
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019 2427

Reducing Security Risks of Suspicious Data and
Codes Through a Novel Dynamic Defense Model

Zezhi Wu , Xingyuan Chen , Zhi Yang, and Xuehui Du

Abstract— A remarkable characteristic of the modern operat-
ing system is open, which means that we can download data or
execute codes from any Internet sources whether they are trusted
or not. Therefore, there is a contradict situation when we want
to use these data or codes as well as keep the system secured.
Despite decades of studies and experiences on this problem, it is
still assumed as a great challenge. This paper presents a novel
dynamic defense model (DDM) to reduce security risks brought
by these suspicious data or codes for the open operating systems.
DDM is a high-level security defense abstraction with four key
components: dynamic label marking, dynamic label tracking,
dynamic label modulating, and run-time controlling. With these
components, DDM achieves the full, dynamic, and real-time
security protection in the whole life cycle of the operating system.
We also practically implemented a prototype system named
DDDroid on Android. We constructed a mixed experimental
dataset with 30 malware samples and 970 benign applications
to test the defense effects of DDDroid. DDDroid detects 97% of
the malware samples that have malicious actions and blocks these
actions with a negligible false positive on legal actions. We also
demonstrated that DDDroid is an effective system, which prevents
sensitive data from being leaked by suspicious applications
deliberately or by users unintentionally through some sample
experiments. What is more, with extensive evaluations, DDDroid
is proved to be a system with low-performance overhead and
limited memory consumption.

Index Terms— Dynamic defense model, dynamic taint track-
ing, information flow control, behavior-based malware analysis,
android.

I. INTRODUCTION

OPEN is a remarkable characteristic of the modern operat-
ing system (OS). These systems are allowed to exchange

data and codes with the outside world. Meanwhile, due to the
plentiful resources on the Internet, most of the users are willing
to download data or execute codes from Internet sources which
are not fully trusted. In mobile OS such as Android, users

Manuscript received November 9, 2017; revised April 18, 2018 and
November 4, 2018; accepted February 20, 2019. Date of publication
February 26, 2019; date of current version June 5, 2019. This work was
supported in part by the National High Technology Research and Development
Program under Grant 2018YFB0803603). The associate editor coordinat-
ing the review of this manuscript and approving it for publication was
Prof. Lorenzo Cavallaro. (Corresponding author: Xingyuan Chen.)

Z. Wu and X. Chen are with the Institute of Zhengzhou Information Science
and Technology, Zhengzhou 450001, China, and also with the State Key Lab-
oratory of Cryptology, Beijing 100084, China (e-mail: 1141208772@qq.com;
chxy302@vip.sina.com).

Z. Yang and X. Du are with the Institute of Zhengzhou Information Sci-
ence and Technology, Zhengzhou 450001, China (e-mail: zynoah@163.com;
dxh37139@sina.com).

This paper has supplementary downloadable material at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TIFS.2019.2901798

may install applications directly through third-party market.
Users have to trust that the application does not contain any
malicious code implicitly so as to enjoy the convenience and
entertainments brought by them. While these suspicious data
or codes may bring the security risks in a range from leaking
sensitive data to destroying the whole operating system. As a
consequence, it comes a contradict situation as we want to use
these data or codes and keep the system security at the same
time. Building a system that meets both the open and security
requirements is a great challenge.

To guarantee the security of the OS, a lot of security
mechanisms were invented. These works include intrusion
detection [1], access control [2], information flow con-
trol [3], [4], malware scanners, virtual machine execution [5],
moving target defense [6] and so on. OS primitives and access
control mechanisms can protect sensitive resources from being
unauthorized assess, but these mechanisms are vulnerable to
privilege promotion attacks and can not provide an end-to-end
security solution [7]. Information flow control technology can
guarantee end-to-end security. Most of these works (such as
Asbestos [3], Flume [4]) provide a model with application-
defined security policies for individual applications to allocate
labels and declassify labels, but provide little contribution
for a system administrator to implement system-wide security
policies. Malware scanners and similar techniques are used
to detect malicious codes. However, these techniques rely on
existing knowledge and can not deal with new malicious codes
properly. Moving target defense focuses on how to prevent
the attackers from intruding into the system, but it provides
little help to evaluate the codes which are downloaded by
users. At the same time, most of existing security mechanisms
belong to the type of boundary control mechanism. Once the
malicious data or codes have passed the boundary controlled
by the mechanism, there is no more security measure provided
by the mechanism to protect the system. Therefore, there is an
urgent need to build an abstract model which provides a set
of simple yet powerful primitives to reduce the security risks
brought by the untrusted data and codes.

We address this problem by presenting a novel dynamic
defense model (DDM). DDM is a high-level security defense
abstraction with four key minds: dynamic label marking,
dynamic label tracking, dynamic label modulating and run-
time controlling. Firstly, for all the suspicious data and codes,
we can not fully trust them. So we should mark them with
a distinct label to distinguish them from trusted data or
codes. For all the sensitive data, we should also mark them

1556-6013 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but
republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9583-8495
https://orcid.org/0000-0002-9061-6524

2428 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019

with a distinct label in case of arbitrary usage or leakage.
Secondly, with the running of the OS, suspicious data and sen-
sitive data will be used and propagated in the system, and child
process will be created by the suspicious processes. We should
keep an eye on where these data go and how much data was
infected, and how these suspicious processes affect the system
via dynamic label tracking. Thirdly, with the observation on
the real-time executing of the suspicious processes, the initial
label may be inadequate to present the current security station
of the suspicious processes. We should modulate the label
dynamically according to the recent behavior of the suspicious
processes. Lastly, for all the data and codes, we should not
let them propagate or run arbitrarily in the system without
any restriction. Malicious actions should be blocked according
to the label-related security policies to prevent any potential
damage to the system.

We implemented a prototype system named DDDroid
on Android, which is the most popular and vulnerable
operating system nowadays [8], [9]. DDDroid provides a
robust dynamic defense method by integrating the existing
security work (such as dynamic taint tracking [10], behavior-
based malware analysis [11], [12], in-device intrusion detec-
tion [1], access control [2], decentralized information flow
control [13], [14], risk analysis [15], [16]) on Android
together organically. The key design goals of DDDroid
are efficiency, convenience and compatibility. For efficiency,
We presented some optimization methods to accelerate the
label tracking system. For convenience, several applications
(DDPolicy, DDFile and DDNotify) are provided for conve-
nient usage for common users. For compatibility, any suspi-
cious third-party application can successfully run in DDDroid
without any modification or preview analysis. We random
choose 30 malware samples (which are totally unknown to
us) and 970 benign samples to validate the correctness of the
implementation of DDDroid. The results show that DDDroid
detects and blocks 97% of the malicious actions performed
by the malwares with a negligible false alarm on legal actions
performed by benign applications. We also demonstrated that
DDDroid is an effective system that prevents the sensitive data
from being leaked by suspicious applications deliberately or
by users unintentionally through some sample experiments.
What’s more, with the extensive evaluations, DDDroid is
proved to be a system with low performance overhead and
limited memory consumption.

The main contributions of this paper include: 1. A novel
dynamic defense model is proposed. Through dynamic label
marking, tracking, modulating and controlling, the security
risks of suspicious data and codes can be reduced theoretically.
2. A prototype named DDDroid is implemented on Android.
DDDroid provides a comprehensive method to address the
security problems for Android. Experiment results demon-
strated that DDDroid provided a robust and effect dynamic
defense mechanism for Android.

II. RELATED WORKS

A. Malware Analysis and Defense

Static analysis is an important way to reduce the security
risks of untrusted codes. MCC (model-carrying code) [17]

provides a tool for users to make decisions about the security
risks they are willing to tolerate so as to enjoy the functionality
provided by untrusted code. Static binary translation is used
to translate the untrusted codes to trusted codes according to
user-defined policies. Meanwhile, a mount of static malware
analysis methods [18] based on machine learning are pre-
sented to distinguish the malicious codes, but these methods
depend on observation of sufficient malware samples. What’s
more, static analysis can not deal with code transformation and
obfuscation technologies [19] effectively. Dynamic analysis
by monitoring the execution of a running program can over-
come the limitations of static analysis, but these methods can
not deal with the anti-virtualization and anti-debugging [20]
technologies used by modern malware.

