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Evaluation of Algorithms for Orientation
Invariant Inertial Gait Matching
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Abstract— With the prevalent use of smart phones in sensitive
applications, unobtrusive methods for continuously verifying the
identity of the user have become critical. The embedded inertial
sensors in these devices provide an opportunity to develop
authentication processes based on behavioral biometrics such
as gait. However, one major obstacle is that the orientation of
the device relative to the user is hard to control and difficult
to determine reliably. This paper presents five methods: magni-
tude (MAG), principal component analysis (PCA), vector cross
product (VCP), reduced gait dynamics image (rGDI), and Kabsch
alignment (KAB) that make the authentication process indepen-
dent of device orientation and hence improve the performance.
The five methods are evaluated and compared on two large,
publicly available, inertial gait datasets. The baseline (orientation
dependent) average equal error rate (EER) when the device
was freely oriented is 26.4%. The MAG, PCA, VCP, and rGDI
methods reduce the average EER to approximately 23%. The
Kabsch (KAB) method is more effective and reduces the average
EER to 20.2%.

Index Terms— Biometrics, gait, inertial sensors, orientation
invariance, wearable sensors.

I. INTRODUCTION

UTHENTICATION mechanisms based on behavioral
biometrics have been an active area of research for
the past several decades. Behavioral biometrics, as the name
implies, is based on the characteristic manner in which an
individual performs a natural action. Examples of such actions
used in biometric authentication are, typing on physical or vir-
tual keyboards (keystroke dynamics) [40], mouse move-
ment [32], eye movements (saccades) [12] and gait [14], [30].
Each of the above behaviors has its characteristic strengths
and weaknesses depending on the context of application.
When the subject is using a laptop or desktop computer,
the keystroke dynamics and mouse movement characteristics
are appropriate. If the computer has an integrated camera,
the lighting is favorable and the subject’s face/eyes are not
obscured, facial recognition or saccade patterns can be used
for authentication. Gait is the behavior of choice for biometric

authentication when the subject is walking or running.
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Patel et al. [28] discuss the need for continuous authen-
tication on mobile devices and present some of the current
research and challenges in this area. One authentication modal-
ity that is well suited for continuous authentication is gait
based authentication using inertial sensors.

One of the serious issues in using smartphones with embed-
ded inertial sensors for gait based authentication is that, it is
not always practical to control or determine the orientation of
the device relative to the user. The inertial signals are recorded
in a coordinate system relative to the smartphone. But for
biometric purposes, the gait dynamics need to be represented
in a coordinate system relative to the user. There is no reliable
way to transform from one coordinate system to the other
without knowing how the device is oriented relative to the user.
Since the gallery (reference signal) and the probe (test signal)
for a user are essentially collected at different times, it is
highly unlikely that the device remains in the same orientation
relative to the user at both instances. To be suitable for real
world applications, inertial gait based authentication systems
need to include effective methods to deal with this change in
orientation.

In this paper we introduce two new methods to address
orientation change, one based on Principal Component Analy-
sis (PCA) and the other based on Vector Cross Product (VCP).
We also present an optimization of a previously published
method [47] based on Gait Dynamics Image (GDI). These
are compared against a method based on Kabsch alignment
from [37], a simple magnitude based representation widely
used by other researchers and a baseline method of no cor-
rection at all. The comparison is based on the performance of
these methods on two of the largest publicly available inertial
gait datasets. When the phone orientation is unconstrained,
the orientation independent methods show a 13% to 23%
increase in performance relative to the orientation dependent
baseline method.

II. GAIT MODALITIES

There are several ways in which the gait of the subject
can be captured, each with its own merits and shortfalls. One
approach uses sensors on the walking surface. These sensors
record the force pattern exerted by the feet and gait features
are derived based on these patterns. This technique has been
most useful in the medical context for characterizing gait for
rehabilitation and diagnostics. There has been limited research
done using this method for authentication [34], [43], [19].
Since the sensors can cover only a limited area, this technique
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has limited applicability for authentication for general scenar-
ios. For instance it could be used for access control between
passages [41]. One significant covariate that is expected to
cause problem with this modality is the weight of additional
objects carried by the subject. This modality is expected
to be less sensitive to the clothing, provided they are not
restrictive enough to affect the gait. Identification rates of
higher than 90% have been reported on several small data-
bases [38], [18], [45]. Another interesting use of gait for
authentication is using a pair of smart socks that can measure
acceleration and ground contact forces [27].

