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DROPWAT: An Invisible Network Flow Watermark
for Data Exfiltration Traceback

Alfonso Iacovazzi , Sanat Sarda, Daniel Frassinelli, and Yuval Elovici, Member, IEEE

Abstract— Network flow watermarking techniques have been
proposed during the last ten years as an approach to trace net-
work flows for intrusion detection purposes. These techniques aim
to impress a hidden signature on a traffic flow. A central property
of network flow watermarking is invisibility, i.e., the ability to
go unidentified by an unauthorized third party. Although widely
sought after, the development of an invisible watermark is a
challenging task that has not yet been accomplished. In this paper,
we take a step forward in addressing the invisibility problem
with DROPWAT, an active network flow watermarking technique
developed for tracing Internet flows directed to the staging server
that is the final destination in a data exfiltration attack, even
in the presence of several intermediate stepping stones or with
an anonymous network. DROPWAT is a timing-based technique
that indirectly modifies interpacket delays by exploiting the
network’s reaction to packet loss. We empirically demonstrate
that the watermark embedded by means of DROPWAT is invisible
to a third party observing the watermarked traffic. We also
validate DROPWAT and analyze its performance in a controlled
experimental framework with a series of experiments on the
Internet, using Web proxy servers as stepping stones executed
on several instances in Amazon Web Services; the experiments
are also conducted using the TOR anonymous network in place of
the stepping stones. Our results show that the detection algorithm
is able to identify an embedded watermark, achieving over 95%
accuracy while being invisible.

Index Terms— Watermarking, traffic analysis, data exfiltration,
advanced persistent threat, traceback, network monitoring.

I. INTRODUCTION

ADVANCED persistent threats (APTs) have received an
increasing amount of attention from authorities and com-

panies in recent years. APTs refer primarily to the high-risk
threats associated with unauthorized access to a network, with
the primary aim of stealing highly sensitive and valuable
information. Behind every APT there usually is an adversary
with specific objectives that fall into the following categories:
political [1], economic [2], technical [3], and military [4]
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purposes. Although APTs are difficult to generalize, because
each attack is focused on a specific target and designed
accordingly, the process of implementing an APT can be
broken down into six main stages which have been well
described by Giura and Wang [5]: reconnaissance, delivery,
exploitation, operation, data collection, and data exfiltration.
Each step in this process merits specific attention; however, in
this paper we focus on the data exfiltration stage.

Data exfiltration is the last stage of an APT, and its
achievement represents a successful conclusion to the entire
attack process. The term data exfiltration refers to the physical
process aimed at transferring previously collected sensitive
data from a private device/network to an external staging
server under the control of an adversary. Data exfiltration
has been widely investigated [6], [7], and much attention has
been focused on developing solutions that may prevent data
exfiltration, detect a data exfiltration attack, and even nip it
in the bud, before data has been stolen [8]. In contrast, the
research community has put less effort into developing techni-
cal solutions for attack attribution, i.e., solutions aimed at real-
time identification of the adversary (individual or machine)
that is attempting to obtain valuable data.

Increasingly, the process of data exfiltration is taking place
via the Internet by means of digital communication between
a device containing the sensitive data and the remote stag-
ing server. The adversary managing this data transfer often
forwards the communication over a chain of proxy servers
or an anonymous network; this is done in order to pre-
vent others from tracing the devices under the control of
the adversary (by reading the destination addresses) back to
the adversary, particularly when traffic flow interception has
occurred.

Identifying the final destination of a data flow is a difficult
problem, which is often referred to in the literature as the
“network traceback problem” [9]. Network flow watermarking
is a promising solution that has provided interesting insights
during the last few years. Typically, watermarking solutions
aim to actively modify traffic features so that they can be easily
identified by a detection system, even when several noisy
network nodes are crossed. Although much progress has been
made in this area, two important issues remain unresolved:
robustness and invisibility. Robustness refers to the property of
the watermark’s resistance to active noise added by an attacker
to alter the watermark carrier. Invisibility is the property of the
watermark to go undetected by the adversary. Invisibility is
critical, because any kind of traffic feature manipulation has
the potential to be easily identified by a third party (using
traffic analysis instruments).
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In this paper we propose DROPWAT, an invisible network
flow watermarking technique for data exfiltration attacks,
enabling the identification of the staging server that receives
the exfiltrated data. DROPWAT is based on a completely
new paradigm of injecting a watermark into the flow. The
basic idea of our algorithm is to drop a few selected packets
of a flow in order to alter the interpacket delay. We show
that: (i) packet drop events can be identified, even in the
presence of several stepping stones, and that they can be
used as a way to convoy a watermark into traffic flows,
(ii) natural packet loss and intentional packet drop events
in the network cannot be distinguished from each other, and
(iii) the watermark embedded with our technique is invisible
under some assumptions. We evaluate DROPWAT under dif-
ferent network scenarios with different conditions of packet
loss and throughput on real traffic on the Internet.

The rest of the paper is organized as follows. Section II
provides an overview of previous work on network flow
watermarking and its application in overcoming the traceback
problem. The attack scenario and reference architecture are
described in Section III. The DROPWAT embedding and
detection algorithms are described in Section IV. Section V
contains an in depth discussion and analysis of the invisibility
property. In Section VI we briefly discuss the issues related to
the watermark’s robustness. Section VII provides a description
of our experimental results and validation of the effectiveness
of DROPWAT. In Section VIII we discuss some critical aspects
of our watermarking algorithm, and our conclusions are
in Section IX.

II. RELATED WORK

The traceback problem, aimed at identifying the real
destination of a traffic flow, has been extensively investi-
gated [10]–[16]. In 2001, Wang et al. introduced network flow
watermarking as a possible means of overcoming the traceback
problem [17]. Since then, many network flow watermark-
ing algorithms have been developed and proposed. Recently,
Mazurczyk et al. [18] and Iacovazzi et al. [19] presented
surveys providing a comprehensive analysis and comparison
of the main network flow watermarking solutions known in
the literature.

The vast majority of the proposed techniques modify the
packet timings in order to impress a specific timing pattern
onto the network flows [20]–[27]. RAINBOW is an example
of a timing-based watermarking algorithm [23], where each
packet is delayed by a computed value; the delay values equal
the output of a cumulative function which randomly evolves
with a step of plus/minus a specified watermark amplitude
per packet. RAINBOW’s detection algorithm is based on the
comparison between the interpacket delays (IPDs) of the flow
before being watermarked and those of the flows intercepted
by the detector.

The technique proposed by Peng et al. [21] is also based
on IPDs. The authors consider two groups of randomly
selected pairs of consecutive packets; the IPDs are computed
for every pair in each group. The two average values of
IPDs in the two groups are considered statistically equal to
each other. Their proposed watermarking algorithm aims to

slightly modify the IPDs, so that the difference between the
two average values is not zero. The numerosity of the two
groups represents a kind of redundancy and determines the
reliability of detection.

A technique called interval centroid-based watermarking
was introduced by Wang [24] in 2007. In this technique,
the time axis is divided into intervals of fixed duration T .
A centroid is computed for each interval as the average value
of the remainders remaining after dividing the timestamps
of packets observed in that interval by T . In the embedding
algorithm, some packets of the flow are delayed so that the
statistical balances among groups of intervals are altered.
Watermark detection is based on the statistical analysis of
interval centroids. A variety of similar methods have also been
suggested by other researchers [26], [28], [29].

In interval packet counting-based techniques, the time axis
is divided within intervals [22], [27], [30]; the number of
packets in each interval is the carrier of the watermark, and
some packets of the flow are delayed in order to alter the
statistical balance of the packet counting per interval.

Timing-based algorithms are very attractive, because packet
timing can easily be modified by the watermarker without
having to access the data at any protocol level. Nevertheless,
timing can also be altered by natural network perturbation or
be artificially modified by an attacker, resulting in the failure
of watermark detection. For this reason, other watermarking
algorithms have been created that are robust against timing
perturbation [20], [21], repacketization [22], and chaff packet
injection attacks [21], [23].

One major drawback of timing-based schemes is that
they primarily target flows with less than 50 packets per
second (PPS). If, for example, we consider a scenario such
as an illegal data transfer in which the transfer rate can easily
be 200 – 500 PPS or more (assuming 1500 bytes/packet, and
a speed of 300 – 750 KB/s), these algorithms would not be
effective. The reason for this is that most of the parameters
have to be re-adapted in order to cope with the higher network
speed and lower IPD. However, at higher network speed,
proxy servers tend to obfuscate any kind of slight timing
perturbation, making small changes impossible to detect.
One could argue for the use of more significant perturba-
tions, but this would make the watermark more visible and
significantly impact the performance of the network (and not
necessarily improve the detection rate, since generally the
parameters need to be chosen proportionally to the IPD).
The only technique that would be effective with bulk traf-
fic is the centroid-based solution developed by Wang [24],
however this technique also requires a lot of buffering and
TCP level multi-flow analysis which makes its implementation
impractical in scenarios in which network speed, memory, and
computational power are strictly constraining (e.g., in a border
router).

