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Deep Face Representations for Differential
Morphing Attack Detection

Ulrich Scherhag , Christian Rathgeb , Johannes Merkle, and Christoph Busch

Abstract— The vulnerability of facial recognition systems to
face morphing attacks is well known. Many different approaches
for morphing attack detection (MAD) have been proposed in
the scientific literature. However, the MAD algorithms proposed
so far have mostly been trained and tested on datasets whose
distributions of image characteristics are either very limited
(e.g., only created with a single morphing tool) or rather
unrealistic (e.g., no print-scan transformation). As a consequence,
these methods easily overfit on certain image types and the
results presented cannot be expected to apply to real-world
scenarios. For example, the results of the latest NIST FRVT
MORPH show that the majority of submitted MAD algorithms
lacks robustness and performance when considering unseen
and challenging datasets. In this work, subsets of the FERET
and FRGCv2 face databases are used to create a realistic
database for training and testing of MAD algorithms, containing
a large number of ICAO-compliant bona fide facial images,
corresponding unconstrained probe images, and morphed images
created with four different face morphing tools. Furthermore,
multiple post-processings are applied on the reference images,
e.g., print-scan and JPEG2000 compression. On this database,
previously proposed differential morphing algorithms are evalu-
ated and compared. In addition, the application of deep face rep-
resentations for differential MAD algorithms is investigated. It is
shown that algorithms based on deep face representations can
achieve very high detection performance (less than 3% D-EER)
and robustness with respect to various post-processings. Finally,
the limitations of the developed methods are analyzed.

Index Terms— Biometrics, face recognition, morphing attacks,
morphing attack detection, differential attack detection, deep face
representation.

I. INTRODUCTION

IMAGE morphing techniques can be used to combine
information from two (or more) images into one image.

Morphing techniques can also be used to create a morphed
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Fig. 1. Example for a morphed face image (b) of subject 1 (a) and subject 2
(c). The Morph was manually created using FantaMorph.

facial image from the biometric face images of two
individuals, of which the biometric information is similar to
that of both individuals. Realistically looking morphed face
images can be generated by unskilled users applying readily
available tools [1]. An example of a morphed facial image is
shown as part of Figure 1.

In many countries, the facial image submitted for an elec-
tronic travel document is provided by the applicant either
in analogue (i.e., print on paper) or digital form. Therefore,
an attacker (e.g., a wanted criminal or a foreigner without
authorization to enter a territory) could morph his face image
with the face image of a similar looking accomplice who could
apply for a passport or another electronic travel document with
the morphed image. Since many morphed images are similar
enough to deceive human examiners as well as automatic face
recognition systems [2], [3], the attacker can then use the
electronic travel document issued to the accomplice to pass
through automatic or manual border controls. The vulnera-
bility of automated face recognition systems against such a
Morphing Attack (MA) was initially showcased in [4]. The
potential to launch a MA in practice was demonstrated by
members of the political activist group Peng! Kollektiv, who
succeeded without any problem in applying for a passport
with a morphed face image.1 Morphing attacks can be applied
to other modalities as well. Whether a system is susceptible
to this kind of attack can be theoretically examined with the
framework presented in [5] and [6].

Many approaches for Morphing Attack Detection (MAD)
algorithms have already been published in the scientific
literature. Most of them can be categorized as single image

1Peng! Kollektiv, MaskID: https://pen.gg/de/campaign/maskid/
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MAD algorithms, which examine only the potentially mor-
phed face image, as opposed to differential MAD methods
that compare the image in question with a trusted probe
image (e.g., a live capture). While many publications report
impressive detection rates, these results are hardly applicable
to real-world scenarios. Firstly, the datasets used for evaluation
are not realistic. In particular, most publications ([18]–[20]
and [21] being exceptions) do not consider variations in
post-processings of the images, e.g., print-scan transformation
or severe compression, which can occur in real-world sce-
narios and may drastically reduce detectable artefacts from
the morphing process. In addition, the vast majority of pre-
vious publications on differential MAD (with the notable
exception of [14]) use probe images that do not exhibit a
realistic intra-subject variance, e.g., facial pose and expression,
illumination, the subject’s appearance (glasses, beard, hair
style, clothing, cosmetics) and aging. Secondly, the datasets
used for training and evaluation are not sufficiently distinct
but contain images with similar characteristics. In particular,
the test sets typically contain only morphed images gener-
ated with the same tools as the images in the training set.
Consequently, the low error rates reported in these publica-
tions may simply reflect an overfitting to the specific and
unrealistic properties of the images used. This suspicion is
supported by the recent results of the Face Recognition Vendor
Test (FRVT) MORPH test [22] conducted by the National
Institute of Standards and Technology (NIST), where none
of the submitted algorithms achieved satisfactory performance
for all test scenarios.

The main contributions of this work are:
• A conceptual categorization of published MAD

approaches including technical considerations and
trade-offs, along with a more detailed survey of relevant
differential MAD schemes.

• The creation of a face database containing a large number
of ICAO-compliant bona fide and morphed reference
images (created using four different morphing algorithms)
as well as corresponding unconstrained probe images,
which are obtained from different image sources, i.e., face
image databases; the use of image post-processings which
are likely to be applied in real world, i.e., JPEG2000 com-
pression or print-scan transformations, together with the
selection of probe images exhibiting variations in facial
pose and expression as well as illumination and focus
enable the training and testing of MAD algorithms in a
realistic scenario.

• The proposal of differential MAD based on deep face
representations; by employing state-of-the-art face recog-
nition systems, rich and compact deep facial represen-
tations are extracted from pairs of reference and probe
images and combined to train machine learning-based
classifiers to detect image alterations induced by
morphing algorithms.