Imaging based approaches have been the most active area
of research for gait based authentication. The main reasons
for this are the maturity of various camera technologies
(resolution, robustness) and the availability of different modal-
ities (RGB/color, Infrared, depth). One advantage of this
approach is that it can be done covertly. However, there are
various covariates that cause issues with this technique. One
can address the dependence of camera view angle by using
multiple views. There is also dependence on shoe type, walk-
ing surface and whether or not the subject is carrying some-
thing. Identification rates of above 90% have been reported on
various large datasets (100 subjects or more) [31]. However
performance on few covariates such as surface type and
elapsed time have saturated below 60% and 30% respectively.
There are several large databases available for evaluating the
performance of authentication methods. SOTON HID Gait
dataset [33] contains 115 subjects collected under controlled
conditions indoors and also some outdoor sequences. The
USF Human ID dataset [30] contains 122 subjects collected
outdoors with 2 cameras and various covariates such as carry
condition, shoe type, walking surface and elapsed time. It is
still the largest outdoor gait dataset. CASIA-B dataset [44]
contains sequences with changes in view angle, clothing and
carry condition. CASIA-C dataset [39] has 153 subjects,
walking at different speeds, captured by night vision (infrared)
cameras. TUM-GAID dataset [9] is a multi-modal dataset with
audio, grayscale image and depth images of 305 subjects. The
OU-ISIR large population dataset [11] contains more than
4000 subjects spanning a wide range of ages captured in a
controlled indoor environment with 2 cameras.

Imaging based approaches are not practical in all situations.
For instance, in a secure complex with multiple buildings,
the camera based system could be used in entryways and
perimeter. The lighting and camera angles can be controlled
in these areas for optimal performance of an image based
gait authentication system. It would be uneconomical to place
cameras to cover the pathways between the buildings and
tailor the environment for image based gait authentication.
In such situations an inertial sensor based gait authentication
system is the ideal solution because it is co-located with the
user.

There has been considerable interest in securing phones over
the past 15 years due to the increasing utility and capability
of smartphones. In terms of their utility, smartphones are
used in a variety of sensitive contexts, such as financial
transactions, accessing medical information, company email
communications etc. In terms of capability, a wide variety of

sensors such as high resolution cameras, fingerprint readers,
inertial sensors (accelerometer and gyroscopes) have become
standard features even in the cheapest of smartphones. The use
of smartphones in security sensitive contexts requires reliable
authentication methods, beyond the initial login, even when the
phone is being carried in the pocket or holster. For example
the phone could be running applications that receive sensitive
audio and transmitting to the user over earphones or enable
some location based functionality such as opening doors to
a secure facility. The ability of the device to verify the
user without distracting the user is a requirement in many
situations and an added convenience in others. Modalities
such as face, fingerprint, and passwords are not suitable for
continuous or frequent authentication due to their obtrusive
nature. Continuous authentication based on gait as captured
by the accelerometer and gyroscope in mobile devices offers
an excellent mechanism in these cases [42]. Other use cases
can arise in high security scenarios where the security of the
device itself is at stake, such as in the battlefield when you
want a device to lock itself (or even self destruct) anytime it
thinks it is the hands or is being carried by the enemy. Parts
of this paper are based on research conducted in response to
the US DARPA Active Authentication program that foresaw
the need for this kind of technology. Another scenario is
in healthcare setting where privacy is important and many
of the devices with patient information in them are going
mobile. You would like a tablet to lock itself if it suspects
that a non-user is carrying it away. We discuss previous works
in inertial gait based authentication in more detail in the
next section.

III. PREVIOUS RESEARCH IN INERTIAL GAIT

Initial research using inertial sensors for gait recognition
was performed by Ailisto ef al. [1] and Mantyjarvi et al. [16].
The study used a free standing accelerometer attached to
the back of the hip in fixed position/orientation. Based on
36 subjects they achieved EER’s in the 6% to 7% range using
similarity methods. More recently, Dehzangi et al. [3] use a
body area network of 5 sensors on 10 subjects and report iden-
tification accuracy of 93% to 97% using convolutional neural
networks. Nguyen et al. [24] achieve an EER of about 12% on
the OU-ISIR-2 Inertial Gait Database [22] using convolutional
neural net for classification. Sprager and Juric [36] present an
extensive review of inertial sensor based gait recognition.

Currently very little research has been published to address
the problem with change in orientation of the device. This
is probably due to the fact that very little data has been
collected with no restriction on device orientation. Most
datasets are collected with inertial sensors that are placed at a
predetermined fixed orientation with respect to the user. The
ZJU-GaitAcc database [46] is a large database collected using
175 subjects with 5 accelerometers in fixed orientation located
at different parts of the body. This dataset is more suitable for
investigating performance sensitivity to sensor location than
sensor orientation. The OU-ISIR-2 Inertial Gait Database [22]
is collected with fixed orientation of multiple sensors around
the waist. Since all the sensors are around the waist, they are
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expected to record similar gait dynamics compared to sensors
located at different parts of the body (for example upper arm
and thigh). In spite of each sensor being in a fixed orientation,
there is an orientation difference between sensor pairs. Thus
the dataset can be used to analyze orientation variation. The
McGill gait dataset [5] and our USF-PDA dataset! [37] are the
only publicly available datasets with no restriction on phone
orientation known at this time.

Several strategies described below have been used to deal
with change in orientation.

A. Extend Gallery With Artificial Data

In [10], the orientation problem is addressed by generating
pseudo galleries at 26 different orientations of the device
at 15° steps about each axis. This does not account for all
possible orientations of the device. They report an accuracy
of about 85% for normal walk. However the experiment uses
only 2 subjects. The generation of artificial data may not
be accurate due to calibration issues and it overloads the
similarity computation process.

