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Joint Intensity Transformer Network for
Gait Recognition Robust Against

Clothing and Carrying Status
Xiang Li , Yasushi Makihara, Chi Xu , Yasushi Yagi , Member, IEEE, and Mingwu Ren

Abstract— Clothing and carrying status variations are the
two key factors that affect the performance of gait recognition
because people usually wear various clothes and carry all kinds
of objects, while walking in their daily life. These covariates
substantially affect the intensities within conventional gait
representations such as gait energy images. Hence, to properly
compare a pair of input gait features, an appropriate metric
for joint intensity is needed in addition to the conventional
spatial metric. We therefore propose a unified joint intensity
transformer network for gait recognition that is robust against
various clothing and carrying statuses. Specifically, the joint
intensity transformer network is a unified deep learning-based
architecture containing three parts: a joint intensity metric
estimation net, a joint intensity transformer, and a discrimination
network. First, the joint intensity metric estimation net uses a
well-designed encoder-decoder network to estimate a sample-
dependent joint intensity metric for a pair of input gait energy
images. Subsequently, a joint intensity transformer module
outputs the spatial dissimilarity of two gait energy images using
the metric learned by the joint intensity metric estimation net.
Third, the discrimination network is a generic convolution neural
network for gait recognition. In addition, the joint intensity
transformer network is designed with different loss functions
depending on the gait recognition task (i.e., a contrastive loss
function for the verification task and a triplet loss function for
the identification task). The experiments on the world’s largest
datasets containing various clothing and carrying statuses demon-
strate the state-of-the-art performance of the proposed method.

Index Terms— Joint intensity transformer network, joint inten-
sity metric learning, gait recognition.

I. INTRODUCTION

GAIT is an important biometric that cannot be replaced
by other biometrics (e.g., fingerprints, vein patterns,
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irises, or the face), because it is available even at a long dis-
tance with low image resolution. Because it is an unconscious
behavior, people usually do not conceal their gait intentionally.
Therefore, gait-based human recognition has attracted increas-
ingly more attention by researchers for many applications
such as surveillance systems, forensics, and criminal investiga-
tions [1]–[3]. The approaches to gait recognition in the litera-
ture are divided into two main categories: model-based [4]–[7]
and appearance-based [8]–[12] approaches. While the former
one usually requires high-resolution videos to fit a human
model, the latter is more popular for relatively low-resolution
videos.

For appearance-based approaches, the gait representations
mainly include motion-based features [13], [14] and silhouette-
based features (such as gait energy images (GEIs) [10],
frequency-domain features [15], chrono-gait images [16], and
Gabor GEIs [17]), where the latter type is more popular
because of its simple yet effective properties. In particular,
GEIs, also known as average silhouettes [18], are widely used
in many studies. However, these appearance-based gait repre-
sentations are easily changed by many covariates (e.g., view,
clothing, and carrying status) resulting in large intrasubject dif-
ference, which greatly affects the performance of recognition.

Although most researchers mainly investigate view angle
variations [19]–[24], clothing and carrying status variations are
also very common in our daily life. This is because people usu-
ally walk while carrying different kinds of bags or other items.
Moreover, they often change their clothes as the temperature
changes. Therefore, gait recognition techniques robust against
clothing and carrying status are also of great importance.

Traditional approaches to maintain the robustness of gait
recognition against covariates fall into two families: spatial
metric learning-based approaches and intensity transformation-
based approaches. The former one concentrates on learning
more discriminant features from original spaces and con-
taining whole-based metric learning approaches (such as lin-
ear discriminant analysis (LDA) [10], discriminant analysis
with tensor representation (DATER) [25], the random sub-
space method (RSM) [26], [27]), and part-based approa-
ches [28]–[30], which decompose the holistic features into
multiple body part-dependent features, then enhance or atten-
uate parts based on how they are influenced by covariates.
However, spatial positions are influenced by covariates such as
clothing and carrying status quite differently depending on the
instance. Hence, it is insufficient to deal with these covariates
using spatial metric learning techniques alone.
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Fig. 1. Meaning of joint intensity metric learning. The joint intensity
metric learning is proposed to find a proper metric that can reduce the
dissimilarity of the joint intensities that come from intrasubject clothes/carried
object difference while enhancing the dissimilarity of the joint intensities
that come from intersubject motion difference. Because a conventional joint
intensity metric (i.e., l1-norm), that returns a large dissimilarity for the
intrasubject clothes/carried object difference (e.g., intensity level 255 vs. 0)
and a small dissimilarity for the intersubject motion difference (e.g., intensity
level 120 vs. 150), may result in a false match.

In contrast, intensity transformation-based approaches focus
more on the feature representation aspect. They transform the
intensity values of an original gait feature (gait energies in
the case of GEI) into more discriminative values to increase the
robustness against covariates. Because clothing and carrying
status variations mainly affect the static components of human
gait (e.g., a backpack and coat will change the torso and limb
shapes) and partly affect the dynamic components of human
gait (e.g., a dress can hide the leg motion and a handbag will
affect the hand motion) during people’s walking period, inten-
sity transformation-based approaches are generally designed to
enhance the effect of dynamic components while reducing the
effect of static components. Typical approaches include hand-
crafted transformations like gait entropy image (GEnI) [11]
and masked GEIs [12] as well as training-based transformation
such as gait energy response functions [31], [32]. Recently,
instead of transforming a single GEI, Makihara et al. [33]
proposed a joint intensity metric learning-based method that
focused on the joint intensity transformation of a pair of GEIs,
which reduces the large intrasubject differences and leverages
the subtle intersubject differences, as shown in Fig. 1. Through
transforming gait energies, these intensity transformation-
based approaches show their unique advantages dealing with
the variations compared with spatial metric learning. Addition-
ally, they can be easily combined with spatial metric learning
techniques to boost performance.

In recent years, thanks to the great success of deep learning
techniques, many approaches [14], [21]–[24], [34]–[41] have
been proposed in the gait recognition community that signifi-
cantly improve on the performance of traditional approaches.
However, they all employ various types of spatial metric
learning while ignoring intensity metric learning. Currently,
there are no deep learning-based methods that employ intensity
metric learning.