• A comprehensive vulnerability assessment of state-of-
the-art face recognition systems against MAs followed
by a scenario-based evaluation of the proposed MAD
concept applying a commercial and two open-source deep
face recognition systems; it is shown that the MAD based

on deep face representations outperforms previously pro-
posed differential MAD schemes, which is also confirmed
by the latest NIST FRVT MORPH report [22].

The remainder of this work is structured as follows: related
works on MAD are summarized in Section II. In Section III we
describe the databases set up for our investigations. Section IV
describes our approach to develop MAD algorithms based
on deep face representations. In Section V we evaluate our
approach and compare the results with our evaluation of
other state-of-the-art MAD algorithms. Finally, conclusions are
drawn in Section VI.

II. RELATED WORK

In recent years, numerous MAD approaches have been
proposed. The following subsections give a rough overview
of single image and differential MAD algorithms. A more
detailed listing and description of the individual algorithms
can be found in [1].

A. Single Image MAD

Single image MAD approaches can be categorized as texture
descriptors, e.g., in [23], forensic image analysis, e.g., in [24],
and methods based on deep neural networks, e.g., in [25].
These differ in the artefacts they can potentially detect.

Texture descriptors, e.g., Local Binary Patterns (LBP) [26]
or Binarized Statistical Image Features (BSIF) [27], attempt to
extract discriminative information from images, which can be
employed for the purpose of texture classification. The morph
process averages the images, which results in smoothed skin
textures. Furthermore, ghost artefacts or half-shade effects can
occur due to regions that do not overlap exactly (e.g., hair).
In particular, in the area of the pupils and nostrils these
artefacts appear more frequently, for examples the reader
is referred to [28]. In addition, distorted edges or shifted
image areas can occur. These types of artefacts can be easily
represented and detected using texture descriptors in multiple
ways [7], [20], [21], [23], [29]–[37].

Under the assumption that the morphing process leaves
specific traces in the image, forensic image analysis techniques
can be used to detect them. By averaging the images, the sen-
sor pattern noise is changed. It was shown in [38]–[42] that
these changes can be used for MAD. Under the assumption
that the images are intermediately stored during the morph
creation process employing lossy compression algorithms,
double compression artefacts can be analyzed [17], [43].
Furthermore, inconsistencies in the image, e.g., inconsistent
illumination [44] or color values, might be evaluated.

Deep neural networks can be used to detect morphs in two
different ways. Firstly, a new neural network is trained from
scratch or an existing neural network is re-trained [19], [25],
[45] for the task of MAD. Deep neural nets can theoretically be
trained to detect any artefact. Therefore, it is important that the
training data contains a high variance, to avoid overfitting to
algorithm and database specific artefacts. Secondly, the feature
vectors (embeddings) extracted by existing deep nets can be
employed for MAD [34]. Since the neural network was not
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TABLE I

OVERVIEW OF MOST RELEVANT DIFFERENTIAL MAD ALGORITHMS

trained on morphed facial images, it can be assumed that no
overfitting to unrealistic morphing artefacts occurs.

B. Differential MAD

Published differential methods and their properties are
listed in Table I. Differential MAD can be divided into two
categories. The first category are algorithms that compare
feature vectors extracted from extracted from trusted live
captures and potential morphs. Single image algorithms can be
extended to differential algorithms, e.g., by estimating differ-
ences between feature vectors [7]. The additional information
of the trusted live capture might improve the performance
and robustness of the detection algorithm. Further, algorithms
explicitly utilizing this additional information have been intro-
duced in [9], [11], where the distances between features of
facial landmarks are estimated.

The second category contains algorithms that try to reverse
the process of morphing. Here the assumption is that if
two subjects are represented in the morphed image and the
trusted live capture is subtracted from the possibly morphed
reference, in the case of a morphed face image the identity
of the second subject becomes more dominant, leading to a
lower face recognition scores. If there is no other subject in
the image, only the existing one remains. In [13], [14] the
so-called demorphing algorithm was proposed, an approach
where reversion is done explicitly. In addition to the explicit
demorphing approach, demorphing based on a Generative
Adversarial Network (GAN) is proposed in [16].

III. CREATION OF MAD DATABASE

For the development and evaluation of MAD algorithms,
bona fide and morphed reference images are required. In order
to resemble passport photos, these images should meet
the requirements of the ICAO passport photo quality stan-
dards [46]. Multiple tools should be used to generate morphed
images to represent a sufficient variance of MAs. In addition,
the reference images (bona fide and morphed) should have
undergone various realistic post-processings including strong
JPG2000 compression and print-scan transformation. For the
investigation of differential MAD, additional probe images

are needed. In order to simulate the important use-case of
automatic border control, theses probe images should resemble
live-captures taken in eGates. Since these recordings are
semi-controlled the quality of the captured samples is degraded
and does not comply to the ICAO requirements. A much
higher variance can be expected, e.g., with respect to pose,
facial expression, illumination, and background. Furthermore,
as the border control can occur up to ten years after the pass-
port application, reference and probe images can significantly
differ with respect to the subject’s appearance (glasses, beard,
hair style, clothing, cosmetics) and age.

Unfortunately, there is yet no public database available that
contains facial images which exhibit all of the mentioned
properties. Therefore, we decided to set up a new MAD
database based on existing face image databases. In this
section, the required steps, including the selection of the
images from public face image databases, for the generation
of the morphed images, the pairing of reference and probe
images, and the application of post-processings to the images,
are described in detail.