B. Use Orientation Agnostic Features

In this category, new features which are insensitive to the
device orientation are generated from the original signals. The
same process is applied to the gallery and probe independently.
An example of this method is to use only the magnitude of
the signal, as presented in [5] and [26]. However, this ignores
rich gait dynamics information captured in 3D that can provide
discriminative information between subjects. Reported error
rates are high with this approach; EERs of about 15% for
same day and about 55% for cross day evaluation have been
reported in [5]. This conforms with our own experience.

Another such method presented in [47], deals with orienta-
tion in time domain by creating a matrix of rotation invariant
features for each signal. These features are the inner product
and the cosine of pairs time series data at different time lags.
Inner product and the cosines are computed with respect to a
chosen signal vector in the time series. Thus, the 3D signal
sequence is transformed into a scalar signal sequence that is
invariant to the rotation of the signal. It presents accuracies in
the 85% range for same day and 65% range for cross day on
the McGill dataset [5].

Frequency domain methods also can be used to address the
orientation issue as in [15]. It gets only less than 50% accu-
racy. There is some evidence that frequency domain features
perform poorly compared to time domain features [16], [29]
in general.

C. Rotate Signals to a Canonical Orientation

The gallery and probe signals are rotated indepen-
dently to some canonical orientation. Cola et al. [2] and
Hoang er al. [7], [8] have transformed the signals into two
components, one in the vertical direction and the other in
the terrestrial plane. While this is better than the scalar
magnitude, it conflates the gait dynamics in the forward and

! Available at https://github.com/ravisub/USF-Inertial-Gait

lateral directions. Cola et al. [2] report EERs varying from
14.8% to 9.8% depending on the fraction of data used for
training on realistic data from 6 subjects. Hoang et al. [7]
report same day EER of 2.45% on a dataset of 38 subjects.

D. Rotate One Signal to Match the Other

In these methods, an optimal rotation (defined by some cost
function) is computed based on both the gallery and probe and
applied to one of the signals. A method based on the Kabsch
alignment has been used in [37] to minimize the L? norm
of errors to find a rotation transformation of the probes to
the gallery. A dynamic programming based method that uses
Levenberg-Marquardt least squares algorithm to maximize
the normalized cross-correlation is presented in [23]. On a
small dataset of 47 subjects it reports EERs ranging from
1.7% to 4.6%.

IV. GENERALIZED FRAMEWORK FOR INERTIAL
GAIT AUTHENTICATION

The inputs to the inertial gait authentication algorithm are
two time-series of sensor data, one corresponding to the gallery
and the other to the probe. The sensor data is made of 3-D
acceleration vector sequence (gravity having been removed)
{X@)li = 0 : n — 1}, and 3-D gyroscope vector sequence
{6(@)li = 0 : n — 1}. The authentication process consists
of three steps: gait cycle splitting, feature generation, and
matching.

A. Cycle Splitting

The accelerometer and gyroscope signals are split into
smaller chunks, each representing one complete gait cycle.
To split the signals into gait cycles, first the gait cycle period is
estimated using autocorrelation of the 3D accelerometer signal.
Then peaks that are approximately estimated period apart are
located in the acceleration magnitude signal. The peak pairs
correspond to overlapping gait cycles alternately starting with
each foot. The timestamps corresponding to the peaks are used
to extract accelerometer and gyroscope signals representing the
gait cycles. This process is described in more detail in [37].

Because the resulting cycles are of varying time duration,
they contain different numbers of samples. To facilitate easy
comparison, each gait cycle is resampled using linear interpo-
lation, to produce (m = 102) samples. We denote these resam-
pled data by 3 x m matrices X = [5&(0), co L X(m — 1)] and

0 = [0 ), --- ,0(m — 1)] corresponding to the accelerom-
eter and gyroscope measurements, where each column rep-
resents the 3D acceleration/rotation rate at an instant of
time.

B. Feature Generation

The resampled data from the gallery and probe is used to
generate features that are independent of sensor orientation.
One gallery cycle and one probe cycle, collected with dif-
ferent sensor orientation for the same subject are presented
in Figure 1. If they were to be compared as such, the resulting
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Fig. 1. The accelerometer and gyroscope signals corresponding to one gait cycle of the same subject are shown here. The blue, green and red plots respectively
represent the X, Y and Z components of the signal in the device coordinates. (a) Accelerometer signal for one gait cycle from the gallery. (b) Accelerometer
signal for one gait cycle from the probe. (c) Gyroscope signal for one gait cycle from the gallery. (d) Gyroscope signal for one gait cycle from the probe.
While the Y (green) component is similar between the gallery and probe, the X (blue) and Z (red) components are inverted between the gallery and probe.

This indicates a 180° rotation about the Y axis between the gallery and probe.

match would be poor due to the orientation difference.
We describe the five methods considered in this paper, along
with figures showing the orientation independent features
generated by them in this section.

1) Magnitude (MAG): The magnitude is the L? norm of
each 3D vector in the time series.

Mm@y = |50 + 5,0 +5.)? (1)

where sy, sy and s; are the 3D components of the accelerom-
eter or gyroscope signal. An illustration of the magnitudes of
accelerometer and gyroscope signals corresponding to one gait
cycle from the gallery and probe of the same subject is shown
in Figure 2.

