
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 12, DECEMBER 2017 2845

A New Multimodal Approach for Password Strength
Estimation—Part II: Experimental Evaluation

Javier Galbally, Iwen Coisel, and Ignacio Sanchez

Abstract— A novel multimodal method for the estimation of
password strength was presented in Part I of this series of
two papers. In this paper, the experimental framework used for
the evaluation of the novel approach is described. The method
is evaluated following a reproducible protocol, which includes
a three-dimensional approach: 1) deterministic assessment; 2)
statistical assessment; and 3) third parties assessment (thanks to
the availability upon request of an executable application that
integrates the multimodal meter). The key experiment of the
protocol compares, from a probabilistic point of view, the strength
distributions assigned to passwords broken with increasingly
complex attacking approaches, following a common strategy in a
typical password cracking session. The experimental evaluation
is carried out not only for the new meter, but also for other
strength estimators from the state of the art, comparing their
overall performance. In addition to its consistent results, the
proposed method is highly flexible and can be adjusted to specific
environments or to a certain password policy. Furthermore, it can
also evolve over time in order to naturally adjust to new password
selection trends followed by users.

Index Terms— Password security, strength meters, password
evaluation, multimodality, password policies.

I. INTRODUCTION

IN PART I of this series of two papers [1], we introduced
the theoretical framework of a novel multimodal method for

the estimation of password strength. The new meter presents
two key by-design characteristics:

• Multimodality. The main rationale behind the develop-
ment of a multimodal approach to evaluate password
strength is that: by exploiting the advantages of different
individual techniques through their fusion, it will be pos-
sible to achieve one unique multimodal measure which
overcomes many of their weaknesses.

• Flexibility. Password strength estimation algorithms
should not be immutable. On the contrary, they should be
able to adapt to different application-specific envi-
ronments depending on the language used, hashing
algorithm, alphabet, etc. Following this principle, the
individual modules that conform the overall multimodal
method have been developed to be flexible. They present
a number of parameters that should be fixed on a case
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by case basis during an initial training phase. This way,
the method can be adapted to provide more accurate
strength estimations for each particular scenario (e.g.,
English based application VS Russian based application).

The present Part II of this series of two works, focuses on:
1) the description of the experimental framework followed to
evaluate the novel strength estimator presented in Part I; 2) the
analysis of the results obtained compared to other state of the
art methods.

One of the main challenges to be faced in the development
of password strength meters is the assessment of their perfor-
mance. Unlike other problems related to the field of machine-
learning, in this case there is no ground-truth data with which
to compare the results of new meters, as the strength of a
password is an intrinsically subjective value. For the sake
of argument, let’s assume two different strength meters that
assign to password “Pet52!” a score of 2 and 4 respectively,
both in a scale from 0 to 10. The question to be addressed is:
which of the two is more accurate? There is not a unique
valid answer to that question since there is not a “universally
correct” strength value that can serve as validation measure.
However, even if a fully objective evaluation seems difficult,
common sense dictates that if a password like “maria” is given
a higher strength than “Swy6oi28rE?!Hf”, the corresponding
meter is not a good estimator.

Given the difficulties posed by the lack of ground-truth
data for the objective assessment of password strength meters,
there is still no standard methodology on how the problem
should be approached. In the literature, just a few works
have addressed the challenge of comparing the performance of
several strength estimators in order to determine their strengths
and shortcomings [2]–[8].

In the present paper we build upon the lessons learned
from those previous valuable works, in order to present a new
full evaluation protocol inspired in the principles used for the
assessment of algorithms related to machine-learning (such as
the Markov Chains). This way, the new multimodal method is
trained and tested on different datasets, both from a: 1) Sta-
tistical perspective: to determine the correlation between the
robustness of passwords to attacks of increasing complexity
and the strength assigned by different meters; 2) Deterministic
perspective: to establish the consistency of strength estima-
tion methods on specific passwords. The evaluation protocol
includes a new overall assessment score for strength meters
that allows comparing in a fast and quantitative manner
different algorithms.

Following the previous discussion, the contributions of this
Part II may be summarized as follows: 1) the new assessment
protocol followed to assess the proposed technique. It has
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Fig. 1. Diagram of the general evaluation protocol followed to assess the multimodal strength meter introduced in [1].

been designed to produce objective comparable statistical
results and may be regarded as a contribution to the field of
password strength meters performance evaluation. 2) The new
multimodal strength meter has shown its reliability as strength
estimator over other existing state of the art algorithms. This
has permitted to draw some useful conclusions regarding the
selection of strong passwords and the design of password poli-
cies. 3) The novel multimodal algorithm has been integrated
into an application that can be employed by users, providers
and researchers to test the strength of passwords.1

The rest of the article is structured as follows. The general
experimental protocol is presented in Sect. II. Then, each of the
three phases comprised in the protocol (training, test and eval-
uation by third parties) are described in Sects. III, IV and V.
Sect. VI contains the results of the two main experiments
carried out in the test phase: experiment 1 in Sect. VI-A where
the multimodal method is evaluated from a statistical point of
view; and experiment 2 consisting of a deterministic analysis
in Sect. VI-B. Sect. VII discusses how the new multimodal
meter can drive users in real applications to select stronger
passwords and how it can help to build new password policies.
Finally, conclusions and a quick glance into the future are
given in Sect. VIII.

II. EXPERIMENTAL PROTOCOL

Following the argumentation given in the introduction,
we have designed an experimental protocol to assess, from a
general perspective, if the strength values assigned to pass-
words by the novel multimodal method follow a “sensible
trend”, that is, passwords that are easier to break are given
on average lower scores and passwords difficult to break are
given in general higher scores. As shown in Fig. 1, the protocol
is divided in two main successive phases: training and test.

• Phase 1: Training. Used to fix the different para-
meters and transition matrices that define each of the

1Please contact the authors for distribution details.

modules that conform the complete multimodal method,
as described in [1] (see the left panel in Fig. 1).

The test phase is, in turn, divided in two complementary
initiatives, so that the specific version of the model trained in
phase 1 is evaluated: A) based on two experiments described
in the present article, and B) in the future through the test of
third parties (see the right panel in Fig. 1).

• Phase 2-A: Experimental evaluation. Once the whole
algorithm has been trained, it is validated following
a general framework composed of two experiments:
1) Experiment 1 - Statistical (multimodal): analysis, from
a probabilistic perspective, of the strength assigned by the
proposed multimodal method to different sets of pass-
words, according to their resilience to typical guessing
attacks; 2) Experiment 2 - Deterministic (multimodal):
multimodal strength computation of some particular pass-
word examples.
The performance of the new multimodal algorithm is also
compared in both experiments to that of different meters
from the state of the art.