A. Selection of the Facial Image Database

In a first step, we selected public databases from which we
could build our MAD database. The candidate database had
to fulfill the following conditions:

• It must contain images (meeting the subsequent condi-
tions) of a sufficient amount of different subjects.

• The images must have a sufficient resolution.
• For each subject, at least two ICAO-compliant face

images must be available (one of which used as input
for morph generation and the other as bona fide).

• For each subject, at least one image taken in less con-
strained conditions (resembling the border control sce-
nario) must be available.

Among the available databases, FERET [12] and
FRGCv2 [8] are suitable. The samples of FERET are
all taken in a controlled environment but contain variations
in pose and expression. FRGCv2 contains images suitable
as passport photos, but also images with scenario variations,
e.g., non-uniform illumination, lack of sharpness and uneven
background, suitable as probe images.
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The FERET and the FRGCv2 face databases were collected
over a period of three and two years, respectively. This means
the maximum age variation of captured subjects is limited by
these periods. That is, selected face images of the used data-
bases exhibit less variations with respect to temporal difference
between the capturing of reference and probe images than
those expected in a border control scenario. However, to the
best of the authors’ knowledge, publicly available databases
which contain face images captured over a larger period of
time do not fulfill the aforementioned requirements. Moreover,
we stress that large age variations are only expected to occur
for bona fide authentication attempts. For an MA it is more
plausible that it will be performed using current face images
of the attacker and the accomplice which results in a small
temporal difference between capturing of reference and probe
images.

B. Selection of Image Candidates

For each of these databases, we select two types of
images, representing the reference, i.e., passport photographs,
and the unconstrained probe images, i.e., trusted live
captures.

The set of reference images contains all images complying
with ICAO requirements [46] except alignment of the face.
These images exhibit, among other requirements, uniform illu-
mination, good focus, a neutral face expression with open eyes
and no visible teeth, neutral background and no reflections
in glasses. For these images, we adjusted the alignment of
the face by suitable scaling, rotation and padding/cropping to
ensure that the ICAO requirements with respect to the eyes’
positions are met. Precisely, facial landmarks are detected
applying the Dlib algorithm [47] and alignment is performed
with respect to the detected eye coordinates where a fixed
intra-eye distance of 180 pixels is ensured.

From the remaining images, those suitable as probe images
to resemble the border crossing capture process were selected.
The face should be recognizable, but can be only partially
illuminated and slightly out of focus. The selected images
of the FERET database yield a variance in facial expression
and pose (slight rotations). For FRGCv2, the selected images
yield a variance in facial expression, background, illumination
and sharpness. The probe images are additionally converted
to grayscale. This conversion is motivated by the fact that
some eGates capture grayscale images. Nonetheless, if face
image quality is sufficient, the use of grayscale probe images is
expected to have negligible impact on the recognition accuracy
of state-of-the-art face recognition systems as well as human
examiners [48], [49].

Examples of the reference and probe images of both data-
bases are shown in Figure 2 and Figure 3. Note that the criteria
used to select suitable image candidates, which are necessary
to resemble a realistic scenario, clearly limit the amount of
appropriated images. Eventually, it is important to note that
the selection of face images is to a certain degree subjective.
In order to facilitate reproducibility of this research the list
of selected face images is made available to the research
community upon request.

Fig. 2. Examples of reference and gray scale probe images for FRGCv2.

Fig. 3. Examples of reference and gray scale probe images for FERET.

C. Selection of Images and Morph Creation
For each subject, we selected from all available refer-

ence images a subset of bona fide reference images and a
subset of images for generating morphs, i.e., morph input
images, as well as a subset of probe images. Where possible,
we ensured that the bona fide reference images were disjoint
from the morph input images, thereby avoiding a repetitive use
of the same image or same image parts during MAD training
which increases the variance of training data. No lossy com-
pression was applied to the images prior to post-processing.
In addition, we assured that selected reference images (bona
fide or morph input images), if possible, are captured in a
different recording session than the probe images, in order to
achieve temporal difference between the capturing of reference
and probe images as expected in a real border control scenario.
For image candidates selected from the FERET database,
where possible, we selected one bona fide reference image, one
morph input image, and up to two probe images per subject.
For image candidates selected from the FRGCv2 database,
if possible, we chose two bona fide reference images, two
morph input images, and up to five probe images per subject.
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TABLE II

COMPOSITION OF THE MAD DATABASE. THE NUMBER OF MORPH
IMAGES IS MULTIPLIED BY THE NUMBER OF

MORPHING TOOLS USED

For the creation of morphs, the morph input images are
lexicographically sorted, and then each input image is morphed
with one of the next consecutive input image, for which the
following two criteria hold: both depicted subjects are of same
sex; only one face image of the image pair shows glasses.
The latter criteria should avoid obvious artefacts. Morph input
images are only used once, i.e., for the generation of a single
morph. It is important to note that after the morph generation
the morph input images are discarded. Again, we aim to avoid
a repeated use of the same image or same image parts in the
training stage of MAD algorithms which should also prevent
from overfitting caused by overrepresented image parts. The
list of resulting face image pairs used for morph generation
is provided to the research community upon request. The key
figures of the resulting database are listed in Table II.

D. Morphing Algorithms

Four different automated morphing tools were used to create
morphed face images:

1) FaceFusion,2 a proprietary morphing algorithm.
Originally being an iOS app, we deployed an adaptation
for Windows which uses the 68 landmarks of Dlib
and Delaunay triangles. After the morphing process,
certain regions (eyes, nostrils, hair) of the first face
image are blended over the morph to hide artefacts.
The corresponding landmarks of upper and lower lips
can be reduced as described in [17] to avoid artefacts at
closed mouths. The created morphs have a high quality
and low to no visible artefacts. Example morphs are
shown in Figure 4b.