2) Principal Component Analysis (PCA): In this method
the rotation matrix R is the matrix of eigenvectors of the
covariance matrix of the mean subtracted acceleration time
series X. The same rotation matrix is used to align both

the accelerometer and gyroscope signals after subtracting
respective means. Since it is possible for the resulting matrix
to include a reflection of a pair of axes, additional versions of
the rotated gallery data are generated to include the 3 possible
reflections. The aligned version of the probe is generated in a
similar manner and compared against all the 4 versions of the
gallery data. The PCA aligned signals of gallery and probe of
the same subject are shown in Figure 3.

3) Vector Cross Product (VCP): In this method the rotation
matrix R is designed to place the X-axis along the mean
acceleration vector X, and the Y axis perpendicular to both
the mean acceleration vector X and the mean gyroscope vector
©. The uncertainty in the rotation matrix increases with small
values of the mean vectors. Since full gait cycle typically
produces small values for the means, the mean vectors X and
O are computed using only the first half of the samples in the
time-series.
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Fig. 2. The magnitudes of the accelerometer and gyroscope signals shown in Fig. 1 are shown here. (a) Magnitude of the accelerometer signal for one gait
cycle from the gallery. (b) Magnitude of the accelerometer signal for one gait cycle from the probe. (c) Magnitude of the gyroscope signal for one gait cycle
from the gallery. (d) Magnitude of the gyroscope signal for one gait cycle from the probe. Based on the magnitude representation, the accelerometer signals
are similar between the gallery and probe and the gyroscope signal is similar between the gallery and probe. The rotation invariance has been achieved at the

cost of 3 dimensional signals being reduced to one dimension.

If uy is the unit vector along the direction of mean acceler-
ation and uy is the unit vector along the direction of the mean
gyroscope, R is computed as follows:

up = uy (2)

U = Uy X Uy 3)

uz = uy X up 4)
w !

R=(u’ Q)
uz’

The VCP aligned signals of gallery and probe of the same
subject are shown in Figure 4.

4) Reduced Gait Dynamics Image (rGDI): The idea that
projection of one vector along another is invariant when
the both the vectors are rotated together is used in [47] to
generate rotation invariant representation of the acceleration
and gyroscope time series in the form of the Gait Dynamics

Image (GDI). The GDI is an arrangement of projections
between all vector pairs in the time series. With 102 entries in
the time series, there are 102 projections with zero stride (each
vector with itself), there are 101 projections with a stride of 1
and in general (102 — n) projections with a stride of n. This
results in M = 5253 entries in the full GDI. In the
case of 3D vectors, projections along 3 independent axes
completely determine the rotation and consequently the full
GDI contains an excessive amount of redundant information.
To reduce this redundancy, the reduced GDI, uses only strides
0 through 7. This results in 788 entries, which is only 15% of
the full GDI entries. The rGDI features are shown in Figure 5.

5) Kabsch Alignment (KAB): In this method the probe cycle
is rotated such that the L2 (Frobenius) norm of the error
between the rotated version of the probe cycle and the gallery
cycle is minimized,

R = arg n%{in Yy — RY, 12 (6)
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The Principal components of the accelerometer and gyroscope signals shown in Fig. 1 are shown here. . The blue, green and red plots respectively

represent the first, second and third principal components of the signal. (a) Accelerometer signal for one gait cycle from the gallery. (b) Accelerometer signal
for one gait cycle from the probe. (c) Gyroscope signal for one gait cycle from the gallery. (d) Gyroscope signal for one gait cycle from the probe. The
gallery and probe signals show a greater similarity in the principal component transformed form.

where Y is the concatenation of the accelerometer time series
X and the gyroscope time series @. This is equivalent to
minimizing the trace of (Yg — RY p)T (Yg — RY p). A similar
problem was solved by Kabsch [13] in the context of
crystallography.

The solution can be constructed from the singular value
decomposition (SVD) of the 3 x 3 matrix YgYpT given by
UAVT. We resolve the ambiguity of the rotation matrix in
terms of a right-handed coordinate system by setting the
determinant sign appropriately, using s = sign(det(VUT)).
Using this, our optimal rotation matrix is given by

) 1 0 0
R=vV |0 1 ojU’ (7)
0 0 =

An illustration of the effect of rotation alignment of the
probe signals is shown in Figure 6. In this case, the probe
had the phone rotated about its Y axis, which is fixed after
alignment.

C. Matching

The features are arranged into I-dimensional vectors
Sg and S;, representing one gallery cycle and one probe cycle
respectively. The gallery and probe features are compared
using Tanimoto similarity measure. The Tanimoto similarity
between Sy and S, is computed as:

Sg oSy
Sgo0Sg+Sp08, —Sg 08,

T'(Sg, Sp) = )

where the operation A o B denotes the sum of the entry wise
multiplication of the matrices, i.e. >.; >°; A;j Bij. For signals
that are similar, the value of this measure will be close to 1
and less if they are dissimilar.