Timing is not the only feature that can be used as a
watermark carrier; packet size [31]–[33] and bit rate [34], [35]
are two traffic features that have attracted attention as well.
However, size-based watermarks need to be embedded directly
at the source of the traffic flow, while rate-based watermarks
are highly visible to third parties.
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Fig. 1. Attack scenario.

Invisibility (the capability of passing unnoticed by an
attacker) is one of the most important properties of a water-
mark algorithm. Although some researchers have designed
watermarking algorithms that were claimed to be invisi-
ble [23], [35], [36], later studies have empirically shown that
a completely invisible watermark does not exist yet [37]–[41].

III. ATTACK SCENARIO

A. Data Exfiltration Attack

We consider the scenario shown in Figure 1 in which an
adversary wants to take possession of confidential data, files,
or documents that belong to a person or company and are
stored in digital format on a device connected to the Internet
in some way. These documents can be sensitive, private,
copyrighted, or accessible only with required permission.
In our scenario, the attacker has managed to install a malware
on the targeted device. This malware allows the attacker to
control the device and exfiltrate data from the private network
to an external server (staging server) under her control, via an
Internet connection. Two or more stepping stones are used in
order to disallow possible identification of the staging server
(its IP address, IP address geolocation, etc.). Once the targeted
data is saved on the staging server, the attacker is able to
access the data at any time. If the staging server is identified,
the attacker may be identified as well, when it connects to the
server.

B. Stepping Stones

A stepping stone (SS), also referred to as a proxy server,
is an intermediary device or application interposed in the
communication between two hosts in a network. The main
purpose of an SS is to prevent the identification of the real
sender and/or recipient of the exchanged messages in the event
that a third party intercepts the communication. The property
of a flow to not be associated with the communication’s real
endpoints is known as the “unlinkability” of the sender and
receiver. In this case, whenever a client wishes to contact a
server for Web content, it does not send messages directly to
the server, but instead it connects and sends the messages to a
proxy server which is responsible for forwarding the traffic
to the real recipient. Conversely, reply messages from the
server to the client will first be delivered to the SS and then
be forwarded to the client. In most cases, communications
to and from an SS are based on encrypted and authenticated
connections. Thus, the integrity of the unlinkability property
is preserved when a third party observes the traffic in the
middle of one of the two connections involved; nevertheless,
the communication is vulnerable to passive attacks performed

on the proxy server. A single point of vulnerability can be
avoided by using two or more SSs in a chain.

1) Implementation and Packet Loss Propagation: There are
many types of SSs and ways of implementing them: Web
proxy servers, TOR software, etc. [42]. An explanation of dif-
ferent SS implementations and a description of their operations
are not within the scope of this paper; we prefer to focus
on how the implementation of an SS may influence traffic
patterns in cases in which a packet loss occurs before reaching
the SS. In these cases, the SS can behave as the propagator
or retriever of lost packets. The SS behavior depends on
the combination of two factors: (i) the protocols used for
transferring the traffic, and (ii) the protocol layer at which
the SS operates. For example, let us consider communication
over TCP: when the SS handles data units at the transport
layer, two independent TCP connections are established, one
from the client to the SS, and the other from the SS to the
server; when a packet directed to the SS is lost, the SS notices
that a packet is missing and requests retransmission, so the
loss is not propagated. Thus, here the SS acts as a retriever.
Alternatively, an SS can also be implemented to work at
the network layer (such as an NAT service). In this case, the
source and destination of transport layer segments retain the
real communication’s source and destination. Here the SS is
only responsible for being an intermediary at the network
layer. The two endpoints send their IP packets to the SS
which decapsulates transport segments from packets, makes
port translation, and encapsulates each segment in a new
IP packet containing the SS’s IP address in the source address
field and the real destination’s IP address (or the next hop’s
IP address in case of a chain of SSs) in the destination address
field. Here the SS changes the transport layer ports, but it does
not interfere with the operations performed by the transport
protocol which means that packet loss is propagated to the
next hop in the path. Thus, in this scenario, the SS acts merely
as a propagator.

In this paper we refer to an attack scenario in which SSs
do not propagate packet losses, as this scenario is used by
most attackers by implementing their own proxy networks
or using TOR because it does not leave a trace of the real
IP address of their staging server. Nevertheless, a slightly
modified version of our algorithm would work in cases of
SSs that propagate loss, since the recognition of the losses
would become a trivial operation. Without loss of generality,
hereafter we base our analysis on a scenario in which commu-
nications travel over TCP, and the SS operates at the transport
layer.

IV. DROPWAT

In this section we describe DROPWAT, a network flow
watermarking technique based on packet dropping, which
indirectly modifies IPDs of selected packets. The basic idea of
our technique is to mimic a natural network behavior, namely
packet loss events caused by a single bottleneck node, and
exploit it as a watermark that is identifiable despite the traffic
flows crossing one or more SSs.

An attacker is not able to distinguish between naturally lost
packets and those intentionally dropped, because both events
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cause the same behavior in a network.1 If the attacker is unable
to distinguish between a sequence of lost packet events due to
a real bottleneck node and a sequence of dropped packet events
caused by an emulated bottleneck node, then the watermark
will be invisible.

In the following subsections we explain what happens in our
scenario when a packet loss event occurs; we then provide a
detailed description of DROPWAT, our proposed watermarking
method for tracing data exfiltration attacks.

A. Terminology

Throughout the paper we refer to the term “network flow
watermarking” (often abbreviated as “flow watermarking” or
just “watermarking”) to indicate those hiding information tech-
niques used in the traffic analysis field that actively manipulate
some features of a targeted network flow in order to uniquely
identify it among a set of flows. The main characteristics that
differentiate network flow watermarking from other methods
of information hiding (e.g., “digital watermarking,” “steganog-
raphy,” etc.) are: (i) the information carrier is a network flow,
and (ii) the hidden information’s validity and detectability are
strictly correlated to the flow duration.

B. Packet Loss Occurrence

Packet losses occur naturally in computer networks and are
caused by several reasons, such as faulty hardware or cabling,
buffer overflow due to link or node congestion, data corruption
due to components with high bit error rates, packet filtering,
etc. Internet protocol (IP) provides a service of best effort
delivery and it does not deal with detecting and recovering
lost packets. The management of packet recovery for reliable
delivery is left to higher layer protocols. Recovery of lost
packets can be guaranteed at the transport layer with the
TCP protocol.

The behavior of an SS handling data units at the transport
layer in a case of packet loss is depicted in Figure 2. The
left half of the figure shows the typical TCP behavior when
a packet is lost. It can be seen that the SS sends duplicated
acknowledgements until it receives the expected packet. The
server keeps sending subsequent packets until it realizes that
a loss has occurred, and then it resends the lost packet. The
amount of time that elapses before resending a lost packet
depends on the TCP implementation used by the sender. When
fast retransmission is adopted, a packet is sent a second time
after receiving a specified number of repeated acknowledge-
ments (usually set to three in the most commonly used TCP
stack implementations). Since the TCP connection endpoint is
at the SS, the TCP protocol reorganizes out of order data in the
SS application layer, so that data[11] − data[16] cannot be
delivered until data[10] is correctly received. For this reason,
when a packet is lost, the SS cannot keep sending data to the
next hop even though out of order packets are received by
the TCP protocol. This entails that the IPD between data[10]

1We use the term intentionally dropped packets to indicate only those
packets that are dropped in order to embed a watermark in the traffic flow.
Packets dropped due to other causes (e.g., buffer overflow, framing error, etc.)
are considered naturally lost packets.

Fig. 2. Packet loss event in a scenario with one SS.

Fig. 3. The impact of packet loss events on IPDs measured on the client
side.

and data[9] at the destination is altered and equal to a value
greater than the round trip time from the server to the SS.

In Figure 3 we show the trend of the IPDs measured at
the client endpoint, when a 50 MB file is downloaded from
the server. The communication is intermediated by two SSs.
A packet was periodically dropped in the connection between
the server and the first SS encountered. The round trip
time (RTT) between the two was 80 ms. During the first
few seconds of the communication, IPDs are affected by the
TCP’s slow start. After the slow start phase, the system reaches
a stable state in which the IPDs maintain regular values.
The regularity is broken when a packet loss event occurs, as
highlighted in the figure. The trend is maintained even in the
presence of multiple SSs. Thus, we can claim that although
the packets are sent sequentially from the SS, any packet lost
(and later retrieved) in the first connection can be identified in
the second connection by analyzing IPDs on the client side.

The server packet transfer rate and the RTT between the
server and the first SS may change the effect of packet loss
events on IPDs. To give an idea of this effect, we averaged the
values of the IPDs that correspond to the packet loss events
measured on the client side, and we plotted them in Figure 4
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Fig. 4. Average value of the IPDs that correspond to the packet loss events
plotted as a function of the RTT from the server to the SS.