2) FaceMorpher,3 an open-source implementation using
Python. In the version applied for this work, the algo-
rithm uses STASM for landmark detection. Delaunay
triangles, which are formed from the landmarks, are
wrapped and blended. The area outside the landmarks is
averaged. The generated morphs show strong artefacts in
particular in the area of neck and hair. Figure 4c depicts
examples of generated morphs.

3) OpenCV, a self-made morphing algorithm derived from
“Face Morph Using OpenCV”.4 This algorithm works
similar to FaceMorpher. Important differences between
the algorithms are that for landmark detection Dlib is
used instead of STASM and that additional landmarks
are positioned at the edges of the image, which are

2www.wearemoment.com/FaceFusion/
3github.com/alyssaq/face_morpher
4www.learnopencv.com/face-morph-using-opencv-cpp-python/

also used to create the morphs. Thus, in contrast to
FaceMorpher, the outer facial area does not consist
of an averaged image, but like the rest of the image,
of morphed triangles. However, visible artefacts outside
the face area can be observed, which is mainly due
to missing landmarks. Example morphs can be seen
in Figure 4d.

4) UBO-Morpher, the morphing tool of University of
Bologna, as used, e.g., in [13]. Dlib landmarks were
used for this algorithm. The morphs are generated by
triangulation, averaging and blending. To avoid the arte-
facts in the area outside the face, the morphed face is
copied to the background of one of the original images.
Even if the colors are adjusted at boundaries, visible
edges may appear at the transitions. Figure 4e shows
examples of resulting morphs.

No manual post-processing is applied in the morph generation
process. The use of various morphing tools which produce
facial morphs of different quality enable a thorough investiga-
tion of MAD capabilities, i.e., impact of the use of high and
low quality morphs on training and testing of MAD methods,
see Section V. The evaluation of MAD algorithms for different
quality levels of morphed face images is also performed by
NIST in the FRVT MORPH [22]. The pairs for the morphing
process for each algorithm are selected according the protocol
defined in Section III-C, resulting in 4 × 529 morphed face
images for FERET and 4 × 964 morphed face images for
FRGCv2. For both databases, the bona fide and morphed
face images are normalized to meet the ICAO-requirements
for passport images [46]. The resulting images are of size
720 × 960 pixels.

E. Post-Processing
Images that have been captured for the use in an identity

document, e.g., passport, can go through various processing
steps before they are embedded, e.g., in a passport RFID
chip. To reflect this variety, the passport images (bona fide and
morphed) of the MAD database are post-processed in different
manners. An example for the different post-processings is
shown in Figure 5.

Unprocessed: The images are not further processed,
henceforth referred to as NPP (no post-processing).
NPP images serves as baseline.
Resized: The resolution of the images is reduced by
half, resulting in 360 × 480 pixels, in the following
text referred to as Resized. Resized images fulfill
the minimum requirement with respect to intra-eye
distance defined by ICAO, i.e., 90 pixels. This
pre-processing corresponds to the scenario that an
image is submitted digitally by the applicant.
JPEG2000: The images are resized by half and
then compressed using JPEG2000, a wavelet-based
image compression method that is recommended for
EU passports [50]. The setting is selected in a way
that a target file size of 15KB is achieved. This
scenario reflects the post-processing path of passport
images if handed over digitally at the application
desk, hereafter referred to as JP2.
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Fig. 4. Examples for a morphed face images from all four algorithms for a female pair of face images from the FERET (top row) and the FRGCv2 (bottom
row). Equal weights of face images were used to create morphs. Face images depicting subjects with similar demographic attributes, e.g., age and ethnicity,
generally result in more plausible face morphs.

Fig. 5. Examples of an original image and the three post-processing types.

Print/Scan – JPEG2000: The original images
(uncompressed and not resized) are first printed
with a high quality laser printer (Fujifilm Frontier
5700R Minlab on Fujicolor Crystal Archive Paper
Supreme HD Lustre photo paper) and then scanned
with a premium flatbed scanner (Epson DS-50000)
with 300 dpi. A dust and scratch filter is then
applied in order to reduce image noise. Subse-
quently, the images are resized to 360 × 480 pixels,
i.e., half of the NPP images, and compressed to
15 KB using JPEG2000.5 This scenario reflects the
post-processing path of passport images if handed
over at the application desk as a printed photograph,
subsequently referred to as PS-JP2.

F. Validation of Attack Potential

The newly created databases differ considerably from other
databases used in scientific publications on MA and MAD.
In particular, the intra-class variation is much higher in our

5Due to the lustre print, the scans exhibit a visible pattern of the paper
surface, which is only partly removed by the dust and scratch filter and results
in stronger compression artefacts than for scans of glossy prints.

TABLE III

NUMBER OF COMPARISONS PER TEST SET

database due to the selection of unconstrained probe images.
While this approach ensures that our database is more eligi-
ble to simulate real-world scenarios, it is perfectly valid to
question whether the use of unconstrained probe images may
render MA ineffective. Previous analyses of the vulnerability
of face recognition systems to MAs, e.g., in [4], [7], used
probe images, which nearly resembled passport images and,
hence, these studies do not apply to the face databases used in
this work. Therefore, we evaluated whether face recognition
systems are also vulnerable to MAs using our newly created
databases.