Executing untrusted codes securely in real-time has been
a challenging task of the operating system. Sandbox is a
common approach for defending against malicious codes.
The resource accesses made by untrusted codes are suitably
restricted to ensure security. An alternative approach to sand-
box is isolated execution. The execution of the untrusted
codes are isolated [21] from the trusted codes physically
or logically. Safe-loading [22] provided a trusted runtime
environment which enables the safe execution of the untrusted
program by using a secure loader and a user-space sandbox.
Jiang and Akhter [23] proposed three protection tiers to exe-
cute and evaluate the untrusted code on a Linux-based web
server. However, Sandbox and isolation provide little support
for enforcing highly restrictive security policies. Above works
focus on implementation a specific system that ties to a
particular language or runtime environment. They also lack
a security model to abstract the different kinds of security
policies. Despite decades of researches and experiences on this
problem, it is still a great challenge to build a secure operating
system to fulfill this security requirement.

B. Taint Analysis and Information Flow Control

Anomalous taint detection is the most related technique to
our work, which combines dynamic taint tracking (DTT) and
anomaly detection based approaches. As we know, anomaly
detection technique suffers of false positives, and DTT is a
prevalent technique in malware analysis fields due to its high
accuracy. With the help of the information provided by DTT,
the drawbacks of anomaly-based technique can be mitigated.
Inspired by anomalous taint detection, we proposed a security
defense model to reduce the potential risks of suspicious data
and codes. Most of DTT works are suffering heavy overhead.
The methods explored by previous researches to improve the
efficiency of DTT systems include: On-demand taint [24],
paralleled and decoupled taint [25], [26], share taint [27],
lazy taint [28], tagMap collapse [29], fast-path [30], merged
check [30], fast-switch [30] and statical taint [31]. However,
Some of these works require availability to source codes or
additional hardware resources such as CPU cores (the frequent
synchronized communication between original execution CPU
and taint tracking execution CPU leads huge expenses and
delay of the original execution) and DBI platform. Some
of these works only perform well under certain conditions

WU et al.: REDUCING SECURITY RISKS OF SUSPICIOUS DATA AND CODES THROUGH A NOVEL DDM 2429

(such as when the tainted data is seldom accessed). We focus
on the characteristics of colorful taint tracking and streamline
taint tracking code with various code optimization techniques
such as eliminating, replacing and moving for in-lined DTT.
Our methodology is compatible with android framework per-
fectly, and do not require availability to application source
codes, DBI platform or additional resources such as CPU
cores.

Information flow control is an outstanding technique to
protect sensitive data from being leaked. Classic informa-
tion flow control was initially applied in military systems
in order to protect information confidentiality and integrity.
Traditional information flow controls models, such as BLP
and BIBA, are too rigid to use in majority of the cases.
Myers and Liskov [7] first presented a Decentralized Label
Model (DLM) in Jif [32] to control information flow at
compile time (statically) in decentralized authority systems.
Jif labels variables and objects at a fine granularity, but
it requires an entirely new programming language which
is incompatible with legacy software designs. Asbestos [3],
HiStar [33], Flume [4] and Aeolus [34] are different kinds
of DIFC OSs. They enforce information flow control through
labels and tags to protect OS resources like files and sockets at
runtime, but they only provide process-level information flow
tracking which is coarse grained. Dstar [35] and Fabric [36]
extended DIFC from the single OS to the network environ-
ment. Laminar [37] implemented a DIFC system by using a
hybrid of JVM and OS mechanisms to protect variables and
OS resources at runtime. DIFC systems provide a richer model
with application-defined security policies for individual appli-
cations to allocate labels and declassify labels, but provide
little contribution for a system administrator to implement
system-wide security policies.

C. Android Security

There are a lot of works on Android security [9], [38].
Most related to our work are dynamic taint tracking,
behavior-based malware analysis, in-device intrusion detec-
tion, access control, decentralized information flow control,
privacy preservation and quantitative risk analysis. We just
introduce the most classic and the latest works in this paper.
TaintDroid [10] provided a runtime taint tracking framework
to avoid stealing of sensitive data. However, TaintDroid
provided little contribution on enforcement of information
flow control policies for users. Patronus [1] is a host-based
intrusion prevention system, which can prevent intrusion and
detect malware dynamically. However, Patronus provided little
contribution for a user to specify privacy policies. Monet [11],
MADAM [12], DroidScribe [39], and CopperDroid [40] are
different kinds of malware analysis works based on run-
time behavior. Monet [11] provided an user-oriented behavior-
based malware variants detection method and MADAM [12]
provided a multi-level and behavior-based malware detection
method. DroidScribe [39] used machine learning to auto-
matically classify Android malware samples into families.
CopperDroid [40] presented a unified analysis to charac-
terize low-level OS-specific and high-level Android-specific
behaviors. However, CopperDroid relies on QEMU and it

Fig. 1. An example to show how DDM protects OS from being damaged
by suspicious applications.

can not be deployed on Android devices directly. We make
a combination of these behavior-based works and dynamic
taint tracking works on Android to achieve better accuracy on
malware detection. SEAndroid [2] provided a flexible MAC
to Android based on the LSM module of the Linux kernel.
However, SEAndroid does not take the high-level Android-
specific behaviors into consideration. DroidNet [41] provided
a new permission control framework through crowdsourcing
for Android users. However, permission mechanism can not
guarantee the end-to-end privacy security. DroidRisk [16],
MAETROID [15], DroidAnalytics [42] and DroidSieve [43]
are different kinds of malware detection works based on static
analysis. DroidRisk [16] proposed a framework to quantitative
security risk assessment of both Android permissions and
applications based on permission request patterns. However,
DroidRisk is simply based on the required permissions, which
is not very precise. MAETROID [15] proposed a multi-criteria
analysis method to evaluate the trustworthiness of an applica-
tion. DroidAnalytics [42] proposed a signature based malware
analysis method. However, signature and static feature based
analysis can not deal with transformation and obfuscation
effectively. DroidSieve [43] exploited obfuscation-invariant
features to detect obfuscated malware. However, the injection
of non-Java code, network activity, and the modification of
objects at run-time are outside the scope of static analysis as
they are only visible during execution. Jia et al. [13] proposed
a DIFC-style enforcement system that permits applications to
specify security policy via labels applied to the components
on Android. Weir [14] is also a DIFC system on Android
that allows applications control the export of their data to
the network. However, DIFC adapts to the distributed systems
well, but not for the centralized authorization systems where
an administrator manages all the privileges. We try to take
advantages of these existing works and provide a comprehen-
sive method to address the security problem for Android.

III. DYNAMIC DEFENSE MODEL

As we mentioned before, the four key components of DDM
are dynamic label marking, dynamic label tracking, dynamic
label modulating and run-time controlling.

Figure 1 shows how DDM protects OS from being damaged
by suspicious programs from Internet. When a suspicious
program is downloaded, DDM marks it with a risk label and

2430 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019

sets an initial value to the risk label. When a process is forked
by executing the program, the initial value of the risk label
of the program is set to the value of the risk label of the
process in OS. When the process trying to access sensitive
data, which is not allowed by the label-related policies, DDM
blocks this action and then up-modulates the value of the
risk label of the process. When the process trying to invoke
sensitive API, which is allowed by the label-related policies,
DDM then permits this action. When the process trying to
fork a child process, which is allowed by the label-related
policies, DDM then permits this action and sets the value of
the risk label of current process to the value of the risk label
of its child. Therefore, the value of the risk label is tracked
and modulated based on the behavior of the process in the OS
at runtime. Once the value of the risk label of the process is
bigger than the threshold, DDM will kill this process.

A. Dynamic Label Marking

Label is a common concept that has been widely used in
computer security fields. Generally, DDM provides three kinds
of labels as:

label def risk ‖ cap ‖ sens

For all the suspicious data and codes that come from the
Internet sources, we should mark them with some distinct
labels to distinguish them from the trusted data or codes as
soon as they come into the system. The risk label is designed
to represent how big the risks of the suspicious data or codes
are. The cap_s label is designed to represent the basic or least
capabilities (permissions or privileges) that the suspicious code
should be given in order to fulfill their function usage. For all
the sensitive data or resources that need to be protected in
the system, such as system files, directories, processes, user
data, APIs, kernel data structures and other limited resources,
we should also mark them with some distinct labels in case
of arbitrary usage or leakage. The sens label is designed
to represent how important the sensitive data or resources
are. The cap_o label is designed to represent the required
capabilities to access the sensitive data or resources.