There is an existing work called the spatial transformer
network [42] that regresses affine transformation parameters
for spatial transformation to distorted digits. Inspired by this,
we propose a new architecture to deal with the joint intensity
transformation of a pair of GEIs for joint intensity metric
learning. Compared with [33], which learns a fixed joint

intensity metric using a framework consisting of a linear
support vector machine (SVM), the proposed method utilizes
deep learning networks to learn a sample-dependent joint
intensity metric for intensity transformation that is more suit-
able for various clothing and carrying status types (appearing
in different positions depending on the instance). For example,
in the case of a relatively small variation, an incrementally
modulated joint intensity metric is estimated, whereas for
a large variation such as a large carried object, the large
intrasubject difference is strongly suppressed while subtle
motion differences are strongly enhanced. Finally, through the
learned sample-dependent joint intensity metric, the proposed
method can adaptively handle the intrasubject differences of
the same subject pair caused by clothing and carrying status
variations as well as the intersubject differences of different
subject pairs caused by motion difference, which results in
better recognition performance.

In this paper, we propose the unified joint intensity trans-
former network (JITN) for gait recognition that is robust
against various clothing and carrying statuses and takes both
spatial and intensity metric learning into consideration. To the
best of our knowledge, this is the first work integrating
joint intensity metric learning into a deep learning-based
framework. Specifically, JITN is a unified CNN-based archi-
tecture containing three parts, i.e., a joint intensity metric
estimation net (JIMEN), a joint intensity transformer, and
a discrimination network (DN). More details are given in
Section III. The contributions of this paper are summarized as
follows:

A. A Unified CNN-Based Method Considering Both Joint
Intensity and Spatial Metric Learning

The proposed JITN is a unified CNN-based method consid-
ering both joint intensity and spatial metric learning. It con-
tains a JIMEN, a joint intensity transformer, and a DN, where
the JIMEN is a well-designed encoder-decoder network to esti-
mate the joint intensity metric, the joint intensity transformer is
a transformation module, and the DN is a generic convolution
neural network to learn the spatial metric. They are jointly
trained from end to end.

B. Sample-Dependent Joint Intensity Metric for Intensity
Transformation

Unlike the fixed joint intensity metric learned in [33],
the joint intensity metric learned by the JIMEN performs a
sample-dependent transformation based on the input pairs,
which is more suitable for dealing with all kinds of
variations in clothing and carrying status than traditional
approaches, which perform common sample-independent
transformations.

C. State-of-the-Art Performance

We achieve state-of-the-art performance on gait recognition
under variations in clothing and carrying status on four pub-
licly available gait databases: the OU-ISIR Large Population
Gait database with real-life carried objects (OU-LP-Bag) [43],
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the OU-ISIR Gait database, Large Population dataset with bags
β version (OU-LP-Bag β) [33], the OU-ISIR Gait Database,
Treadmill Dataset B (OUTD-B) [44] and the TUM Gait from
Audio, Image and Depth Database (TUM-GAID) [45].

II. RELATED WORK

A. Spatial Metric Learning-Based Approaches

Spatial metric learning-based approaches concentrate on
improving performance by learning a feature space from the
original appearance-based features that is more discriminant
and robust against the covariates. There are two further cate-
gories within this family: whole-based [10]–[12], [25]–[27],
[46] and part-based approaches [28]–[30], [47].

For the whole-based approaches, the holistic appearance-
based features are projected into a discriminative space to
make them more robust against the covariate conditions. For
example, Han and Bhanu [10] applied LDA to real and syn-
thesized GEI templates to reduce intraclass variations to some
extent. A RSM framework that combines multiple inductive
biases also was proposed in [26], [27].

The part-based approaches decompose the holistic
appearance-based features into multiple body part-dependent
features and enhance the parts effective for recognition while
attenuating the parts affected by the covariate conditions.
This is because variations such as clothing and carrying
status usually affect not the whole gait but only certain
parts, and a decrease in accuracy is derived mainly from
the affected parts. Thus, the part-based approaches have the
potential to achieve better accuracy by appropriate treatment
of the affected body parts (e.g., reducing the weights of the
affected body parts for recognition). For example, in [28],
the human body was divided into eight sections based on
anatomical knowledge and the effect of clothing variations
was mitigated by adaptively assigning larger and smaller
weights to the affected and unaffected sections, respectively.
Iwashita et al. [29] divided the human body into several
areas equally and then estimated a comparison weight for
each area. Weights were based on the similarity between
the extracted features and those in the database for standard
clothing.

B. Intensity Transformation-Based Approaches

Intensity transformation-based approaches transform the
intensity values of an original gait feature into more dis-
criminative values to increase the robustness against changes
of the covariate conditions. For example, Bashir et al. [11]
computed the GEnI using the Shannon entropy of the fore-
ground probability at each pixel (i.e., the gait energy in the
GEI). A GEnI encodes the randomness of pixel values in the
silhouette images over a complete gait cycle, thereby captur-
ing more motion information (dynamic components) rather
than static information, which improves robustness against
shape changes (e.g., clothing and carrying status). Masked
GEI [12] is another intensity transformation-based approach
that keeps the dynamic components as their original values but
zero-pads the static components (i.e., almost all foreground
and almost all background parts) using a certain threshold.

Instead of using hand-crafted transformation, Li et al. [31]
proposed a gait energy response function that transformed
intensities in a data-driven way. Recently, Makihara et al. [33]
proposed a joint intensity transformation-based method that
focused on the joint intensity transformation of a pair images
instead of a single one. Specifically, the joint intensity met-
ric was alternately learned in conjunction with a spatial
metric in a framework based on a linear SVM. However,
these approaches all use traditional methods (hand-crafted
design or linear optimization) to perform sample-independent
transformations.