We compared the performance of different similarity mea-
sures such as Tanimoto, Cosine and Normalized Cross
Correlation (NCC) on a few experiments. As seen in Table I
the relative variation EERs of the similarity measures is about
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Fig. 4. The vector cross product (VCP) transformation of the accelerometer and gyroscope signals shown in Fig. 1 are shown here. The blue, green and red
plots respectively represent the X, Y and Z components of the signal in the transformed coordinate system. (a) Accelerometer signal for one gait cycle from
the gallery. (b) Accelerometer signal for one gait cycle from the probe. (c) Gyroscope signal for one gait cycle from the gallery. (d) Gyroscope signal for one
gait cycle from the probe. The gallery and probe signals show a greater similarity in the VCP transformed form.

TABLE I

EQUAL ERROR RATES (EER) FROM EVALUATION OF TANIMOTO
SIMILARITY, COSINE SIMILARITY AND NORMALIZED CROSS
CORRELATION (NCC) ON TWO OF THE EXPERIMENTS,
USING KABSCH BASED METHOD FOR ORIENTATION
INVARIANCE. THE EXPERIMENTS USED GALLERY
AND PROBES FROM SAME DAY, WITH REPOSITIONING
OF THE DEVICE BETWEEN GALLERY AND PROBE
COLLECTION. THE SIMILARITY MEASURES
PRODUCE SIMILAR EERS, WITH TANIMOTO
GIVING THE BEST PERFORMANCE

Experiment | Description | Tanimoto | Cosine NCC
3 Holster 14.9% 153% | 15.1%
4 Pocket 15.9% 16.6% | 16.4%

4%, but Tanimoto similarity yields the lowest EER. So we use
Tanimoto similarity for all experiments.

V. DATASETS

We compare the performance of the above rotation invariant
methods on two of the largest publicly available inertial

gait datasets: USF-PDA dataset and the OU-ISIR-2 Inertial
Gait dataset.

A. USF-PDA Dataset

The Placement, Days and Activities (PDA) dataset [37]
was collected from 101 subjects at University of South
Florida in 2014 with the approval of Institutional Research
Boards of USF and Air Force Research Laboratories (AFRL).
The dataset covers different phone placements and activi-
ties performed by the subjects. Activities #1 - #12 were
not gait related since the subject was not walking. During
activities #13 - #18 shown in Table II, the subject walked with
the phone at a specified home location (pocket / holster).
For the gait related activities, the subject walked 3 times
around the path (loop) shown in Figure 7. The phone was
placed in the home location at the beginning of each activity.
Activities #13 and #16 involved no repositioning of the phone.
During the remaining activities the subject removed the phone
from the home location and performed the specified phone
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Fig. 5. The 788 features of the reduced Gait Dynamics Image (rGDI) corresponding to each of the accelerometer and gyroscope signals shown in Fig. 1 are
shown here. (a) Accelerometer signal for one gait cycle from the gallery. (b) Accelerometer signal for one gait cycle from the probe. (c) Gyroscope signal
for one gait cycle from the gallery. (d) Gyroscope signal for one gait cycle from the probe. The rGDI features of the gallery and probe signals show a great

similarity.

TABLE II

THE 6 GAIT ACTIVITIES. Home Location 1S THE LOCATION OF THE PHONE
WHEN THE SUBJECT IS NOT USING IT. Phone Action 1S THE MODE OF
PHONE USAGE, IF ANY. NOTE THAT ACTIVITY IDS MATCH
THOSE IN OUR DATABASE THAT INCLUDE NONGAIT
ACTIVITIES (#1 - #12) WHICH ARE NOT
PART OF THIS STUDY

Activity ID | Home location | Phone action
13 Pocket NONE
14 Pocket Talk
15 Pocket Text
16 Holster NONE
17 Holster Talk
18 Holster Text

action (Talk/Text) during the second time around the loop and
replaced the phone in the home location, possibly in a different
orientation.

Passage of time between gallery and probe data collection
is an important covariate in biometrics. This also implicitly

includes covariates such as clothing, footwear, mood and
orientation of the phone relative to the user [17]. To study the
performance of these covariates, data was collected a second
time for 56 of these subjects, a few days after the first session.

B. OU-ISIR Inertial Gait Dataset

This data is fully described in [22]. Inertial gait data
was collected from several hundred subjects using 3 IMUZ
sensors (with triaxial accelerometer ans gyroscopes) and a
Motorola smartphone with only a triaxial accelerometer. The
IMUZ sensors were placed on the left, right and center (back)
of the hip. The smartphone was colocated with the back IMUZ
sensor. Data was collected during level, up slope and down
slope walks. Each walk was performed twice. The data is
divided into 2 subsets. The first subset OU-ISIR-1 contains
automatically segmented level walk data from center IMUZ
for 744 subjects. The second subset OU-ISIR-2 contains
manually segmented data from all 3 IMUZs for all walks from
495 subjects.
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The accelerometer and gyroscope signals of the gallery cycle shown in Fig. 1 and the Kabsch aligned accelerometer and gyroscope signals of the

probe cycle shown in Fig. 1 are shown here. The blue, green and red plots respectively represent the X, Y and Z components of the signal. (a) Accelerometer
signal for one gait cycle from the gallery. (b) Accelerometer signal for one gait cycle from the probe. (c) Gyroscope signal for one gait cycle from the gallery.
(d) Gyroscope signal for one gait cycle from the probe. The gallery and probe signals show the alignment of the transformed probe coordinate system to the

gallery coordinate system.