Another key issue is how to set the initial value of these
labels. For the risk label, the initial value of the risk label
could be a default value simply (supposed there are four
security level as low, medium, high, and very high, a default
value of the risk label could be medium) or depends on the
trusted-level of the Internet sources (the initial value of the
risk label of application that from famous companies with a
signature is lower than that from unknown individuals). For
the cap_s label, the value could be empty or be set by the user
manually. For the cap_o label of sensitive resources, the initial
value could be the values that have already been set by other
security mechanisms (such as DTE in Linux or permissions in
Android). For the cap_o label of sensitive data, the initial value
could be set depends on the well-defined interfaces. More
precisely, the initial value of these labels can be quantitatively
calculated by specific algorithms which have been well studied
before. For example, the initial value of risk label can be
quantitatively calculated based on existing work quantitative

malware analysis [16] and quantitative information flow [44].
The initial value of the sens label can be quantitatively
calculated based on property assessment [15].

What’s more, the labels of DDM are not restricted to a
fixed format or implication. They are freestyle and expandable
according to the security requirements. For example, the labels
used in BLP or RBAC (Role Based Access Control) model
could be applied to DDM.

B. Dynamic Label Tracking

With the running of the operating system, child processes
will be created by suspicious program, and suspicious data
and sensitive data will be used and propagated in the system.
We should keep an eye on how these suspicious program affect
the system, and where these data go and how much data was
infected through dynamic label tracking.

Label tracking is a common technique that has been
implemented at different levels of the system, such as
language-level [32](variable or object), OS-level (process, file
or communication data structure) [4], hardware-level (reg-
ister or memory) [45], database-level (tuple or item) [46]
and network-level (packet) [35]. By analyzing these works,
we capture the high-level characteristic of label tracking and
define our dynamic label tracking rules based on interference.
Typically, non-interference is used as an abstracted security
property of an information system, which means that one
security area should not interfere another security area except
for the allowance of a specified security policy. We define the
high level rule of our label tracking as:

A ∼ B �⇒ B.label = f (A.label, B.label)

The meaning of this rule is that if a security entity A
interfered (∼) another security entity B, then the value of the
label of B should be updated to a value that calculated by
function f (A.label, B.label).

For the risk label, this rule can be specified as:

A ∼ B �⇒ B.risk = max(A.risk, B.risk)

For example, if a process creates a child process, then the
value of risk label of the child process is set to the value
of the risk label of the parent process. If suspicious string B
is constructed by a combination of string A and B, then the
value of risk label of string B is updated to the maximum
value between string A and B.

For the sens label, it is similarly to the risk label. For the
cap_o label, this rule can be specified as:

A ∼ B �⇒ B.cap_o = (A.cap_o
⋃

B.cap_o)

⋃
refers to the set union. For example, If sensitive string B

is constructed by a combination of string A (with a label
location) and B (with a label contacts), then the value of the
cap_o label of string B is updated to an union value of string A
and string B ({location,contacts}).

WU et al.: REDUCING SECURITY RISKS OF SUSPICIOUS DATA AND CODES THROUGH A NOVEL DDM 2431

C. Dynamic Label Modulating

If a suspicious program does a lot of actions that go against
the security policy, the initial value of the risk label may be
inadequate to present the security state of the current program.
Similarly, the data that computed upon large of insensitive
data could be not insensitive data any more [47]. We should
modulate the label of the suspicious data and codes to the
fitness value dynamically.

DDM modulates the label in three ways: automatic
incremental modulation (implicitly), automatic decremental
modulation, and evaluative modulation (explicitly). Automatic
incremental modulation can be understood as: only monoton-
ically increasing of the value of the specify label is allowed.
For example, the value of the risk label of a process increases
automatically while it running in the system. The value of the
sens label of data increases automatically while it propagating
in the system. Automatic decremental modulation can be
understood as: only monotonically decreasing of the value
of the specify label is allowed. For example, the value of
the cap_s label of a process decreases automatically while
it running in the system. For the consideration of security,
the label of DDM can not belong to both the set of auto-
matical incremental modulation and automatical decremental
modulation. For example, the value of the risk label can only
be upward modulated and can not be downward modulated
automatically. Similarly restrictions are commonly used in
RBAC, which is called separation of duties.

The rule for automatic incremental modulation of the risk
label can be descried as:

risknew = riskold + f (actionill)

risknew refers to the new value of the risk label after the
illegal action (does not satisfy the security policy) actionill ,
and riskold refers to the old value of the risk label before
the illegal action actionill , and function f is used to map an
illegal action to a risk value. For example, a process with a
risk value 3 and did an illegal action that f (a) = 1, then the
risk value of this process is updated to 4.

Similarly, the rule for automatic incremental modulation of
sens and cap_o label can be descried as:

sensnew = sensold + f (actionsen)

cap_onew = cap_oold + f (actionsen)

The rule for automatic decremental modulation of cap_s
label can be descried as:

cap_snew = cap_sold − f (actionill)

cap_snew refers to the new value of the cap_s label after
the illegal action actionill , and cap_sold refers to the old
value of the cap_s label before the illegal action actionill ,
and function f is used to map an illegal action to a cap_s
value. For example, a process with a cap_s value {location,
contacts} tries to send the contacts information to unknown
network address, then we drop the label of {contacts} (f (a) =
{contacts}) in its capability label. The value of the cap_s of
this process is updated to {location}.

The rule for evaluative modulation can be descried as:

labelnew = f (actions)

Evaluative modulation can be understood as: the value of
specify label can be assigned to a new value, which does
not depend on the old value, through evaluation function f
directly. Evaluative modulation supports both incremental and
decremental modulation manually. This is very similar to the
conditional (explicit) declassification or endorsement in DIFC
models. For example, the value of the risk label of a process
can be decided upon its recent behaviors in the system. For
the consideration of security, evaluative modulating must be
done explicitly or manually by the administrator or user.

D. Runtime Controlling

For all the data and codes, we can not let them propagate or
run arbitrarily in the system without any restriction. We should
block malicious actions according to security policies to
prevent any potential damage to the system or the leakage
of sensitive data.

Whether an action is illegal depends on runtime controlling
rules, and the runtime controlling rules are all related to
the labels used in DDM. Therefore, dynamic label marking,
dynamic label modulating and runtime controlling are three
interdependent processes in DDM. With the benefits of these
three processes, each label has rich contextual information of
the data and codes in the system. It is scientific to control
the future behavior of the data and codes based on these
labels. The high-level of runtime controlling rules can be
described as:

action is permi tted ⇐⇒ f (labels) == yes

Function f is used to map the labels to the decisions yes or
no.

For the risk label, this rule can be specified as:

running is permi tted ⇐⇒ risk < thresholdkill

This rule means that a process can keep running if and only if
the value of its risk label is less than the threshold of killing
a process.

For the risk label and sens label, this rule can be speci-
fied as:

access is permi tted ⇐⇒ risk + sens < thresholdsys

This rule means that a process with a risk label can access
the sensitive data or resources with a sens label if and only
if the value of the risk plus sens is less than the threshold of
the system.

For the cap_s and the cap_o label, this rule can be
specified as:

access is permi tted ⇐⇒ cap_o ⊆ cap_s

This rule means that a process with a cap_s label can access
the sensitive data or resources with a cap_o label if and only if
the value of cap_o is a subset of cap_s. For example, data with
cap_o={location} can only be accessed by the application
who has {location} in its cap_s label.

2432 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019

Fig. 2. The architecture of DDDroid.

IV. DESIGN AND IMPLEMENTATION

In this section, we introduce our design and implementation
of DDDroid on Android. Android provides two important
security mechanisms for users. one is sandbox mechanism,
each application runs isolate in its VM instance with an unique
UNIX identity. The other one is permission mechanism, appli-
cation only can use the permissions (explicitly declared in their
manifest files) accepted by users. DDDroid takes advantages
of these security mechanisms and adds some new security
mechanisms at the application framework layer and VM layer
of Android. Figure 2 shows the architecture of DDDroid.
DDDroid has the same four key components as DDM.