Fig. 5. Throughput as a function of packet loss rate.

Fig. 6. Architecture of the DROPWAT watermarking system.

as a function of the RTT from the server to the SS. The graph
shows a linear trend when the transfer rate R is 2.2 MB/s, a
constant and later linear ramp for R = 1 MB/s, and a constant
trend for R = 0.5 MB/s. This is due to the fact that IPDs,
altered by packet loss, are a function of both transfer rate
and RTT.

When the number of lost packets in the network becomes
high, the TCP protocol interprets this behavior as network
congestion and reacts by reducing the rate at which packets
are sent. The reduction of the throughput caused by varying the
packet loss rate is shown in Figure 5. Thus, in order to ensure
that the embedded watermark does not have a significant
impact on the network performance, the packet loss rate should
be less than 1%.

C. Watermarking Architecture

The architecture of DROPWAT is similar to other exist-
ing active network flow watermarking techniques. As shown
in Figure 6, the system is composed of a watermarker
and a detector. The watermarker intercepts targeted flows
and embeds the watermark. In our case, this action corre-
sponds to selectively dropping some packets. The detector
observes and analyzes traffic flows, and looks for the pres-
ence of a watermark. In the following two subsections the
embedding and detection algorithms are described in greater
detail.

D. Watermark Embedding

DROPWAT’s embedding algorithm aims at dropping pseudo-
randomly selected packets so that the sequence of dropped
packets looks like a loss sequence caused by a single bot-
tleneck node. A single bottleneck node can be described
as a buffer which can hold a specific number of packets.
An input process fills the buffer with packets coming from
several sources; an output process extracts packets from the
buffer at a fixed rate limited by the output link rate. When an
incoming packet finds the buffer full, it will be discarded and
a loss event will occur.

In order to emulate the behavior of a single bottleneck node,
we model packet loss behavior according to a modified version
of the extended Gilbert model. The extended Gilbert model
was used to reflect packet loss behaviors in noisy networks
by Sanneck and Carle [43], and Yu et al. [44] demonstrated
that this model approximates the packet loss behavior of a
single multiplexer very well. Let Xi be the binary event for the
i -th packet of a flow, which can assume the value 1 for
a dropped packet and 0 for a non-dropped packet. In our
modified version of the extended Gilbert model, an event state
is assumed to be dependent on the last run composed of up
to n consecutive identical events. In this model (hereafter
referred to as MW ) we need only 2n different states, and
it can be completely described by the set of probabilities
{pW,k}0<|k|≤n . The state model diagram of packet drops is
depicted in Figure 7.

The watermarking process, as depicted in Figure 8, can be
divided into two parts: offline initialization and online packet
dropping. The algorithm evolves as a periodic process with
time period T . Let T0 = 0 be the zero time reference; we
indicate the starting time of the i -th time period as Ti = i T .

The offline initialization takes as input: (i) the model
probabilities {pW,k}0<|k|≤n , (ii) a secret key shared with the
watermark detector, (iii) a watermarker identifier I D j , and
(iv) the reference throughput R. The concatenation of the
secret key and I D j will be used as the seed of the dropping
sequence generator (DSG), a cryptographically secure func-
tion generating a pseudo-random binary sequence (sequence
of events) which follows the model MW . Let B(i, j ) =
[b(i, j )

1 , b(i, j )
2 , . . . , b(i, j )

N ] indicate the i -th binary sequence gen-
erated by the DSG of the j -th watermarker identified by I D j ,
where N = �RT/Lre f � is the expected number of packets in
a period, Lre f is the reference packet size computed as the
maximum transmission unit (MTU), and �tpkt = Lre f /R is
the time required to send a packet. The throughput R can be
set at the maximum transfer rate of the watermarker.

The DSG can be efficiently implemented by using two
secure pseudo-random number generators (PRNG). The first,
prngsyn, is used to synchronize the watermarker and the
detector, as shown in Algorithm 1, and is initialized using the
shared key shared_key j = secret_key j |I D j and the initial
time T0.

After every time period T , a new seed = prngsyn is gener-
ated by Algorithm 1 and used to initialize a second prngdsg.
This newly created prngdsg is used to generate a valid binary
sequence B(i, j ) of length N by executing Algorithm 2. The
binary sequence is then converted to a dropping sequence.
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Fig. 7. Variation on the extended Gilbert model.

Fig. 8. DROPWAT’s embedding scheme.

Algorithm 1 Synchronization
1: procedure SYNCDSG(shared_key, T0, T )
2: prngsyn ← new P RNG(shared_key)
3: Tcurr ← T0
4: while Tcurr < system.timeNow() do
5: prngsyn.gen Rand() � Generate a pseudo-random

number in [0, 1)
6: Tcurr ← Tcurr + T
7: end while
8: return prngsyn

9: end procedure

A dropping sequence corresponds to a sequence of packet
dropping time intervals, and it is described by two vec-
tors D(i, j ) = [d(i, j )

1 , d(i, j )
2 , . . . , d(i, j )

Ki, j
] and E(i, j ) = [e(i, j )

1 ,

e(i, j )
2 , . . . , e(i, j )

Ki, j
] of length Ki, j , where d(i, j )

k and e(i, j )
k indi-

cate the starting time and the duration, respectively, for the
k-th dropping time interval, expressed in nanoseconds, and
Ki, j is the number of dropping intervals in the i -th time period.
The dropping sequence conversion is performed by means
of Algorithm 3.

The dropper works by discarding all of the packets travers-
ing the watermarker during any dropping time interval. All
of the other packets will be correctly forwarded to the proper
interface.

E. Watermark Detection

The detector is placed at one or more points in the network
where we might expect to observe watermarked flows. The
detector analyzes all traffic and tries to understand whether a
watermark is embedded in any of the observed flows.

Algorithm 2 Binary Sequence Generation
1: procedure GENDSG(prngsyn, {pW,k}0<|k|≤n , N)
2: seed ← prngsyn.gen Rand()
3: prngdsg← new P RNG(seed)
4: B← new vector()
5: k ←−n
6: while B.si ze < N do
7: if prngdsg.gen Rand() < pW,k then
8: B.append(1)
9: k = max{1,min{k + 1, n}}

10: else
11: B.append(0)
12: k = min{−1,max{k − 1,−n}}
13: end if
14: end while
15: return B
16: end procedure

Algorithm 3 Dropping Sequence Conversion
1: procedure DSC(B, �tpkt )
2: D, E← new vector()
3: while k <= B.si ze do
4: n← 1
5: if B[k] == 1 then
6: n ← count Ones(k, B) � Count consecutive ones

from position k in B
7: D.append(k ·�tpkt )
8: E .append(n ·�tpkt )
9: end if

10: k ← k + n
11: end while
12: return D, E
13: end procedure

The detector is aware of the input data to the DSG
and the cryptographical function used by the watermarker,
so it can compute all of the dropping time intervals. The
detector analyzes the IPDs for packets observed during
the dropping time intervals, and for each flow it builds the
sequence of identified lost packets. If a significant percentage
of lost packets of a flow are detected during the dropping
time intervals, the flow is suspected of being watermarked.2

2Since burst losses are managed by the TCP protocol through burst
retransmissions, the detector can only identify the first dropped packet of a
burst. For this reason, the burstness of packet loss is not relevant to detection.
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The detector and the watermarker must be accurately synchro-
nized in order to agree on the valid dropping sequence for a
time period; to maintain synchronization over a long period of
time, an external synchronization server (such as NTP) may
be used to reset the internal clocks of the two devices.3

The watermark detection algorithm can be summarized in
three main steps: (i) IPD computation, (ii) outlier detection,
(iii) watermark detection and identification.
• IPD computation. An IP flow is sniffed, and packet

timestamps are measured. A nominal task, IPD computa-
tion is based on the difference between consecutive packet
timestamps.

• Outlier detection. IPDs are analyzed to detect packet
loss events. The detection is based on a simple outlier
detection algorithm. Let t̂k be the timestamp of the
k-th packet observed by the detector, �t̂k = t̂k − t̂k−1
be the k-th IPD, and v be a comparison window size.
�t̂k is considered an outlier if (α · �t̂k) > �t̂h for all
h ∈ {k− v, . . . , k− 1, k+ 1, . . . , k+ v}, with 0 < α < 1.
The observation times of the outlier packets are used to
compile an outlier time vector D̂(i) = [d̂(i)1 , d̂(i)2 , . . . , d̂(i)

K̂i
]

where d̂(i)k is the observation time measured considering
the start time of the current period Ti as the reference
time. The outlier time vector can be compiled almost in
real-time, with a delay of v packets.