• Phase 2-B: Third parties evaluation. As explained
above, determining which of two strength meters is more
accurate is a very difficult problem. For this reason,
as a further evaluation strategy, the proposed multi-
modal strength estimator has been integrated into the
closed application Multi-PaStMe (Multimodal - Password
Strength Meter). This way, other researchers and devel-
opers can benefit from it in order to integrate it in their
systems, or compare the results of the new method to their
own password strength meters, in an on-going evaluation
process.

Please be aware that, as will be explained below, the multi-
modal method contains algorithms fully related to the machine
learning field. Therefore, should they be trained and tested
using the exact same sets of passwords, the results would
present a significant positive bias. To avoid such a situation,
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the two main phases, training and test, are carried out using
independent password datasets (as indicated in Fig. 1). In order
to ensure such independency, all test datasets contain pass-
words that were leaked after the publication of the training
data (please see Sects. III and IV for further details).

However, using different datasets for training and test, does
not mean that the nature of the data included in those datasets
should be different. On the contrary, as in any other machine
learning problem, if the training and test data are not of the
same type, the final performance of the method will consider-
ably worsen. As an easy example, if the multimodal strength
meter is trained on English passwords and tested on Russian
passwords written with the Cyrillic alphabet, the method will
simply not work. This way, the same general context has to
be defined both for the training and test data.

For the present article, the training and test phases have
been carried out considering a typical and broad operational
setting defined by: English-based application, not designed for
a specific community but thought for users with a generic pro-
file (e.g., online email), vulnerable to offline attacks, protected
with a common hashing algorithm like SHA-3. All the training
and test data used in the experiments comply, to a large extent,
with this general setup.

The next sections describe the complete experimental pro-
tocol: 1) Training of the parameters that define the multimodal
method (Sect. III); 2) Description of the different experiments
that have been conducted to validate it (Sect. IV); 3) Imple-
mentation details of the Multi-PaStMe application for the
on-going third parties evaluation process (Sect. V).

III. PHASE 1: TRAINING

As was highlighted in Part I [1] and also in the introduction
of the present article, password strength is a highly application-
dependent value. For instance, the strength of a given password
can significantly vary depending on external factors such as:
1) the type of oracle disclosing the password (e.g., if offline
attacks against hash values are permitted or only remote access
with a limited number of guesses is possible); 2) the type of
hashing or encryption algorithm used (e.g., attacking MD5
hashes is significantly faster than attacking SHA-3 ones);
3) the language (e.g., in general, a Hungarian word in a
Spanish-based application will be a stronger password than
that same password in a Hungarian-based system, and vicev-
ersa); 4) background of the users and/or context of the appli-
cation where the password is being used (e.g., a password like
“PioletIce” may be stronger for a webmail online application
than for an online shop of mountain gear).

The multimodal method presented in Part I [1] can be
adapted during the training phase to estimate the strength of
passwords in very diverse contexts. To this end, the system
is divided into three major modules, each of them containing
two individual sub-modules (see the left panel in Fig. 1):

• Strength module 1: Trivial passwords. This module is
designed to detect the two basic attacks that will be
performed almost with all certainty at the beginning
of any password guessing session: 1) attacks based on
a list of the most used passwords and 2) brute-force
attacks. To this end it contains, “Strength module 1A:

Password-based” (which outputs the strength score SD)
and “Strength Module 1B: Heuristic-based” (which out-
puts the strength score SH ).

• Strength module 2: Non-Trivial passwords. This
module is designed to cope with non-trivial passwords
that are robust to attacks based on lists of common
passwords or to brute-force attacks. Strength values are
assigned according to the likelihood that a person would
choose a given password. To this end, it includes two
novel algorithms based on Markov Chains: 1) “Mod-
ule 2A: Adaptive Memory Markov Chain” (which outputs
the strength score SAM ) and 2) “Module 2B: Hierarchical
Markov Chain” (which outputs the strength score SN ).

• Normalization and fusion module. The final objective of
these two sub-modules is to combine the scores (SD , SH ,
SAM and SN ) provided by the four individual strength
estimation algorithms presented above, into the final
unique multimodal score SMU LT I . To do this, techniques
from the field of information fusion are used.

The process to adapt the multimodal meter to the specifici-
ties of a given application is accomplished by fixing (i.e., train-
ing) the parameters that define each of the four individual
password strength modules, as well as the normalization and
fusion modules. These parameters were summarized at the end
of the sections dedicated to the description of each particular
module in Part I. As such, we refer the interested reader to
that Part I for a detailed explanation of the algorithms [1].

A. Training of Module 1: Trivial Passwords
This section describes the process followed for the selection

of the parameters for the two modules used for the detection
of trivial passwords within the multimodal meter.

1) Module 1A: Password-Based: Module 1A takes as input
a password and gives as output a strength score SD . This
module is designed to detect attacks carried out using lists of
popular passwords. The strength score SD takes either value 0,
for passwords present in a blacklist, or 10, for passwords
resistant to the attacks (i.e., not present in the blacklist).

The input parameter that has to be defined for this module
is a blacklist of passwords List pwd . Three linked parameters
were taken into account to take a decision on this list:
1) previous work has shown that a blacklist with as few as
1000 banned passwords is able to reduce the percentage of
cracked passwords over 50 000 guesses from 25% to 20% [3].
2) Large blacklists may be regarded as a big nuisance by end
users [9]. 3) It should not be forgotten that the module is
just one part of an overall multimodal strength meter. This
way, it is thought to detect only the passwords that can be
considered as “the worst of the worst”. The final purpose
is that such very reduced set of passwords can be rated as
trivial or very weak by the global algorithm. The rest of
passwords potentially present in a larger list will be detected
by the other modules in the algorithm and rated as weak.

Given those premises, the blacklist considered for this
module is formed by all different passwords that appear in:
the list of 500 worst passwords published in 2008 [10], list
of 370 passwords banned by twitter [11], and the list with the
100 most common passwords in the RockYou dataset [12].
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Even considering the three previous requirements, the selec-
tion of one particular blacklist is a subjective decision. The
reader should bear in mind that List pwd is just an input
parameter of the model that can be modified according to the
specific requirements of a given application (e.g., the blacklist
for a French speaking on-line service will most likely differ
from the one defined here, or a longer/shorter list could also
be used).

2) Module 1B: Heuristic-Based: Module 1B takes as input
a password and gives as output a strength score SH . Its
objective is to detect passwords that are vulnerable to brute-
force attacks. The strength score SH takes either value 0, for
brute-forceable passwords, or 10, for passwords resistent to
the attacks.

This module is totally application-dependent. In order to
select the minimum length values of brute-forceable passwords
for a given application, the key parameters that should be
taken into account are (see [1] for further details): 1) amount
of time that the theoretic brute-force attack will be running;
2) on-line or off-line attack; 3) salting; 4) hashing method;
5) number of characters contained in the alphabet from which
passwords are selected.

Following previous works performing password attacks
where a number of guesses between 1012 and 1014 was
executed [13], [14], for this module we have considered as
brute-forceable passwords those that may be broken in roughly
1013 guesses.