/
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Fig. 7. Schematic of the walking path taken by subjects. The path was
walked 3 times for each activity. The section of signal roughly corresponding
to the first straight segment of the path from first loop in activities 13 and
16 was used as gallery.

V1. EXPERIMENTS AND RESULTS

A. USF-PDA Dataset - Same Location

In these experiments, the gallery and probe come from
activities that have the same home location for the phone.

That is, probes from pocket activities are compared against
pocket gallery and probes from holster activities are compared
against holster gallery.

We designed six experiments to study algorithm perfor-
mance by choosing gallery and probes with different char-
acteristics. The galleries always came from activities that
involved no phone action (13 or 16) from the first session
for the subject. The gallery approximately corresponds to
the first straight segment of the walk (see Figure 7) for
these activities. The probes were formed from the remaining
walking portion of activities 13 and 16, and the walk-only
parts of remaining gait activities (14, 15, 17 and 18). For
same day evaluation, probes came from the first session (same
session as gallery). For cross day evaluation the probes came
from the second session (different session than used for
gallery). The probe portion of the data is split into 5 second
segments to generate probes. The six experiments are as
follows:
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o Experiment 1 (Same day, Hoslter, No repositioning): For
this experiment, both the gallery and probes are from
activity 16 during first session. In this case, the phone
orientation is not expected to change much between
the gallery and probe collection due to it being in the
holster.

o Experiment 2 (Same Day, Pocket, No repositioning):
For this experiment, both the gallery and probes are
from activity 13 during the first session. Here the phone
was not repositioned between the gallery and probe
collection.

o Experiment 3 (Same day, Holster, With repositioning):
For this experiment, the gallery is from activity 16 of the
first session and the probes are from activities 16, 17,
and 18 of the first session. In this experiment, the phone
is removed and replaced in the holster, between the
collection of the gallery and some of the probes, possibly
causing device orientation differences between gallery
and probe.

o Experiment 4 (Same day, Pocket, With repositioning): For
this experiment, the gallery is from activity 13 of the first
session and the probes are from activities 13, 14, and
15 of the first session. Due to repositioning of the phone
between activities we expect changes in device orientation
as in experiment 3.

o Experiment 5 (Cross day, Holster, With repositioning):
For this experiment, the gallery is from activity 16 of the
first session and the probes are from activities 16, 17,
and 18 of the second session. This involves a few days
separation between gallery and probe data collection and
changes several covariates such as clothing, footwear and
phone orientation.

o Experiment 6 (Cross day, Pocket, With repositioning):
For this experiment, the gallery is from activity 13 of
the first session and the probes are from activities
13, 14, and 15 of the second session. Due to elapsed
time between gallery and probe data collection simi-
lar to experiment 5, several covariates are expected to
have changed. Because of placement in pocket, this
experiment includes a greater variability in orientation
than Experiment 5 where the phone was placed in the
holster.

The EERs for the six experiments are shown in Figure 8.

Since experiments 1 and 2 involve no repositioning of the
phone, the baseline EER is low (about 7%). The orientation
independent methods show higher EERs (8.6% to 11%). This
is because in the case of MAG valuable 3D information is
lost. The other methods try to increase the match scores by
alignment; the genuine matches already being aligned, do not
benefit from this process but the impostor match scores are
increased due to alignment.

Experiment 3 is has higher baseline EER (15.2%) than
experiments 1 and 2, but relatively low compared to the
remaining experiments. This is because the gallery and probe
data were collected on the same day and the home location
of the phone was the holster. The holster is normally placed
in a nearly fixed location and orientation when the clothing
does not change. At 95% confidence level the orientation

independent methods produce EER (14.9% to 17.1%), similar
to the baseline EER.

Experiment 4 has the higher baseline EER (20.0%) than
experiment 3. Even though both experiments 3 and 4 have
gallery and probes from the same day, repositioning the
phone in the pocket allows a greater orientation change than
repositioning in the holster. In this experiment, the benefits
of the orientation independent methods are clearly apparent
since they produce lower EERs (15.8% to 17.2%) than baseline
within 95% confidence interval.

Muaaz and Mayrhofer [20] report same day EER of 7% on
a dataset of 35 subjects with phone in pocket, using magnitude
for orientation invariance. Same day EER of 16.26% on dataset
of 48 subjects with phone in fixed orientation on right hip
is reported in [21]. Keeping in mind that the USF-PDA
dataset with 101 subjects is larger, we can conclude that
the performance of our algorithm on the above 4 same day
experiments is better.

Experiment 5 has baseline EER 32.6% due to the gallery
and probes coming from different days. All alignment methods
except KAB have EERs 30.4% to 33.3%, which is similar to
the baseline EER in the 95% confidence interval. KAB has a
significantly lower EER of 25.3%.

Experiment 6 has baseline EER 37.7% due to the gallery
and probes coming from different days and the home location
being the pocket allowing significant orientation changes.
All alignment methods have EERs 24.6% to 29.0%, which
is significantly lower than the baseline EER in the 95%
confidence interval.

