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Abstract— The dynamic redistribution of filtering rules
between firewalls, which are located in the same network, is a
technical solution that can cope with temporary changes in the
traffic load processed by the firewalls themselves. This paper
presents a novel formal model for networks including multiple
cascaded firewalls, that can be leveraged to enable the transfer of
a set of rules from a firewall to its downstream neighbors when
the changes in the input traffic profile suggest to do so. With
respect to other solutions appeared in the literature a formal
approach, besides providing unambiguous specifications and
mathematical proofs of correctness, also enables the computation
of theoretical bounds for the expected performance before the
proposed scheme is actually deployed in the target network.
The underlying mechanism, on which our approach is based,
is the reduction of the average number of rules checked per
packet in order to increase the packet processing rate. Our
network model takes into account both the system topology and
firewall characteristics. A suitable transformation algorithm is
then introduced, which is able to preserve the security integrity
of the network while moving rules between cascaded firewalls
and allowing tangible performance improvements in terms of
packets processing rate for a given traffic profile. Correctness of
the proposed solution has been formally proven and validated by
means of simulation. Performance figures have also been obtained
by running the proposed algorithm in a laboratory experimental
test-bed.

Index Terms— network security, firewall, rule distribution,
formal methods, industrial communication networks.

I. INTRODUCTION

TODAY, protection and effective management of digital
communication networks (DCNs) in all application areas

are recognized key aspects, which are gaining increasing
attention even in domains that were not particularly sensitive
to security issues till few years ago. Typical examples are
networked automation systems, factory networks and dis-
tributed critical infrastructures [1], [2], which have become
more and more prone to cyber-attacks since they started to
migrate from proprietary communication technologies to more
open, Internet-based solutions, and where the awareness for
improved security guarantees is constantly rising [3], [4].

Filtering devices, in general, and firewalls (FWs), in partic-
ular, are popular hardware (h/w) and software (s/w) elements
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that are widely employed in digital networks a) to block
unwanted traffic (erroneously) forwarded to any destination,
b) to prevent malicious messages from reaching their targets
and c) to deploy countermeasures against attacks originating
from the cyberspace [5].

As networks grow in complexity, also because of powerfully
emerging paradigms such as edge and fog computing [6], [7],
Internet of Things (IoT) [8], [9], Industrial IoT (IIoT) [10],
[11] and Industry 4.0 [12], [13], the number of firewalls they
include also increases and hierarchies of (cascaded) h/w and/or
s/w FWs can be found more and more frequently in real
systems.

Unfortunately, FWs can also become performance bottle-
necks and even preferential targets for threats such as denial-
of-service (DoS) attacks. By its nature, FW filtering mainly
consists of checking each incoming packet against a sequence
of rules in order to decide whether the packet has to be either
blocked or forwarded. Thus the filtering performance heavily
depends on the (average) number of rules that are checked
before making the decision. If the FW input load becomes
too high, as in temporary traffic peaks or in DoS attacks,
the latency experienced in packet processing can become too
large and even cause packet losses.

To mitigate this problem, different solutions can be adopted,
which either operate within a single FW, i.e., intra-firewall
techniques, or rely on suitable network-level approaches
involving multiple FWs, i.e., inter-firewall approaches.

Intra-firewall contributions appeared in the literature
include, for instance, (optimal) rule ordering [14]–[18],
firewall compression [19], [20] and rule analysis [21], [22].
Inter-firewall alternatives are frequently based on special archi-
tectures such as parallel firewalls [23]–[25]; another approach
leverages the transfer of filtering rules among firewalls located
in the same network [26], [27].

In this paper we propose a formal approach and an algo-
rithm based on the redistribution of rules between cascaded
firewalls in order to mitigate the performance loss in terms of
packet processing rate experienced by a FW, when it becomes
overloaded with the flow of packets it has to filter. With respect
to other techniques appeared in the literature our solution
does not require any change neither to the original routing
of packets nor to their formats and fields. On the one hand,
this aspect is particularly important in those situations, such as
many factory, automation and process control networks, where
the underlying communication infrastructure is not flexible
enough to support dynamic re-configurations or the network
is not able to tolerate freezes for offline modifications without
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compromising the effectiveness of the control system. For the
same reasons, neither the introduction of new h/w FWs nor
the dynamic instantiation of virtual FWs is feasible in these
scenarios, as the system must often work 24/7 and cannot
be stopped or reconfigured on the fly. Thus deployed FWs
can become bottlenecks in heavy traffic load conditions [3],
[28]. On the other hand, the technique proposed in this paper
does not rely on the availability of special h/w. For instance,
advanced FWs make use of content-addressable memories
(CAMs) or even ternary CAMs (TCAMs) to speed-up their
operations, but they are rarely found in industrial devices
which are, by contrast, quite simple and equipped with rela-
tively low-power computing resources, as their design focuses
on (mechanical) robustness over performance. With such a
kind of constraints a software redistribution of the filtering
load enables a better use of the existing h/w without affecting
negatively the system functional requirements. In our case,
the penalty to be paid to achieve improvements to the load
filtering capability of the target FW is an increase in the
communication bandwidth usage for links connecting the FW
itself to its downstream neighbors.

The main contributions of this work are therefore the
following:

1) A network formal model, which is able to deal with mul-
tiple cascaded firewalls and can be adopted to describe
most systems that are found in real applications.

2) A RulE DIstribution ALgorithm (REDIAL) to move
rules from a given FW to firewalls downstream and
decrease the average number of rules checked per
packet, in order to reduce the packet processing activity
by the FW of interest. Correctness of the proposed tech-
nique is also formally proven and verified by simulation.

3) A simple model which can help in predicting the per-
formance improvement achievable with the FW transfor-
mation before actually deploying the proposed technique
in the target network. Lower and upper bounds are
provided for the obtainable gain in terms of packet
processing rate by the firewall.

4) Performance results obtained by simulating our solution
in a number of conditions that confirm its advantages
and a good accordance with the theoretical model.

5) Some experimental performance figures obtained by
running the proposed solution in a simple but realistic
laboratory test-bed.

Our approach assumes the availability of some kind of
orchestrator/supervisor, which has overall visibility of the
security settings for the whole network, and is able to coordi-
nate and manage the filtering actions of multiple firewalls.
The reader should be warned that this requirement, which
is also found in proposals by other authors, can introduce
some implementation cost. However, this kind of support
and products are not uncommon, as they have been made
available since quite a long time in proprietary technologies,
i.e., [29], [30], though they often involve the adoption of s/w
and h/w devices from the same manufacturer(s). In addition,
today well-assessed paradigms such as software-defined net-
working (SDN) [31]–[33] and network function virtualization
(NFV) [34] enable the design and deployment of inter-firewall

solutions, by providing the needed flexibility and control/data
decoupling also in networks adopting open and heterogeneous
devices.

In general, moving rules between different FWs could be
difficult because of the existence of heterogeneous admin-
istration domains and authorities. In the application areas
considered in this paper, however, this aspect is rarely an issue
as industrial/enterprise networks are often under control of few
coordinated entities (i.e., the information technology (IT) and
operation technology (OT) departments) belonging to the same
organization.

The remaining part of the paper is organized as follows:
Sect. II introduces the adopted notation and our model,
whereas Sect. III presents the proposed approach in details
and, in particular, the RE DI AL algorithm together with
the formal proof that preserves the security integrity of the
network. Sect. IV deals with the computation of performance
bounds for our solution and shows the results obtained by sim-
ulation. Experimental performance figures are also introduced
in this section. Sect. V discusses some related works appeared
in the literature, pointing out similarities and differences with
respect to our solution and, finally, Sect. VI draws some
conclusions.