For a given alphabet with N symbols, there are N L pass-
words of length L. This way, the minimum password length is
defined by: 1013 = N Lmin . Given this equation, the next values
have been defined for the minimum length of passwords in
module 1B:

• Passwords using all three character types (i.e., lower case,
upper case, digits and special characters). The alphabet
contains N = 94 characters: Lmin = 7.

• Passwords formed by only lower case letters, only upper
case letters, or only special characters. The alphabet
contains (at least) N = 26 characters: Lmin = 9.

• For only-digit passwords, the alphabet contains N =
10 characters: Lmin = 12.

• For any pair-wise combination of the previous character
classes the alphabet contains (at least) N = 36 characters:
Lmin = 8.

This means that passwords longer than Lmin for each of
the possible alphabets, are considered to be resistant to brute
force guessing attacks.

B. Training of Module 2: Non-Trivial Passwords

The multimodal meter also integrates two submodules
designed to estimate the strength of non-trivial passwords.
These submodules are based on Markov Chains (i.e., algo-
rithms related to machine learning) defined by transition
probability matrices that require a lot of data to be reliably
estimated. This way, both submodules have been trained
using a publicly available dataset of 122 million English-
based passwords released by KoreLogic in 2011 to support
password related research. In the dataset, 83.5 million are

unique passwords [15], [16]. This is, to the best of our
knowledge, one of the largest password sets distributed to the
password research community so far. For further details and
statistics regarding the composition of the training dataset and
of the structure of the passwords contained inside we refer the
reader to Annex A, provided as accompanying material of the
present article.

The dataset is the result of different data breaches that led
to the release of hashes computed from passwords chosen
by real users. Such data breaches are in general the result
of vulnerabilities in the password storage system of a given
company victim of a sophisticated hacking attack, and not
of the strength of individual passwords selected by the users.
However, once the password hashes are leaked, their robust-
ness is put to test through off-line guessing attacks that are
able to break the hashes coming from weak passwords that
are then made available in plain text. This is also the origin
of the three datasets used in the test phase (see IV). These
datasets of password hashes are made available for research
purposes with no link to any user information (e.g., real name,
user name, email address).

As mentioned above, among other parameters, the KoreL-
ogic password training set is essential to define the transition
matrices of the Markov Chains integrated in the multimodal
model.

1) Module 2A: Markov Chain With Adaptive Memory AMm:
This submodule takes as input a password and gives as output
a strength score SAM . This is a local model that searchers for
specific word-related patterns within passwords.

The main parameter to be fixed for the model is the
maximum memory size AMmax (see [1] for further details).
There is not a unique optimal value that may be computed in
a deterministic way for this parameter. Rather, its estimation
should be done heuristically on a case by case basis. To do so
it should be noticed that, essentially, the transition matrix T is
equivalent to an exhaustive combination table in a search space
defined by AMmax and N (i.e., all possible AMmax character
combinations taken from a pool of N characters are reflected in
the matrix). As the training data is limited, the larger AMmax :
1) the more zeros will populate the table; and 2) the fewer
number of observations that will be used to compute the
probability of non-zero occurrence sequences. In summary,
for a finite and limited set of training data, the larger AMmax ,
the lower the statistical reliability of the very sparse matrix T.

Therefore, two linked factors should be taken into account
in order to select AMmax : 1) Size of the training set: as a
general rule, larger training sets will allow reliably training
models defined by larger values of AMmax ; 2) Size of T: the
larger AMmax , the bigger the transition matrix T, eventually
requiring a very large storing capacity and also slowing down
the strength estimation process.

According to the trade-off that has to be reached between
generality of the model, size of the transition probabil-
ity matrix and accuracy, the maximum size of the mem-
ory, AMmax , is set to AMmax = 4. As mentioned above, this
value is highly dependent on the size of the training KoreLogic
dataset (i.e., 122 million passwords) and has been fixed by
setting a sparsity threshold of 90% for the transition matrix,
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that is, no more than 90% of the transitions are null. A null
transition is defined as any transition that has been observed
10 times or less.

In the case of a training set at least one order of magnitude
larger, a model with memory five could be considered for the
same sparsity threshold.

2) Module 2B: Hierarchical Markov Chain: It takes as input
a password and gives as output a strength score SN . This is a
global model that accurately represents the general structure
of human passwords.

The higher-order elements considered in the model belong
to one of three classes: 1) letter-class: formed by letter sub-
sequences of sizes 1 to lcmax ; 2) digit-class: formed by digit
subsequences of sizes 1 to dcmax ; 3) special characters-class:
formed by special characters subsequences of size 1 to scmax .

The maximum lengths for each of the subsequences classes
(lcmax , dcmax , and scmax ) were fixed according to their
probability of occurrence in the KoreLogic dataset. Only
subsequence lengths with a probability of occurrence higher
than 0.1% were considered. Their final values are: lcmax = 20,
dcmax = 12, and scmax = 6. Therefore, the model is
composed by a total SS = 38 higher-order subsequences.

The maximum number of subsequences that can form a
password, Pmax , so that it can be represented following the
layered Markov Chain, was also determined according to the
length distribution of the passwords in the KoreLogic dataset.
It is set to Pmax = 15, as passwords formed by a higher
number of subsequences represent less than 0.01% of the total
passwords in the training dataset (not enough data to reliably
estimate their probability of occurrence).

C. Training of the Normalization and Fusion Module

The strength scores obtained from the previous four indi-
vidual modules (i.e., SD , SH , SAM and SN ) are very het-
erogeneous and should not be directly merged into a single
multimodal value. Prior to their combination in the fusion
sub-module, they need to be transformed into one common
domain. This is accomplished through a process known as
score normalization, which plays a very important role in the
design of any score level fusion scheme.

The normalization submodule uses the tanh estimators in
order to transform the scores from the different individual
strength modules into the common range [0,10], prior to
their fusion. The fusion sub-module, in turn, is based on the
weighted sum to combine the normalized scores.

For the normalization submodule, the strength of the pass-
words in the KoreLogic dataset was computed according to
the Markov Chain with Adaptive Memory and the Hierarchical
Markov Chain. Those two sets of strength scores were used
to determine the normalization parameters μG H and σG H for
each of the two Markov-based algorithms.

On the other hand, the fusion weights to be used in the
weighted sum were selected so as to: 1) give very low strength
to trivial passwords; 2) have a balanced input from the two
Markov-based models in the case of non-trivial passwords.
This way, two different sets of weight values [wT , wAM , wN ]
are defined depending on the output of the two trivial password
detectors (i.e., password-based and heuristic-based modules):

• [wT , wAM , wN ] = [0.9, 0.05, 0.05] if SD = 0 or SH = 0.
• [wT , wAM , wN ] = [0, 0.5, 0.5] if SD = 10 and SH = 10.