• Watermark detection and identification. The detector
compares D̂(i) with D(i, j ) for every j , in order to find
the κi, j number of matching outliers, corresponding to
the number of disjoint couples (d̂(i), d(i, j )), such that
|d̂(i) − d(i, j )| is less than the matching distance δ. For
a given j , if κi, j/Ki, j is greater than a predefined
threshold β, the flow is labelled with I D j . Thus, a
flow can be labelled with zero, one, or more than one
identifiers. In a case in which no label is assigned, the
flow is considered unwatermarked; otherwise the flow
is considered watermarked. The watermark identification
is based on the label with the greatest value κi,G =
max j {κi, j } among the labels assigned to the flow. If there
is more than one label with the same greatest value κi,G ,
the watermark is considered detected but not identified.

Given a reference period, for each flow to analyze the
detector requires: (i) computing O(N) IPDs, (ii) making
O(v ·N) comparisons for the outlier detection, and (iii) making
O(J · K 2) comparisons for the watermark identification.

It may happen that the detector intercepts genuine flows that
have been watermarked but have not traversed any SSs. In this
case, a packet loss is retrieved by the legitimate receiver, and
no IPD outlier is generated due to that loss. Thus, even if a
legitimate flow has been watermarked, the watermark will not
be erroneously detected.

F. Analysis of False Identification

Let us consider a generic time period of duration T , and
suppose that there are J different watermarkers, identified

3DROPWAT requires a resolution of the order of few milliseconds to be
effective which is much less fine-grained than the resolution of an NTP server
which offers a theoretical precision of up to 200 picoseconds.

by I D1, I D2, . . . , I DJ , which are simultaneously active in
the given time period. For the sake of simplicity, let us
suppose that each watermarker has K dropping intervals for
the time period. Let p be the probability that a generic
watermarker decides to start a dropping interval within an
interval of duration δ, and pL be the probability that there
will be a natural loss within an interval of duration δ. When
the detector observes a watermarked flow, the outlier vector
D̂ = [d̂1, d̂2, . . . , d̂K̂ ] includes κ j∗ (≤ K̂ ) outliers induced by
the watermarker I D j∗ and K̂ − κ j∗ outliers due to natural
loss. Thus, we can have the following cases: (i) κ j < (βK )
for all j – the watermark is not detected; (ii) κ j∗ ≥ (βK )
and κ j < κ j∗ for all j with j 
= j∗ – the watermark is
correctly detected and identified; (iii) κ j∗ ≥ (βK ) and there
exists j ′ with j ′ 
= j∗ such that κ j ′ = κ j∗ and κ j ≤ κ j∗
for all j with j 
= j∗ – the watermark is correctly detected
but not identified; and (iv) there exists j ′ with j ′ 
= j∗ such
that κ j ′ > κ j∗ – the watermark is detected but incorrectly
identified. The probability of true identification (TI), given a
detection, (second case) is given by:

PT I |D =
⎛
⎝
κ j∗−1∑
κ=0

F(κ)

⎞
⎠

J−1

(1)

where

F(κ) =
(

K̂

κ

) (
1− (1− p)2

)κ
(1− p)

2
(

K̂−κ
)

(2)

The probability of not identification (NI), given a detection,
(third case) is given by:

PN I |D =
( κ j∗∑
κ=0

F(κ)

)J−1

− PT I |D (3)

The probability of false identification (FI), given a detection,
(fourth case) is given by:

PF I |D = 1− PT I |D − PN I |D (4)

In Figure 9 we show the trend of PF I |D and PN I |D accord-
ing to Formulas 3 and 4 where we consider T = 300 sec;
δ = 0.04 sec; K = 10; p = K δ/T ; K̂ = κ j∗ + pL T/δ; by
varying J ; for three values of loss probability ( pL = 10−4,
10−3, and 10−2) and three values of κ j∗ (3, 4, and 5). The
plots show that we can have a reasonably low probability of
false identification by keeping J less than 40 when κ j∗ = 3,
while for κ j∗ > 3 we can manage over 100 IDs.

G. Placing the Watermarker and the Detector
Into the Internet

According to the watermarking architecture shown in
Figure 6, the watermarker may be placed at any point in the
communication path between the traffic source (server side)
and the first SS, while the detector may be placed at any
point in the communication path between the last SS and
the final destination (client side). In an actual operational
scenario, placing the two components is not a trivial task,
especially considering that: (i) the client location is not known
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Fig. 9. Probability of false identification and not identification, given a detection. (a) κ j∗ = 3. (b) κ j∗ = 4. (c) κ j∗ = 5

(it is what we want to detect); (ii) the two communication paths
are usually decoupled, and it is not very likely that a single
entity is able to have access to both communications; and
(iii) the two components should be controlled by the same
entity, or at least they should be controlled by two different
entities that trust each other and collaborate by sharing the
watermarking information (e.g., keys, IDs, algorithms, etc.).
This argument is broad, and the related discussion may involve
many aspects regarding to the resources available to the
monitoring entity, the objectives, etc. Although it is not within
the scope of this paper to investigate all of the potential use
case scenarios along with the related issues and solutions, we
provide a number of possible real-life situations in which the
watermarking system may be successfully employed.

First we consider a scenario in which a law enforcement
agency suspects that there are known subjects operating on the
Internet that are interested in exfiltrating sensitive data stored
in a secured database. The agency may create a honeypot
that looks like the secured database and make it vulnerable
to a set of attacks. In this case, the watermaker can be
integrated in the honeypot or placed in the communication
path from the honeypot to the Internet. Because the agency
knows the identity of the suspected subjects, it may establish
a partnership with one or a few ISPs and identify the best
locations to place the watermark detectors in their network(s)
and observe some of the traffic that reaches the suspected sub-
jects. If the agency suspects that an attacker might use a cloud
service to store the exfiltrated data, the agency may decide
to establish a partnership with the cloud service provider and
define watermark detection policies for the traffic reaching the
cloud.

In today’s cloud era, an enormous number of services are
virtualized and offered by cloud service providers. Considering
their widespread usage, the probability that the source and
destination of a traffic flow are within the same platform
is not negligible. Therefore, a single cloud service provider
may decide to apply strategies of selective watermarking with
monitoring and detection on its own network.

Another use case is a scenario in which an attacker uses
the TOR network (or any other anonymous network) to hide
its communication with the victim; in this case the attacker

does not usually have control of traversed SSs. If the entity
embedding the watermark (e.g., a potential fake victim) also
controls a number of TOR relays, it can place a detector on
each of them; then it is sufficient that one of these relays
is selected as exit node of the TOR circuit, and the detector
would be able to detect the watermark and link it with the
real destination of the watermarked flow. The probability that
a user can select a relay controlled by a monitoring entity has
been studied by Ling et al. [45].

V. INVISIBILITY

A watermark should go unidentified by the adversary,
because otherwise the adversary could take some action to
prevent the staging server from being detected, for example, by
interrupting the communication or in some way preventing the
adversary from connecting to the staging server so as not to be
identified. In the next subsections, we provide our assumptions
about the adversary against the watermark’s invisibility and
define the statistical loss-invisibility. We also provide empirical
evidence regarding DROPWAT’s loss-invisibility. At the end,
we show that the assumptions can be relaxed in order to make
the watermark implementation easier.

A. Assumptions About the Adversary and Her Capabilities

We base our analysis of the invisibility on a set of assump-
tions about the adversary and her capabilities: (i) the adversary
cannot directly access the hardware/software of the water-
marker device, (ii) the adversary cannot distinguish between a
naturally lost packet and one intentionally dropped when sin-
gle events are observed independently; (iii) the adversary can
passively observe the traffic passing through the watermarker
(the traffic can also be actively injected by the adversary) and
extract the sequence of loss events; (iv) the adversary cannot
perform side-channel attacks.

The assumptions above are motivated by two main con-
siderations. First, all of the successful attempts to detect
malicious packet losses were based on methods that exploit
expected (based on statistics) behaviors and patterns of the
network traffic (e.g., packets dropped by an intrusion detection
system or port blocked by a firewall) [46], [47]. Second, the
watermarker embeds information into flows by modulating



IACOVAZZI et al.: DROPWAT: INVISIBLE NETWORK FLOW WATERMARK FOR DATA EXFILTRATION TRACEBACK 1147

the sequence of packet loss events, and that sequence is the
only information carrier analyzed by the detector. If, for some
reason, the embedding process produces a side-channel that
may reveal the presence of the watermark, this side-channel
should be taken into account and eventually removed.

Some examples of side-channel attacks that could be con-
ducted against DROPWAT are: (i) packet timing channels
that can be used by the adversary to infer the internal state
of the watermarker’s buffers and recognize inconsistencies
between the loss and forwarding delay; this side-channel can
be removed by means of an implementation reproducing the
buffer timing effect on all of the packets passing through the
watermarker or by using real buffers inside the watermarker,
etc.; (ii) processing timing channels used to distinguish among
several operations involved during the normal handling of
the traversing packets; this side-channel can be removed by
executing sensitive operations on a timely planned manner.
These and similar types of side-channel attacks are largely
implementation dependent and strictly correlated to the device
used and its forwarding policies. Investigating their impact and
possible countermeasures is not within the scope of this paper.