Cross day EERs of 22% to 28% are reported on
a dataset of 48 subjects with the phone in a pouch
attached to the hip (relatively same orientation) in [25].
Muaaz and Nickel [21] report cross day EER 29.39% on
48 subjects for normal walk with phone in pouch attached to
right hip (relatively same orientation). The USF-PDA dataset
with unconstrained phone placement produces comparable
results in spite of having unconstrained placement.

B. USF-PDA Dataset - Different Locations

We designed two experiments to study the dependence
of algorithm performance when gallery and probe signals
are from different locations of the phone. That is, probes
from pocket activities are compared against holster gallery
and probes from holster activities are compared against
pocket gallery. Similar to the same location experiments,
galleries always came from activities that involved no phone
action (13 or 16) from the first session for the subject. The
gallery approximately corresponds to the first straight segment
of the walk (see Figure 7) for these activities. The probes
were formed from the remaining walking portion of activities
16 and 13 of the same session. The probe portion of the data
is split into 5 second segments to generate probes. The two
experiments are as follows:

o Experiment PH (Gallery Pocket, Probe Holster): For this
experiment, the gallery is from activity 13, where the
phone is in the pocket and the probes are from activity
16, where the phone is in the holster.



314 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 2, FEBRUARY 2019

45.0%
USF PDA Dataset
Crossday Cross day
Holster Pockst
With Repositioning With Repasitioning
40.0%
33.0%
30.0%
Same day Same day
Haolster Pocket
With Repasitioning With Repositioning .
m Baseline
23.0%
EMAG
S
e mPCA
]
ko BVCE
200% mrGDI
Same day Same day
Haolster Pocket mEAE
No Repositioning No Repaositioning
15.0%
10.0%
3.0%
0.0% 4
Expenment 1 Experiment 2 Expenment 3 Experiment 4 Expenment 3 Expenment 6
Fig. 8. The EER% along with the 95% confidence interval error bars for the baseline and five orientation independent methods of the six experiments on

the USF-PDA dataset are shown here. Experiments 1 and 2 do not involve repositioning of the phone, hence all the orientation independent methods produce
higher EER’s compared to the baseline. Experiment 3, even though it involves repositioning, it is on the same day and in holster. This has almost the same
effect as no repositioning. The results are similar to experiments 1 and 2. Experiment 4 is same day in pocket. This results in orientation changes as shown in
higher baseline EER compared to experiments 1, 2 and 3. The orientation independent methods lower the EER considerably. Experiments 5 and 6 are cross
day and have the highest baseline EERs. In these two experiments, the KAB method provides the most reduction in EER.

TABLE III

EER OF THE ROTATION INVARIANT METHODS ON EXPERIMENTS WITH
GALLERY AND PROBE USING DIFFERENT PHONE LOCATIONS

Gallery/Probes | Baseline | MAG | PCA | VCP | rGDI | KAB
Pocket/Holster 47.9 46.6 | 422 | 39.8 453 384
Holster/Pocket 47.0 43.1 39.5 36.6 43.5 34.9

o Experiment HP (Gallery Holster, Probe Pocket): For this
experiment, the gallery is from activity 16, where the
phone is in the holster and the probes are from activity 13,
where the phone is in the pocket.

The results of experiments with gallery and probe from
different phone locations are presented in Table III. The
baseline EERs are high in the 47% to 48% range. All the
orientation independent methods improve the performance to
varying extents, with the method based on Kabsch alignment
giving the best result in both experiments. The performance
of both the baseline method and the orientation indepen-
dent methods are considerably worse than the any of the
experiments where gallery and probe were from the same

phone location, including the cross day experiments. This
is explained by the fact the gait dynamics measured at the
hip (holster) and the thigh (pocket) have different character-
istics. For instance the hip undergoes a significant rotation
about the vertical axis. This rotation is negligible in the thigh
region. Similarly the thigh experiences a swinging motion in
the front/back direction. This motion is not significant in the
hip. One solution to address different placements of the phone
would be to generate a gallery with signals from all possible
phone locations. During matching, the probe can be compared
to all the signals in the gallery or limited number of them if
the phone location can be narrowed down based on the probe
signal.

C. OU-ISIR-2 Dataset

In this evaluation we use only the level walk from all
3 IMUZs in the second subset. Only the 483 subjects that
had data across all 3 IMUZs are considered.

Since there are 2 sessions and 3 IMUZ sensors, the first
session of each sensor was used as the gallery against
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The EER% along with the 95% confidence interval error bars for the baseline and five orientation independent methods of the nine experiments on

the OU-ISIR-2 dataset are shown here. Experiments 1, 2 and 3 use sensors in same orientation for gallery and probe, hence all the orientation independent
methods produce higher EER’s compared to the baseline. Experiments 4 through 9 use sensors with different orientations for gallery and probe. This results
in higher baseline EER compared to experiments 1, 2 and 3. In most of these experiments the orientation independent methods lower the EER considerably.

the second session of each sensor as probe, resulting in 9
experiments (C1C2, L1L2, R1R2, C1L2, C1R2, L1C2, L1R2,
R1C2 and R1L2). For example the experiment CIL2 stands
for gallery from Center sensor session 1 and probe from Left
sensor session 2.