With these weight values, the strength of trivial passwords
is restricted to the range [0,1], while non-trivial passwords can
take any strength value in the range [0,10].

IV. PHASE 2-A: EXPERIMENTAL EVALUATION

The overall goal of the experimental evaluation phase is to
assess if the multimodal meter trained in phase 1 is consistent
in the assignment of strength values to passwords, that is, if it
gives lower scores to passwords that are more easily cracked
and higher scores to those that are harder to be broken (or that
are subjectively regarded as stronger by humans).

With this objective in mind, two different experiments have
been carried out:

• Experiment 1: Statistical evaluation of the multi-
modal meter. In this case, the goal of the experiment
is to analyse, from a statistical perspective, the strength
assigned by the multimodal method to sets of pass-
words with different levels of resistance to known attacks
of increasing complexity. For reference, the strength
estimation provided by the multimodal method is also
compared to different meters from the state of the art:
1) the de facto password strength standard proposed by
NIST [17]; 2) three different meters used by well-known
large internet service providers such as Yahoo, Gmail and
Dropbox. These last three meters are used as implemented
in the publicly available PARS2 application [18]. Further
details about the implementation of this first statistical
experiment are given below.

• Experiment 2: Deterministic evaluation of the mul-
timodal meter. The statistical evaluation of the model
carried out in experiment 1 follows a strict methodology
and therefore may be understood as a consistent and
general assessment. However, it fails to present factual
results for individual passwords which can also be useful
to illustrate the potential of the method. Following this
reasoning, the goal of this experiment is to analyse the
strength assigned by the proposed multimodal method
to some specific password examples and to compare
them to the same four meters from the state of the art
considered in the previous experiment. This experiment
should not be regarded in itself as a rigorous evaluation
test (as it is based only on very few particular exam-
ples), but as a complement to the results presented in
experiment 1.

A. Experiment 1: Test Datasets
The test passwords used in the statistical experiment

(i.e., experiment 1) come from three data breaches that
occurred after the publication of the KoreLogic dataset used
for training. In particular, the password datasets used in the
present work for testing have been regularly used in the
literature for the development and analysis of studies related
to password strength [18]–[20]:

2http://www2.ece.gatech.edu/cap/PARS/
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• Gamigo dataset (data breach 2012): Gamigo is an online
community of video-games players. It contains 7 million
English-based plain-text passwords, 99.6% of which are
unique. It shares 11.03% of its passwords with the
training dataset.

• Linkedin dataset (data breach 2012): Linkedin is an online
job-hunting platform. It contains 5.6 million English-
based plain-text passwords, 90.8% of which are unique.
It shares 14.85% of its passwords with the training
dataset.

• Yahoo dataset (data breach 2014): Yahoo is a gen-
eral online email service. It contains 740 000 English-
based plain-text passwords, 77.3% of which are unique.
It shares 26.56% with the training dataset.

For further details and statistics regarding the com-
position of the test datasets and of the structure of
the passwords contained inside we refer the reader to
Annex A, provided as accompanying material of the present
article.

These three datasets have been chosen because, although all
of them contain mainly English-based passwords, they come
from applications that offer very different online services. This
way, the profile of users, and therefore also the structure and
strength of the passwords chosen, can be expected to differ
to some extent. In particular, it is reasonable to assume that:
Gamigo will contain the strongest passwords since gamers are
in general aware of the best practices to select good passwords;
Linkedin is a general platform where users introduce some
potentially sensitive data, therefore, they may select, on aver-
age, stronger passwords to protect their accounts than in a very
broad platform like Yahoo. This initial general assumption
is supported by the statistics given in Annex A and also
corroborated by the results obtained in the guessing session
performed during the evaluation of the multimodal strength
meter (see the next subsections and Table II).

It is important to highlight that, as specified above, the test
datasets are partially included in the KoreLogic dataset used in
the training phase (see Sect. III). In general, good practices in
machine learning problems advise against this situation. The
origin of such sensitive rule is that machine learning evaluation
techniques try to reflect the reality of a given problem. In most
cases, it is not rational or even possible that a sample used for
training will later be processed by the algorithm during its
regular operation. However, the case of passwords is a very
particular one. It is a known fact that most available datasets
share some passwords as a result of the human tendency to
repeat its password selection [21]. Filtering out those common
passwords would mean to artificially modify what happens
in the real world, which is, in fact, what machine learning
evaluation principles try to model. In that case, results would
be negatively biased. Of course, on the other side of the
spectrum, if the overlap between the training and the test
data is too high, results would be equally unreliable. As such,
a balance has to be achieved so that the percentage of common
passwords shared by the training and test datasets reflects what
could be expected in the real world. Although it is difficult to
exactly determine such a balance, for the present work three
different test datasets have been selected with a level of overlap

that varies between 10% and 25%. An important characteristic
to be taken into account is that all the data breaches that
led to these three datasets were produced after the training
dataset was released. Therefore, it is reasonable to assume
that any possible overlap between them is the result of the
natural human behaviour in password selection.

B. Experiment 1: Guessing Session
During experiment 1, the passwords contained in the three

test datasets mentioned above have been grouped into different
clusters depending on their resistance to attacks of increasing
complexity. The clustering process has been designed to mimic
a typical password guessing session such as the ones described
in [22] and [23], where an attacker has off-line access to hash
values corresponding to passwords. In such guessing sessions,
the attacker attempts to sequentially retrieve the passwords
starting by the most straightforward attacks and gradually
moving towards the more complex ones. This means that the
first attacks to be carried out are those that have traditionally
shown a higher success rate measured in terms of passwords
cracked per given number of attempts. These initial attacks are
very fast retrieving passwords at the beginning but also become
unsuccessful soon. The last attacks to be implemented are the
most general ones, that is, those that are capable of cracking
new passwords that were resistant to the previous cracking
techniques but that, in turn, also generate many more wrong
guesses which makes them less efficient. Such a password
guessing strategy has even been implemented in automatic
tools that sequentially launch the most efficient attack as the
number of guesses increases [24], [25].

In particular, the guessing session performed for the present
work is composed of three sequential steps, each of them
comprising a category of attacks more complex than the
previous step. This process divides each test dataset into four
clusters of passwords, one for each set of passwords broken in
every step of the guessing session and the final one containing
the passwords that have not been retrieved by any of the
attacks. The clusters have no overlapping as attacks have been
applied in a successive manner, that is, each attack is launched
only against the passwords not recovered by the previous
attack/s.

Once each of the three test datasets has been divided into
the four password clusters, the strength of each password is
computed in order to analyse if, from a statistical point of
view the strength assigned by different meters reflects the
complexity of the attack that recovered them. The rationale
behind such assessment approach is that a good password
strength meter should correctly reflect the resistance of a
password against actual password guessing attacks.