A. Dynamic Label Marking

1) Labels for Application: Besides permissions, we add
three labels for each application in Android. They are risk_s,
cap_get and cap_send. risk_s is used to represent the potential
risk value of a suspicious application. cap_get is used to
represent the capabilities of a suspicious application on what
kind of sensitive data it is allowed to access. cap_send is used
to represent the capabilities of a suspicious application on what
kind of sensitive data it is allowed to send out from the system.
The labels are classified into get and send in our system instead
of secrecy and integrity in the DIFC systems. This offers
a better description of information flow characteristics for a
common user to understand. All a user need to do is define a
policy on what kinds of applications can get or send what kinds
of private data based on his security requirements. risk_s,
cap_get and cap_send are each independently implemented
as an integer number in our system.

For the initial value of risk_s label, we analyze the per-
missions that declared by the application in its Android-
Manifest.xml and perform a preliminary risk assessment to
compute a score (which is represented by an integer num-
ber that ranging over the interval [0,15]) when it is being
installed. The score is proportional to the dangerousness
(privacy leakage, integrity violation, malicious charge, and
vulnerability) of the requested permissions and the number
of the requested permissions. To construct our assessment
algorithm efficient, we simply give each permission with
a risk score ranging from 0 to 1 on its dangerousness,
which benefit from the existing works DroidRisk [16] and
MAETROID [15]. Table I shows the partial list of Android

TABLE I

PARTIAL LIST OF ANDROID PERMISSIONS AND ASSOCIATED RISK VALUE

permissions and associated risk value that pre-defined by us.
Take the permission android.permission.CALL_PHONE as an
example. We have assigned a score of 0.6 to the corresponding
privacy leakage, since an application may perform phone
call background to leak privacy. We have assigned a score
of 0.2 to the system integrity violation, since the phone drains
the battery faster during a call. We have assigned a score
of 1 to the malicious charge, since an application may call
premium-rate phone numbers. Then we calculate the risk score
by pulsing all the scores of required permissions together.
We restrict the biggest initial value of the risk_s label is 15.
If the calculated score is bigger than 15, we then set 15 to
the initial value of risk_s. This is due to our assessment
algorithm is simply based on the required permissions, which
is not very precise. Some of the benign applications also
applied lots of sensitive permissions. If we dont restrict the
biggest initial value of the risk_s label, some of the benign
application cannot even run in our system firstly or cannot
access some sensitive resources. Value 15 is chosen based
on our runtime controlling rules which we will explain on
sub-section D. For the initial value of cap_get and cap_send
label, they are initialed according to the type of application and
the permissions being allowed by the user when the application
is being installed. For example, if an application belongs to
the type of CHAT, and permissions READ_CONTACTS is
granted by the user, we then automatically set the cap_get
label with value 0x00002 (LABEL_CONTACTS: 0x00002).
We also provide an application named DDPolicy for users to
set their desire value.

When a suspicious application is being installed on the
phone, we intercept and hijack the installation event and
analyze this application to assess its initial risk value, and then
pop a new dialog box to show the initial risk value. A user can
choose whether to continue the install progress depends on this
value. If the user chooses to install, then we pop another dialog
box to require the initial value of the cap_get and cap_send
label. The user could set these values depends on what kinds
of functions he wants to use of the suspicious application. For
example, if the suspicious application is MAP, then the user
could set the cap_get and cap_send with a value 0x00010
(which is used to mark the GPS location data in DDDroid)

WU et al.: REDUCING SECURITY RISKS OF SUSPICIOUS DATA AND CODES THROUGH A NOVEL DDM 2433

Fig. 3. Partial of the label interfaces that provided by DDDroid.

so as to use the map function provided by MAP. At last,
we store these values of the labels into a policy file named
LabelPolicy.xml for eternal storage and later usage.

When the system initialing the package manager service,
we parse the policy file and store all the policies into
HashMap. When the system calling the function scanPack-
ageLI, we check whether the HashMap contains the key of
the name of current application. If contains, we fill the data
structures of the current application in pkg.applicationinfo
according to the values that have been stored in HashMap
for fast access. Otherwise, we set value 15 to the risk label
and value 0 to the cap_get and cap_send label as default.
As we know, Zygote is the parent process for all applications in
Android. When a suspicious application is started by invoking
Process.Start in ActivityManagerService, we add our label
parameters to function Process.Start, and pass the label para-
meters through multi-function invoking such as startViaZy-
gote, nativeforkAndSpecialize and forkAndSpecializeCommon.
At last, we set the label for this application through the
label interfaces that designed for application, which is shown
in Figure 3. We define these interfaces in LabelInterf.java and
implement them through JNI in LabelInterf.cpp.

2) Labels for Suspicious or Sensitive Data: We add risk_o
for the suspicious data to represent the potential risk value
of the suspicious data. For the initial value of risk_o label,
we perform a preliminary risk assessment to compute a
score (which is represented by an integer number that range
over the interval [0, 31]). The score is proportional to the
dangerousness of the Internet sources and the risk_s value of
the receiver application. We define five risk levels to describe
the dangerousness of the Internet sources. They are trusted
(risk value 5), moderate trusted (risk value 10), low trusted
(risk value 15) and suspicious (risk value 20) and malicious
(risk value 31). For some of the famous Internet sources
such as BAIDU and QQ, we define them as trusted. For
some of the Internet sources that do not list in our white
list, we define all of them as suspicious. For some of the
Internet sources that list in our black list, we define all of them
as malicious. We also assign the data received from secure
protocols such as SSL with an additional risk value of 0 and

Fig. 4. The meaning of each bit of the label (unsigned int) for data.

the data received from other protocols with an additional risk
value of 10. To construct our assessment algorithm efficient,
we simply calculate the initial risk value through pulsing
the risk values of Internet sources and the risk_s value of
the receiver application. For example, application WECHAT
(risk_s = 6) received data from qq.com (risk = 5) with protocol
SSL (risk = 0), we then set the data with an initial risk_o
value of 11 (6+5). If the protocol is HTTP, we then set the
data with an initial risk_o value of 21 (6+5+10). If the total
value is bigger than 31, then set 31 to the value of the risk_o
label (this is because we use five bits to represent this value
in an unsigned integer number in Figure 4).

We also add the sens and cap_o for all the sensitive data.
sens is used to represent the importance of the sensitive data
and cap_o is used to represent what kinds of capabilities of
an application are needed to access the data or send the data
out from the system. For the initial value of the sens label,
we simply give each kind of sensitive data with a value ranging
from 0 to 5. Similarly to risk_s, the value is proportional to the
sensitiveness of the resources. For the initial value of the cap_o
label, it depends on what kinds of sources or well-defined
interfaces that the data come from. For example, data received
from the GPS interface is marked with a value of 0x00010.

We use an unsigned integer to implement these labels for
suspicious or sensitive data. Figure 4 shows the meaning of
each bit or several bits in the unsigned integer. The first two
bits are used to represent whether the data is suspicious data
or sensitive data. 3-7th bits are used to represent the risk
value of suspicious data. 8-12th bits are used to represent
the sens value of the sensitive data, and 13-31th bits are
used to represent its cap_o value. We provide different kinds
of label marking interfaces for different kinds of data, such
as int, long, float, double, string, array and so on. Figure 3
shows the partial of them. For example, We mark contacts data
with a label 0x00002 at contentresolve.java through interface
setStringC(string, cap_o). We also add the sens label for the
sensitive API, which is similar to the sens label for sensitive
data.

B. Dynamic Label Tracking

We use TaintDroid to track our label at four different levels.
They are variable-level (data flow of each VM instruction),
message-level (IPC between applications), method-level (invo-
cation between Java and native codes) and file-level.