C. Deep Learning-Based Approaches

Many studies on deep learning-based gait recognition have
been published recently [14], [21]–[24], [34]–[41]. For exam-
ple, the work [39] is a survey on deep learning for biometrics
including gait. Wolf et al. [21] designed a 3D CNN model
that regarded raw silhouettes from each gait sequence as
a spatiotemporal input. Battistone et al. [38] proposed a
time-based graph deep learning approach to jointly exploit
the temporal information and skeleton data extracted from
silhouettes. Shiraga et al. [22] designed an eight-layered CNN
network called GEINet using averaged silhouettes (i.e., GEI).
These networks all regard gait recognition as person classifi-
cation from the same gait class. In addition, Wu et al. [23]
designed multiple networks with two input GEIs (i.e., a pair
consisting of a probe (query) and gallery (enrollment) GEI)
by considering layers to start the comparison of the input pair.
Takemura et al. [24] discussed input/output architectures for
CNN-based gait recognition. Their networks attempt to learn
the similarity between input GEIs, then determine whether
they come from the same person or not. In [36], a stacked
auto-encoder was used to find invariant gait features that were
robust against multiple covariates. In [37], [41], generative
adversarial networks were utilized for generating feature maps
without covariates. Except for silhouette-based feature GEIs,
motion features (e.g., optical flow maps) were also used in
some approaches [14], [34]. Additionally, apart from person
authentication or identification, Liu et al. [40] also investigated
deep learning-based approaches on gait-based gender recog-
nition under clothing and carrying status variations. All of
these approaches achieved significant improvements compared
with traditional approaches. However, they all employ various
types of spatial metric learning while ignoring intensity metric
learning, which is another helpful technique for dealing with
the covariates of clothing and carrying status.

III. GAIT RECOGNITION USING JITN

A. Overview

In this paper, we choose to use the GEI feature, which is
the most widely employed gait representation in many works
including traditional approaches [10], [26]–[28], [33] and deep
learning-based approaches [22]–[24], [35]. To generate a GEI,
given a raw video sequence of a subject, we first extract human
silhouettes using a background subtraction-based graph-cut
segmentation [48] or recent deep learning-based semantic seg-
mentation methods such as RefineNet [49]; second, we obtain
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Fig. 2. Joint intensity transformer network (JITN) for gait recognition. (a) Overview of the proposed JITN framework, which consists of a joint intensity
metric estimation net (JIMEN), joint intensity transformer, and a discrimination network (DN) trained from end-to-end. Conv, DeConv, ReLU, Norm, MAX-
pooling, dropout, and Fc denote the convolutional layer, deconvolutional (transposed convolutional) layer, ReLU activation layer, normalization layer, max
pooling layer, dropout layer, and fully connected layer respectively. The L2 norm is the L2 norm of the output feature at the previous Fc layer. The numbers
in brackets written after Conv, DeConv, and MAX-pooling indicate (kernel height × kernel width / stride). (b) For different recognition tasks, we define
different JITN architectures. The left architecture is for the verification task with a contrastive loss function, and the right architecture is for the identification
task with a triplet loss function.

size-normalized and registered silhouettes [15] based on the
extracted region’s height and center; third, we detect a
gait period by maximizing the auto-correlation of the size-
normalized and registered silhouettes; finally, we average the
silhouettes over one gait period to obtain a GEI.

The network architecture of the proposed JITN is shown
in Fig. 2 (a). It consists of a JIMEN, joint intensity transformer,
and a DN trained from end-to-end. Given a probe and gallery
GEI pair, we first estimate the joint intensity metric using
the JIMEN. Then, the joint intensity transformer generates
the spatial dissimilarity feature map of the original probe and
gallery using the estimated joint intensity metric. Finally, for
spatial metric learning, the spatial dissimilarity feature map
is fed into a DN, which outputs the final dissimilarity of the
probe and gallery. More details of the modules are given in
the rest of the section.

B. Joint Intensity Transformer

In this subsection, we first introduce the concept of joint
intensity metric learning, which was proposed in [33]. Given
a pair of gray-scale images I P and IG with a resolution of H ×
W (height by width), their dissimilarity measure, incorporating
the joint intensity metric, is represented as

D(I P , IG; wI ) =
H∑

i=1

W∑

j=1

wI (I P
i, j , I G

i, j ), (1)

where wI (I P
i, j , I G

i, j ) is a spatially independent dissimilarity
metric for joint intensity (I P

i, j , I G
i, j ) at position (i, j). In other

words, wI ∈ R(Imax+1)×(Imax+1) can be regarded as a two-
dimensional look-up table from intensity pairs to dissimilar-
ities, where Imax is the maximum gray value and usually is
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255 for 8-bit gray images. For example, the l1-norm is a typical
joint intensity metric, i.e., wI (I P

i, j , I G
i, j ) = |I P

i, j − I G
i, j |.

Using this metric, we can more flexibly design joint inten-
sities, whereas traditional linear or quadratic metrics (e.g., the
l1-norm or Mahalanobis distance) are limited to monotonically
increasing metrics as the absolute difference of joint intensities
increases. Although monotonically increasing properties are
generally reasonable and exploited in most image matching
algorithms, they are not always suitable under certain circum-
stances in gait recognition.

Given joint intensity metric wI , along with input probe GEI
I P and gallery GEI IG , a joint intensity transformer outputs
a dissimilarity map T , whose value Ti, j at position (i, j) is
written as

Ti, j = wI,(pi, j ,gi, j ) =
Imax∑

k=0

Imax∑

l=0

δk,pi, j δl,gi, j wI,(k,l), (2)

where δa,b is Kronecker’s delta. Note that this computation
is also regarded as forward propagation in the proposed deep
neural network framework.