Firstly, the face recognition performance is evaluated. The
amount of bona fide, i.e., genuine, and impostor comparisons,
i.e., all possible cross-comparisons of reference and probe
images of different subjects, for each database is summarized
in Table III. On each database, the decision thresholds of the
face recognition systems are set to achieve a False Match
Rate (FMR) of 0.1% according to the FRONTEX recommen-
dation for border control scenarios [51]. The results are pre-
sented in Table IV and the corresponding Probability Density
Functions (PDFs) are depicted in Figure 6. For ArcFace and
the COTS system, no false non-matches occur at an FMR
of 0.1%. Note that this is also to be expected for using
color probe images. In general, it can be observed, that the
genuine score distributions of FERET are further right (higher
similarity scores) than those of FRGCv2. This is likely due to
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TABLE IV

VULNERABILITY ASSESSMENT OF FACE RECOGNITION SYSTEMS (FRSS)

Fig. 6. Probability Density Functions of comparison scores of genuine, impostor and morph comparisons for all three face recognition systems. Distance
scores obtained from ArcFace were multiplied by −1 to obtain similarity scores. τ depicts the estimated threshold for a FMR of 0.1%.

the fact, that the probes of FRGCv2 contain a much higher
variation in illumination, sharpness and expression. Further,
it can be seen, that the impostor distributions of FERET
and FRGCv2 are close to each other, thus the thresholds are
approximately the same over both datasets.

Secondly, the vulnerability of the face recognition sys-
tems against MAs is evaluated. The vulnerability assess-
ment was conducted using the metrics presented described
in [28], i.e., Mated Morph Presentation Match Rate (MMPMR)
and Relative Morph Match Rate (RMMR). The MMPMR
describes the proportion of morphed face images accepted by
the face recognition system, the RMMR describes the relation
between the MMPMR and the true match rate. Since on
both databases no false non-matches occur for the considered
decision threshold the MMPMR and the RMMR are equal.
The vulnerability analysis is performed exclusively on the NPP
image sets of each database, as preliminary studies have shown
that the performance of facial recognition systems is only
slightly affected by the previously described post-processings.
An open-source face recognition system, namely ArcFace [52],
and one commercial off-the-shelf system, referred to as
COTS,6 are employed in the vulnerability assessment. The

6We stress that this COTS system is not Eyedea, which is only used for
MAD.

number of MAs performed for each database is summarized
in Table III. The corresponding results are depicted in Figure 6
and summarized in Table IV.

Two types of MAs are considered in the vulnerability
analysis. On the one hand, morphs with equal weights are
employed, i.e., facial images of both subjects contribute
with a weight of 50% to the resulting morph. MAs based
on these morphs are denoted as MAs50. On the other hand,
morphs in which the attacker contributes only with 25%
to the morph are used. Corresponding MAs are referred to
as MAs25. This means, a larger weight is assigned to an
accomplice, i.e., 75%, who would present the morphed face
image to a human observer during the application process
of an identity document. Assuming that morphs generated
with equal weights of two face images are easily spotted by
a human inspection during the application process, the latter
type of MAs might be considered as more realistic [13].

Focusing on MAs50, ArcFace and the COTS system are
both very vulnerable to the MAs contained in the database.
This can be observed from the high MMPMR/RMMR values
in Table IV. Especially on the FERET dataset almost all
MAs are accepted. In contrast, the MMPMR/RMMR values,
i.e., success chance, significantly drop in case of MAs25.
In general, morphs created by morphing algorithms producing
less artefacts (FaceFusion and UBO-Morpher) are more likely
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to pass the recognition system. In addition, it should be
noted that the morphs generated from the FERET database
are generally more successful in MAs than the morphs from
FRGCv2. This can be attributed to the different intra-class
variations of the two databases. Since the genuine compar-
isons of the FERET data set achieve higher similarity scores,
the ones obtained by MAs also tend to be higher. As MAs25
achieve only small MMPMR/RMMR values only MAs50 are
considered for MAD. In case the attacker contributes with
a lower weight to the morph compared the accomplice the
distance between the resulting morph and the probe image of
the attacker increases. Consequently, differential MAD method
will generally detect such MAs with higher chance, compared
to MAs where morphs have been created using equal weights
of the contributing face images.

IV. MAD BASED ON DEEP FACE REPRESENTATIONS

One of the greatest issue regarding existing differential
MAD algorithms is that they can not cope with the large
intra-class variance that must be expected for realistic probe
images. Deep face recognition networks, however, have shown
that they are able to work very robustly, even on challenging
data. Therefore, we propose to employ deep face represen-
tations extracted by such deep face recognition systems for
differential MAD. Precisely, we use the following deep face
recognition systems:

• ArcFace [52], an up-to-date network with a topology
optimized for automatic facial recognition

• The commercial face recognition SDK from Eyedea7

• A re-implementation8 of the FaceNet algorithm [53]

In principle, it would by possible to apply transfer learning
and re-train a pre-trained deep face recognition network to
detect morphs. However, the high complexity of the model,
represented by the large number of weights in the neural
network, requires a large amount of training data. Even if
only the lower layers are re-trained, as done in [18], the lim-
ited number of training images (and much lower number of
subjects) in our database can easily result in overfitting to the
characteristics of the training set.