As we know, TaintDroid is one of the outstanding DTT
systems that provide fine-grained taint tracking on Android.
TaintDroid used a 32-bit bit-vector for each local variable to
encode the taint tag, which we call it as colorful taint track-
ing. TaintDroid modified the interpreter and the just-in-time

2434 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019

Fig. 5. Taint tracking implementation and optimization on the example codes
at variable-level in DDDroid.

compiler of the DVM. To implement taint tracking for the
JIT compiler of DVM, take the DVM instruction [binop vAA,
vBB, vCC] as example, there are three steps were added
by TaintDroid. First, it loaded the taint value of vBB and
vCC from the stack to physical register through function
loadTaintDirect(cUnit, vBB, taint) and loadTaintDirect(cUnit,
vCC, taint2). Then, it calculated the new taint value through
function opRegRegReg(cUnit, kOpOr, taint, taint, taint2). Last,
it stored the taint value to stack through function store-
TaintDirect(cUnit, vAA, taint). If we naively insert additional
taint tracking codes for each VM instruction independently
according to the template, it would bring substantial runtime
overhead. Especially for loops, these additional taint tracking
codes will be executed many times. Take following codes as
example:

: goto_0
for(i=0; i<100; i++) . const/16 v4, 0x64
{ . if-ge v3, v4,:cond_0

a=b+c; : cond_0
c=a+b; . add-int v0, v1, v2

} . add-int v2, v0, v1
. add-int/lit8 v3, v3, 0x1
goto: goto_0

For DVM instruction add-int v0, v1, v2, to realize the taint
tracking, the compiler first loads the taint tags of v1 and v2
from memory locations (stack point [r5, �12] and [r5, �20])
into physical registers r0 and r4. Then it adds the native taint
tracking instruction orr r0,r0,r4 to calculate the new taint value
of v0. At last, it stores the new taint value from physical
register r0 into memory location (stack point [r5, �4]). First
column of Figure 5 shows the taint tracking implementation
of the example codes. The native instructions in red color are
added for taint tracking by TaintDroid. We find that a lot of
taint tag propagation operations contained in this hot traces
are redundant. We also find that the values of some variables
are changeable but their taint values are invariant in this
loop.

To improve the efficiency of DDDroid, We deployed some
light-weight taint propagation optimization methods (such as
eliminating, replacing and moving) on hot traces with the
help of JIT compiler. Based on the observation that, for most
android applications, the majority of executing time is cost
on minority part of the codes (only 2% of system_server

application are identified to be hot traces by interprets with
profiling). So it is unnecessary to optimize every piece of
tracking code. Our methods include: redundant taint load
elimination (RTLE), redundant taint store elimination (RTSE),
redundant taint compute elimination (RTCE), taint load hoist-
ing (TLH), taint store sinking (TSS) and loop invariant taint
motion (LITM).

RTLE is used to eliminate the redundant taint load
instructions. For example, considering following instructions
in Figure 5: ldr r10, [r5, #28] and str r10, [r5, #28]. After
loading the taint from DVM register v7 into physical register
r10, there is no use point of r10 in the subsequent instructions
besides instruction str r10, [r5, #28], which has the same
DVM register v7. Apparently, this kind of load instruction
is unnecessary and can be eliminated. Secondly, considering
instructions in Figure 5: str r0, [r5, #4] and ldr r7, [r5, #4].
Since the value of physical register r0 is not clobbered and
the value of DVM register v0 is no updated in between these
two instructions, we can reuse physical register r0. Generally,
we can reuse the previously taint value in physical register
rather than perform a new load. Case 1: there is a load
instruction after a store instruction which has the same DVM
register, and the physical register is not clobbered in between,
and the taint value of DVM register is not updated in between.
If they have the same physical register, then the later load
can be eliminated. If they have different destination physical
registers, then the later load can be replaced with a move.
Case 2: two load instructions load the same DVM register,
and the physical register is not clobbered in between, and the
taint value of DVM register is not updated in between. If they
have the same destination physical register, then the later load
can be eliminated. If they have different destination physical
registers, then the later load can be replaced with a move.
RTSE is to eliminate the redundant taint store instructions
so that not all computed taint values are must written back
to memory location. Considering following instructions: add-
int v2, v0, v1 and add-int v2, v3, v0. The taint value of v2
will be stored twice and the later taint value will overwrite
the earlier taint value. We can eliminate the earlier store.
Generally, two store instructions that store the taint value to
the same DVM register, and the DVM register is not used in
between, then the earlier store can be eliminated. RTCE is
to eliminate the redundant taint calculation (orr) instructions.
LITM is to move the taint tracking codes out of the loop
body for simple counted loop trace. In example codes, we find
that v3 is an induction variable and its taint is loop invariant,
v4 is a constant and its taint is always clean. At the same
time, the value of variable v0 and v2 are changeable but the
taint value of v0 and v2 are invariant after the first iteration
in the loop. Generally, a loop trace is considered to be a
counted loop trace if it has one basic induction variable, and
the loop back branch compares the basic induction variable
with a constant. A loop trace is considered to be a simple
loop trace if it only has one exit block and cannot throw any
exceptions. We can eliminate the taint propagation instructions
in the loop body and add taint propagation instructions to the
exit block. We also implemented ld/st scheduling through TLH
and TSS to aggressively hoist taint loads and sink taint stores

WU et al.: REDUCING SECURITY RISKS OF SUSPICIOUS DATA AND CODES THROUGH A NOVEL DDM 2435

Fig. 6. The sketch process of dynamic label modulating of DDDroid.

until inserted scheduling barriers or memory instructions that
cannot be disambiguated.

C. Dynamic Label Modulating

We modulate the label of current application in three ways:
incremental modulation automatically, decremental modu-
lation automatically and evaluative modulation manually.
Figure 6 shows the architecture of our dynamic label mod-
ulating. For incremental modulation, when a policy-violation
action occurred, we then upward modulate the value of
risk label of the current application through risk_snew =
risk_sold + sensact ions .

For decremental modulation, when a policy-violation action
occurred, we then downward modulate the value of cap_get
and cap_send label of the current application through
cap_getnew = cap_getold − v(action) and cap_sendnew =
cap_sendold − v(action). For example, When an application
tries to send the contacts information to unknown internet
address which is not allowed by the policy, we then drop the
capability {contacts} in its cap_get label.

For evaluative modulation, first, we collect all the runtime
behavior information for each application and store them
in data center. Then, our evaluation module analyzes these
information at fixed intervals or special point and computes a
new risk_s value. If the new value is bigger than the previous,
then we assign it to the application directly. If the new value
is smaller than the previous, we then pop a dialog box to ask
the user to make a decision.

The new risk_s value is computed based on the recent
behavior and the number of policy violation of the application.
risk_s = risk_sbeh + risk_sv io. Following are the malicious
behaviors that have been reported: 1. Privilege escalation
attacks to gain root access of the device. 2. Privacy leakage or
personal-information theft. 3. Compromise the device to act
as a Bot and remotely control it through a server by sending
various commands. 4. Malicious charge through sending SMS
or making phone call background. 5. Download potentially
unwanted apps. 6. Denial of Service (DoS) attack when
overuses already limited CPU, memory, battery and bandwidth
resources and restrains the users executing normal functions.
We defined following anomalous behavioral patterns for fast
detection and evaluation: 1. High number (5 in a minute) of

Fig. 7. The infrastructure of runtime controlling of DDDroid.

sending messages. 2. High number (5 in a minute) of sending
sensitive data through network interface. 3. Sending messages
at background. 4. Making phone call at background 5. Occu-
pying too much (30%) memory. 6. Creating too many child
threads. 7. Occupying too much (50%) CPU. Most of the value
of these parameters are chosen based on existing works such
as Monet [11], Andromaly [48] and MADAM [12], and our
experiences. To construct our evaluation algorithm efficient,
we simply give each kind of anomalous behavior with a cor-
responding weight w ranging from 3 to 8. Then we calculate
the risk_s as follows:

risk_s =
7∑

i=1

wi · h +
n∑

i=1

sensn

h can be 1 or 0, which means that the anomalous behavior
is detected or not. n is number of policy violation in a fixed
interval e-time.

Furthermore, due to the dynamic label modulating,
we believe more contextual information could be added for
our runtime controlling. We can easily specify time-related or
location-related policy. For example, assuming that application
MS is only allowed to send messages during 8:00-22:00,
DDM can achieve this goal by assigning the sending messages
capability label to MS during 8:00-22:00, and dropping the
sending messages capability of MS during other time via time-
related dynamic label modulating.