II. MODELING OF MULTIPLE FIREWALL ARCHITECTURES

A. Streamed Topology

The model we consider is able to formally describe real
architectures and types of topology, while easing and making
the presentation of the proposed technique effective. In partic-
ular, we are interested in networks which include three distinct
classes of devices:

• Filtering Devices (i.e., firewalls): these elements can be
modeled with one input and one output port, and are
able to forward to their output (some subset of) packets
received from their input. The filtering function is based
on a suitable set of rules.

• Routing Devices (i.e., switches and routers): these ele-
ments are generally equipped with several input/output
ports, and are able to properly forward packets from an
input to one or more outputs on the paths towards their
intended destinations.

• End Devices (i.e., personal computers, servers, special
purpose computing nodes): these elements are the ori-
gin(s) and/or destination(s) of packets. They communicate
through an input/output network interface to receive and
send data.
For the purpose of modeling, a whole subnetwork can
be encapsulated into a suitable end device, if its building
blocks and connections are not of interest, thus masking
the subnetwork internal topology and unnecessary details.
Similarly, real devices can be modeled by composing
one ore more logical elements (i.e. a personal computer
equipped with two or more network interfaces and run-
ning a software firewall can be modeled by combining
one filtering element plus one routing and end device
pair). This choice enables smoothed transformations of
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Fig. 1. Streamed topologies.

detailed and fine-grained architectures into simpler sys-
tems where one or more subnetworks are shrunk into a
single device, and vice versa.

In a modeled network a logical firewall (possibly configured
without any filtering rule) is always placed between any pair
of not filtering devices and vice versa.

Thanks to the assumptions described above we have that:

• A direct (simple) link between any two devices can
be modeled as a trivial firewall which forwards all the
incoming packets.

• A direct link can also be seen as a trivial routing device.
• An end device can consist of a shrunk subnetwork, which

can be either expanded or compressed recursively as
necessary.

Flows are other main elements in our model. They take
into account any stream of packets originating from an end
device and flowing through links and intermediate elements
to one or more destination devices. The class of systems
we consider has a tree-shaped structure, where each source-
to-destination path is rooted in the flow-originating device.
In general, this holds for every node in the tree, and even
leaf nodes can be seen as sub-trees, that can be recursively
expanded/compressed as necessary. For this reason, a set of
IP addresses can be associated with any end device.

Without any loss of generality, a network model can look
like the one sketched in Fig. 1a: we call this structure reference
streamed topology (RST). It is worth noting that different
RSTs are possible for the same physical system, depending on
the flow(s) being considered. This is shown in Fig. 1b, where
the RST of interest is rooted in d2,2, and can be expanded
as in Fig. 1c by replacing d2,N with its shrunk subnetwork.
In all cases the flow-originating device is grayed for better
readability.

In the following, to keep the notation simple, RST device
names are chosen so as to remind the sets of associated IP
addresses. In Fig. 1a this implies that:

1) The IP address set d0 for the root of the tree is known
a priori.

2) The set d2,i for each leaf i is known a priori.

3) All sets for both the root and leaves are disjoint (not
overlapped) and not interleaved.

4) The set for each routing device is the union of sets
for each subtree rooted in it, e.g., d1 = ⋃N

i=1 d2,i .
In general, this set can be computed as the union of
all sets in each subtree through a postorder visit which
returns the set for each reached node and firewalls are
treated as simple links.

B. Firewalls

We specifically consider IP-layer firewalls, whose filter-
ing fields are source and destination IP addresses, source
and destination port addresses and protocol number. How-
ever, the following definitions are general enough and might
be adopted to describe firewalls operating at any network
level.

Definition 1: A d-tuple of ranges F = ( f1, . . . , fd ) is a
tuple of d finite ranges of non-negative integers, fi ⊂ N0 ∀ i ∈
[1, d].

As an example, we can define F to describe all the filtering
fields taken into account by a firewall and, consequently,
the corresponding fields in network packets: F = ([0, 232 −
1], [0, 232 − 1], [0, 216 − 1], [0, 216 − 1], [0, 28 − 1]), respec-
tively representing source and destination IPv4 addresses,
source and destination port addresses, and protocol number.

Definition 2: Given a d-tuple of ranges F = ( f1, . . . , fd ),
let’s define a packet P over F as:

P = (p1, . . . , pd) where each pi ∈ fi .
Definition 3: Given a d-tuple of ranges F = ( f1, . . . , fd ),

P is the set of all possible packets over F, i.e.
P = {P = (p1, . . . , pd) where each pi ∈ fi } ,

and its cardinality is |P | = ∏
i | fi |, where | fi | stands for

the cardinality of fi , i.e., the width of its corresponding range.
Definition 4: Given a d-tuple of ranges F = ( f1, . . . , fd ),

let’s define a condition C over F as:
C = (c1, . . . , cd ) where each ci ⊆ fi .

Definition 5: A condition C over P defines PC ⊆ P where
PC = {(p1, . . . , pd) ∈ P where each pi ∈ ci } ,

and its cardinality is |PC | = ∏
i |ci | ≤ |P |.
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Fig. 2. Firewall filtering operations.

Definition 6: A firewall f w is a finite sequence of rules
f w = (r1, r2, . . . , r| f w|) ,

where the number of rules | f w| is called firewall cardinality.
Each rule is defined as

r = (C, action) ,
and action varies in the finite set of all possible firewall
actions �.

Definition 7: Given a packet P and a rule r = (C, action),
where both P and C share the same d-tuple of ranges F,
we say that P matches r iff P ∈ PC.

The packet filtering activity performed by a firewall consists
of searching a matching rule for any incoming packet, and
in applying the corresponding action to the packet itself.
This is schematically shown in Fig. 2. Since a packet could
match, in principle, more than one rule in the firewall set
and the matched rules might correspond to conflicting actions,
a strategy must be defined to unambiguously select the rule
and action to be performed. Typically, firewall rules are
checked sequentially and, as soon as a match is found for the
incoming packet, the corresponding action is executed (first
matching strategy, FMS). Although other strategies could also
be adopted, FMS is the most common in many real devices,
therefore we will assume the use of FMS in the following.

Similarly, we assume that the set of all possible firewall
actions is � = {allow, deny, goto n}, that is a firewall can
either forward (allow) or discard (deny) any received packet,
unless further analysis is needed and the process continues by
checking the rule having index n ∈ [1, | f w|]. As a matter of
fact, we are not interested in more subtle differences between
possible actions such as drop, reject and/or log, as we focus
only on the firewall block/forward filtering activity.

A firewall f w is said to be complete if the analysis results
in any packet P ∈ P matching at least one rule in f w, whose
associated action is either allow or deny. In real systems,
a firewall can have multiple sub-sequences of rules and goto n
actions might introduce loops, in principle. Our completeness
assumption guarantees that the set of rules can always be
modelled as a directed acyclic graph (DAG). In other words,
the same packet cannot be checked against the same rule more
than once (i.e., the evaluation flow does not include loops that
would prevent the evaluation process to end, thus violating the
completeness requirement).

With a little abuse of terminology in the following we
will call f w both the firewall device and its rule set, unless
ambiguities might arise. Moreover, we will adopt the dotted

notation to identify fields in (conceptually) nested structures,
e.g., f w.ri .action stands for the action associated to the
i -th rule of firewall f w whereas f w.ri .C represents the rule
condition, and f w.ri .C[ j ] is the j -th field of condition C in
the i -th rule of f w.

With the assumptions described above, the result of the
filtering process applied to packet P depends on the first
matched rule in f w having either deny or allow as the
corresponding action, since goto n rules, when matched, only
postpone the forward/discard decision. The firewall behavior
can then be modeled as a function f

f : f w, P ∪ {−} → P ∪ {−} (1)

which maps each packet into either the packet itself (allow
action) or the null packet − (deny action). In this way,
f ( f w,−) = −, as shown in Fig. 2.