B. Loss-Invisibility

We start from the definition of statistical invisibility pro-
vided by Iacovazzi [19] that says that “a watermark is sta-
tistically invisible if the difference between the statistical
distribution of a watermarked flow and a non-watermarked
flow is negligible.” Considering that the only modification
made by the watermarker is dropping packets, the definition
of invisibility can be adapted to our specific case; thus for this
reason we define and refer to the statistical loss-invisibility.

Hereafter, we refer to a network component as any entity in
a network that can be traversed by Internet packets along their
path. A component can be a router, firewall, network segment
delimited by two nodes, a demilitarized zone, etc. For the sake
of simplicity, we only consider dual-homed components, i.e.,
network components having two interfaces, in which packets
entering one interface will be released out of the second
interface, unless they have been lost inside the component.

We say that two different network components are statis-
tically loss-equivalent if the statistical distance between the
two statistical units associated with the packet loss sequence
induced by the two components is negligible.4

Let B be a component in a private network described by
the packet loss statistical model MB. Suppose that B can
be substituted by a new component S which consists of the
concatenation of two sub-components: a sub-component B̂
performing the same functionalities of B but with a lower
level of packet loss, which is statistically described by the
loss model MB̂; and a loss-based watermarker W which
drops packets according to a statistical loss model MW . The
watermark impressed by W is statistically loss-invisible if
the new component S is statistically loss-equivalent to the
component B .

4The statistical distance is a metric that is defined in statistics and measures
the distance between two statistical units. Typically, there is not a single choice
for the distance.

Fig. 10. Experimental setup with artificial traffic.

Accordingly, in order for DROPWAT to be invisible, we
should identify a bottleneck component than can be substituted
with a new component incorporating the watermarker in such
a way that an attacker observing the traffic before and after the
substitution does not detect any difference in the loss model
from a statistical point of view. If the bottleneck component
is substituted with a zero-loss component, i.e., it does not lose
any packets, the statistical loss-equivalence will be imposed
between MB and MW .

This problem can be translated into a hypothesis test prob-
lem about an observed model M, with two simple hypotheses
M = MB and M = MS . It is clear that loss-invisibility
should be evaluated on a case by case basis, according to
the model MB. In addition, evaluating the statistical distance
between two complex models is a difficult problem due to the
presence of correlation between events.

C. Evaluation of DROPWAT’s Loss-Invisibility

We evaluate the loss-invisibility according to a statistical
comparison between: (i) a bottleneck component BQ with
buffer size Q that loses packets because of natural buffer over-
flow, and (ii) the concatenation of DROPWAT’s watermarker
W and a bottleneck component BZ with buffer size Z , with
Q < Z <∞, that also loses packets because of natural buffer
overflow. In the absence of a standardized metric to evaluate
the statistical distance between two statistical processes, we
perform a statistical comparison based on an empirical study
of the loss density and the autocorrelation function, according
to the analysis adopted by Yu et al. [44].

Let B = [b1, b2, . . . , bN ] be the binary vector of packet loss
events observed for traffic going out of a generic component,
which can be either BQ or S = BZ + W , composed of
N packets. The loss density ψB(k, q) is the frequency of
k loss events in a block of q events, and the autocorrelation
function ρB(h) for lag h is defined as

ρB(h) = ch

c0
(5)

where

ch = 1

N − 1
·

N−i∑
i=1

(bi − b̄)(bi+h − b̄). (6)

We measured ψB(k, q) and ρB(h) for two types of traffic:
(i) heterogeneous traffic artificially generated in a controlled
experimental setup, and (ii) real Internet traffic captured on a
TOR relay.

To collect heterogeneous traffic, we created a simple net-
work composed of three components (Figure 10): (i) a traffic
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Fig. 11. Loss density and autocorrelation functions for bandwidth-consuming, enterprise, and TOR traffic (Q = 8, Z = 50). (a) Enterprise. (b) Bandwidth-
consuming. (c) TOR.

source equipped with IXIA BreakingPoint VE, a commercial
traffic generator software capable of generating network traffic
at a rate up to 1 Gbit/s; (ii) an intermediate component
alternating the role of either a single bottleneck BQ or the
concatenation of the bottleneck BZ and the watermarker W ;
and (iii) a traffic destination node where traffic was collected in
order to extract the corresponding binary vector of packet loss
events. We configured the source node in order to generate two
types of traffic: (i) “enterprise traffic” composed of a mix of
15 classes,5 and (ii) “bandwidth-consuming traffic” consisting
of a mix of HTTP streaming and P2P traffic at a constant rate.

In addition, we also evaluated the loss-equivalence on real
Internet traffic. We first implemented a real TOR relay and then
redefined the two settings shown in Figure 10 by replacing the
traffic generator with the Internet, and the destination node
with the TOR relay. According to the TOR protocol, the TOR
relay was selected to forward traffic by several TOR clients.
This allowed us to collect real TOR traffic. In this setup there
is no traffic generator, and the traffic comes from the Internet.

We executed two sets of experiments for each type of traffic:
one in which the intermediate component was a bottleneck
node implemented on a Linux device with a limited egress
queue of predetermined size Q = 8 pkts (BQ), and one in
which the intermediate component was the concatenation of
a node with a limited egress queue of predetermined size
Z = 50 pkts and the watermarker (S = BZ + W ).6 100 GB
of traffic was generated and transferred through the Linux
device for each experiment with artificial traffic, and 80 GB

5HTTP Video, HTTP Audio, HTTP Text, SIP/RTP Direct Voice Call over
TCP, SIP/RTP Direct Voice Call over UDP, SMTP Email, AOL Instant
Messenger, DCE RPC, SMB Null Session, SMB Client File Download,
NFSv3, PostgreSQL, RTSP, SSH, and FTP

6The value of Z was selected so that BQ and BZ +W had the same value
of b̄.

of traffic was collected at the relay coming from the Internet
for each experiment with TOR. Using the scenario with the
bottleneck node, we conducted 11 experiments; the binary
vectors extracted from 10 experiments were used to compute
the selected metrics, while the last binary vector was used as a
training dataset to estimate the probabilities {pW,k}0<|k|≤n to
use in the model MW . 10 experiments were also conducted
using the scenario with the watermarker.

Figure 11 provides a comparison of the loss density (for
q = 150) and the autocorrelation function for the two models
MS and MBQ with three types of traffic. The figures show
that the statistics for model MS nearly match those measured
for MBQ , and they always stay within the uncertainty level
of MBQ .

In order to obtain a numerical measure of the invisibility
of DROPWAT, we used the Kolmogorov-Smirnov (KS) test to
determine whether an observed sample generated by the model
MS induces to accept or reject the hypothesis M =MBQ .
The test is based on the cumulative distribution function
	B(k, q) defined as

	B(k, q) =
k∑

i=0

ψB(i, q) (7)

Let 	J
B (·) be the empirical distribution function of the

model J , with J ∈ {MS ,MBQ}. In the KS test the
hypothesis M =MBQ is accepted if

sup
k
|	MS

B (k, q)−	MBQ
B (k, q)| < ε (8)

We conducted the hypothesis test against BBQ and BS (two
sequences of events observed in the two experiments with a
bottleneck and a watermarker, respectively). The KS distances
obtained for the three types of traffic are listed in Table I.
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Fig. 12. Loss density and autocorrelation functions for bandwidth-consuming, enterprise, and TOR traffic (Q = 10, Z = ∞). (a) Enterprise. (b) Bandwidth-
consuming. (c) TOR.

TABLE I

KS DISTANCES (Q = 8, Z = 50)

In each case the KS distance is below 0.0009 which cor-
responds to high confidence (99%) that the two sequences,
BBQ and BW , come from the same distribution. Thus, the
watermark injected through DROPWAT will be invisible to any
third party.

D. Relaxed Assumptions

Finding a component to substitute for BQ and perform
the same functionalities as BQ but with a lower level of
packet loss might be difficult. However, we can simplify the
assumptions by noting that real enterprise networks are not
static entities; instead, they evolve and change continuously:
old routers may be replaced, new switches, routers, or servers
may be added, the topology can change, a firewall can be
updated, the access control lists of some routers can be
modified, a new intrusion prevention system can be added,
some services may be moved to the cloud, and so on. Thus,
if a new component (which can be a single device, a network
segment, or an entire subnet) is suddenly found, it should not
come as a surprise to anybody. Given this, we can relax our
assumptions and tolerate an adversary that is able to recognize
the presence of a new component in the network but is not
able to distinguish between a watermarker and another network
component. According to the new assumption along with those
defined in Subsection V-A, we can verify the loss-invisibility
by just showing the loss-equivalence between the watermarker
and a bottleneck node B .

TABLE II

KS DISTANCES (Q = 10, Z = ∞)

We evaluate the loss-invisibility according to the relaxed
assumptions, by following the analysis presented in the
previous subsection, in which we remove the buffer BZ

(i.e., Z = ∞). Figure 12 show the comparison of ψB(k, q)
and ρB(h), with Q = 10, and the KS distances are listed
in Table II. In this case too, we can see that the statistics for
model MB match those of MW .