For computing a backward propagation of the loss through
this joint intensity transformer, we define the partial derivative
of Ti, j with respect to wI,(k,l) as follows:

∂Ti, j

∂wI,(k,l)
= δk,pi, j δl,gi, j . (3)

We further consider a downsampled joint intensity metric
(e.g., 32 × 32) instead of a joint intensity metric with the full
size of intensities (i.e., 256 × 256), because a joint intensity
metric that is larger in size may need complex regression
models and a relatively long time for computation. To do this,
we introduce N control points distributed over intensity levels
from 0 to Imax in both the probe and gallery at a certain interval
( Imax

N−1 ) and estimate the weights at intermediate intensities by
bilinear interpolation from the adjacent control points. Note
that bilinear interpolation is carried out along the diagonal
and anti-diagonal directions because the joint intensity metric
(e.g., the l1-norm) is usually symmetric along the diagonal
direction, as shown in Fig. 3.

Suppose wd
I ∈ R

N×N is the downsampled joint intensity
metric. Given a position (k, l) of the original joint intensity
metric, we compute the weight wI,(k,l) by bilinear interpola-
tion from a quadruplet of adjacent control points in wd

I as

wI,(k,l) = ck,l((1 − ak,l )w
d
I,(mk ,nl )

+ ak,lw
d
I,(mk +1,nl+1))

+(1 − ck,l)((1 − bk,l)w
d
I,(mk ,nl+1)

+bk,lw
d
I,(mk +1,nl+2)), (4)

where mk = �k/N�, nl = �l/N�, and �.� is a floor function.
The coefficients a, b, and c can be easily computed as ak,l =
(k/N − mk + l/N − nl)/2, bk,l = ak,l − 1/2, and ck,l =
1 + k/N − mk − (l/N − nl).

We can rearrange Eq. (2) by replacing wI,(k,l) with Eq. (4).
In addition, the partial derivative of Ti, j with respect to wI,(k,l)

(see Eq. (3)) turns out to be four partial derivatives of Ti, j

with respect to four adjacent control points of the down-
sampled joint intensity metric (i.e., wd

I,(mk ,nl )
, wd

I,(mk ,nl+1),

Fig. 3. Interpolation of original joint intensity metric wI,(k,l) using four
surrounding downsampled joint intensity metrics wd

I,(mk ,nl )
, wd

I,(mk ,nl+1),

wd
I,(mk+1,nl+1), and wd

I,(mk+1,nl +2) with coefficients ak,l , bk,l , and ck,l for

the bilinear interpolation. Note that the interpolation is carried out along the
diagonal and anti-diagonal directions.

wd
I,(mk+1,nl+1), and wd

I,(mk +1,nl+2)), which are easily obtained
by Eq. (4) as follows:

∂Ti, j

∂wd
I,(mk ,nl )

= δk,pi, j δl,gi, j ck,l (1 − ak,l),

∂Ti, j

∂wd
I,(mk ,nl+1)

= δk,pi, j δl,gi, j ck,l ak,l ,

∂Ti, j

∂wd
I,(mk+1,nl+1)

= δk,pi, j δl,gi, j (1 − ck,l )(1 − bk,l),

∂Ti, j

∂wd
I,(mk +1,nl+2)

= δk,pi, j δl,gi, j (1 − ck,l )bk,l . (5)

C. JIMEN

We design a JIMEN to estimate the joint intensity metric,
as shown on the left side of Fig. 2 (a). It takes a pair of GEIs
and outputs the joint intensity metric. Specifically, the JIMEN
is an encoder-decoder framework in which the encoder first
takes a difference image of a probe and gallery GEI, then
learns the effective subspace feature through four convolu-
tional layers; the decoder first takes the output feature of the
encoder, then generates a two-dimensional representation fea-
ture as the joint intensity metric through four deconvolutional
(transposed convolutional) layers. In this network, the ReLU
activation function is used for all convolutional layers and the
first three deconvolutional layers, the local response normal-
ization (LRN) [50] is used for the normalization layers, and a
max pooling strategy is chosen for the pooling layers. Unlike
STN [42], which adopts a fully connected layer as the final
regression layer and outputs a vector of spatial deformation
parameters (e.g., affine transformation parameters), we design
an encoder-decoder framework because it can regress the two-
dimensional joint intensity metric well.

D. DN

After the joint intensity transformation of a pair of GEIs
using the joint intensity transformer, their spatial dissimilarity
image is fed into a generic DN to learn the spatial metric,
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as shown on the right side of Fig. 2 (a). A DN shares the same
architecture as the diff net in [24]. Specifically, a DN has three
convolutional layers followed by a ReLU activation layer and
LRN normalization layer. It also has one fully connected layer
that has a 52-dimensional feature. Subsequently, the L2 layer
calculates the L2 norm of the 52-dimensional feature as
the final dissimilarity of the input pair of GEIs. To avoid
overfitting, a dropout technique (with a ratio of 0.5) [51] is
applied after the third convolutional layer. The DN is designed
to reduce the final dissimilarity of a same-subject pair while
increasing the final dissimilarity of a different-subject pair
through the contrastive and triplet loss functions, which are
introduced in the next subsection.

E. Networks for Different Gait Recognition Tasks

Gait recognition includes two kinds of tasks: gait verifica-
tion and gait identification. For the verification task, a probe
and gallery pair is compared and then it is determined whether
they come from the same subject or different subjects. If their
dissimilarity is lower than a certain acceptance threshold, they
are judged to be from the same subject and vice versa. For the
identification task, a probe is compared with all the galleries
to find the same subject that appears in the probe. We usually
calculate the dissimilarities between the probe and all the
galleries, then use a nearest neighbor classifier to find the
subject with the smallest dissimilarity.

Referring to [24], different gait recognition tasks have
their own suitable network architectures and loss function,
i.e., a Siamese network with contrastive loss for the verification
task and a triplet network with triplet loss for the identification
task. Therefore, we design different networks depending on
different gait recognition tasks in the training phase, as shown
in Fig. 2 (b). More specifically, for the verification task,
we choose a contrastive loss function [52] as the loss function
of the proposed JITN framework, which is defined as follows:

Lcont = 1

2C

C∑

i=1

yi d
2
i + (1 − yi )max(margin − di , 0)2, (6)

where C is the number of GEI pairs for training, di is the
dissimilarity score in the L2 norm layer of the i -th pair
of GEIs, and yi is equal to 1 if the i -th pair is the same
subject pair and 0 otherwise. Using Eq. (6), the network trains
its parameters such that the dissimilarity scores of the same
subject pairs are always smaller than those of different subject
pairs, which is suitable for the verification scenario.