With this arrangement, when multiple firewalls are cas-
caded, the final decision about the packet can simply be
obtained by the ordered composition of filtering functions
associated to all the firewalls in the sequence. For instance,
to know whether a packet P can successfully cross a sequence
of firewalls f w1, f w2, . . . , f wn , we compute the cumulative
action f ( f wn, f ( f wn−1, . . . , f ( f w2, f ( f w1, P)))).

III. THE METHODOLOGY STEP BY STEP

A. Problem Statement

Given an RST such as the one in Fig. 1a with all nodes
properly configured, let us suppose that, for some reason,
firewall f w1 becomes overloaded with packets flowing from
the end device d0, so causing an increased packet processing
latency and/or even possible packet losses.

By assuming that the time needed to check a rule is
constant and independent of the rule itself, the average firewall
processing time for any packet is proportional to the average
number of rules checked till a match is found. Therefore,
in order to reduce the latency and load introduced by filtering,
a suitable set of rules can be moved from f w1 to some
firewall(s) f w2,i , i ∈ [1, N] to filter packets forwarded to
subnetwork(s) d2,i , i ∈ [1, N].

Let us assume that only f w2,1, . . . , f w2,K , K ∈ [1, N]
are involved in such a change of configuration, whereas
f w2,K+1, . . . , f w2,N are left unchanged and define

DK
1 =

K⋃
i=1

d2,i , DN
K+1 =

N⋃
i=K+1

d2,i . (2)

For the sake of simplicity we assume that the whole address
and port ranges assigned to DK

1 and DN
K+1 can be expressed

in a simple way (i.e., by means of regular expressions), that
is without the need of splitting them through multiple rules.
In other words, the whole ranges in DK

1 and DN
K+1 can be

specified with simple field formulas. Though this hypothesis
could be easily removed without affecting the validity of the
proposed solution, it allows a lighter mathematical notation in
the following.

Let f̂ w1, f̂ w2,1, . . . , f̂ w2,K be the firewall configurations
transformed with the purpose of reducing the f w1 workload
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at the expense of f w2,1, . . . , f w2,K . The original filtering
semantics of the multiple firewall infrastructure must obvi-
ously be preserved. To simplify the notation, we rename f w2,i

as f̂ w2,i ∀ i ∈ [K + 1, N], that is the transformation
f w2, j → f̂ w2, j ∀ j ∈ [1, N] applies indistinctly to all
firewalls, but when j ∈ [K + 1, N] no change is introduced
in the firewall configurations. More formally:

Theorem 1: ∀ packet P originating from d0, ∀ i ∈ [1, N],
f ( f w2,i , f ( f w1, P)) = f (�f w2,i , f (�f w1, P)) .

This means that each packet coming from d0 and forwarded
to any subnetwork d2,1, . . . , d2,N , must not be affected by
the transformation applied, and either it reaches the intended
destination or it is discarded in both cases.

Theorem 2: ∀ packet P sent f rom d2,i to d2, j , ∀ i, j ∈
[1, N], i 	= j ,

f ( f w2, j , P) = f (�f w2, j , P) .
This means that the transformation does not affect packets

exchanged among subnetworks d2,1, . . . , d2,N .
Proofs for Theorems 1 and 2 can be found in the following.

It is worth observing that the two theorems refer to different
streamed topologies, as shown in Fig. 1a (Theorem 1) and
in Fig. 1b (Theorem 2) by selecting, for instance, i = 2.

B. The REDIAL Algorithm

In the following we postulate that all nodes in the system
are properly configured, that is, we assume that:

1) f w1 does not forward packets from d0 to d1 if their
source IP addresses belong to d1, as in the case of
trivially malformed or malicious messages;

2) no firewall f w2, j forwards packets from d2, j to d1 if
their source IP addresses belong to d1 for the same
reason as above.

Of course d1 plays different roles in these two situations, with
respect to different flows and RSTs: the first one is rooted in
d0 and d1 = ⋃

i d2,i ∀ i ∈ [1, N] (Fig. 1a), whereas in the
latter d1 = d0 ∪⋃

i d2,i ∀ i ∈ [1, N], i 	= j , as Fig. 1b shows
when j = 2 (i.e., the RST is rooted in d2,2 and d0 is a leaf).

The REDIAL algorithm in Fig. 3 transforms the relevant
firewall configurations so as to achieve the goal introduced
in subsection III-A. According to our model and notation,
only firewalls f̂ w2,i ∀ i ∈ [1, K ] have to filter packets
previously managed by f w1, and respectively routed to the
guarded subnetworks d2,i (domain DK

1 ), whereas f w2,i and
d2,i ∀ i ∈ [K + 1, N] (domain DN

K+1) are not affected by the
transformation. As discussed below, REDIAL builds f̂ w1 by
simply copying f w1 at the end, that is f̂ w1 and f w1 contain
the same sequence of rules after the algorithm is run.

The outermost loop of REDIAL (lines 1-20 in Fig. 3) scans
the rules in f w1: the IP destination address field d_i p in each
rule condition (C[d_i p]) is checked against the IP address
range of each subnetwork d2, j protected by firewall f w2, j

with j ∈ [1, K ] (lines 2-13). If a match is found (line 3)
the rule is added to f w2, j in position k j (line 4). Then the
translation table T T is updated by keeping track that the i -th
rule in the original f w1 sequence is now the k j -th rule in
the new configuration of f w2, j (line 5). k j is consequently
incremented (line 6).

Lines 7-11 are executed only once: the first time a rule
which can match packets to DK

1 is found, a new rule crafted so
as to enable all traffic to DK

1 is added to the new configuration
of f w1. In this way f̂ w1 will forward all packets addressing
the relevant subnetwork, without any further check against the
following rules in its sequence. This is a key-point to reduce
the f w1 filtering load.

After considering the ability of rule f w1.ri to match pack-
ets to DK

1 through lines 2-13, lines 14-18 check whether
packets addressing DN

K+1 can match the rule condition
( f w1.ri .C[d_i p] ∩ DN

K+1 	= ∅). If so, the rule is added to
f w1, i.e., f̂ w1 shall keep on processing the traffic to DN

K+1,
whose firewalls are not involved in the transformation. T T is
also updated to keep track of the correspondence between the
positions of the rule in f w1 and f w1.

In copying a rule f w1.ri from f w1 to any f w, the desti-
nation IP address field C[d_i p] does not need to be modified,
as the rule placed in f w will actually match only a proper
subset of all packets originally matched when it was located
in f w1.

The two nested loops at lines 21-28 in Fig. 3 update the
destination labels of goto n rules. For each f w1 goto rule
copied to f w, the new value for index n is found (line 24)
and the rule updated accordingly (line 25).

At the end, f w1 is trivially copied to f̂ w1 (line 29), whereas
the construction of f̂ w2,i ∀ i ∈ [1, K ] (lines 30 - 47) is a bit
more tricky because each f̂ w2,i must:

• Act the same way as f w1 on packets received from f̂ w1
and addressing d2,i . This means

– to discard those packets to d2,i that would be dropped
by f w1;

– to check against the same f w2,i sequence those
packets to d2,i that would be forwarded by f w1.

• Check against the same f w2,i sequence all packets
received from any d2, j j 	= i.