The results of the experiments are shown in Figure 9. In a
similar manner to the USF-PDA dataset, the 3 experiments
C1C2, L1L2 and R1R2 where the gallery and probes are
from the same sensor (there is no change in orientation),
the baseline EERs are low 3.6% to 4.6%. The alignment
methods produce EERs in the range 4.4% to 10.4% which
are equal to or higher than the baseline. In the remaining six
experiments that involve sensor/orientation change between
the gallery and probes, the effects of alignment is clearly
visible. The baseline average EER for the 6 experiments is
33.4%. The 4 alignment methods (MAG, PCA, VCP, rGDI)
other than KAB produce average EERs of 21.6%, 23.1%,
28.9%and 23.0% respectively. The average EER due the KAB
method is 18.9%. When there is an orientation change, all

alignment methods produce lower EERs than the baseline EER
to 95% confidence.

D. OU-ISIR-1 Dataset
In contrast to the OU-ISIR-2 dataset, this dataset contains

data only from the center IMUZ sensor, but from 745 subjects.
Due to the fixed sensor location and orientation, this dataset
is not ideal to evaluate the orientation methods. But results
from other research are available for comparing the algorithm
framework. Hence we compare only the baseline and Kabsch
alignment results against other results in Figure 10. The
results presented are based on using only the accelerometer
signals.

Method B1 presented in [4] uses the magnitude of the
accelerometer signal. Cycle detection is done by finding min-
ima of error measure between a sliding sample of the signal
and the entire signal. Gallery cycles are created after discard-
ing outliers based on Dynamic Time Warping (DTW). The
gallery and probe are matched using L1-norm based Cyclic
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Fig. 10. The performance of our algorithm relative to other published algorithms on the OU-ISIR-1 dataset are presented here. Methods B1, B2 and B3 are
implementations of methods presented respectively in [4], [29] and [6] by Ngo et al. in [22]. HOS is method based on Higher Order Statistics presented
in [35]. GDI_1 and GDI_2 are methods based on Gait Dynamics Image presented in [47]. Baseline is our method without alignment, Kabsch is our method

with Kabsch alignment.

Rotation Metric (CRM) and DTW. Method B2 presented
in [29] does cycle splitting using zero-crossing points. Match-
ing is done using Nearest Neighbor (1-NN) based on DTW
distance. Method B3 presented in [6] uses vertical component
of the acceleration to detect cycles. Matching is done using
L2-norm. Results shown are from [22] based on their own
implementation of the above methods.

The method based on Higher Order Statistics (HOS) is
described in [35]. It uses frame based segmentation. Features
are based on Higher Order Cumulants (HOC). Since there
is a high degree of correlation between the features, reduc-
tion is achieved using truncated Singular Value Decomposi-
ion (tSVD). Matching is done by means of correlation distance
as a distance measure.

The GDI_1 and GDI_2 methods are from [47]. This
approach is also frame based. Orientation invariant features
called Gait Dynamics Images (GDI) are generated from the
frames as described in Section IV-B.4. The GDIs are converted
into i-vectors which are used as features. Matching is done
using inner product (GDI_1) and cosine similarity (GDI_2).

The results of our overall framework are comparable to that
of the GDI based methods and significantly better than the rest.
The lack of orientation problem in this dataset is confirmed by
similar results from the baseline method and Kabsch method in
our framework. Based on this we can conclude that the better
results from our framework are due to the better performance
of our cycle splitting algorithm.

VII. DISCUSSION AND CONCLUSIONS

Biometrics have been widely used for protection of personal
devices only in the past decade or so. This is a result of
many factors including proliferation of a variety of devices
and applications that need to be protected and the availability
of robust and cost effective sensors to acquire biometric
data. Biometrics such as fingerprints and face recognition
have progressively reached their current maturity and wide
adaptation as a result of decades of research and improvement
of techniques. Compared to these, behavioral biometrics are
relatively new and provide interesting opportunities for further
research and improvement.
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Even at the current stage of maturity inertial gait based
authentication appears to be practical in selected contexts. The
Equal Error Rates on several of the same day experiments are
well below 10%. Keeping in mind that this represents just
one operating point, systems can be designed to operate with
lower false acceptance rate for applications focusing on higher
security or with a lower false reject rate for enhancing user
convenience.

The cross day performance is relatively poor compared to
same day performance due to several factors. This is true
of almost all behavioral biometric modalities. This opens
up opportunities to identify the responsible factors and find
solutions. This would expand the domain of applicability of
inertial gait for authentication purposes.

Uncontrolled in device orientation is a significant problem
in achieving acceptable authentication performance using iner-
tial sensors. In this work we considered five different methods
that make the authentication process orientation independent.
When there is an actual change in orientation these methods
perform 13% to 23% better than the baseline where no effort
is made to address the issue. Of the five methods considered,
the KAB method based on the Kabsch alignment provided the
most increase in performance when there was an orientation
change and the least deterioration when there was little or no
orientation change.
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