VI. ROBUSTNESS

Watermark robustness concerns the capacity of the water-
mark to survive along the path from the source to the
destination despite (i) the natural noise introduced by the
traversed networks, and (ii) possible attacks aiming at volun-
tarily distorting the watermark. In Section VII we present the
results obtained by testing the DROPWAT’s robustness against
natural noise in two different network scenarios: in a controlled
environment and in the real TOR network.

However, natural noise is not the only threat against net-
work flow watermarking; several attacks were reported by the
research community to be effective against timing-based net-
work flow watermarking techniques: (i) timing perturbations,
(ii) packet losses, (iii) dummy packet insertion, (iv) packet
padding, (v) flow splitting and mixing, (vi) flow repacketiza-
tion, and (vii) store and forward attacks [19].

As far as we know, there is currently no traceback method
robust to all of these attacks. This is a challenging problem
which requires further investigation. Like all timing-based
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Fig. 13. Scenario with Web proxy servers in AWS.

techniques, DROPWAT is also vulnerable to the aforemen-
tioned attacks. However, the feasibility of these attacks
requires that the SSs be under the control of the attacker,
or at the very least, the controller of the SSs has to be
cooperating with the attacker; this is not the case, including
those involving anonymous networks (e.g., TOR, Anonymizer,
I2P, JonDonym, etc.). The feasibility and cost of these attacks
against timing-based network flow watermarking has been
studied in several works [21], [37], [40] and is not further
investigated in this paper.

VII. PERFORMANCE EVALUATION

We analyze the efficacy of DROPWAT based on experiments
performed in the wild, with real traffic passing through the
Internet. Performance was evaluated for two different net-
work scenarios that are usually used for data exfiltration:
(i) “Scenario A” where SSs were implemented as Web
proxy servers on Amazon Web Services (AWS), and
(ii) “Scenario B” where the traffic is forwarded over TOR,
the well-known onion routing network.

A. Scenario With Web Proxy Servers

We developed a testing framework in which each node of the
network topology is executed in an Amazon Elastic Compute
Cloud (Amazon EC2) instance on AWS. Figure 13 shows
the scheme of the framework. The main components in this
architecture are:

• Virtual private cloud (VPC): a logically isolated network
unit in AWS where one or more EC2 instances can be
launched.

• Internet gateway (IG): a gateway that interconnects the
instances in a VPC with the Internet.

• Victim: an EC2 instance representing the infected device
of a company or person where sensitive data is stored.
For testing purposes the module implementing the water-
marker has been installed on this instance. A module
which throttles the traffic in order to limit and control
the bandwidth used by the malware is also installed on
this instance.

• Staging server: an EC2 instance representing the remote
server where the attacker forwards the exfiltrated data.

• Stepping stones (SSs): two EC2 instances used in two
different VPCs, interposed in the communication from
the victim to the staging server.

• Additional packet dropper (APD): an EC2 instance that
randomly drops packets independently of the water-
marker. This is used to test the robustness of DROPWAT.

• Detector: an EC2 instance which sniffs and collects all
of the traffic going to the staging server and is located in
the same VPC as the staging server.

The four VPCs were distributed in different geographic
regions. A VPC can be launched from any one of AWS’
14 regions, distributed around the world; this implies that all of
the traffic going from one node to another node passes through
the Internet. Our experiment relied upon all of these regions:
10 regions were used to run the SSs, and the remaining four
regions were employed to run the VPCs of the victim and the
staging server. We used an “m4.xlarge” instance for the victim
and an “m4.large” for the staging server, both equipped with a
Microsoft Windows Server 2012 R2 Base Operating System.
All other instances were “t2.micro” equipped with an Ubuntu
Server 16.04 LTS.

B. Scenario With Onion Routing Servers

In this scenario we used the testing framework described in
the previous subsection with a couple of differences: (i) the
two SSs running on the EC2 instances were substituted with
three onion routers belonging to the real TOR network, and
(ii) the module throttling the traffic installed on the victim’s
instance and the APD were removed.

C. Implementation

1) Remote Administration Tool: Typically, an intruder per-
forms an exfiltration attack by exploiting a remote access
Trojan (RAT) which is usually downloaded invisibly on a
victim’s device within the targeted company’s network. Once
the RAT malware program has been installed, a backdoor is
created allowing the attacker to obtain administrative control
of the targeted computer. We used a commonly used backdoor
malware for Windows systems, generated by Cerberus RAT
(a RAT software publicly available on the Internet) and
installed on the victim instance; the Cerberus remote controller
was installed on the staging server.

2) Stepping Stones: In Scenario A, SS implementation is
based on the SSH protocol. A PuTTY SSH client was used
to create two SSH tunnels from the victim to each SS.
Proxifier [48], a Windows-based proxy software, was used
to set up two SOCKS-based proxies on the victim: one to
channel Trojan-based TCP connections to the SSH tunnel that
connects with the second SS, and the other one to divert the
SSH tunnel of the second SS via the SSH tunnel that connects
with the first SS. This creates an end-to-end encrypted channel,
with one SSH tunnel encapsulated into the other. We set
up 20 SSs distributed over 10 different AWS regions. At the
beginning of each experiment two SSs were randomly selected
by the victim, and the two corresponding SSH tunnels were
established.

In Scenario B, the application traffic from the victim
instance was tunnelled through the onion network using
Torifier, a Windows-based torification tool [49]. We used
the default TOR configuration which uses three relays to
build the circuit. At the beginning of each experiment three
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Fig. 14. True and false positive rates in the scenario with Web proxy servers (β = 0.25). (a) R = 0.5 MB/s. (b) R = 1.0 MB/s. (c) R = 2.2 MB/s.

TOR relays were selected by the victim, and a new circuit was
established. In cases in which the selected circuit was exactly
the same as the previous experiment, one of the three relays
was substituted with a new randomly selected relay.

3) Watermarker: An application implemented in C++ that
conducts the offline and online functions was executed on the
victim instance. In the online application, Windows Packet
Divert (WinDivert) [50], a packet filter library available for
Windows distribution, was used to filter and queue network
flow packets from the Windows network stack to the water-
marker. Based on the precomputed dropping sequence, all
of the packets observed during dropping time intervals were
dropped.

4) Network Throughput and Additional Packet Loss: Net-
work throughput can affect the performance of DROPWAT.
We used the NetLimiter program [51] (installed on the victim
instance) to throttle the Cerberus traffic and test different
values of bandwidth use. Increasing the packet loss in the
network was suggested by Sadeghi et al. [52] to mitigate covert
channels based on packet drops. We tested the robustness
of DROPWAT using several rates of additional packet loss;
NetEm, a Linux facility for traffic control, was used in
the Linux instance acting as an APD, in order to emulate
different network packet loss rates and test the robustness of
DROPWAT.

5) Detector: For testing purposes, detection was performed
offline. Thus, no specific implementation was required in our
framework - only an instance to intercept and sniff all of the
traffic directed to the staging server was deployed.

D. Numerical Results

DROPWAT’s accuracy was evaluated by conducting an
extensive series of experiments; 7200 experiments on AWS
and 500 experiments on TOR were executed, varying the val-
ues of several parameters: the transfer rate R, the threshold β,
the packet dropping rate pW , and the additional packet loss
rate pL . Each experiment consisted of transferring a 150 MB
file from the victim to the staging server. We measured the
true positive (TP) rate as the percentage of watermarked flows
correctly classified as watermarked, and the false positive (FP)

rate as the percentage of non-watermarked flows erroneously
classified as watermarked.

A training phase was performed on a training dataset
composed of 50 traces in order to test several values of the
outlier threshold α and comparison window v, and to select
the values to use in the evaluation of the system. After the
training phase, we selected α = 0.8 and v = 300 pkts. The
selection of the {pW,k}0<|k|≤n to use in the model MW was
made based on a training trace made up of 100 GB of traffic
captured in the bottleneck setup described in Section V.

Figures 14 and 15 show the TP and FP rates obtained in
our experiments in Scenario A involving Web proxy servers
on AWS for three transfer rate values (R = 0.5, 1.0, and
2.2 MB/s) and two β values (0.25 and 0.35). On each graph,
TP (red) and FP (black) rates are plotted for different values
of pL and with various packet dropping rates pW . Each point
on the curves corresponds to an average value computed
over 100 experiments. FP rates were evaluated by testing
the detector with both non-watermarked traces and traces
watermarked with an incorrect seed.