In other words, f̂ w2,i has to perform different actions for each
case above, and this is taken into account by lines 31-46 of
REDIAL in Fig. 3. A new goto | f w2,i |+2 rule is placed at the
top of the f̂ w2,i sequence, so that packets not originating from
d0 (this is expressed as any\d0 at line 31 of the algorithm) can
skip the following | f w2,i | rules. It is worth noting that if any\
d0 cannot be specified through a single regular expression,
at most two rules are needed at the top of �f w2,i . In this case,
the first rule simply skips the second one when the source
address of the incoming packet is d0, whereas the second
jumps unconditionally to the first rule that is obtained from
the original f w2,i sequence. Then the f w2,i rules are copied
to f̂ w2,i starting at position 2. In doing this deny actions
are left unchanged, whereas allow actions are transformed
into goto | f w2,i | + 2, so that packets originally forwarded
by f w1 are still checked against the f w2,i sequence. Finally,
the f w2,i rules are appended to the resulting firewall starting
at position | f w2,i |+2. During the process, goto indexes for all
rules copied from both f w2,i and f w2,i are suitably updated.

As a last step, f w2,i → f̂ w2,i ∀ i ∈ [K + 1, N].
The updated firewall f̂ w1 might not have fewer rules than

f w1, in fact 1 ≤ | f̂ w1| ≤ | f w1| + 1. When | f̂ w1| = 1
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Fig. 3. The REDIAL Algorithm.

all f w1 rules can match packets to DK
1 , (i.e., the action at

line 9 is always performed), and no packet to DN
K+1 can

be matched (the result of test at line 14 is always false).

Instead, when | f̂ w1| = | f w1| + 1 all rules in f w1 can match
packets to both DK

1 and DN
K+1. This situation does not imply

worse performance. Indeed, our proposal, besides relying on
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the reduction of the number of rules checked in f w1, also
forces all packets to DK

1 to be matched by exactly one rule in
f̂ w1 (line 9). The index h of the new rule in f̂ w1 cannot be
higher than the index of first rule possibly matching packets to
DK

1 in f w1. In other words, all packets to DK
1 are matched by

the h-th rule in f̂ w1, whereas the same packets are matched
by rules placed somewhere between h and | f w1| in f w1.

It is worth observing that when DK
1 consists of k ≤ K

separate sub-domains, at most k rules have to be inserted in
�f w1 (line 9). The performance impact of this change is negli-
gible as K is very small in most practical situations. Moreover
the k rules can be placed starting at any position between
1 and h in �f w1, as they are totally independent from the top
h-1 rules in f w1. The insertion of rules starting at position
h is conservative with respect to the maximum performance
improvement that can be obtained with our solution.

Let us now introduce some properties needed to prove
Theorems 1 and 2. In order to do so, we refer to the RST
in Fig. 1a, the firewall function (1) depicted in Fig. 2, and the
REDIAL algorithm.

Property 1: ∀ packet P originating from d0 and address-
ing DK

1 ,
f ( f w1, P) = P .

Proof: By inspecting the algorithm in Fig. 3, there is no
rule in f w1 which can match P and precedes the rule added
to f w1 at line 9. As the action associated to this new rule is
allow, the firewall function in Fig. 2 returns P . �

Property 2: Rule f w1.r can be matched by some packets
addressing subnetwork d2,i , ∀ i ∈ [1, K ] ⇔ rule f w1.r is
added to f w2,i .

Proof: By inspecting the algorithm in Fig. 3:
⇒ If the test at line 3 is true, i.e. the rule condition matches

packets addressing d2,i , then the rule is added to f w2,i .
⇐ A rule of f w1 is added to f w2,i (line 4) only if it can

match packets addressing d2,i (line 3). There are not instances
of this action which are not guarded by a test on the destination
address. �

Property 3: ∀ packet P originating from d0 and addressing
d2,i , ∀ i ∈ [1, K ],

f ( f w1, P) = f ( f w2,i , P) .

Proof: By Property 2, f w2,i contains only the rules
in f w1 which are able to match packets to d2,i . Moreover,
by inspecting the algorithm in Fig. 3, these rules are added to
f w2,i in the same relative order as they are met in f w1. This
means that, from the point of view of a packet P addressed to
d2,i , the difference between f w1 and f w2,i consists only of
rules that can never be matched, causing function f in Fig. 2
to produce the same result when P is checked against the
two sequences in f w1 and f w2,i . The completeness of f w1

guarantees that such a result always exists, i.e., f w2,i is
complete for packets addressing d2,i . �

Property 4: Rule f w1.r can be matched by some packets
addressing subnetwork(s) in DN

K+1 ⇔ rule f w1.r is added to
f w1.

Proof: The same proof as for Property 2, with lines 3 and
4 of the algorithm replaced by lines 14 and 15 respectively.

�

Property 5: ∀ packet P originating from d0 and addressed
to DN

K+1,
f ( f w1, P) = f ( f w1, P) .

Proof: The same proof as for Property 3, with Property 2
replaced by Property 4. �

Properties 1, 4, and 5 also hold for f̂ w1, whereas Proper-
ties 2 and 3 are true for the subset of rules in f̂ w2,i that were
added to f w2,i during its construction.

Properties 2 and 4 imply that some rules of f w1 may not
be copied to some f w. The first condition of the test at line 23
in Fig. 3 means that if T T [i, f w] = 0, the i -th rule of f w1
has not been copied to f w, so the second condition of the test
becomes meaningless as there is no corresponding rules. For
the same reason, also the original destination of a goto action
may also not be present in f w. This is why the rule following
the missing jump destination is searched at line 24. The
completeness assumption guarantees that such a rule exists
and belongs to the set of rules reachable through the goto
action. In fact, a packet matching the goto condition, without
matching any other rule in the destination block, would violate
the completeness hypothesis.

Property 6: ∀ packet P originating from d0 and addressing
d2,i , ∀ i ∈ [1, K ],

f ( f w2,i , f ( f w1, P)) = f (�f w2,i , P) .
Proof: Property 3 both allows to change the theorem claim

to f ( f w2,i , f ( f w2,i , P)) = f ( f̂ w2,i , P) while guaranteeing
that f w2,i is complete with respect to P , i.e., a rule surely
exists in f w2,i whose action deny or allow matches P .

Since P comes from d0, the first rule of f̂ w2,i cannot be
matched and P is checked against the subsequent rules. Rules
2 to | f w2,i | + 1 in f̂ w2,i are copied from f w2,i , by only
changing any allow action to goto | f w2,i | + 2. This means
that P in f w2,i can only be one of the following two:

1) deny, then the same happens in f̂ w2,i , thus prov-
ing the property because f ( f w2,i , P) = − leads to
f ( f w2,i , f ( f w2,i , P)) = −, exactly as f ( f̂ w2,i , P)
does;

2) allow, then f ( f w2,i , P) = P and the claim becomes
f ( f w2,i , P) = f ( f̂ w2,i , P). Moreover the action of the
corresponding rule in f̂ w2,i is goto | f w2,i |+2 causing
function f to keep on checking P in f̂ w2,i against the
rules coming from f w2,i . This makes the new claim
f ( f w2,i , P) = f ( f̂ w2,i , P) true.

The completeness of f w2,i guarantees that no other alter-
native is possible. �
Theorems 1 and 2 in Section III-A can now be proved.

Proof of Theorem 1: First of all note that only packets
addressing d2,i have to be taken into account for each i ,
as packets not addressed to d2,i make the theorem mean-
ingless. Then, let us distinguish the following two cases,
depending on the packet destination subnetwork:

1) i ∈ [1, K ]: Property 1 states that f ( f̂ w1, P) = P;
it follows that f ( f w2,i , f ( f w1, P)) = f ( f̂ w2,i , P),
i.e., the claim of Property 6.

2) i ∈ [K + 1, N] means that d2,i ∈ DN
K+1 and f̂ w2,i =

f w2,i , hence the theorem claim becomes
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f ( f w2,i , f ( f w1, P)) = f ( f w2,i , f ( f̂ w1, P)),
where f ( f w1, P) = f ( f̂ w1, P) holds by Property 5,
because f̂ w1 i s f w1.