As a graphical aid, a general diagram of the clustering
protocol followed is given in Fig. 2, where it can be seen
that the three steps that compose the guessing session cor-
respond to a specific category of known common attacks:
1) Step 1: Contains attacks that perform basic exhaustive
searches using different combinations of alphabets and lengths;
2) Step 2: Consists of standard dictionary attacks without rules;
3) Step 3: Encloses more complex dictionary attacks using
word mangling rules.
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Fig. 2. Diagram of the process followed in Experiment 1 of the test phase, for the statistical assessment of the multimodal strength meter.

Please note that the objective of the experiment is to
simulate a plausible password guessing session with some
realistic typical attacks, in order to analyse the strength of the
passwords broken at each step. We are aware that other types
of attacks not considered in this experiment could have been
included. However, we do feel that the set of attacks executed
can be seen as a good baseline example of an illustrative
password guessing session, and that they can therefore serve
their purpose: determine if the proposed multimodal meter
assigns meaningful strength values to passwords.

In the following subsections we give the specific imple-
mentation details of the attacks carried out in the three steps
that conform the password guessing session. Prior to that,
we present here some general characteristics common to the
whole guessing session:

• Number of guesses (NoG). Following previous works
simulating guessing sessions [13], [14], where a num-
ber of guesses between 1012 and 1014 was performed,
a limit in the range of 1013 guesses was set for the
attacks. This means that, for each of the three steps in
the guessing session (i.e., brute-force attacks, dictionary
attacks and dictionary with rules attacks), a configuration
of the attacks is chosen so that the total sum of all
guesses performed in that step falls within the vicinity
of NoGT = 1013 guesses.

• Hardware: The password guessing session was per-
formed on a platform of common hardware: Intel Xeon
E5-2670 PC running under Ubuntu 14.04 with two AMD

Radeon R9 290 cards. Under this specific implementa-
tion, considering SHA-3 hashing and an off-line attack,
it takes roughly one day to perform the estimated limit
of NoGT = 1013 guesses.
Please consider that this attacking time (one day) is
only a theoretical laboratory exercise for the purpose
of the present work. In a practical system, this time
can be largely increased by a service provider should
he follow good password practices like using a slower
hashing function or monitoring data breaches and forcing
password resets if a breach is detected. In that case,
a much lower number of guesses for the attacks would
be feasible (resulting in much fewer cracked passwords).

• Software: All the attacks have been carried out using the
John-the-Ripper open source software [25].

1) Step 1: Exhaustive Search Attacks: The first step of
the sequential guessing process is composed of a series of
exhaustive search attacks, also known as brute-force attacks,
using the alphabets and password lengths specified in Table I.
Table I should be interpreted as follows: taking for instance
the first row, the corresponding attack generates as number of
guesses NoG all possible combinations up to length L = 11
that can be produced with the alphabet of N = 10 digits,
that is, NoG = N L . An analogue interpretation is valid for
the remaining rows.

The length values for each of the alphabets are selected in
order to comply with the approximate limit of NoGT = 1013

guesses fixed for each step of the attacks (see introduction
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TABLE I

ALPHABETS AND MAXIMUM PASSWORD LENGTH CONSIDERED IN THE
SET OF BRUTE-FORCE ATTACKS CARRIED OUT AS PART OF THE

FIRST STEP OF THE PASSWORD GUESSING SESSION THAT WAS

CONDUCTED DURING THE STATISTICAL EVALUATION OF

THE MULTIMODAL STRENGTH METER. THE LAST
COLUMN INDICATES THE NUMBER OF GUESSES

(NoG ) CARRIED OUT IN EACH OF THE ATTACKS

to Sect. IV). Adding up the last column in Table I, the total
number of guesses performed in this step 1 of the guessing
session is 8.2 × 1012.

It is important to note that, since the lengths shown
in Table I for brute-forceable passwords coincide with the
parameters selected in the training phase for module 1B
(i.e., heuristic-based), the multimodal meter will be highly
efficient in the detection of passwords vulnerable to exhaustive
search attacks. If this was not the case, some trivial passwords
would be given a higher strength than expected or, the other
way around, some strong passwords a lower score. Therefore,
in order to have a good detection rate of passwords that can be
guessed using these attacks, it is very important to select the
appropriate minimum length parameters in module 1B for each
particular application (i.e., taking into account parameters such
as: time considered for a brute-force attack, hashing method,
salting, on-line/off-line attacks, etc).

2) Step 2: Dictionary Attacks Without Rules: The second
step of the guessing session is based on the use of plain
wordlists. This process is also known as dictionary attack.
Two wordlists are used for this step, each of them containing
a larger number of guesses.

• Attack 2.A: Rockyou wordlist (basic wordlist). It is a very
well known dataset used in many password related works
containing 32 million unique passwords.

• Attack 2.B: Crackstation wordlist (extended wordlist).
This wordlist contains passwords from different
datasets (none of the three test datasets used) as well
as every word from wikipedia and several well known
books from the Gutenberg Project. It is composed
of 150 million words (i.e., candidate passwords) [26].

This way, the total number of guesses generated in this
step 2 of the guessing session is 1.82 × 108 (total number
of words contained in both wordlists).

3) Step 3: Dictionary Attacks With Rules: In this step,
a dictionary attack is again applied using several wordlists
but this time combined with word mangling rules that modify
each candidate password in a predefined way (e.g. append a
number or a date at the end, capitalizing letters, etc.) Each rule
increases the number of candidates to be evaluated, sometimes
drastically, therefore increasing the overall complexity and
length (i.e., number of guesses) of the attack. To keep the

TABLE II

PERCENTAGE OF BROKEN PASSWORDS FOR THE THREE EVALUATION
DATASETS IN EACH OF THE THREE STEPS (I.E., S1, S2 AND S3) OF THE

GUESSING SESSION DESCRIBED IN SECT. IV. THE LAST COLUMN

SHOWS THE PERCENTAGE OF NON-BROKEN PASSWORDS

process within the approximate limit of guesses set for the
different steps in the guessing session, NoGT = 1013, it was
necessary to adapt the size of the wordlist to the complexity
of the rule set (i.e., more complex rule sets are combined with
smaller wordlists).

• Attack 3.A: Extended wordlist with basic set of rules.
This attack uses the basic set of rules provided with
the tool John-the-Ripper combined with the Crackstation
wordlist. This leads to a total 7.9 × 1012 guesses.

• Attack 3.B: Reduced wordlist with full set of rules. This
attack uses the full set of rules defined in the Jumbo
version which contains a community extended version of
the John-the-Ripper basic set of rules. The wordlist used
in this step is the one included in the John-the-Ripper
tool that contains 3,500 passwords. This leads to a total
2.1 × 1013 guesses.