For the identification task, we choose a triplet loss func-
tion [53] as the loss function of the proposed JITN framework.
Triplet GEIs called query, posi tive, and negative are fed
into the network, where posi tive is of the same subject as
that of query and negative is of a different subject from that
of query. Then, a triplet loss function is defined as follows:

Ltrip = 1

2C

C∑

i=1

max(margin − d−
i + d+

i , 0)2, (7)

where C is the number of triplets for training, d−
i is the

dissimilarity score in the L2 norm layer between query and

Fig. 4. Examples of GEI with seven annotated carrying status labels
from OU-LP-Bag. The first row shows subjects with a carrying status and
the second row shows subjects without carrying status.

negative, and d+
i is the dissimilarity score in the L2 norm

layer between query and posi tive. Using Eq. (7), the network
trains its parameters so that the dissimilarity score of query
and posi tive is always smaller than the dissimilarity score
of query and all negative GEIs, which is suitable for the
identification scenario.

IV. EXPERIMENTS

A. Datasets

We use four publicly available databases,1 OU-LP-Bag [43],
OU-LP-Bag β [33], OUTD-B [44], and TUM-GAID [45], for
the experiments.

OU-LP-Bag is currently the world’s largest gait database
with real-life carried objects. The data were collected in
conjunction with an experience-based demonstration of video-
based gait analysis at a science museum [54]. It includes a
total of 62,528 subjects with seven annotated carrying status
labels (i.e., NoCO for no carried objects, SbCO for objects
carried on the side bottom, SmCO for objects carried on
the side middle, FrCO for objects carried in front, BaCO
for objects carried in back, MuCO for objects carried in
multiple locations, and CpCO for objects carried changing
from one location to another). Some typical GEI examples
can be seen in Fig. 4. Each subject was captured three times
to produce walking sequences. The first sequence (A1) can be
with or without carried objects (that is, some participants did
not hold any objects), the other two (A2 and A3) are without
carried objects. Among all subjects, 58,199 subjects that have
a sample both in A1 and either A2 or A3 were chosen for
the experiments. The chosen subjects were randomly divided
into two subsets: a training set (29,097 subjects) and a test
set (29,102 subjects). The test set is further divided into a
gallery set and a probe set. Considering the uncooperative-
subject condition in real scenarios, Uddin et al. [43] introduced
both cooperative and uncooperative settings in the test set.
For the cooperative setting, samples from A2 or A3 are in the
gallery set, while samples from A1 are in the probe set. For
the uncooperative setting, samples are randomly assigned into
the gallery and probe sets.

1OU-LP-Bag, OU-LP-Bag β and OUTD-B are available at
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/index.html; TUM-GAID is
available at https://www.mmk.ei.tum.de/en/misc/tum-gaid-database/
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The OU-LP-Bag β is the beta version of OU-LP-Bag.
There are 2,070 subjects in the dataset and each subject
has two sequences, one with carried objects and the other
without carried objects. The whole dataset is divided into three
subsets: a training set, gallery set, and probe set. The training
set contains 2,068 sequences of 1,034 subjects, while the
remaining disjoint 1,036 subjects are included in the gallery
and probe sets. The gallery set comprises sequences without
carried objects, while the probe set has sequences with carried
objects.

The OUTD-B has the largest number of clothing variations
(up to 32). It is divided into three subsets: a training set, gallery
set, and probe set. In the training set, there are 446 sequences
of 20 subjects with a range of 15 to 28 different combinations
of clothing. The gallery and probe sets constitute a testing
set that comprises 48 subjects, which are disjoint from the
20 subjects in the training set. The gallery contains only
standard clothing types (e.g., regular pants and full shirt),
while the probe set includes 856 sequences of other clothing
types.

The TUM-GAID simultaneously contains RGB video, depth
and audio data with 305 subjects walking under four condi-
tions: normal walking (N), carrying a backpack (B), wearing
coating shoes (S), and elapsed time (T N −T B−T S) collected
at January and April which may also exist changes in clothing
or lighting condition. All subjects contain ten sequences: six
normal walking (N1−N6), two backpack variation (B1−B2),
and two shoes variation (S1 − S2). 32 subjects among them
contain additional ten sequences under elapsed time variation,
namely T N1−T N6, T B1 − T B2, T S1−T S2. Following the
protocol of the original paper [45], the whole dataset is divided
into three subsets: a training set with 100 subjects, a validation
set with 50 subjects, and a test set with 155 subjects. Half of
the subjects under elapsed time variation is included in the test
set and another half is included in the training and validation
set. In the test set, N1 − N4 are set as the gallery set, while
N5 − N6, B1 − B2, S1 − S2, T N5 − T N6, T B1 − T B2, and
T S1 − T S2 are set as six different probe sets.

B. Implementation Details

We use Xavier’s algorithm to initialize the weight parame-
ters of all layers except for the last deconvolutional layer in
JIMEN, which is separately set to initialize the joint intensity
metric. The bias parameters are all set to the constant zero. The
momentum for all layers is 0.9. We set the initial learning rate
to 0.01 and divide it by 10 four times during the training phase.
The proposed network is trained for a total of 0.1 million
iterations using the stochastic gradient descent algorithm with
a mini-batch size of 300. We implement the whole framework
using Caffe [55] on a NVIDIA GeForce GTX TITAN X
GPU with 12 G memory. The hyper-parameter margins in
Eqs. (6) and (7) are experimentally set to three.

As for the joint intensity metric, which is regressed by
JIMEN, we set the number N of control points distributed
over the intensity levels to 32 and obtain a downsampled
joint intensity metric with a size of 32 × 32. Regarding the
initialization, we set it be the signed l1-norm, i.e., wI,(k,l) =
k − l. To do so, we first set the weight and bias parameters of

the last deconvolutional layer in JIMEN to zero, which forces
the output to zero; then, we add a dummy layer initialized by
the signed l1-norm that has the same size as the joint intensity
metric.