Proof of Theorem 2: Note that only packets addressing d2, j

have to be taken into account for each j . Packets not addressed
to d2, j make the theorem meaningless. Let us distinguish
the following two cases, depending on the packet destination
subnetwork:

1) j ∈ [1, K ]: because of the construction of f̂ w2, j any
packet from d2,i matches the first rule of f̂ w2, j and
skips the following block of rules copied from f w1
through f w2,i . The packet is then checked against
the rules starting at position | f w2, j | + 2, that were
originally in f w2, j . In this way the packet is checked
against the same set of rules both before and after the
transformation.

2) j ∈ [K + 1, N]: in this case d2, j ∈ DN
K+1, i.e., f̂ w2, j is

f w2, j and the theorem claim becomes f ( f w2, j , P) =
f ( f w2, j , P).

IV. TRANSFORMATION PERFORMANCE

A. Performance Bounds

Performance of the proposed technique can be estimated
by means of coarse-grained data, that is easily obtained by
run-time monitoring of f w1, and some parameters computed
with the REDIAL algorithm in Fig. 3. Indeed, predicting the
effectiveness of the transformation is useful in a number of
circumstances, including the design of the network protec-
tion infrastructure or the evaluation of actions to be taken
in response to threats like denial-of-service attacks. In this
section we provide bounds for the improvement in the packet
processing rate of f̂ w1 with respect to f w1, by taking into
account some characteristics of firewall configurations, traffic
profile and system architecture. In particular, our performance
model relies on:

• The number of rules in f w1 and f̂ w1, i.e. | f w1| and
| f̂ w1| respectively.

• The fraction ρ (0 ≤ ρ ≤ 1) of packets sent from d0 to
DK

1 , and the corresponding fraction (1 − ρ) of packets
from d0 to DN

K+1.
• The average number σ K

1 of rules evaluated by f w1 for
each packet addressed to DK

1 .
• The average number σ̂ K

1 of rules evaluated by f̂ w1 (that
is after the transformation) for each packet addressed
to DK

1 .
• The average number σ N

K+1 of rules evaluated by f w1 for
each packet addressed to DN

K+1.
• The average number σ̂ N

K+1 of rules evaluated by f̂ w1
(after the transformation) for each packet addressed
to DN

K+1.
• The position h of the rule added to f̂ w1 at line 9 of the

algorithm in Fig. 3, which forwards all packets addressed
to DK

1 .

Given DK
1 and DN

K+1 in (2), ρ, σ K
1 and σ N

K+1 can be
obtained by direct observation of the traffic profile from d0
and the f w1 behavior during a suitable timeframe. In addition,

both h and | f̂ w1| can be computed by running the REDIAL
algorithm in Fig. 3, whereas | f w1| is known a priori. Then
the average number of rules evaluated by f w1 for each packet
received from d0 is

σ N
1 = σ K

1 · ρ + σ N
K+1 · (1 − ρ) , (3)

while the average number of rules evaluated by f̂ w1 for each
packet received from d0 due to the transformation is

σ̂ N
1 = h · ρ + σ̂ N

K+1 · (1 − ρ) , (4)

in fact, σ̂ K
1 = h, as each packet addressed to DK

1 requires the
evaluation of exactly h rules by f̂ w1.

Given σ N
1 and σ̂ N

1 , we define

� = σ N
1

σ̂ N
1

(5)

the performance gain of our transformation. Since we assumed
that the time needed to evaluate a rule is independent of the
rule itself, � represents the ratio between the packet processing
rates of f̂ w1 and f w1. For instance, if σ N

1 = 10 and σ̂ N
1 =

2, � = 5 means that f̂ w1 is five times faster than f w1 on
average.

The computation of (5) relies on σ̂ N
K+1 in (4), which cannot

be measured unless either f̂ w1 is actually deployed or the
same traffic statistics collected for f w1 are used to simulate
the f̂ w1 behavior after running REDIAL.

Nevertheless, the value of � can be estimated by computing
the best, worst and average case for σ̂ N

K+1.
The difference between σ N

K+1 and σ̂ N
K+1 depends on both

the number of rules matching packets to DK
1 (they are not

copied to f̂ w1) and how the rules themselves are distributed
in f w1. The following situations have to be considered for
rules matching DK

1 :

• Rules are all placed at the top of the f w1 sequence:

σ̂ N
K+1 = σ N

K+1 − (| f w1| − | f̂ w1|
)

. (6)

• Rules are evenly distributed in the f w1 sequence:

σ̂ N
K+1 = σ N

K+1 · | f̂ w1|
| f w1| . (7)

• Rules are all placed at the bottom of the f w1 sequence,
so that they do not affect σ̂ N

K+1 with respect to σ N
K+1

except for the rule added at line 9 of algorithm in Fig. 3:

σ̂ N
K+1 = σ N

K+1 + 1 . (8)

Since σ N
K+1 ≤ | f w1|, it follows that:

σ N
K+1 − (| f w1| − | f̂ w1|

) ≤ σ N
K+1 · | f̂ w1|

| f w1| ≤ σ N
K+1 + 1

(9)

and (6) and (8) are respectively lower and upper bounds for
σ̂ N

K+1, whereas (7) is the average value when rules are evenly
distributed in the firewall sequence and the input packet flow
has a uniform distribution.
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Fig. 4. Simple network RST adopted in the simulation experiments.

By substituting (6), (7) and (8) in (4), equation (5) for the
three situations considered becomes:

�M = σ K
1 · ρ + σ N

K+1 · (1 − ρ)

h · ρ + (
σ N

K+1 − | f w1| + | f̂ w1|
) · (1 − ρ)

, (10)

�av = σ K
1 · ρ + σ N

K+1 · (1 − ρ)

h · ρ +
(
σ N

K+1 · | f̂ w1|| f w1|
)

· (1 − ρ)
, (11)

�m = σ K
1 · ρ + σ N

K+1 · (1 − ρ)

h · ρ + (
σ N

K+1 + 1
) · (1 − ρ)

, (12)

giving respectively the maximum, average and minimum
possible value for the transformation performance gain �.
In normal conditions, and with a reasonable amount of traffic ρ
addressing DK

1 , σ K
1 is significantly larger than h. This means

that the minimum performance gain �m is greater than one and
the proposed transformation is always advantageous, at least
in theory.

B. Performance Simulation

Correctness and performance of the proposed solution were
also verified by means of simulation. A suitable program
was then designed and developed in C language, which is
able to take into account different configurations for two
cascaded firewalls f w1 and f w2 and the simple network RST
shown in Fig. 4. In the experiments, f w1 analyzes all packets
received from d0 and addressing either d2,1 or d2,2, while
f w2 protects the subnetwork d2,2 only. In this condition d2,1
plays the role of DN

K+1 whereas d2,2 represents DK
1 .

The simulator enables the selection of several parameters,
including the number of rules in f w1 and f w2, the per-
centage of allow, deny and goto n actions (αa , αd and αg

respectively), the percentages (β1, β2 and β12) of f w1 rules
concerning d2,1, d2,2 or both and so on.

Packets originating from d0 are randomly generated with
a uniform distribution for any of the five fields of interest,
that is source and destination IP addresses, source and des-
tination ports and protocol type. The percentage of packets
addressing d2,1 and d2,2 can also be selected as requested in
the experiments.