Therefore, we follow an alternative approach. We use the
pre-trained deep face recognition networks as feature extrac-
tors and train our MAD algorithms on the deep representations
extracted by the neural network (on the lowest layer). Deep
face recognition systems leverage very large databases of face
images to learn rich and compact representations of faces.
While these feature vectors, i.e., deep face representations,
have not been trained to detect MAs, at least in the differential
scenario, they can, nevertheless, be very useful for MAD:
As a morphed face image does not only contain biometric
information of the attacker but also those of the accomplice,
its deep face representation is expected to, at least in certain
aspects, considerably deviate from those detected in the probe
image. On the other hand, since there were no morphed facial
images in the training set of the neural network, the features

7https://www.eyedea.cz/eyeface-sdk/
8David Sandberg - Face Recognition using Tensorflow, URL:

https://github.com/davidsandberg/facenet

Fig. 7. Generic processing chain of face recognition systems based on neural
networks.

Fig. 8. Overview of the proposed differential MAD system based on deep
face representations.

can not contain information on image characteristics specific
for a certain morphing technique or tool, which reduces the
risk of overfitting.

Most deep face recognition systems work as shown
in Figure 7. The facial image is pre-processed and transferred
to the neural network trained for the extraction of deep face
representations. This net transfers the facial image into a
discriminatory feature space with smaller dimension (512 in
the case of ArcFace and FaceNet, 256 in the case of Eyedea).
If two images are to be compared, the distance of their
feature vectors, e.g., using the Euclidean distance, can serve
as dissimilarity score. Even though our vulnerability analysis
in Section III-F has shown that this measure is not suitable
to separate morphs from bona fide images, the feature vec-
tors can nevertheless contain sufficient information to detect
MAs.

The processing of our MAD algorithms is shown
in Figure 8. In the training stage, pre-processed bona fide
or morphed reference images and probe images are fed into
the neural network. The resulting deep face representations
are combined and subsequently processed by a machine
learning-based classifier to learn to distinguish between bona
fide authentication attempts and MAs. During testing, a poten-
tially morphed reference image and a probe image are
processed in the same way and the previously trained classifier
is used to estimate the MAD score. A simple but effective
combination of the deep features is subtraction, i.e. estimation
of a difference vector, which preserves the dimensionality
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Fig. 9. Scatter plots of MDS-reduced difference vectors of deep face
representations extracted from reference and probe images.

of the feature vector and keeps the training effort low. For
the classifier, we tested various machine learning algorithms,
namely AdaBoost, Random Forest, Gradient Boosting and
SVM. Consistently, SVM with radial basis function as kernel
showed the best accuracy and was, thus, chosen for the MAD
algorithm.

By employing the difference vectors of feature vectors
extracted from reference and probe images, a simple dimen-
sion reduction by Multi-Dimensional Scaling (MDS) to two
dimensions shows that bona fide and morphs can be separated.
Corresponding scatter plots are provided in Figure 9. Each plot
shows data points for MAs using all of the four morphing
tools. Since, as shown in Section III-C, the subset of the
FRGCv2 allows more comparisons, the corresponding scatter
plots are much denser compared to the ones generated from
the FERET database. Nevertheless, for both databases it can
be seen that MAs and bona fide authentication attempts can be
separated on the basis of the difference vectors of deep face
representations obtained from ArcFace and Eyedea. Especially
the FERET database can be separated almost error-free using
the ArcFace algorithm for feature extraction. The FaceNet
feature vectors also allow a separation, but higher error rates
are expected.

V. EXPERIMENTS

Using the databases described in Section III, we evaluate our
MAD approach based on deep face representations described
in Section IV. In our first experiment, we benchmark the
accuracy of our approach together with that of other dif-
ferential MAD algorithms in the absence of image post-
processing. Then, we evaluate the robustness of our approach
against image post-processing. Finally, we analyze the score
distributions in more detail to gain insight on the causes of
classification errors.

For all evaluations presented in this section, we separate
training and test sets by source database; precisely, all
algorithms are trained using the default hyperparameters on
images originating from FERET and evaluated on images
from FRGCv2, and vice versa. This approach does not only
ensure a strict separation of training and test data, but also
a large variance in the image characteristics between these
sets. Furthermore, for all evaluations, each of the training sets
contains only images with the one of the four post-processings
and morphs created with one of the four morphing algorithms
(see Section III for details); i.e., we do not combine several
post-processings or morphing tools in one training set. The
numbers of MAs and bona fide authentication attempts per-
formed for each database during training and testing are listed
in Table III.

The accuracy of the detection algorithms is reported using
the Detection Equal Error Rate (D-EER), i.e., at the deci-
sion threshold where the proportion of attack presentations
incorrectly classified as bona fide presentations (APCER) is as
high as the proportion of bona fide presentations incorrectly
classified as presentation attack (BPCER). For APCER and
BPCER the definitions of ISO IEC 30107-3 [54] for measuring
accuracy of presentation attack detection are used:

APCER: proportion of attack presentations incor-
rectly classified as bona fide presentations in a
specific scenario
BPCER: proportion of bona fide presentations incor-
rectly classified as presentation attacks in a specific
scenario

Additionally, the BPCER10 is reported, i.e., the operation
point where APCER = 10%.

A. Detection Accuracy in the Absence of Post-Processing
and Comparison With Other MAD Algorithms

In this subsection, we evaluate the accuracy of our MAD
approach on the NPP images and compare its detection accu-
racy to that of several other differential MAD approaches.
Beside the classifiers trained on deep face representations
extracted using ArcFace, Eyedea and FaceNet, we test
two MAD algorithms based on texture descriptors, namely
LBP [26] and BSIF [27] with patches of size 3 × 3 and an
optional division into 4×4 cells. In order to adapt these feature
extractors to differential detection scenario, the difference
between the histograms of reference and probe images are
used as classifier input as proposed in [7]. Further, two
landmark-based algorithms implemented according to [11] are
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TABLE V

DETECTION PERFORMANCE OF MAD ALGORITHMS ON NPP IMAGES USING DIFFERENT MORPHING TOOLS (MTS) FOR TRAINING AND TEST

evaluated using landmarks computed with Dlib [47] and Wing
Loss [55], respectively. Finally, we evaluate the demorphing
algorithm of [13] with a demorphing factor of 0.3 in combi-
nation with Dlib landmarks and the COTS face recognition
algorithm used in Section III-F.