As can be seen in the graphs, the detection algorithm is able
to correctly detect watermarks, achieving very high TP rates
(over 95% in most cases) and low FP rates (below 5%).
Although variations of the transfer rates did not significantly
affect performance, we observed a minor deterioration in the
TP rate for cases in which the transfer rate is 2.2 MB/s; nev-
ertheless it is still effective at detecting watermarks with few
errors. When packet loss is greater than a specific threshold, a
significant amount of noise is added to the sequence of IPDs
which very slightly hinders the outlier detection function. For
the same reason, TP rates also worsened as the combination
of packet loss and packet drop frequencies increased. In
addition, we observed a slight deterioration in the TP rate
for β = 0.35. This is due to the fact that increasing the level
of the detection threshold β reduces the implicit redundancy
inside the watermark, which affects DROPWAT’s TP rate, but
at the same time it drastically reduces the FP rate. Thus, the
detection system is highly effective with less error even at a
higher threshold. A slight decrease in the TP rate can also be
observed for pW = 0.5 ·10−3; this is explained by the fact that
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Fig. 15. True and false positive rates in the scenario with Web proxy servers (β = 0.35). (a) R = 0.5 MB/s. (b) R = 1.0 MB/s. (c) R = 2.2 MB/s.

Fig. 16. Number of packets required to detect a watermark in the scenario with Web proxy servers (β = 0.25 in red and β = 0.35 in black).
(a) R = 0.5 MB/s. (b) R = 1.0 MB/s. (c) R = 2.2 MB/s.

in this scenario not enough packets are dropped before the file
transfer ends. FP rates increase in a scenario with high packet
loss rate and low throughput when we consider a threshold
β = 0.25; this is a sign that the watermark is negatively
affected in the case of a high level of natural packet losses.
Nevertheless FP rates are below 5% in all of the other cases.
Therefore, we can state that for practical implementation,
watermarks can be detected with almost 100% TP and 0%
FP rates by fine-tuning the system parameters based on the
knowledge of network loss behavior, even with the presence
of a mitigation technique.

Figure 16 shows the number of packets required to detect
the watermark for three transfer rate values (R = 0.5, 1.0,
and 2.2 MB/s). On each graph, curves are plotted for three
values of pL , and for β = 0.25 (red) and β = 0.35 (black),
by varying the packet dropping probability pW . Each point on
the curves corresponds to an average value computed over all
of the experiments that resulted in the correct identification of
a watermark. The number of packets needed to identify the
watermark ranges from 104 to 1.5 · 105. It is no surprise that
in all of the cases the number of packets required for detection
decreases linearly as the packet dropping rate increases.

We also tested DROPWAT in a scenario with the TOR
network (Scenario B). Even though TOR is not optimal for

performing the transfer of a massive amount of data, testing the
watermarking system in a scenario with onion routing servers
allows us to stress robustness in the presence of a significant
amount of noise that is primarily due to relay instability,
significant end-to-end delay, and large jitter. Figure 17 shows
the TP and FP rates for two values of pW by varying the
threshold β. Despite the slight decrease in performance, the
proposed method can detect the watermark in 95% of cases
(best instance), with an FP rate of less than 10%.

In this scenario we also measured the number of packets
observed by the detector before identifying the watermark.
Figure 18 shows the number of packets for two dropping rate
values (pW = 10−3 and 2 · 10−3) by varying the threshold β.
The curves confirm the results obtained for the scenario with
Web proxy servers and highlight the linear trend of the
number of packets required for detection as a function of
parameter β.

VIII. DISCUSSION AND CHALLENGES

Unlike other watermarking algorithms presented in the
literature, DROPWAT has the following properties: (i) it is
invisible to the adversary; (ii) it is effective, even with a high
transfer rate; and (iii) it is effective against traffic passing
through the TOR network.
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Fig. 17. True and false positive rates in the scenario with onion routing
servers.

Fig. 18. Number of packets required to detect a watermark in the scenario
with onion routing servers.

Dropping packets on a pseudo-random basis implies that
deterministic analysis would not provide any evidence of
the watermark. Additionally, statistical analysis would be
incapable of this as well, because the packet loss behavior
induced by DROPWAT reflects a natural behavior of loss in
the network.

The extensive number of experiments performed showed
that DROPWAT is effective in a variety of scenarios, with
different network conditions, even in the presence of different
TCP stack implementations. The robustness of DROPWAT was
also verified in the case of an attacker that intentionally drops
packets with the aim of obfuscating the watermark.

The DROPWAT’s peculiarity is the ability to take advantage
of the network features, the operation of the SS, and the
interaction with network protocols. Nevertheless, as previously
stated, the way the SS handles the traffic may affect the
incisiveness and detectability of any watermark. For instance,
a timing-based algorithm needs the SS to work seamlessly,
in order to safeguard the temporal patterns. If an SS uses a
store and forward method, in which received data is buffered
for a period of time before being forwarded to the next hop,
watermarking algorithms (including DROPWAT) cannot work
properly. In addition, although typical SS implementations
work at the application level and do not propagate losses up
to the destination, an implementation in which the recovery of
the losses is left to the final destination is certainly feasible.

In this case, although outliers are not generated and our current
implementation of the detector would not be able to detect
a watermark, the detection algorithm can be implemented
according to a much simpler logic.

Another limitation is that DROPWAT is ineffective for
short-lived or interactive flows, because the pW must be low
enough to ensure that (i) packet dropping does not affect the
throughput, and (ii) TP rates are sufficiently high.

IX. CONCLUSION

In this paper we proposed a new watermarking technique
for tracing data exfiltration attacks. DROPWAT has two main
characteristics that differentiate it from other existing solu-
tions for the network traceback problem. First, DROPWAT’s
embedding algorithm is based on a new paradigm to impress
a watermark within a network flow that takes advantage of
a network’s reaction to packet loss. We have shown that
dropping a few selected packets of a flow allows a timing-
based watermark to be embedded into the flow. Second,
the watermark embedded by DROPWAT is invisible to the
adversary under some assumptions. The invisibility is due to
the fact that the time modification generated by an artificially
dropped packet is the same as that of a packet that is naturally
lost. In addition, because the statistical behavior of the loss
pattern induced by DROPWAT matches the loss behavior of a
real bottleneck node, an adversary cannot distinguish between
a watermark embedded by DROPWAT and a natural loss
pattern in the network. Our experimental results showed that
DROPWAT achieves very high TP rates and very low FP rates,
even in realistic scenarios where traffic passes through Web
proxy servers on AWS or an anonymous network like TOR.

REFERENCES

[1] F. Li, A. Lai, and D. Ddl, “Evidence of advanced persistent threat: A case
study of malware for political espionage,” in Proc. IEEE 6th Int. Conf.
Malicious Unwanted Softw. (MALWARE), Oct. 2011, pp. 102–109.

[2] B. Binde, R. McRee, and T. J. O’Connor, “Assessing outbound traffic to
uncover advanced persistent threat,” SANS Inst., Bethesda, MD, USA,
White Paper, 2011.

[3] M. Lee and D. Lewis, “Clustering disparate attacks: Mapping the
activities of the advanced persistent threat,” in Proc. 21st Virus Bull.
Int. Conf., vol. 26. 2011, pp. 1–22.

[4] S. DeWeese, Capability of the People’s Republic of China to Conduct
Cyber Warfare and Computer Network Exploitation. Collingdale, PA,
USA: Diane Publishing, 2009.

[5] P. Giura and W. Wang, “A context-based detection framework
for advanced persistent threats,” in Proc. IEEE Int. Conf. Cyber
Secur. (CyberSecurity), Dec. 2012, pp. 69–74.

[6] A. Giani, V. H. Berk, and G. V. Cybenko, “Data exfiltration and covert
channels,” Proc. SPIE, vol. 6201, p. 620103, May 2006.

[7] E. Bertino and G. Ghinita, “Towards mechanisms for detection and
prevention of data exfiltration by insiders: Keynote talk paper,” in Proc.
6th ACM Symp. Inf., Comput. Commun. Secur., 2011, pp. 10–19.

[8] Y. Liu, C. Corbett, K. Chiang, R. Archibald, B. Mukherjee, and
D. Ghosal, “SIDD: A framework for detecting sensitive data exfiltration
by an insider attack,” in Proc. IEEE 42nd Hawaii Int. Conf. Syst.
Sci. (HICSS), Jan. 2009, pp. 1–10.

[9] F. P. Buchholz and C. Shields, “Providing process origin information to
aid in network traceback,” in Proc. USENIX Annu. Tech. Conf., Gen.
Track, 2002, pp. 261–274.

[10] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for ip traceback,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 30, no. 4, pp. 295–306, 2000.

[11] D. X. Song and A. Perrig, “Advanced and authenticated marking
schemes for IP traceback,” in Proc. IEEE 20th Annu. Joint Conf.
Comput. Commun. Soc. (INFOCOM), vol. 2. Apr. 2001, pp. 878–886.



1154 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 5, MAY 2018

[12] M. Sung and J. Xu, “IP traceback-based intelligent packet filtering:
A novel technique for defending against Internet DDoS attacks,” IEEE
Trans. Parallel Distrib. Syst., vol. 14, no. 9, pp. 861–872, Sep. 2003.

[13] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale IP traceback in high-speed
Internet: Practical techniques and theoretical foundation,” in Proc. IEEE
Symp. Secur. Privacy, May 2004, pp. 115–129.