The correctness of the model and algorithm in Fig. 3 was
preliminary and exhaustively checked for a network with
reduced address ranges, adopting 10 bits for each IP address
and 5 bits for each port number and protocol type. In par-
ticular, all the 235 possible packets were fed to 500 different
configurations randomly selected for the two firewalls, both
before and after their transformation. The comparison of
the resulting actions performed on each packet in the two

Fig. 5. Performance gain obtained by simulation of 100 firewall
configurations.

conditions confirmed that the input traffic is treated absolutely
the same way by the ( f w1, f w2) and ( f̂ w1, f̂ w2) pairs as
expected. Subsequently, experiments were conducted to check
the performance improvement that can be obtained with our
approach. To this purpose several configurations were tested by
keeping the number of rules in f w1 and f w2 constant, while
changing their conditions ri .C and actions ri .action. The input
load originating from d0 in each experiment consisted of a
set of one million randomly-generated packets for each point
of the plots in Fig. 5 and Fig. 6, where the percentage of
packets addressing d2,2 was varied from 0% to 100% with
1% increments.

Fig. 5 shows the performance behavior (logarithmic y-axis
scale) obtained by averaging the simulation results for 100 dif-
ferent configurations with 300 rules in f w1 (αd = 35%,
αa = 60%, αg = 5%, β1 = 60%, β2 = 20%, β12 = 20%)
and 100 rules in f w2. The plot � f w1 in Fig. 5 confirms
that the relative improvement in performance for f w1 ranges
from about 1.2 when no packet is sent to d2,2 and each
message addresses d2,1, to 90 when the whole offered load
targets d2,2 (100%). It is worth observing that � f w1 ≥ 1
even if no traffic is forwarded to d2,2, since packets address-
ing d2,1 are checked by f̂ w1 against a smaller number of
rules on average. However, as expected, the most benefit is
obtained when destinations of all packets from d0 are located
in d2,2.

The overall performance gain � f w1, f w2 for the ( f̂ w1, f̂ w2)
pair is obviously lower and ranges from 1.2 to 2.2, as the
decrease in the f̂ w1 filtering activity is partially compensated
by the increment in rule processing by f̂ w2.

Of course, the actual value that can be obtained for �
heavily depends on the characteristics of the firewall configu-
rations and the input traffic profile, thus it has to be evaluated
on a case by case basis. For instance, plots in Fig. 6 show
the behavior of � f w1 and � f w1, f w2 when 500 configurations
are considered and 50 rules are set for both f w1 and f w2
(αd = 45%, αa = 45%, αg = 10%, β1 = 40%, β2 = 40%,
β12 = 20%). In this condition the improvement for f̂ w1 falls
between 1.6 and 28, whereas a small decrease (from 1.6 to
1.4) is observed for the ( f̂ w1, f̂ w2) pair, when the percentage
of packets addressing d2,2 gets close to 100, but � f w1, f w2 is
always kept greater than one.
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Fig. 6. Performance gain obtained by simulation of 500 firewall configura-
tions with 50 rules each.

C. Experimental Results

Performance in Section IV-B has been derived in steady
state conditions, by ideally assuming that switching of the fire-
wall configurations can be done in negligible time. The
experimental study of transient conditions triggered by the
transformation deployment, instead, can shed some light on
situations that can hardly be observed through simulation.
In particular, we are interested in measuring the time needed
to perform the transformation from ( f w1, f w2) to ( f̂ w1, f̂ w2)
in a realistic scenario and getting some estimations of its
impact on the filtered traffic in terms of packet filtering
delay. To this purpose a test-bed was setup in our Industrial
Informatics Laboratory (I 2 Lab), also leveraging past experi-
ence with firewall modeling, characterization and performance
evaluation [3], [28], [35].

The structure of the simple network depicted in Fig. 4
was then adopted for the test-bed and timing data collected
by means of suitable traffic access points (TAPs) and cards
supporting hardware timestamps.

Fig. 7 shows the test-bed set-up composed by:
• The traffic generator G (d0) is an Apple iMac equipped

with an Intel® Core™ 2 Extreme X7900 CPU @
2.80GHz, 4 GB of RAM and running the 20.04 LTS
Ubuntu Linux distribution.

• Firewalls FW1 and FW2 are personal computers, each
one equipped with an Intel® Core™ 2 Duo E6750 CPU
@ 2.66GHz, 4GB of RAM and two identical Realtek
Semiconductor NICs (ICSs RTL-8139). They run the
18.04 LTS Ubuntu Linux distribution with the iptables
firewall configurator.

• Receiver R is a PC with configuration similar to FW1
and FW2, where NICs are replaced with a four-ports
Intel® Ethernet Server Adapter I350 [36], which is able
to hardware timestamp the incoming packets.

• T AP1 and T AP2 are Keysight Technologies ® TP-CU3-
ST, 10/100/1000 Copper Taps [37].

Packets sent to d1 are routed to either d2,1 or d2,2 (which are
not relevant to our experiments) by means of SW, an industrial
Belden® MACH104-20TX-F managed switch [38].

With these arrangements, T AP1 duplicates packets from d0,
whereas T AP2 does the same with packets forwarded by FW1.
Duplicated streams are processed by R, where the Ethernet

Fig. 7. I 2 Lab test-bed for performance evaluation.

adapter timestamps each incoming packet. Then the time
needed by FW1 to manage each packet can be easily computed
as the difference of two timestamps. By suitably positioning
T AP1 and T AP2 the performance of either FW2 or the (FW1,
FW2) pair can also be measured.

In conducting experiments we focused on the following
aspects:

• The average packet delay introduced by the filtering activ-
ity of FW1 and FW2 before and after the transformation.

• How the transformation deployment affects the packet
delay, i.e. the overall filtering performance. It is worth
noting that the impact of the reconfiguration can be
assessed without considering the time needed to run
the REDIAL algorithm of Fig. 3, because this task can
be performed offline for different traffic profiles, as the
firewall rules and the network topology are known and
static. Alternatively, REDIAL can be executed on a node
different from FW1 and FW2, so that it has no impact
on their performance.

• The penalty paid in terms of communication bandwidth
consumption by packets flowing from d0 to FW2 before
and after the transformation.

As the performance gain depends on the percentage ρ of
traffic addressing d2,2, in the experiments we adopted the
same traffic patterns of Fig. 5 with ρ equal to 75%, 50% and
25% respectively. Of course, to obtain the highest benefits,
the network should be designed so that DK

1 is the destination
of most traffic coming from d0, corresponding to the rightmost
part of the diagrams in Fig. 5. In all experiments FW1
and FW2 were loaded with 300 and 100 rules respectively,
by selecting some of the sets also used for simulations in
Fig. 5 and the same values for parameters αd , αa , αg , β1, β2,
and β12.

Fig. 8 shows the time evolution of the latency experienced
by each packet traversing FW1 (configured with a 300 rule
set), when the percentage of traffic addressing d2,2 is 75%.
The diagram focuses on the transformation impact on the
filtering activity and highlights the increment/decrement of the
average latency measured with respect to the initial steady state
condition. The figure was drawn using a logarithmic scale for
the vertical axis, as the transitory peak (l p) is too high with
respect to the steady state levels (l1 and l2). In particular, in the
interval between 0 and ts FW1 runs its initial configuration
f w1, exhibiting an average filtering latency l1 ≈ 1.86μs
per packet. At time ts the reconfiguration is triggered by a
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TABLE I

PERFORMANCE MEASURES OBTAINED WITH THE EXPERIMENTAL TEST-BED

Fig. 8. Firewall filtering latency in steady state and transient conditions.

task running on the same PC, and a transient condition is
started lasting till te. In our test-bed the transition interval
te − ts takes about 6.11ms before a new steady state is
reached. At ts the filtering latency suddenly rises by reaching
a peak l p ≈ 2.77ms, likely because the firewall stops/slows
processing packet during the rule tables update. After te the
new configuration f̂ w1 is fully operational, with a latency
average value l2 ≈ 0.32μs, which is lower than l1 as expected.