Regarding the sampling problem for training, we uncooper-
atively choose subjects from the training set; that is, we do not
fix the gallery to be a subject with clothing or carried objects.
Basically, for the verification task, we choose all the same and
different subject pairs in the training set and then duplicate the
same subject pairs so that their number is one-ninth that of the
different subject pairs; for the identification task, we basically
choose all the triplets in the training set. However, for the
largest database OU-LP-Bag, there are billions of untrackable
pairs and triplets. Thus, we simply randomly choose from
all pairs and triplets while keeping the total number to about
10 million.

C. Evaluation Metrics

We refer to the standards defined in ISO/IEC 19795-1 on
biometric performance testing and reporting [56] for evalua-
tion metrics. For the verification task, a detection error trade-
off (DET) curve, which indicates a trade-off between false
non-match rate (FNMR) and false match rate (FMR) when
an acceptance threshold changes, is employed. Specifically,
FNMR is the proportion of genuine attempts that are falsely
declared not to match a template of the same subject and
FMR is the proportion of the imposter attempts that are falsely
declared to match a template of another subject. In addition,
we also calculate the equal error rate (EER), where FNMR is
equal to FMR. For the identification task, a cumulative match
characteristic (CMC) curve, which shows the identification
rates of actual subjects included within each of the ranks,
is employed. In addition, we calculate the rank-1 identification
rate, denoted as Rank-1.

D. Learned Joint Intensity Metric

In this subsection, we analyze the learned joint intensity
metrics and show some typical comparison examples using the
learned metrics in Fig. 5. As mentioned before, the learned
joint intensity metrics are sample-dependent trained by the
proposed network (see Figs. 5 (i) and (j)), which is more
suitable for dealing with all kinds of variations in clothing
and carrying status than traditional approaches [31], [33],
which perform common sample-independent transformations.
Note that for learned joint intensity metrics, darker or brighter
regions indicate an enhancement of the metrics, while grayer
regions (i.e., a gray value close to 127) indicates a degra-
dation of the metrics. We also calculated the difference
between the learned joint intensity metrics and the initial
one to show the changes, and then colored these changes
in Fig. 5 (k) and (l); that is, the blue and yellow regions
represent the degradation and enhancement of the metrics,
respectively.

When compared with the initial joint intensity metric (i.e.,
the signed l1-norm, see Fig. 5 (h)), for true match pairs,
the learned joint intensity metrics show more degradation
near the top-right and bottom-left corners, which is mainly
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Fig. 5. Comparison examples for four probes with different types of carried objects (i.e., FrCO, BaCO, MuCO, and NoCO from top to bottom) and their
corresponding learned joint intensity metric. (a) Probe. (b) Gallery (genuine). (c) Gallery (imposter). (d) and (e) Spatial dissimilarity with the absolute difference
for a true match pair (probe vs. genuine) and false match pair (probe vs. imposter), respectively. (f) and (g) Spatial dissimilarity with absolute learned joint
intensity metrics for a true match pair (probe vs. genuine) and false match pair (probe vs. imposter), respectively. (h) Initial joint intensity metric, i.e., signed
l1-norm. (i) and (j) Learned joint intensity metrics for a true match pair (probe vs. genuine) and false match pair (probe vs. imposter). (k) and (l) Changes in
the initial and learned joint intensity metrics for a true match pair (probe vs. genuine) and false match pair (probe vs. imposter), where the blue and yellow
regions represent a decline and enhancement of metrics on the joint intensity pairs, respectively.

derived from the intrasubject carrying status variations. This
indicates that the learned joint intensity metrics can success-
fully suppress the effect of carrying status, which causes
large intrasubject difference. In contrast, for false match pairs,
the learned joint intensity metrics show more enhancements
near the diagonal line, which is mainly derived from the
motion differences (e.g., leg or hand motions). This indicates
that the learned joint intensity metrics can enhance the effect of
motion differences, which causes small intersubject difference.
These conclusions can also be arrived at from the examples
(see Figs. 5 (f) and (g)). The spatial dissimilarity of the true
match pairs decreases, especially in the regions of carried
objects, while the spatial dissimilarity of false match pairs
increases especially in the regions of leg motion.

When the metrics are compared for the four different
types of carried objects, for large variations such as FrCO,
BaCO, and MuCO, the learned joint intensity metrics strongly
suppress the large intrasubject difference and enhance the
subtle motion difference. In contrast, for very small variations
such as NoCO, a less drastically modulated joint intensity
metric is yielded because the metric changes are relatively
smaller than the other three types of large carried objects (see
Figs. 5 (k) and (l), where the results in the bottom row have
lighter yellow and blue colors than those in the upper three
rows).

Therefore, with the learned joint intensity metrics, we get
a smaller spatial dissimilarity for true match pairs regardless
of carried objects in various locations (e.g., front, back, both
front and back, or even with no carried objects) and a larger
spatial dissimilarity for false match pairs, which successfully
mitigates the effect of carrying status and leads to the correct
recognition results.

E. Comparison on OU-LP-Bag
In this subsection, we evaluate the robustness of

the proposed method against real-life carried objects on
OU-LP-Bag. The state-of-the-art methods for comparison
consist of traditional methods (direct matching (DM) of
GEIs [10], spatial metric learning-based approaches such as
GEI w/ LDA [57], GEI w/ RSVM [58], and intensity
transformation-based approaches such as GERF [31]) and
recent deep learning-based methods (GEINet [22], the Siamese
GEINet (SIAME) [59], LB [23], and diff/2diff [24]). The pro-
posed method and the compared deep learning-based bench-
marks were trained from scratch on this dataset with the same
protocol. The network parameters were set to the defaults
given in their original papers. Of all the methods, diff/2diff,
proposed by Takemura et al. [24], has the architecture that
is most similar to that of the proposed method, which uses
contrastive loss and triplet loss function. Takemura et al.
simply take the pair-wise difference at the beginning of the
network and proceed as the proposed method does with
a fixed signed l1-norm as the joint intensity metric. Thus,
the comparison between the proposed method and diff/2diff
reflects the effect of joint intensity metric learning well.