[14] Y.-S. Choi, D.-I. Seo, S.-W. Sohn, and S.-H. Lee, “Network-based
real-time connection traceback system (NRCTS) with packet marking
technology,” in Proc. Int. Conf. Comput. Sci. Appl. (ICCSA), Montreal,
QC, Canada, 2003, pp. 31–40.

[15] S. Mitropoulos, D. Patsos, and C. Douligeris, “Network forensics:
Towards a classification of traceback mechanisms,” in Proc. IEEE
Workshop 1st Int. Conf. Secur. Privacy Emerg. Areas Commun. Netw.,
Sep. 2005, pp. 9–16.

[16] I. Hamadeh and G. Kesidis, “A taxonomy of Internet traceback,” Int.
J. Secur. Netw., vol. 1, nos. 1–2, pp. 54–61, 2006.

[17] X. Wang, D. S. Reeves, S. F. Wu, and J. Yuill, “Sleepy watermark
tracing: An active network-based intrusion response framework,” in
Proc. 16th Annu. Working Conf. Inf. Secur. (IFIP/SEC), Paris, France,
2001, pp. 369–384.

[18] W. Mazurczyk, S. Wendzel, S. Zander, A. Houmansadr, and
K. Szczypiorski, Information Hiding in Communication Networks: Fun-
damentals, Mechanisms, Applications, and Countermeasures. Hoboken,
NJ, USA: Wiley, 2016.

[19] A. Iacovazzi and Y. Elovici, “Network flow watermarking: A survey,”
IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 512–530,
1st Quart., 2017.

[20] X. Wang and D. S. Reeves, “Robust correlation of encrypted attack
traffic through stepping stones by manipulation of interpacket delays,”
in Proc. 10th ACM Conf. Comput. Commun. Secur., 2003, pp. 20–29.

[21] P. Peng, P. Ning, D. S. Reeves, and X. Wang, “Active timing-based
correlation of perturbed traffic flows with chaff packets,” in Proc.
25th IEEE Int. Conf. Distrib. Comput. Syst. Workshops, Jun. 2005,
pp. 107–113.

[22] Y. J. Pyun, Y. H. Park, X. Wang, D. S. Reeves, and P. Ning, “Tracing
traffic through intermediate hosts that repacketize flows,” in Proc.
26th IEEE Int. Conf. Comput. Commun. (INFOCOM), May 2007,
pp. 634–642.

[23] A. Houmansadr, N. Kiyavash, and N. Borisov, “Rainbow: A robust and
invisible non-blind watermark for network flows,” in Proc. NDSS, 2009,
pp. 1–13.

[24] X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack on
low-latency anonymous communication systems,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2007, pp. 116–130.

[25] X. Gong, M. Rodrigues, and N. Kiyavash, “Invisible flow watermarks
for channels with dependent substitution and deletion errors,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2012,
pp. 1773–1776.

[26] A. Houmansadr and N. Borisov, “SWIRL: A scalable watermark to
detect correlated network flows,” in Proc. NDSS, 2011, pp. 1–15.

[27] A. Houmansadr and N. Borisov, “BotMosaic: Collaborative network
watermark for the detection of IRC-based botnets,” J. Syst. Softw.,
vol. 86, no. 3, pp. 707–715, 2013.

[28] J. Luo, X. Wang, and M. Yang, “An interval centroid based spread
spectrum watermarking scheme for multi-flow traceback,” J. Netw.
Comput. Appl., vol. 35, no. 1, pp. 60–71, 2012.

[29] X. Wang, J. Luo, and M. Yang, “A double interval centroid-based water-
mark for network flow traceback,” in Proc. IEEE 14th Int. Conf. Comput.
Supported Cooperat. Work Design (CSCWD), Apr. 2010, pp. 146–151.

[30] A. Zand, G. Vigna, R. Kemmerer, and C. Kruegel, “Rippler: Delay
injection for service dependency detection,” in Proc. IEEE INFOCOM,
Apr./May 2014, pp. 2157–2165.

[31] D. Ramsbrock, X. Wang, and X. Jiang, “A first step towards live
botmaster traceback,” in Proc. 11th Int. Symp. Recent Adv. Intrusion
Detection (RAID), Cambridge, MA, USA, 2008, pp. 59–77.

[32] Z. Ling, X. Fu, W. Jia, W. Yu, D. Xuan, and J. Luo, “Novel packet size-
based covert channel attacks against anonymizer,” IEEE Trans. Comput.,
vol. 62, no. 12, pp. 2411–2426, Dec. 2013.

[33] D. Arp, F. Yamaguchi, and K. Rieck, “Torben: A practical side-channel
attack for deanonymizing Tor communication,” in Proc. 10th ACM Symp.
Inf., Comput. Commun. Secur., 2015, pp. 597–602.

[34] E. Chan-Tin, J. Shin, and J. Yu, “Revisiting circuit clogging attacks
on Tor,” in Proc. IEEE 8th Int. Conf. Availability, Rel. Secur. (ARES),
Sep. 2013, pp. 131–140.

[35] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “DSSS-based flow
marking technique for invisible traceback,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2007, pp. 18–32.

[36] X. Gong, M. Rodrigues, and N. Kiyavash, “Invisible flow water-
marks for channels with dependent substitution, deletion, and bursty
insertion errors,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 11,
pp. 1850–1859, Nov. 2013.

[37] N. Kiyavash, A. Houmansadr, and N. Borisov, “Multi-flow attacks
against network flow watermarking schemes,” in Proc. USENIX Secur.
Symp., 2008, pp. 307–320.

[38] X. Luo, J. Zhang, R. Perdisci, and W. Lee, “On the secrecy of spread
spectrum flow watermarks,” in Proc. 15th Eur. Symp. Res. Comput.
Secur. (ESORICS), Athens, Greece, 2010, pp. 232–248

[39] X. Luo, P. Zhou, J. Zhang, R. Perdisci, W. Lee, and R. K. Chang,
“Exposing invisible timing-based traffic watermarks with
BACKLIT,” in Proc. ACM 27th Annu. Comput. Secur. Appl. Conf.,
2011, pp. 197–206.

[40] Z. Lin and N. Hopper, “New attacks on timing-based network flow
watermarks,” in Proc. USENIX Secur. Symp., 2012, pp. 381–396.

[41] W. Jia, F. P. Tso, Z. Ling, X. Fu, D. Xuan, and W. Yu, “Blind detection
of spread spectrum flow watermarks,” Secur. Commun. Netw., vol. 6,
no. 3, pp. 257–274, 2013.

[42] M. Edman and B. Yener, “On anonymity in an electronic society:
A survey of anonymous communication systems,” ACM Comput. Surv.,
vol. 42, no. 1, p. 5, 2009.

[43] H. A. Sanneck and G. Carle, “Framework model for packet loss
metrics based on loss runlengths,” Proc. SPIE, vol. 3969, pp. 177–187,
Dec. 1999.

[44] X. Yu, J. W. Modestino, and X. Tian, “The accuracy of Gilbert models
in predicting packet-loss statistics for a single-multiplexer network
model,” in Proc. IEEE 24th Annu. Joint Conf. Comput. Commun.
Soc. (INFOCOM) , vol. 4. Mar. 2005, pp. 2602–2612.

[45] Z. Ling, J. Luo, K. Wu, and X. Fu, “Protocol-level hidden server
discovery,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 1043–1051.

[46] X. Zhang, S. F. Wu, Z. Fu, and T.-L. Wu, “Malicious packet dropping:
How it might impact the TCP performance and how we can detect it,”
in Proc. Int. Conf. IEEE Netw. Protocols, Nov. 2000, pp. 263–272.

[47] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall, “Detecting
intentional packet drops on the Internet via TCP/IP side channels,” in
Proc. 15th Int. Conf. Passive Active Meas. (PAM), Los Angeles, CA,
USA, 2014, pp. 109–118.

[48] Windows Proxifier. Accessed: Sep. 1, 2016. [Online]. Available:
https://www.proxifier.com/

[49] Torifier. Accessed: Sep. 1, 2016. [Online]. Available: http://www.torifier.
com/

[50] Windows Packet Divert (WinDivert). Accessed: Sep. 1, 2016. [Online].
Available: https://reqrypt.org/windivert.html

[51] Netlimiter. Accessed: Sep. 1, 2016. [Online]. Available: https://www.
netlimiter.com/

[52] S. Schulz, V. Varadharajan, and A.-R. Sadeghi, “The silence of the
LANs: Efficient leakage resilience for IPsec VPNs,” IEEE Trans. Inf.
Forensics Security, vol. 9, no. 2, pp. 221–232, Feb. 2014.

Alfonso Iacovazzi, photograph and biography not available at the time of
publication.

Sanat Sarda, photograph and biography not available at the time of
publication.

Daniel Frassinelli, photograph and biography not available at the time of
publication.

Yuval Elovici, photograph and biography not available at the time of
publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