D. Runtime Controlling

Figure 7 shows the architecture of our runtime monitoring
and controlling. All the judgments are made based on the
labels so that there is no need to specify a policy database.
Different kinds of labels are used depending on different
kinds of resource access in the system. We deploy policy
enforcement point (PEP) at all the security-related points
in the system. They are located at Parcel.java, cdmaSMS-
Dispatcher.java, posix.java, OpenSSLSocketImpl.java and so
on. Fox example, as we know, applications communicate via
the binder mechanism, which provides transparent message
passing based on parcels in Android. We enforce our policy

2436 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019

Fig. 8. The area of satisfaction values of the risk_s and sens label.

when application writing or reading data from parcels in
Parcel.java.

We deploy our policy decision point (PDP) in PDP.java.
Methods defined in PDP.java take labels as input and output
a decision. For risk_s and sens label, the policy is defined as:

risk_s ≤ 30 and risk_s ≤ 40 − 5 × sens

The shadow area in Figure 8 illustrates the values of the
risk_s and sens label that satisfy these rules. If the value of
the risk_s label of an application is bigger than 30, then the
application can only run in the system but cannot do any
sensitive operation. If the value of the risk_s label of the
application is smaller than 15, it can do any sensitive operation
(without the consideration of other labels).

For cap_get, cap_send and cap_o label, the policy is
defined as:

cap_o ⊆ cap_get , cap_o ⊆ cap_send

For example, when an application with a cap_get label
reading data with a cap_o label from parcels, we use
“if(decision(cap_get,cap_o)) then allow; else forbidden;” to
enforce our policy. decision(cap_get,cap_o) is defined as
cap_o==(cap_o&cap_send). When an application with a
cap_send label sending data with a cap_o label to network,
we use “if(decision(cap_get,cap_o)) then allow; else forbid-
den;” to enforce our policy. Therefore our PEP is very simple
and efficient.

We also provide DDNotify, a stand alone application that
notify users when a malicious application is detected (the value
of the risk_s label is bigger than 40).

V. EXPERIMENTS

Experiments were performed in Android emulator to
demonstrate our implementation is correct and effective.
We set the value of fixed interval e-time to 1 minute (just
for experiments) and the threshold of killing a process to 40.

A. Experiment 1

In this experiment, we demonstrate that DDDroid is an
effective dynamic defense system that can detect and block
malicious actions at runtime with low false positive (FP).

Fig. 9. The results of experiments on applications Droiddream and Smsclient.

First, we construct our experiment dataset with 30 malware
samples and 970 benign applications. These malware belong to
different malware families from three datasets (Genome [49],
Drebin [50] and DroidAnalytics [42]). Benign applications
are chosen based on download number of AnZhi market. All
the initial values of labels of the experiment dataset are config-
ured automatically without manual intervention. To simulate
user’s actions, we use monkey tool to generate different kinds
of user/system events. Then, we run each of them for ten
minutes and record the malicious actions which were detected
in DDDroid. DDDroid detects the 97% (true positive) of the
malware samples have at least one malicious action. Figure 9
shows that DDDroid blocks these actions effectively. When
an application has done too many bad jobs and its risk value
is bigger than 40, DDDroid pops a dialog box to ask the
user whether killing the application or not. There are 12 false
positives (1.2%) are alarmed by DDDroid. some of the FPs
are caused by the inadequate initial value of the cap_get and
risk_s label. Some of the FPs are caused by the taint tracking
explosion on String. We also analyzed the relation between
the time and the number of FPs. We found that most of (99%)
the FPs are alarmed in 3 minutes. To gain further insight into
perceived the relation between the time and the number of FPs.
We also build our system on real device. We used this device
daily in practice. Few additional FPs (2 or 3 per week) was
occurred.

B. Experiment 2

We demonstrate that DDDroid provides a fine-grained sensi-
tive data protection mechanism which can prevent the sensitive
data from being leaked. In this experiment, DNotify sends
notification once a malicious action is detected. Following is a
common security requirement. In order to ensure the functional
availability, application WPS is allowed to read sensitive file
and send data out via the network interface. Nevertheless,
in order to ensure the privacy and security, WPS is not allowed
to send the sensitive files (even a word or a sentence in
the file) out via the network interface or receive contacts
information from application Message. Similarly, application
Message is allowed to read sensitive files or contacts data
and send messages information out via the message interface,
but Message is not allowed to send the sensitive file or
contacts information out via the message interface. To the best

WU et al.: REDUCING SECURITY RISKS OF SUSPICIOUS DATA AND CODES THROUGH A NOVEL DDM 2437

Fig. 10. The results of experiments on applications MS and WPS.

of our knowledge, no existing work can fulfill this security
requirement. To fulfill this requirement, we first set the value
of the cap_o label of file /data/sensitive.doc with 0x10000.
We set the value of the cap_get and cap_send label of WPS
with 0x10000 and 0x0, so that it can read the sensitive files
but can not send any sensitive data out from the system (this
is done by application DDPolicy and DDFile). We also set the
value of cap_get and cap_send label of MS with 0x10600 and
0x600, so that it can read the sensitive files and contacts and
messages, and can not send sensitive files out from the system.
Then, we use WPS to open a sensitive file, which is allowed by
the policy. The result is that WPS opened the file successfully.
We try to copy some contacts data from MS to WPS, which
is not allowed by the policy. Figure 10 shows the results that
WPS is failed to get contacts data (DDNotify sends the audit
information to user through notification). At last, we use MS
to send contacts data via the SMS interface and copy some
words from WPS to Message, which is allowed by the policy,
and we try to send the copied words via the SMS interface,
which is not allowed by the policy. Figure 10 shows the results
that Message sends the contacts data out successfully and is
failed to send sensitive file out (DDNotify sends the audit
information to user through notification).

VI. EVALUATION

Evaluations were performed on Android emulator with
starting command: ëmulator -kernel qumu-armv7 -system sys-
tem.img -ramdisk ramdisk.img -data userdata.img -partition-
size 400 -memory 512. The host operation system is ubuntu
12.04 on Lenovo ThinkPad x240 with a Core i5 @ 2.4GHz
and 4GB of RAM∵ The Android version is 4.1.1_r6 and Linux
kernel version is 2.6.29 with XATTR supported. We describe
the results by the comparison between DDDroid and a corre-
sponding AOSP Android to measure the memory and perfor-
mance overheads introduced by DDDroid. Both the DDDroid
and AOSP Android images include none additional third-party
application in our evaluation.

A. Evaluation 1

Proportional set size (PSS) is used to measure the memory
usage of each application, where shared memory pages are
divided by the number of processes sharing them. There-
fore, PSS is a good measure for RAM usage comparison

Fig. 11. The comparison of memory usage between AOSP Android and
DDDroid. (a) The memory usage of each application in AOSP Android.
(b) The memory usage of each application in DDDroid.

between different applications. In AOSP Android, we recorded
the value of PSS of each application after the boot was
completed (no manual operation is done to the emulator).
In DDDroid, We started applications DDNotify, DDPolicy and
DDFile (three applications running in the background), and
then pressed the home button after the boot was completed (no
other manual operation is done to the emulator) in DDDroid.
We then recorded the value of PSS of each application.
Figure 11 shows the results of memory usage of AOSP
Android and DDDroid. DDDroid has 8.5% lead in memory
consumption. More specifically, application DDNotify totally
costs 4591KB, application DDPolicy totally costs 14647KB,
and application DDFile totally costs 5521KB. What’more,
appliation DDPolicy and DDFile are not used frequently and
they expended the 4.7% of memory consumption.

We use command “adb shell dumpsys meminfo” to measure
the detail memory usage information of each application.
We find that the increment of memory consumption is largely

2438 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019

TABLE II

AN COMPARISON OF AOSP ANDROID AND DDDROID
ON HIGH-LEVEL PHONE OPERATIONS

introduced by the category “Dalvik”and “.so mmap”. This is
because we stored 32 taint markings for each 32-bit variable
in Dalvik, and we added libLabel.so for each application to
set and get their labels at runtime.