The results are shown in Table V. Note that the demorphing
algorithm is not trained, which is why for this MAD algo-
rithm in the table the specification of the morphing algorithm
used for training have no effect. Consistently, when testing
on FRGCv2 (and thus training on FERET), the detection
performance of all MAD algorithms is much lower than
that achieved on FERET. This observation can be explained
by the fact that, as visible in Figure 2, the probes of the
FRGCv2 show a significantly higher variance in illumination,
background and sharpness, whereas the probes of the FERET
database contain pose variants, but are consistently good in
quality, see Figure 3. Similarly, our results on the MAD
based on texture descriptors and landmarks are much worse
than those reported in [7] and [11], where probe images
of higher quality were used. Thus, we conclude that the
quality of the probes has a strong effect on the detection
performance of the MAD algorithms. This further underlines

the need for databases containing probe images with realistic
characteristics.

Our MAD algorithms based on deep face representations
yields superior results compared to the majority of other
methods. The algorithm based on ArcFace features by far
outperforms all other approaches, achieving very low D-EER
between 1% and 7%. The algorithm using Eyedea fea-
tures ranks second with an D-EER between 3% and 17%.
Obviously, the features of FaceNet are far less suitable for
MAD. A clear correlation to the scatter plots shown in Figure 9
can be observed.

The texture-based MAD algorithms are only capable of
detecting morphed face images (although with very high error
rates) if the probe image is available in sufficient quality,
i.e., on the FERET database. The detection performance of
these algorithms when probes with a more realistic variance,
i.e., on the FRGCv2 database, is close to random. The per-
formance of landmark-based MAD is less dependent on the
quality of probe images but generally very poor. In contrast,
demorphing in combination with the COTS face recognition
system yields good detection rates. In particular, for FRGCv2,
it performs only slightly worse than our ArcFace-based MAD
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TABLE VI

DETECTION PERFORMANCE OF MAD ALGORITHMS BASED ON DEEP FACE REPRESENTATIONS WITH DIFFERENT POST-PROCESSINGS (PPS)

for the higher quality morphs (FaceFusion and UBO-Morpher)
and even comparably good for the lower quality morphs.
However, on the FERET database, its performance even falls
behind that of the Eyedea-based MAD algorithm.

Since the use of grayscale probe images is not expected
to significantly impact the recognition performance of face
recognition systems based on deep face representations it is
valid to assume that the proposed MAD approaches achieve
equal detection performance in case colour probe images
are processed. The same holds for MAD algorithms which
explicitly perform a grayscale conversion prior to the fea-
ture extraction, e.g., MAD based on LBP or BSIF feature
extractors.

A general pattern observable in the results is that morphs
with higher quality are more difficult to detect. FaceFusion
and the UBO-Morpher both include automatic post-processing,
which replaces the artefact-rich region outside the face and
therefore generate a higher error rate during MAD.9 Although
the best results are achieved if for training and test sets the
same morphing tool is used (which indicates slight overfitting

9In addition, the outer region is replaced with that from the attacker’s image
which is expected to increase the similarity in comparison with a probe image
from the attacker.

to the characteristics of the morphing process), the influence
of the morphing tool used for training is quite limited.

B. Robustness Against Image Post-Processing

In this subsection, the robustness of MAD algorithms based
on deep face representations with respect to post-processing of
the reference images is investigated. All four post-processings
presented in Section III-E are separately used for training
and testing. Since we have already seen that the morphing
tool used for training is of minor importance and that higher
quality morphs (created with FaceFusion and UBO-Morpher)
are more difficult to detect, we use FaceMorpher and OpenCV
for training, and FaceFusion and UBO-Morpher for testing.
The other MAD algorithms considered in the previous section
will not be further considered, because they cannot achieve
comparable performance.

The corresponding results are shown in Table VI. As in
the previous experiment, the MAD algorithm based on deep
face represnetations extracted using ArcFace is far ahead
in detection performance, followed by the MAD algorithm
based on Eyedea. Training on post-processed images has
no noticeable influence on the detection performance of the
algorithms. Testing on post-processed images can have a slight
effect on detection performance. In general, the proposed
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Fig. 10. PDFs of the decision score of an MAD based on ArcFace features for different databases and post-processings, when trained on different morphing
attack algorithms. Low scores (close to 0) indicate to bona fide authentication attempts and high scores (close to 1) indicate MAs.

MAD algorithms are not severely influenced by the tested post-
processings. Presumably, this is due to the extraction of the
deep face representations by the neural networks which were
trained for a high independence from image properties.

C. Analysis of Score Distributions

As a final investigation, score distributions of the MAD
algorithm based on the ArcFace feature extraction are analyzed
in more detail. Since this MAD algorithm achieves by far
the best performance, the other two deep face representation
extractors (Eyedea and Facenet) are not considered here.
Since post-processing has no influence during training, only
algorithms trained on NPP images are considered. Trained
SVMs generate a normalized MAD score in the range [0, 1]
where low scores, i.e., scores close to 0, indicate bona fide
authentication attempts and high scores, i.e., scores close to 1,
refer to MAs. Figure 10 shows the resulting probability density
functions. For each subfigure, training was performed with
each morphing tool separately (the tool name is given in the
legend of the plot), while testing was performed considering
MAs using all morphing algorithms together. The database
and post-processing used for the evaluation are given in the
caption of the respective subfigure.