We show the DET and CMC curves of all methods in Fig. 6.
We also show the EER and Rank-1 of each method in Table I.
The results show that the proposed method achieves the best
performance both in the verification and identification scenar-
ios for both cooperative and uncooperative settings. Moreover,
it outperforms traditional methods by a large margin. Although
LB [23] achieves the second best Rank-1, which is only 0.05%
lower than the proposed method in a cooperative setting,
it faces a clear decrease of nearly 4% for Rank-1 in an
uncooperative setting, which is more likely in a real scene.
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Fig. 6. DET and ROC curves for the comparison experiments on OU-LP-Bag
in both the (a) cooperative setting and (b) uncooperative setting. The left side
shows the DET curves and the right side shows the ROC curves.

TABLE I

EER AND RANK-1 [%] RESULTS FOR THE COMPARISON EXPERIMENTS

ON OU-LP-BAG IN BOTH COOPERATIVE AND UNCOOPERATIVE SET-
TINGS. FOR DIFF /2DIFF, THE EER RESULT IS FROM THE “DIFF”

METHOD, WHILE THE RANK-1 RESULT IS FROM “2DIFF”
METHOD. BOLD AND ITALIC BOLD FONTS INDICATE THE

BEST AND SECOND-BEST RESULTS, RESPECTIVELY.
THIS CONVENTION IS CONSISTENT THROUGHOUT

THIS PAPER

In contrast, the proposed method only shows a slight decline
of 0.41% for Rank-1. Besides, for the EER, the proposed
method clearly outperforms LB with a 0.4% lower EER
in both cooperative and uncooperative settings. Moreover,
when compared with diff/2diff, the proposed method clearly
outperforms it with a 0.1 % lower EER and 1.3% higher
Rank-1, which demonstrates the effectiveness of the joint
intensity metric learning in the proposed framework.

We also evaluated the robustness of the proposed method
against different types of carried objects. We choose diff/2diff

Fig. 7. EER and Rank-1 results for the proposed method and baseline
method (diff/2diff) under different carried object conditions on OU-LP-Bag.
(a) Cooperative setting and (b) uncooperative setting. The left side shows the
EER results and the right side shows the Rank-1 results.

as the baseline method, which is a CNN-based method that
only considers spatial metric learning. The results are shown
in Fig. 7. We can see that the proposed method shows lower
EERs and higher Rank-1 rates for almost all types of carried
objects in both cooperative and uncooperative settings. In case
of more difficult types such as FrCO, MuCO, and CpCO,
the improvements of the proposed method are substantial,
which is because the joint intensity metric learning can handle
relatively large carried objects well regardless of their carried
locations. For NoCO (no carried objects), the improvement is
subtle because, without carried objects, the proposed method
acts more like the baseline method and considers no joint
intensity metric learning. Through this analysis, we confirm
the flexibility of proposed method, which can effectively learn
sample-dependent joint intensity metrics and handle all kinds
of carrying statuses.

F. Comparison on OU-LP-Bag β

In this subsection, we evaluate the robustness of the pro-
posed method against carrying status on OU-LP-Bag β. The
comparison benchmarks are mainly from [33] and also include
recent state-of-the-art deep learning-based methods (LB [23]
and diff/2diff [24]). Because of the relatively small number
of training samples of OU-LP-Bag β, for deep learning-
based methods, we fine-tuned deep models that were pre-
trained on the OU-LP-Bag dataset. To do so, we first set
a smaller learning rate of 0.001 and tuned all layers of
these networks. Figure 8 and Table II show the results
of all methods. Here, the proposed method achieves the
best performance. In contrast with JIS-ML proposed by
Makihara et al. [33], which was the first to introduce joint
intensity metric learning and integrated it with spatial metric
learning in a traditional linear SVM framework, the pro-
posed method successfully integrates joint intensity metric
learning in a unified CNN-based framework trained from
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Fig. 8. DET and ROC curves for the comparison experiments on
OU-LP-Bag β. The left side shows the DET curve and the right side shows
the ROC curve.

TABLE II

EER AND RANK-1 [%] RESULTS FOR THE COMPARISON
EXPERIMENTS ON OU-LP-BAG β

end to end. The proposed approach yields a much higher
performance.

G. Comparison on OUTD-B

In this subsection, we evaluate the robustness of the pro-
posed method against various clothing types on OUTD-B,
which has the largest variation of labeled clothing. Similar to
OU-LP-Bag β, for the deep learning-based methods, we used
models pre-trained on the OU-LP-Bag dataset and applied
the same fine-tuning strategy. The results of all comparison
methods are shown in Fig. 9 and Table III. It can be seen that
the proposed method achieves the best EER and the second
best Rank-1 of all methods. Although Gabor+RSM-HDF [27]
obtains the best Rank-1, we note it has several weaknesses:
1) it cannot be used for the verification task because of its
majority voting scheme for all galleries and 2) because it
requires multiple samples per gallery to compute the within-
class scatter from the gallery set, it cannot be used in datasets
with a single sample per gallery (e.g., OU-LP-Bag β). There-
fore, the proposed method is promising because of its wide
range of applications both in identification and verification
scenarios as well as its state-of-the-art performance.

H. Comparison on TUM-GAID

In this subsection, we evaluate the robustness of the
proposed method on TUM-GAID dataset, which contains

Fig. 9. DET and ROC curves for comparison experiments on OUTD-B. The
left side shows the DET curve and the right side shows the ROC curve.