The average number of rules σ N
1 processed by FW1 before

applying the transformation and computed with (3) is approx-
imately 217.34, whereas the corresponding σ̂ N

1 value for the
f̂ w1 configuration is about 37.73. This means a gain �F W1 ≈
5.76 (equation 5), in good accordance with the 5.25 value
obtained in Fig. 5 and also confirmed by the ratio l1/ l2 ≈ 5.81
in Fig. 8.

Experiments were repeated several times without changing
the number of rules and the α and β parameters, but with
different rule sets as done for simulation. Table I shows
the collected measures for three different sets of rules and
ρ values. In all conditions the computed value of �F W1 is
reasonably close to the measured ratio l1/ l2. For each set
�F W1 increases as ρ gets larger since σ̂ N

1 is reduced. This
confirms the trend exhibited by the diagram in Fig. 5. In fact,
packets forwarded to d2,2 impact more on the average number
of checked rules as ρ grows. After the transformation they

always match the rule in position h, and this sort of privileged
processing contributes to progressively decrease the value
of σ̂ N

1 .
The five rightmost columns in Tab I concern the perfor-

mance obtained for the (FW1, FW2) cascaded pair and report
the average number of processed rules per packet before/after
the transformation and the resulting computed gain �F W1,F W2

together with the measured l1/ l2 ratio. It is worth noting
that the overall gain slightly decreases with ρ because of the
lower advantages obtained for FW1 with respect to the loss
of performance introduced in FW2.

Finally the last column in the table shows the communica-
tion bandwidth penalty (� b/w) paid with our solution, caused
by the rise of traffic along the path connecting FW1 to FW2.
The column contains relative values, that is the ratio between
the numbers of extra packets reaching FW2 from d0 after the
transformation and the number of packet forwarded to FW2
by FW1 when the set of rules of the latter is f w1. This metric
takes into account only the impact of the rule redistribution
and does not consider possibly different phenomena.

V. RELATED WORKS

Several solutions have been proposed in the scientific liter-
ature to improve the performance of firewall packet filtering
operations. They can roughly be divided into two main groups,
that is techniques either operating on a single firewall or rely-
ing on network architectures involving multiple firewalls.

A. Intra-Firewall Solutions

In this group three different approaches can be identified,
i.e., rule ordering, rule compression and rule analysis. Rule
ordering and compression algorithms are able to preserve the
firewall integrity while changing the relative position of rules
and/or their form/cardinality. Their goal is to improve the
device performance, by assuming that the rule set is already
compliant with the overall security policy.

Rule analysis, instead, may change the firewall semantics.
The main goal, in this case, is to discover weaknesses, errors
and misconfigurations, whose fixing might, in principle, make
the firewall operation closer to the expected behavior.
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1) Rule Ordering: In [14] Hamed et al. observed that,
in many enterprise networks, a big fraction of the incoming
traffic matches only a small subset of the firewall rules, and
this subset keeps on being unchanged for long time periods.
Then, to improve the average packet filtering time, the rule
order can be dynamically modified, based on their matching
frequencies. Since the problem of optimal rule ordering with
precedence constraints is NP-complete, authors proposed a
heuristic approximation algorithm able to provide satisfactory
optimization in reasonable time.

In [15] Fulp modeled the precedence relations among
rules as a DAG and proposed a simple bubble sort-like
heuristic algorithm based on admissible swaps of adjacent
rules. The algorithm was then improved in [16]. In [17]
Mohan et al. extended Fulp’s algorithm by finding admissible
swapping windows, i.e., rules sequences where the first
and last rules can be exchanged without violating prece-
dence constraints. All these works assume that the match-
ing frequencies be independent of the rule position in the
sequence.

The authors of [18] observed that a firewall integrity is also
preserved when two dependent rules are swapped, which are
associated to the same action. As the matching frequencies
of the exchanged rules likely change, the authors proposed an
algorithm which takes into account the impact of any exchange
on the average packet processing time.

2) Rule Compression: Both [19] and [20] presented algo-
rithms to compute a configuration equivalent to a given fire-
wall, where the number of rules is close to the minimum. The
compression algorithm in [19] is based on the transformation
of the rule sequence into a decision diagram, whereas [20]
changes higher dimensional target patterns into lower elements
by dividing the original pattern into hyperplanes and then suit-
ably resolving differences between two adjacent hyperplanes.
Rule compression strategies are designed to be run offline so
that administrators only have to manage the uncompressed
rules, avoiding the quite cryptic semantic of compressed
version.

It is worth observing that the solution proposed in this paper
is compatible with both the ordering and compression tech-
niques mentioned above, therefore it can be profitably adopted
in conjunction with them to achieve further improvements in
the overall firewall performance.

3) Rule Analysis: The scientific literature about the analysis
of rules is quite large and a good survey can be found
in [21]. Indeed, several techniques have been proposed to assist
network security administrators in detecting policy conflicts
and anomalies concerning either a single device or multi-
ple connected firewalls. As an example, the technique pro-
posed in [22] allows to discover anomalies such as rule
shadowing, redundancy and irrelevance, operating at both
intra- and inter-firewall level. Detected anomalies are not
necessarily errors in policy translation, but the technique
helps administrators in checking the configuration of their
systems. Approaches like [22] are typically adopted as a first
optimization step after the initial network configuration and,
as such, are compatible with the solution introduced in this
paper.

B. Inter-Firewalls Solutions

Inter-firewall solutions belong to two main classes depend-
ing on whether they rely on specific network architectures
possibly with redundant h/w, e.g., parallel firewalls, or they
exploit generic multi-firewall systems.

1) Parallel Architectures: Those solutions are explicitly
conceived and adopted in the design phase of the network,
to improve the performance by spreading the filtering load
over a number of firewalls in parallel. From this point of view
the technique introduced in this paper is more flexible. In fact,
it can be used to reconfigure at run-time firewalls already
deployed in the field, as well as help during the design phase
to distribute the expected filtering load.

In [23] Fulp presented some solutions leveraging the use
of parallel firewalls to distribute either packets, to reduce the
filtering load of given devices, or rules in such a way that each
packet is processed by several firewalls and a decision is taken
by a gate which compares their resulting actions.

In [24] a similar architecture was proposed focusing on
fault-tolerant implementation and algorithms for load distri-
bution. Finally, in [25] a technique was described to distribute
both rules and packets among parallel firewalls while main-
taining the network security integrity. This solution first pre-
processes rules to eliminate their dependencies and translates
the firewall sequence to include only accept actions. Then
rules are assigned to firewalls depending on their matching
capabilities. In addition to rules processing, packet distribution
is also performed, based on similar criteria, by means of meta-
rules implemented in a pre-filtering stage.

Though solutions based on parallel firewalls provide unde-
niable benefits in terms of both performance enhancement and
tolerance to heavy traffic loads, they are quite expensive and
can hardly abstract from the use of additional hardware.

2) Generic Multi-Firewall Architectures: These solutions,
like our proposal, are aimed at reducing the filtering load of
a firewall, whose packet processing latency becomes for some
reason critical, through the assistance of existing/deployable
h/w and/or s/w neighbors. Basic requirements for such a goal
are the following:

• The methodology should be applicable to operational
networks, although it can also be used during the design
phase to efficiently distribute the expected load.

• An orchestration/coordination infrastructure is needed,
which must be able to detect the potentially dangerous
situations and to compute and deploy the configuration
changes by taking into account traffic statistics, involved
firewalls and related network objects and devices.

The dynamic redistribution of rules between different FWs,
in order to cope with changes in the filtered traffic profile,
is a technique also adopted by other authors and, in partic-
ular, in [26] and [27], our approach differs in the way we
redistribute the rules and the kind of networks we model.