The observations correspond to the findings of the previous
experiments. Within a database, the score distributions are
very similar, regardless of which morphing tool is used for
training and which post-processing is used for the test set. This
further suggests that the use of a variety of different morphing
tools in the training stage is not expected to yield significant
improvement in terms of detection performance. Generally,
scores which were generated by the evaluation on FERET can
be separated better than those stemming from FRGCv2.

It is noticeable that when evaluated on FRGCv2, some bona
fide samples are very clearly, i.e., with rather high scores,
misclassified as MAs, visible in Figure 10 (a) to (d) as
a peak for bona fides at 1. On the contrary, on FERET,

Fig. 11. Attack presentation classification error examples on FERET.

misclassifications occur mostly for MAs, which can be seen
in Figure 10 (e) to (h) as small bumps in the MA score distri-
butions close to 0. Examples for the above mentioned errors
are given in Figure 11 and Figure 12. If the morph is of good
quality and very similar to the sample, the MAD algorithm can
no longer detect the MA. For example, in the samples shown
in Figure 11 it is difficult even for an experienced observer
to detect the MA. Examples for wrongly classified bona fide
authentication attempts are given in Figure 12. The cause of
this error is obvious. In these examples, the strong variance
in facial expression and the presence of headgear in the probe
images are particularly noticeable. However, such a variance
can also be expected in a realistic border control scenario.

Due to the high certainty with which the algorithm assigns
some samples to the wrong category, it is hardly possible to
correct these errors by adjusting the MAD decision threshold
value. Still, for both databases the score distributions of
MAs and bona fide authentication attempts are very clearly
separated. Thus, the error rates are quite stable within a con-
siderable range of MAD decision threshold values (operating
points), which makes the MAD algorithm very suitable for a
practical application.

D. NIST Face Recognition Vendor Test MORPH

The NIST FRVT MORPH test provides ongoing indepen-
dent testing of prototype face MAD methods. The evaluation is
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Fig. 12. Bona fide presentation classification error examples on FRGCv2.

designed to obtain commonly measured assessment of morph
detection capability to inform developers and end-users. The
test opened in June 2018, and, at the time of this writing,
NIST has since received twelve different MAD algorithms.
The latest report [22] includes morph detection performance
results over thirteen datasets. On various unseen datasets where
differential MAD was evaluated the proposed method achieved
performance rates comparable to those presented in this work.
Further, it outperformed all other methods by orders of
magnitude, including implementations of single image MAD
methods based on texture descriptors, forensic image analysis,
and deep learning, i.e., [7], [18]–[20], [23], [38], [39], [56],
as well as differential MAD methods employing texture
descriptors and facial landmarks, i.e., [7], [11]. For detailed
results the interested reader is referred to [22]. The submitted
version of the proposed MAD method uses ArcFace for the
extraction of deep face representations. For the training of
the corresponding SVM, we utilized bona fide and morphed
reference images from the FERET and FRGCv2 databases.
In order to achieve high robustness morphed reference images
generated by all morphing tools used in this work were
considered in the training stage.

VI. CONCLUSION

Based on the experiments conducted in this work, the
following conclusions are reached:

• Detection performance: the detection performance
achieved by MAD based on deep face representations
is promising and highly robust with respect to image
post-processing, i.e., image compression, image resiz-
ing and even print-scan transformation. This is a clear
advantage over MAD based on texture descriptors, which
is typically quite sensitive to post-processing, particu-
larly in more challenging scenarios. Moreover, the detec-
tion performance does not significantly depend on the
post-processing applied to the training set, so that no
scanned images are necessary for training.

• Heterogeneous morphing algorithms: morphs generated
by morphing algorithms which produce obvious artefacts,
e.g., clearly visible ghost artefacts, are generally detected
with higher accuracy. Furthermore, the recognition per-
formance slightly degrades if training and evaluation
sets contain morphs generated by different morphing
algorithms.

• Heterogeneous databases: if training and testing is con-
ducted on heterogeneous face image databases which con-
tain face images with different conditions, e.g., variations

in pose and lightning, detection performance is nega-
tively affected. On databases obtained from subsets of
the publicly available FERET and the FRGCv2 face
database, experiments revealed higher detection accuracy
on the FERET subset in which probe images only contain
slight variations in expression and pose as opposed to
the FRGCv2 subset, which additionally comprises probe
images with variations in lightning and focus. It can be
concluded that strong variations in lightning and focus of
probe images represent especially challenging conditions
for differential MAD.

• Machine learning-based classifiers: among the tested
machine learning-based classifiers, i.e., AdaBoost,
Gradient Boosting, Random Forest and Support Vector
Machine (SVM), SVM-based classifiers generally
revealed most competitive detection performance across
the vast majority of conducted experiments.

• Commercial vs. open-source: while commercial face
recognition algorithms frequently outperform correspond-
ing open-source implementations, this is not necessarily
the case for MAD. Precisely, for the task of MAD, deep
face representations obtained from open-source algo-
rithms, e.g., ArcFace, might be better suited, compared
to deep features extracted by commercial face recognition
systems.

Furthermore, this work underlines the need for realistic
databases. Not only the quality of the reference, but also the
quality of the probes has a strong influence on the detection
performance of the MAD algorithms. Therefore, for the devel-
opment of algorithms, which are deployable in a real world
scenario, it is necessary to test on realistic data. However, there
is still the problem that the exchange of databases is difficult
due to privacy regulations.
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