• Attack 3.C: Medium-size wordlist with extended set of
rules. This attack uses the advanced set of rules of
KoreLogic [27] with a wordlist significantly larger than
the very reduced one used in attack 3.B. In order to
perform this attack we used the wordlist provided by the
John-the-Ripper community composed of 450 000 unique
passwords. This leads to a total 1.1 × 1012 guesses.

Therefore, the total number of guesses performed in step 3
of the guessing session is 3 × 1013.

As explained above, the three steps were conducted in a
sequential manner, that is, each attack was only carried out
on the passwords from the test datasets not retrieved by the
previous attacks. This way, the test sets are divided into three
subsets: passwords broken in step 1, passwords broken in
step 2 and passwords broken in step 3. Finally, the fourth
set of passwords comprises those passwords that were not
retrieved during any of the three steps of the guessing session
described above. The percentage of passwords contained in
each of the four clusters for the three test datasets is given
in Table II. These results confirm the hypothesis made at the
beginning that the three databases clearly contain passwords
with different levels of strength: Gamigo contains strong
passwords, Linkedin average ones and Yahoo weak ones.

V. PHASE 2-B: THIRD PARTIES EVALUATION

The set of tests described in the experimental evalua-
tion (phase 2-A, see Sect. IV) provide a realistic snapshot of
the capabilities of the proposed multimodal meter. However,
it is true that: 1) other test datasets and/or attacks could have
been carried out in experiment 1; and 2) other particular
password examples could have been chosen in experiment 2.
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The reader will understand that it is not feasible to cover here
all specific possibilities for those two experiments. Rather,
phase 2-A should be seen as an example of a general evalua-
tion framework that can be used to assess the performance of
strength meters.

In this regard, in order to facilitate the research community
the possibility to perform their own specific experiments,
the proposed multimodal password strength method has been
implemented in the executable application: Multimodal -
Password Strength Meter (Multi-PaStMe). Multi-PaStMe is
made available free-of-charge as a closed executable available
upon request. The application accepts as input: 1) Individual
passwords introduced through its graphical interface; in this
case their strength value is computed in real time and displayed
on the screen. 2) A list of passwords in a plain .txt file whose
path is provided through the graphical interface; in this case
the output is another plain .txt file with a two-column format:
password tab strength.

There are three main objectives for Multi-PaStMe, all of
them related to the creation of a third parties on-going eval-
uation process of the multimodal meter that can complement
the results already obtained in the experiments of phase 2-A
(see Sect.IV). The three goals may be summarized as follows:
1) Provide the interested reader with an easy tool to personally
assess the method by analyzing to what extent it produces
sensible strength estimations for specific password examples;
2) Provide researchers with a strength meter that can be used as
a baseline result with which to compare future developments in
the field (both from a deterministic and statistical perspective);
3) Provide application developers with an easily integrable tool
that can give useful real-time feedback to users regarding the
strength of their passwords.

As an estimation of its speed to be used in real applications,
the current version of Multi-PaStMe takes on average 0.02 sec-
onds to evaluate the strength of a password. This execution
time has been achieved on a standard Intel Xeon E5-2670 PC
running under Ubuntu 14.04.

As already mentioned in Sect. III, it is important to notice
that the multimodal method evaluated in this article is general
in the sense that it can be explicitly adjusted to better measure
the password strength in different application-specific environ-
ments. This adaptation process is carried out at the training
phase and depends on: 1) the values assigned to the different
parameters of each of the modules and 2) the dataset used
to train the transition matrices of the different Markov-based
models.

The application Multi-PaStMe contains the pre-trained ver-
sion of the method described in Sect. III. Therefore, it has
been adjusted to estimate the strength of passwords in a
quite generic application defined by the parameters: English-
based, not designed for a specific community but thought for
general users (e.g., online email), vulnerable to offline attacks,
relatively simple hashing algorithm such as SHA-3.

In the case that future research works would like to present
comparative results with respect to the proposed multimodal
meter, the authors may use the current version of Multi-
PaStMe to compute the multimodal strength values on their
own test datasets. However, please be aware that, if the

same dataset that was utilized for training (i.e., KoreLogic),
is considered during the assessment process, results may be
biased. Therefore, it is recommended that other password
datasets different from KoreLogic are employed for testing.
It is also recommended that the test datasets come from data
breaches that occurred after 2011 (year in which KoreLogic
was released) in order to avoid excessive overlap between the
training and test data (as explained in Sect. IV).

As part of future work, a trainable version of the application
will be generated so that, if required, it can be adapted to the
necessities of each user.

VI. RESULTS

This section presents and analyses the results of the two
experiments carried out in the test phase described in Sect. IV.

A. Experiment 1: Statistical Evaluation

As a first evaluation experiment, the multimodal strength
meter was computed for each of the four password sets in
which the three test datasets (i.e., Gamigo, Linkedin and
Yahoo) were divided following the 1-day password guessing
session described in Sect. IV.

In order to have a comparison between the new multi-
modal approach and other existing state of the art meters,
the password strength of the test datasets was also computed
according to: 1) the de facto standard specified by NIST [17],
which has been normalized to the range [0,10] using the same
procedure as the multimodal score to help the comparison
between the two (see the section describing the fusion module
in Part I [1] for further details on the normalization algo-
rithm); 2) three password-checkers used by well-known large
internet service providers such as Yahoo, Gmail and Drop-
box [28], that have been considered in previous works com-
paring the efficiency of different existing password strength
estimators [2], [4], [5]. These last three operational meters
have been computed according to their implementation in the
free available tool PARS, which integrates several individual
strength estimation algorithms [18]. While it is true that
the experimental comparison could have been extended to
other Markov-based strength estimation methods previously
proposed [4], [20], it was not possible to find any public
and working implementation of those algorithms, making
the experimental comparative task highly difficult. However,
a comparison from a theoretical standpoint can be found in
Part I [1]. For further discussion, we refer the interested reader
to Annex B, provided as accompanying material of the present
paper, where additional evaluation experiments of the two
individual Markov-based modules, 2A and 2B, are described.
In any case, we believe that the state of the art meters selected
for the present experimental evaluation are good illustrative
examples that can show the strengths and limitations of the
proposed multimodal meter.

The multimodal strength distributions of the password sets
is plotted on the first row of Fig. 3, whereas the strength
distributions corresponding to NIST, Yahoo, Gmail and Drop-
box appear on the remaining four rows. Each column in
the figure shows the strength distributions for the three test



2854 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 12, DECEMBER 2017

datasets. Please be aware that, while the multimodal meter and
NIST’s meter give as output real numbers between 0 and 10
(once normalized), the three commercial estimators produce
only a fixed number of discrete strength levels (e.g., for the
Dropbox meter these levels are: ‘very weak’, ‘weak’, ‘so-so’,
‘good’ and ‘strong’). For this reason, the multimodal meter and
NIST’s meter have been plotted as continuous distributions,
while the three commercial meters appear with bar-plots.