B. Evaluation 2

We use two well-known benchmark applications: Bench-
mark 1 and CaffeineMark,2 to measure the runtime overhead
of DDDroid. First, we run each workload in Benchmark
(version 1.0) on DDDroid and AOSP Android 20 times. The
graphic performance (MPixels per sec) and memory perfor-
mance tests averagely incur only 2.4% overhead. On the CPU
tests, DDDroid have round 19% overhead due to the dynamic
label marking, tracking, modulating and controlling at runtime.
We then run each workload in CaffeineMark (version 3.0)
on DDDroid and AOSP Android 20 times. CaffeineMark’s
score is roughly correspond to the number of Java instructions
executed per second. The overhead incurred by arithmetic is
the smallest (8%) and by string is the greatest (26%). This
is because label tracking for arithmetic computing is simple
and additional memory comparisons for string objects. The
overall overhead incurred by DDDroid is 18% with respect to
the AOSP Android system.

To gain further insight into perceived overhead on common
high-level smartphone operations, we measured the costs of
calling phone, sending SMS, reading and writing contacts
(total five SQL transactions), taking picture (average size
420KB), reading and writing file (a. doc file with size 2MB).
Table II shows that DDDroid averagely brings 17% overhead
with respect to the Android system. This is because the
additional time is needed to do following operations: get and
set the label of applications, variables and files, and enforce
the label related security policies.

VII. DISCUSSION AND FUTURE WORK

In this paper, we introduced the four key minds: dynamic
label marking, dynamic label tracking, dynamic label modulat-
ing, and run-time monitoring and controlling. However, there
are a lot of works to do to enrich these four key minds. For
example, how to decide the initial value of the risk label more
precisely. How to track the label between different boundaries
such as OS, database, network and so on. We also implemented
DDDroid which is based on Dalvik VM. Note that Dalvik

1https://www.apkshub.com/app/softweg.hw.performance
2http://www.benchmarkhq.ru/cm30/

is replaced by ART nowadays. In future, we will implement
our model in ART environment by combining with the work
that implemented taint tracking on ART [51], [52]. In our
prototype, we only concern the explicit information flow
caused by data dependence, while ignore the impact of implicit
information flow (IIF) caused by control dependence. As a
result, it is possible for an attacker to leverage implicit infor-
mation flow to evade our detection. For example, considering
the following codes:

if (high == 0) then low = 0; else low = 1;
Although there is no direct information flow between vari-

able high and low, one can still learn some information about
high by observing low. You et al. [53] called this kind of
implicit information flow as if -based IIF. Other kinds of
implicit information flow include switch-based IIF, exception-
prone-based IIF, throw-based IIF and polymorphism-based
IIF. Obviously, the amount of information leaked by implicit
information flow is much smaller than explicit information
flow. Therefore, quantitative information flow can be used
to determine whether track this flow or not. TaintMan [53]
proposed a method to track the strict control dependence flow
and SpanDex [54] described a way to track implicit flow on
password. These methods can be applied to our system in the
future. We also want to establish a taint propagation framework
to enable further taint tracking optimization on hot loop traces
to make the system more effective. Thresholds defined in
DDDroid are manually configured currently, adding adaptive
algorithm for self-tuning of these thresholds could be a future
work. At last, constructing more precise and efficient machine
learning algorithms for dynamic behavior evaluation is also a
future direction.

VIII. CONCLUSION

It is a great challenge when we want to use suspicious
data or codes from not fully trusted Internet source as well
as keep the operating system secure. To address this prob-
lem, we present a novel dynamic defense model to reduce
security risks brought by the suspicious data or codes. DDM
is a high-level security defense abstraction with the four
key minds: dynamic label marking, dynamic label tracking,
dynamic label modulating, and run-time controlling. With
these minds, DDM provides an abstract framework to deal
with the potential security risks through integrating the existing
security mechanisms together organically. We also imple-
mented DDDroid, a prototype system of DDM on Android
that provides a robust dynamic security defense mechanism
for smartphone users. We evaluated our prototype on functions
and performance through several experiments. The results
show that DDDroid is an accurate, flexible and available
system without sacrificing some aspects of programmability,
compatibility, convenience and performance.

ACKNOWLEDGMENT

The authors would like to thank Prof. Lorenzo Cavallaro and
reviewers for their valuable comments and suggestions. They
would like to thank Jian Li, an associate professor of Beijing
University of Posts and Telecommunications, for his help of

WU et al.: REDUCING SECURITY RISKS OF SUSPICIOUS DATA AND CODES THROUGH A NOVEL DDM 2439

getting the Android malware datasets and providing sagacious
comments. They would also like to thank Hao Chen for his
help on the English language.

REFERENCES

[1] M. Sun, M. Zheng, J. C. S. Lui, and X. Jiang, “Design and implemen-
tation of an Android host-based intrusion prevention system,” in Proc.
ACM 30th Annu. Comput. Secur. Appl. Conf. (ACSAC), New York, NY,
USA, 2014, pp. 226–235.

[2] S. Smalley and R. Craig, “Security enhanced (SE) Android: Bring-
ing flexible MAC to Android,” in Proc. NDSS, vol. 310. 2013,
pp. 20–38.

[3] P. Efstathopoulos et al., “Labels and event processes in the asbestos
operating system,” ACM SIGOPS Oper. Syst. Rev., vol. 39, no. 5,
pp. 17–30, 2005.

[4] M. Krohn and E. Tromer, “Noninterference for a practical DIFC-based
operating system,” in Proc. 30th IEEE Symp. Secur. Privacy, Jul. 2009,
pp. 61–76.

[5] C. Li, A. Raghunathan, and N. K. Jha, “Secure virtual machine execution
under an untrusted management OS,” in Proc. IEEE Int. Conf. Cloud
Comput., Jul. 2010, pp. 172–179.

[6] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: Transparent moving target defense using software defined
networking,” in Proc. Workshop Hot Topics Softw. Defined Netw., 2012,
pp. 127–132.

[7] A. C. Myers and B. Liskov, “A decentralized model for information flow
control,” ACM SIGOPS Oper. Syst. Rev., vol. 31, no. 5, pp. 129–142,
1997.

[8] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “ANDRUBIS—1,000,000 apps later:
A view on current Android malware behaviors,” in Proc. 3rd Int. Work-
shop Building Anal. Datasets Gathering Exper. Returns Secur., 2014,
pp. 3–17.

[9] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro,
“The evolution of Android malware and Android analysis techniques,”
ACM Comput. Surv., vol. 49, no. 4, p. 76, 2017.

[10] W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comput.
Syst., vol. 32, no. 2, p. 5, 2010.

[11] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet:
A user-oriented behavior-based malware variants detection system
for Android,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 5,
pp. 1103–1112, May 2016.

[12] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
Effective and efficient behavior-based Android malware detection and
prevention,” IEEE Trans. Dependable Secure Comput., vol. 15, no. 1,
pp. 83–97, Jan./Feb. 2016.

[13] L. Jia et al., “Run-time enforcement of information-flow properties on
Android,” in Proc. Eur. Symp. Res. Comput. Secur. Berlin, Germany:
Springer, 2013, pp. 775–792.

[14] A. Nadkarni, B. Andow, W. Enck, and S. Jha, “Practical DIFC enforce-
ment on Android,” in Proc. 25th USENIX Secur. Symp. (USENIX Secur.),
2016, pp. 1119–1136.

[15] F. Martinelli, I. Matteucci, M. Petrocchi, and A. Saracino, “Risk analysis
of Android applications: A multi-criteria and usable approach,” Nat. Res.
Council, Italy, Tech. Rep., 2015.

[16] Y. Wang, J. Zheng, C. Sun, and S. Mukkamala, “Quantitative security
risk assessment of Android permissions and applications,” in Data and
Applications Security and Privacy XXVII. Berlin, Germany: Springer,
2013.

[17] R. Sekar et al., “Model-carrying code: A practical approach for safe
execution of untrusted applications,” in Proc. ACM SIGOPS Oper. Syst.
Rev., 2003. pp. 15–28.

[18] H. V. Nath and B. M. Mehtre, “Static malware analysis using machine
learning methods mehtre,” in Proc. Int. Conf. Secur. Comput. Netw.
Distrib. Syst., 2014, pp. 440–450.

[19] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding mal-
ware analysis using conditional code obfuscation,” in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA, Feb. 2008,
pp. 1939–1945.