TABLE III

EER AND RANK-1 [%] RESULTS FOR THE COMPARISON EXPERIMENTS

ON OUTD-B. N/A AND - MEAN NOT APPLICABLE AND

NOT PROVIDED, RESPECTIVELY

scenarios where both clothing and carrying status change. The
method [14] shows state-of-the-art results with relatively low-
resolution input features (i.e., 60×60). For fair comparison,
we use the same resolution to show the performance of the
proposed method under circumstances with low-resolution
GEIs. To adapt the change of input size, we slightly adjust the
kernel size of the fourth convolutional layer of JIMEN be 3×3.
We still use fine-tuning strategy for the TUM-GAID dataset
on the models, which were pre-trained on the OU-LP-Bag
dataset where the features are also first resized to the low
resolution. All 150 subjects from the training and validation
sets are used to generate training pairs/triplets in the fine-
tuning stage. The GEI features are extracted from tracked



3112 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 12, DECEMBER 2019

TABLE IV

RANK-1 [%] RATE FOR THE COMPARISON EXPERIMENTS ON TUM-GAID.
N , B , S , T N , T B , AND T S REPRESENT DIFFERENT

PROBE SETS WITH DIFFERENT COVARIATES

depth image sequences by the method described in [45], and
then resized to 60×60 (the original height-to-width ratio of the
subjects is kept). Because the GEIs are not as well aligned
as other datasets, we employ an additional registration step
(i.e., shift the probe in both horizontal and vertical directions
to minimize the l1-norm between the gallery and the shifted
probe) to GEI pairs both in the training and test stages for
better performance. The results of all comparison methods are
shown in Table IV. Only the performance in the identification
task is presented because few works reported their results in
the verification task. From the results, the proposed method
achieves very competitive performance compared with the
best state-of-the-art method [14], which implies the proposed
method can handle the change of the resolution of the input
images and ensure its good performance.

I. Analysis of the Effects of Noise

Reviewing the process of GEI feature extraction, the quality
of GEI features highly depends on the segmentation results
of human silhouettes from raw video sequences. Although
recent deep learning-based methods help to improve the
segmentation results, there may still exist somewhat over-
segmented or under-segmented parts (i.e., noise) near the
boundaries of the human silhouettes. Therefore, robustness
to such noise is very important for real world applications.
Since current databases contain no noise variation, we use
simulated noise data on the silhouettes for the experiment.
Specifically, the OUTD-B dataset is chosen due to its relatively
high-quality silhouettes. The noise is shaped into a circle with
random radius from 2 to 5 pixels. The center of the noise
circle is assumed to appear at the boundary pixels of the
silhouettes, and we random decide it be over-segmented or
under-segmented within each circle (e.g., suppose intensity
values 0 and 255 belong to the background and human part,
respectively; if over-segmented, all the pixels in the circle are
set to be 255; if under-segmented, all the pixels are set to be 0).
Figure 10 shows some examples of the noise data with three
different appearance frequencies (i.e., 0.01, 0.05, and 0.1),
which is defined as the ratio between the number of noise
and the number of boundary pixels. Obviously, larger noise
appearance frequency results in worse silhouettes and GEIs.
As for the performance evaluation against noise, we simply
assume a setting where both probe and gallery contain the
same type of noise. We prepare two models: one is trained
without any noise; another is trained together with noise. The

Fig. 10. Examples of some selected silhouettes and their GEIs without and
with noise. There are three different appearance frequencies (i.e., 0.01, 0.05,
and 0.1) of the noise, which represent different degrees that affected by the
noise.

TABLE V

EER AND RANK-1 [%] RESULTS OF THE PROPOSED METHOD

AGAINST NOISE UNDER TWO MODELS TRAINED W/O
AND W/ NOISE ON OUTD-B

results on both models are shown in Table V. In case of
models trained without noise, the proposed method shows
its robustness to moderate and small noise (i.e., 0.05 and
0.01 appearance frequencies). Moreover, even for very large
noise (i.e., 0.1 appearance frequency), it still achieves better
performance than most benchmarks that use the test set
without noise. Additionally, if the models are trained together
with noise, the proposed method could increase its robustness
against noise and show much better results.

J. Stability Analysis

In this subsection, we analyze the stability of the proposed
method in terms of the performance on the test set. We choose
the OU-LP-Bag dataset for this experiment because it has the
largest number of test samples (29,102 subjects). The whole
test set is randomly divided into five equally disjoint gallery
and probe sets. We use the same models as section IV-E
for evaluation, which are trained on the whole training set.
Table VI shows the mean value and standard deviation of the
performance for the comparison methods. From the results,
the proposed method is still superior to other benchmarks
even if we consider the uncertainty (i.e., mean ± standard
deviation).
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TABLE VI

EER AND RANK-1 [%] RESULTS OF THE PROPOSED METHOD COMPARED
WITH TWO OTHER BENCHMARKS UNDER COOPERATIVE SETTING ON

OU-LP-BAG. Avg AND Std REPRESENT THE MEAN VALUE AND

STANDARD DEVIATION OF THE RESULTS ON FIVE EQUALLY

DISJOINT GALLERY AND PROBE SETS, RESPECTIVELY

V. CONCLUSION

In this paper, we proposed a unified joint intensity trans-
former network for gait recognition that is robust against vari-
ous clothing and carrying status. To the best of our knowledge,
this is the first work integrating joint intensity metric learning
into a deep learning-based framework. Specifically, JITN is
a unified CNN-based architecture containing three parts: a
JIMEN, a joint intensity transformer, and a DN. Additionally,
it is designed with different loss functions depending on the
gait recognition task. Experimental results using four publicly
available datasets demonstrate the state-of-the-art performance
of the proposed method compared with other state-of-the-art
methods.

We use two different network structures with the con-
trastive/triplet losses for the verification/identification tasks,
respectively, and this might be prohibited when a memory
usage is limited (e.g., an embedded system). We will therefore
consider to train a unified model by combining the verifica-
tion/identification losses in a multi-task setting which reduces
memory usage. Additionally, because the proposed method
mainly focuses on the joint intensity transformation to deal
with clothing and carrying status covariates, we will consider
how to modify it to cope with cross-view gait recognition,
which performs a spatial transformation that handles the large
spatial displacement caused by view angle changes. Moreover,
the combination of both joint intensity and spatial transfor-
mation for all covariates remains another direction for future
work.
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