In principle, according to the level of difficulty to retrieve
the passwords, a good strength meter should assign on average:
1) the lowest score to passwords broken in the first step of the
guessing session (comprising the simplest brute-force attacks),
plotted in black in Fig. 3; 2) a higher score to passwords
broken during the second step (dictionary attacks without
rules), plotted with dark-grey in Fig. 3; 3) still a higher score
to passwords retrieved in the third step (consisting of the most
advanced attacks performed, dictionaries with rules), plotted
with light-grey in Fig. 3; 4) finally, the highest average strength
value should be given to non-broken passwords, plotted with
the lightest shade of grey in Fig. 3.

Therefore, in Fig. 3, a lighter shade of grey means that
the passwords were broken in a later step of the guessing
session, or, in other words, a lighter grey corresponds to
theoretically stronger passwords. As such, a consistent strength
meter should assign higher values to lighter-grey distributions.
As such, the way to interpret Fig. 3 is that a good meter should
comply with the general principle: “left-dark and right-light”.

The strength distributions depicted in Fig. 3 can already give
a general idea of the correspondence between the robustness of
passwords to attacks of increasing complexity and the strength
assigned by a given meter. However, as a way to complement
these plots and in order to present a more objective assess-
ment than the mere visual comparison, the level of overlap
between the strength distributions is computed according to the
Kullback-Leibler divergence, K L(P‖Q). This is a distance-
like meter that gives an estimation of the dissimilarity between
two statistical distributions P and Q [29]. The more separated
the distributions are, the higher the K-L value is, ranging
from 0, when the two distributions fully coincide, to infinite,
when there is no overlap between them.

Table III contains the K-L divergence between: A) the
distribution of non-broken passwords (i.e., distribution in the
lightest grey in Fig. 3), with respect to each of the three dis-
tributions corresponding to passwords broken in the guessing
session using B1) brute-force attacks (K L B F ), B2) dictionary
attacks (K L D) and B3) dictionary with rules attacks (K L D R).
The K-L divergence for the three commercial meters has been
obtained by assigning a numerical value in a linear scale from
0 to 10 to each of the discrete strength levels. For example,
in the case of the Dropbox meter, the numerical values
are: ‘very weak’=0, ‘weak’=2.5, ‘so-so’=5, ‘good’=7.5 and
‘strong’=10.

A good strength meter should comply with two conditions
regarding the three values of the Kullback Leibler divergence
presented above:

• Condition 1: As a general rule, the higher the K-L diver-
gence value between any of the broken passwords dis-
tributions and the non-broken passwords distribution,

TABLE III

RESULTS FROM EXPERIMENT 1 (SEE SECT. VI-A).
KULLBACK-LEIBLER DIVERGENCE BETWEEN THE STRENGTH

DISTRIBUTIONS OF NON-BROKEN PASSWORDS AND

PASSWORDS BROKEN BY BRUTE-FORCE ATTACKS (K L B F ),
DICTIONARY ATTACKS (K L D ) AND DICTIONARY+RULES

ATTACKS (K L D R ). THEREFORE, THESE VALUES CORRESPOND

TO THE DISSIMILARITY BETWEEN THE STRENGTH DISTRIBUTION

PLOTTED IN THE LIGHTEST GREY IN FIG. 3 (I.E., DISTRIBUTION
CORRESPONDING TO THE NON-BROKEN PASSWORDS) AND THE

OTHER THREE DISTRIBUTIONS. THE LAST COLUMN SHOWS

THE OVERALL GOODNESS SCORE (OGS) OBTAINED BY

THE FIVE CONSIDERED METERS

the better the corresponding strength meter. That is,
a good strength meter should present as high values as
possible for K L B F , K L D and K L D R .

• Condition 2: A good strength meter is expected to
present less overlap between the distribution of non-
broken passwords and the distribution of passwords bro-
ken with the simplest attack (i.e., brute-force), than with
the distribution of passwords retrieved by a complex
attack (i.e., dictionary with rules). Therefore, in Table III,
a decreasing value of the K-L divergence should be
observed from column 2 (passwords broken with the
brute-force attack) to column 3 (passwords broken using
the dictionary with rules attack). That is, a good strength
meter should comply with: K L B F > K L D > K L D R .

As a way to reflect the previous two conditions in just
one objective quantitative value, a new Overall Goodness
Score (OGS) is introduced as an assessment tool to easily
compare different strength meters. This overall score is com-
puted as: OGS = K L B F × K L D × K L D R . It is positive if
condition 2 holds and negative otherwise. The larger the value
of OGS, the better the strength meter. The rationale behind
the use of the product of all three individual K-L divergences,
and not their sum, is that, this way, to obtain a high overall
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Fig. 3. Results from experiment 1 (see Sect. VI-A). Strength distributions corresponding to the four password clusters in which the test datasets were divided
according to the robustness of passwords to attacks of increasing complexity (see Sect. IV for further details). The password strength distributions in the:
1) first row were computed according to the proposed multimodal meter; 2) second row correspond to the NIST recommendation; 3) third row were computed
using the meter from Yahoo; 4) fourth row according to the meter from Gmail; 5) fifth row according to the Dropbox meter. The three columns correspond
to a different test dataset: 1) first column corresponds to the Gamigo dataset; 2) second column to the Linkedin dataset; and 3) the third column to the Yahoo
dataset.

score, it is not enough to get one good individual score
(e.g., K L B F ) and two very low ones (e.g., K L D and K L D R),
as this would still lead to a low final score. This would be the
case, for instance, of a meter that is very good at detecting
brute-forceable passwords and bad at detecting passwords
vulnerable to dictionary-based attacks. Using the product to

compute OGS, forces the meter to show a good global
performance at detecting weak passwords, independently of
the attack.

The OGS is an attempt to summarize the global behavior
of a strength meter in just one value. However, as any
summarization exercise, it can miss certain strengths or flaws
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of the method, such as: if it is good at detecting a specific
type of vulnerable passwords or if it presents a tendency
to overestimate or underestimate the strength of passwords.
Therefore, the OGS should be understood as a quick and easy
comparative tool among meters, able to give a fair estimation
of which method has a better overall performance. However,
for a complete analysis of a given meter, the results that appear
in both Fig. 3 and Table III should also be presented.

Keeping in mind the general patterns for well-behaved
strength meters described above both for the distributions
and for the Kullback-Leibler divergence, we present in the
following an analysis of the results of the five different
methods considered in the experiment:

1) Multimodal Meter: Shown in row 1 of Fig. 3. The pro-
posed meter follows exactly the expected behaviour described
above for good strength estimators, that is, the four distribu-
tions are gradually plotted from left (lowest score, darkest grey
shade, weakest passwords) to right (higher score, lighter grey
shade, stronger passwords). This result shows that, the pass-
word robustness to attacks of increasing complexity and the
actual strength value assigned by the novel multimodal meter
are highly correlated for all three test datasets.