[20] X. Chen, J. Andersen, Z. M. Mao, J. Nazario, and M. Bailey, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in Proc. IEEE Int. Conf. Dependable Syst. Netw.
FTCS DCC, Jun. 2008, pp. 177–186.

[21] W. Sun, Z. Liang, V. N. Venkatakrishnan, and R. Sekar, “One-way iso-
lation: An effective approach for realizing safe execution environments,”
in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA,
2005, pp. 265–278.

[22] M. Payer, T. Hartmann, and T. R. Gross, “Safe loading—A foundation
for secure execution of untrusted programs,” in Proc. IEEE Symp. Secur.
Privacy, May 2012, pp. 18–32.

[23] J. Huang, Z. Jiang, and R. Akhter, “Protection tiers and their appli-
cations for evaluating untrusted code on a Linux-based Web server,”
J. Commun., vol. 10, no. 11, pp. 1891–1899, 2015.

[24] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand, “Practical
taint-based protection using demand emulation,” ACM SIGOPS Oper.
Syst. Rev., vol. 40, no. 4, pp. 29–41, 2006.

[25] O. Ruwase, S. Chen, P. B. Gibbons, and T. C. Mowry, “Decoupled life-
guards: Enabling path optimizations for dynamic correctness checking
tools,” ACM SIGPLAN Notices, vol. 45, no. 6, pp. 25–35, 2010.

[26] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis, “Shad-
owReplica: Efficient parallelization of dynamic data flow tracking,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2013, pp. 235–246.

[27] P. Saxena, R. Sekar, and V. Puranik, “Efficient fine-grained binary
instrumentationwith applications to taint-tracking,” in Proc. 6th Annu.
IEEE/ACM Int. Symp. Code Gener. Optim., Apr. 2008, pp. 74–83.

[28] Z. Wei and D. Lie, “LazyTainter: Memory-efficient taint tracking in man-
aged runtimes,” in Proc. ACM Workshop Secur. Privacy Smartphones
Mobile Devices, 2014, pp. 27–38.

[29] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “Libdft:
Practical dynamic data flow tracking for commodity systems,” ACM
SIGPLAN Notices, vol. 47, no. 7, pp. 121–132, 2012.

[30] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu, “LIFT:
A low-overhead practical information flow tracking system for detecting
security attacks,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Microar-
chitecture, Dec. 2006, pp. 135–148.

[31] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August,
and A. D. Keromytis, “A general approach for efficiently accelerating
software-based dynamic data flow tracking on commodity hardware,” in
Proc. NDSS, 2012, pp. 124–137.

[32] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom.
(2005). JIF: JAVA Information Flow, Softw. Release. [Online]. Available:
http://www.cs.cornell.edu/jif

[33] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in HiStar,” Commun. ACM, vol. 54, no. 11,
pp. 263–278, 2011.

[34] W. Cheng et al., “Abstractions for usable information flow control in
Aeolus,” in Proc. USENIX Annu. Tech. Conf., Boston, MA, USA, 2012,
pp. 139–151.

[35] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing distributed
systems with information flow control,” in Proc. NSDI, vol. 8, 2008,
pp. 293–308.

[36] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers,
“Fabric: A platform for secure distributed computation and storage,” in
Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Princ., 2009, pp. 321–334.

[37] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel,
“Laminar: Practical fine-grained decentralized information flow control,”
in Proc. ACM Laminar, Practical Fine-Grained Decentralized Inf. Flow
Control, 2009, vol. 44, no. 6, pp. 63–74.

[38] M. Xu et al., “Toward engineering a secure Android ecosystem: A survey
of existing techniques,” ACM Comput. Surv., vol. 49, no. 2, p. 38, 2016.

[39] S. K. Dash et al., “DroidScribe: Classifying Android malware based
on runtime behavior,” in Proc. Secur. Privacy Workshops, 2016,
pp. 252–261.

[40] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
Automatic reconstruction of Android malware behaviors,” in Proc. Netw.
Distrib. Syst. Secur. Symp., Aug. 2015, pp. 241–245.

[41] B. Rashidi, C. Fung, A. Ngyun, T. Vu, and E. Bertino, “Android user
privacy preserving through crowdsourcing,” Trans. Inf. Forensics Secur.,
vol. 13, no. 3, pp. 773–787, Mar. 2017.

[42] M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature
based analytic system to collect, extract, analyze and associate Android
malware,” in Proc. 12th IEEE Int. Conf. Trust, Secur. Privacy Comput.
Commun., Jul. 2013, pp. 163–171.

[43] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, “Droidsieve: Fast and accurate classification of obfuscated
Android malware,” in Proc. ACM Conf. Data Appl. Secur. Privacy,
Mar. 2017, pp. 309–320.

2440 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 9, SEPTEMBER 2019

[44] G. Smith, “On the foundations of quantitative information flow,” in
Proc. Int. Conf. Found. Softw. Sci. Comput. Struct. Held As, 2009,
pp. 288–302.

[45] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible informa-
tion flow architecture for software security,” ACM SIGARCH Comput.
Archit. News, vol. 35, no. 2, pp. 482–493, Jun. 2007.

[46] D. Schultz and B. Liskov, “Ifdb: Decentralized information flow control
for databases,” in Proc. 8th ACM Eur. Conf. Comput. Syst., Aug. 2013,
pp. 43–56.

[47] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat:
Security and privacy for MapReduce,” in Proc. Usenix Symp. Networked
Syst. Des. Implement. San Jose, Ca, USA, Aug. 2010, pp. 297–312.

[48] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “Andro-
maly’: A behavioral malware detection framework for Android devices,”
J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–190, Feb. 2012.

[49] Y. Zhou and X. Jiang, “Dissecting Android malware: Characteriza-
tion and evolution,” in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 95–109.

[50] D. Arp, M. Spreitzenbarth, M. Hábner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of Android malware in
your pocket,” in Proc. Netw. Distrib. Syst. Secur. Symp., Aug. 2014,
pp. 23–26.

[51] M. Sun, T. Wei, and J. C. S. Lui, “Taintart: A practical multi-level
information-flow tracking system for Android runtime,” in Proc. ACM
Sigsac Conf., Oct. 2016, pp. 331–342.

[52] M. Backes, O. Schranz, and P. von Styp-Rekowsky, “POSTER: Towards
compiler-assisted taint tracking on the Android runtime (ART),” in Proc.
ACM Sigsac Conf. Comput. Commun. Secur., Oct. 2015, pp. 1629–1631.

[53] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, “Taintman: An ART-
compatible dynamic taint analysis framework on unmodified and non-
rooted Android devices,” IEEE Trans. Dependable Secure Comput., to
be published.

[54] L. P. Cox et al., “Spandex: Secure password tracking for Android,” in
Proc. USENIX Conf. Secur. Symp., Aug. 2014, pp. 481–494.

Zezhi Wu received the Master degree in commu-
nication and information system from the Institute
of Zhengzhou Information Science and Technology,
Zhengzhou, China, in 2015, where he is currently
pursuing the Ph.D. degree. His research inter-
ests include information flow control and android
security.

Xingyuan Chen received the Ph.D. degree in
communication and information system from the
Institute of Zhengzhou Information Science and
Technology, Zhengzhou, China, in 2003. He is cur-
rently a Professor and a Doctoral Supervisor with
the Institute of Zhengzhou Information Science and
Technology. He is also a Doctoral Supervisor with
the School of Computer and Information Technol-
ogy, Beijing Jiaotong University, Beijing, China.
His research interests are generally in the areas of
cyberspace security, cloud computing security, and
OS security.

Zhi Yang received the Ph.D. degree in computer sci-
ence and technology from the Chinese Academy of
Sciences, Beijing, China, in 2012. He is currently an
Associate Professor with the Institute of Zhengzhou
Information Science and Technology, Zhengzhou,
China. His research interests include information
flow control and OS security.

Xuehui Du received the Ph.D. degree in com-
puter science and technology from the Institute
of Zhengzhou Information Science and Technol-
ogy Institute, Zhengzhou, China, in 2011. She is
currently a Professor and a Doctoral Supervisor
with the Institute of Zhengzhou Information Sci-
ence and Technology. Her research interests include
cyberspace security and android security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