In particular, to improve the behavior of an overloaded fire-
wall, [26] and [27] move set of rules (and consequent filtering
load) to FWs which are closer to the source of traffic peaks.
Conversely, our approach redistributes rules to downstream
firewalls at the expenses of an increase in communication
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bandwidth consumption. Reference scenarios are also different
in the two cases: in fact [27] considers a cloud-oriented
infrastructure where the instantiation of lightweight s/w FWs is
possible, whereas networks targeted in this paper are classical
tree-shaped architectures, such as those commonly found
in industrial and automation environments or cyber-physical
systems. Actually, in most of those situations the network
topology is quite rigid (and cannot be changed easily): FWs
are used to protect different plant areas and hierarchically
organized from the outer (i.e., the perimeter Internet interface)
to the inner line of defense (i.e., the shopfloor subnetwork) [2].
Connected devices have often low computation power and run
proprietary s/w which does not enable the dynamic creation
of additional tasks (i.e., firewalls), as this could also affect the
effectiveness of the control action. By contrast the available
communication resources are often underused and this makes
acceptable the penalty involved in our solution in terms of
increased bandwidth usage.

Preserving the overall filtering behavior is mandatory for
each transformation and this has been formally proven for the
approach presented in this paper. In addition, perimeter FWs
have often to manage high loads in many networks, either
physical or cloud-based, as there is no other device closer
to the traffic source which could be able to reduce the FW
filtering effort. Literature approaches based on dynamic recon-
figuration of upstream firewalls require changes in either the
routing paths, such as in [27], or in the filtered packets, such as
in [26], to prevent the lightened FW from processing already
filtered packets or alternatively to enable their faster analysis.
This kind of interventions is not needed with our technique
which is totally transparent to the routing mechanisms and
packet structures.

It is also worth noting that both [26] and [27] apply rule
reordering algorithms to each FW in order to achieve the goal
of having most packets filtered by primarily checked rules.
This optimization is not incompatible with our proposal though
it was not considered in this paper: in principle it can be
applied to our solution too, and further investigations are going
to be carried out in future work.

In more details, authors of [26] adopt sound formal tech-
niques too, with the goal of fairly equalize the workload of
FWs along the critical traffic path. This roughly means that all
FWs traversed by the critical stream should be equally loaded,
i.e. the overall workload is homogeneously distributed among
all the affected FWs. Broadly speaking, such a workload is
conceptually close to the filtering load we introduced in previ-
ous sections: the cost paid to decide whether to drop or forward
a packet depends on the position of the matching rule in
the FW sequence, that is the number of rules unsuccessfully
checked before the matching is found. However, in [26]:

• Only accept , drop/deny rules are considered, whereas
our model includes also rule-skipping actions, which
are now widely used in a number of open-source and
proprietary products [39]–[43].

• The firewalls semantics is changed, since the workload
distribution relies on further checks that each firewall
has to perform about unused fields in IP headers that
have been purposely employed to enable the proposed

approach. Our technique, instead, is perfectly compatible
with most existing devices and it does not affect the FW
semantics.

• Both algorithms in [26] and Fig. 3 can run in polynomial
time, but the two polynomial functions differ in the type
and number of underlying variables.

Authors of [26] measure the performance improvement by
comparing the highest normalized workload of the involved
FWs before and after their transformation, and obtain an
average workload reduction equal to 60% for the considered
configurations. Such a metric can be easily compared to the
inverse of � f w1, f w2 , plotted in Figs. 5 and 6, and experimen-
tally evaluated in Sect. IV-C. In particular, the tenth column in
Tab. I shows the gain of the (FW1, FW2) pair, i.e. the average
gain for each firewall if the total workload is assumed to be
evenly split between the two devices. Reciprocals of values
in the column range from 0.53 to 0.73, corresponding to an
average load reduction equal to 47% and 27% respectively,
that is values not so far from 60% in [26].

Therefore we have closely comparable gains, with much less
complexity and with full compatibility with existing devices.

As mentioned before, a cloudy environment is considered
in [27], where performance and resilience to DoS attacks
are improved by leveraging a cloud/cloudlets architecture.
The firewall is assumed to be located in the cloud and,
when a distributed controller (cloud security controller) detects
changes in the traffic from a cloudlet, a virtual firewall is
created there, and relevant rules are moved from the existing
(central) firewall to the new virtual device. In particular:

• Decisions taken quickly at the system edges in [27] have
the advantage of blocking unwanted/malicious traffic as
soon as possible by modifying the packet routing. Our
approach does not involve any change in routing, and
packets traversing the newly configured firewalls to reach
their destinations are filtered exactly the same way as
before the rule migration.

• The integrity of the network security is claimed to be
preserved in [27] (i.e., each packet is delivered or dropped
in the same way before and after the transformation), but
no proof is provided in that paper. Our formal approach
makes such a proof easy to be obtained together with a
confirmation of the applied transformation correctness.

• The computational complexity of the approach in [27] is
kept manageable thanks to a pre-processing step able to
eliminate the rule dependencies in the macro firewall, i.e.
the relieved firewall. This is not needed in our case.

The reference scenario considered in [27] for evaluating
performance and the related metric cannot be put into direct
correspondence with our solution, anyway a rough comparison
is possible by considering their configuration where just one
auxiliary FW is instantiated to relieve the overloaded central
device. Their metric, called Packet Processing Time (PPT)
measures the time spent by a firewall to check packets by
assuming that this cost is linearly proportional to the position
of the matched rule in the FW sequence. In [27] the authors
provide the PPT absolute values for the critical firewall before
and after their proposed transformation. Despite the differ-
ences of the considered scenarios with respect to our solution,
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it is easy to verify that, in this condition, their improvement
ratios fall between 2 and 3. These results are rather comparable
and not far from the measured l1/ l2 values shown in the
seventh column of Tab. I.

VI. CONCLUSIONS

The (re)distribution of filtering rules between different fire-
walls located in the same network is a technical challenge
which is key not only in the design phase of a new system,
but also during the real-time operation and management of the
network itself. Of course, this could not be possible without
a strict coordination of the firewall activities, but solutions
are now offered by well-assessed paradigms such as SDN and
NFV, providing the levels of flexibility and supervision needed
for this purpose.

In this paper a novel technique has been presented, which
is based on the redistribution of the filtering rules between
cascaded firewalls, in order to reduce the packet processing
overhead in overload conditions, such as temporary traffic
peaks or DoS attacks. The proposed methodology is based on a
simple formal model which allows the modeling of the firewall
capabilities without introducing unnecessary details for the
purpose of redistributing the packet filtering load between
different devices.

Our solution requires neither changes to the routing
infrastructure nor modification of packets, such as usage of
additional bit fields, and is highly compatible with devices and
network equipment typically found in factory and automation
infrastructures.

A transformation algorithm has been introduced to move
rules between different FWs, its correctness and ability to
preserve the security of the network have been formally
proven and verified through simulation. The REDIAL algo-
rithm can be usefully adopted in either the management of
an existing network, i.e., for fine-tuning operations, or the
design and planning phases to estimate the performance of
a system before its actual implementation and deployment.
It has polynomial complexity and can be run to determine new
firewall configurations in real-time with moderate computing
resources.

We also computed theoretical performance bounds for the
proposed technique in order to quantitatively predict the
advantages in terms of packet processing rates that can be
obtained by applying the FW transformation to the network
of interest.

Simulation results obtained in a number of experiments
by varying the traffic and firewall characteristics confirm the
validity of the proposed approach and a very good accordance
with the theoretical model.

Measures collected, by deploying the proposed solution
in a purposely developed test-bed, show that the expected
performance gain determined both theoretically and through
simulation is close to the actual improvements achievable in
realistic conditions.

Finally, our solution is not incompatible with other intra-
firewall optimization techniques such as rule ordering, com-
pression and analysis and can be used in conjunction with them
in order to achieve highly effective cybersecurity schemes.
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