The KL divergence works as a metric to evaluate the
negative effect of binomial distributions.

3) The reason for SMOTE and CER loss mitigation in
the imbalanced data problems can be explained by
KL divergence, that is, they move the model output
distribution far away from a binomial one.

4) The proposed method is more effective than the con-
ventional methods such as SMOTE and CER loss in
reducing the negative effects of imbalanced data.

Subsequent applications of the proposed method to various
types of cryptographic modules remain a future work. For
example, this study mainly focused on the software implemen-
tation of AES, but the applicability of the proposed method
to other hardware architectures and cryptosystems (i.e., sym-
metric and public key cryptography) should be investigated.

In particular, the use of our method to effectively solve
the imbalanced data problem would be more important in
cases with more complex and larger architectures as well as
cryptosystems that may have intermediate values with longer
bit lengths. In addition, the task of assessing the vulnerability
of AES to DL-based SCAs using the proposed method should
be examined in detail. For example, our method can reduce
the difference in the success rate of attacks on the labels of
intermediate values and attacks on the HW/HD, which could
lead to the identification of leakage sources.
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