This result is confirmed by the K-L divergence values shown
in Table III, where it may be seen that for all three test
datasets, the condition K L B F > K L D > K L D R holds, while
maintaining the highest individual values of all five meters for
the three test datasets. This translates into the highest OGS.

As already mentioned in Sect. IV, it should be noticed that
the parameters selected for module 1B (i.e., designed to iden-
tify passwords vulnerable to brute-force attacks) are exactly
those considered for the brute-force attacks carried out in
the evaluation guessing session. Therefore, it could be rightly
argued that the very good results of the multimodal meter
in the detection of brute-forceable passwords (see K L B F in
Table III) are positively biased. While this is true, it should
also be noticed that the multimodal meter obtains as well the
best strength estimation of passwords broken by dictionary and
dictionary with rules attacks, in all the evaluation datasets (see
K L D and K L D R). This way, even if the detection of brute-
forceable passwords worsened, it is safe to assume that the
multimodal meter would still present the best overall behaviour
of all the tested meters.

2) Nist Meter: Shown in row 2 of Fig. 3. Following
NIST’s recommendation [17] (currently used in many practical
systems), only certain real strength values are possible, which
derives in “spiky” strength distributions difficult to interpret.
However, the K-L divergence values presented in Table III
show that, in spite of many justified criticisms [3], [30], the
NIST meter has, from a statistical perspective, a quite rea-
sonable behaviour: in all cases the K-L divergence decreases
from the easiest passwords to break (those vulnerable to
brute force attacks), to passwords retrieved by more complex
attacks (dictionary with rules).

From this statistical analysis, the main limitations that can
be pointed out are that the meter tends to: 1) on the one
hand, overestimate the strength of short weak passwords; 2) on
the other hand, underestimate the strength of robust pass-
words: the strength difference between passwords guessed by

dictionary-based attacks and non-broken passwords is almost
negligible. These observations reinforce the conclusions of
previous evaluations of the same meter [3].

Even if, from an overall statistical perspective, the NIST
meter is quite consistent, it still fails to produce logical
estimations for certain types of passwords, as will be shown
in experiment 2.

3) Yahoo Meter: Shown in row 3 of Fig. 3. This meter
considers the strength levels: ‘too short’, ‘weak’, ‘strong’ and
‘very strong’. It can be seen that the expected tendency “left-
dark and right-light” is not really clear. In fact, for the linkedin
DB it presents a negative OGS value, which means that the
expected condition K L B F > K L D > K L D R does not hold
as K L D < K L D R .

Its biggest limitation is that it presents a marked inclina-
tion to overestimate the strength of passwords vulnerable to
dictionary-based attacks, which are marked in a majority as
‘strong’ (third out of four strength levels).

4) Gmail Meter: Shown in row 4 of Fig. 3. This meter
considers the strength levels: ‘too short’, ‘weak’, ‘fair’, ‘good’
and ‘strong’. As can be seen looking at the K L D R column
in Table III, this estimator has still a larger inclination than
the yahoo meter to overestimate the strength of passwords
vulnerable to dictionary-based attacks (it presents significantly
lower K L D R values).

As can be seen in Table III, this meter is able to correctly
produce a very marked strength gap between brute-forceable
passwords and the rest. However, the strength difference
between passwords vulnerable to dictionary attacks, to dic-
tionary attacks with rules and non-broken passwords is hardly
noticeable, being all assigned a very high robustness (i.e., very
large overlap between distributions reflected in the values
of K L D and K L D R).

5) Dropbox Meter: Shown in row 5 of Fig. 3 and in the
last section of Table III. This meter considers the strength
levels: ‘very weak’, ‘weak’, ‘so-so’, ‘good’ and ‘great!’. From
all four state of the art meters, this is the most consistent
one, presenting a good correlation between the resistance of
passwords to attacks and their assigned strength.

As has been already highlighted, one of the advantages
of the new overall score OGS is that it allows comparing
in a fast and quantitative manner different strength meters.
Based on this score, the ranking of the five considered strength
estimators would be leaded by the multimodal meter (highest
OGS for all three evaluation datasets), followed by (in this
order): Dropbox, NIST, Gmail and Yahoo.

The new OGS should be regarded as a convenient, quick
and fairly reliable estimator of the global performance of
strength meters. However, it may fail to detect a specific
behaviour of a given method. For instance, a certain algorithm
A with a lower OGS than a different algorithm B may be,
however, more efficient at detecting a specific set of weak
passwords (e.g., brute-forceable). As such, it is advised to
accompany any ranking based on the OGS with complemen-
tary results like those shown in Fig. 3 and Table III.

As mentioned in the introduction of Sect. II, determining
which of two password strength estimators presents a better
performance is not an easy task. Except for very clear cases
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TABLE IV

RESULTS FROM EXPERIMENT 2 (SEE SECT. VI-B). SOME INDIVIDUAL PASSWORD EXAMPLES WITH THEIR STRENGTH SCORE COMPUTED WITH:
1) THE MULTIMODAL METER; 2) NIST METER; 3) YAHOO METER; 4) GMAIL METER; 5) DROPBOX METER. FOR THE THREE

COMMERCIAL CHECKERS, IN PARENTHESIS APPEARS THE RANK OF THE PASSWORD OUT OF THE TOTAL NUMBER OF

STRENGTH LEVELS CONSIDERED BY THAT PARTICULAR METER. ID IS JUST AN IDENTIFICATION NUMBER GIVEN

TO EACH PASSWORD FOR QUICK REFERENCE IN SECT. VI-B WHERE RESULTS ARE ANALYSED

(e.g., Gmail or Yahoo), it is difficult to give a clear categorical
answer. However, the experimental protocol followed in this
experiment 1, together with the method to report results based
on Fig. 3, its accompanying Table III and the overall goodness
score OGS, can be regarded as a good example of a general
standard methodology to perform such a comparison. This
evaluation methodology based on the correlation between the
strength scores and the resistance of passwords to attacks
of increasing complexity can be regarded as a secondary
contribution of the present work.

B. Experiment 2: Deterministic Evaluation

The statistical methodology presented in experiment 1 is a
strict way of evaluating the performance of strength meters.
Such statistical analysis allows determining if, from a general
perspective, the method presents a consistent behaviour.

As a complement to the evaluation presented in experi-
ment 1, studying the strength assigned to specific passwords
can give additional insight into the strengths and limitations
of a particular algorithm. With this objective, the multi-
modal meter was also computed for some individual password
examples. The examples have been chosen so as to reflect
some illustrative human behaviours in password selection in
order to see the way in which the meter reacts to these
changes. Common trends that have been taken into account
for the selection of the individual examples are for instance:
very common word-inspired password, inclusion of numbers,
inclusion of special characters, inclusion of upper-case letters,
making the password longer, selection of random passwords.

The selected password examples, together with their cor-
responding multimodal strength, are presented in Table IV.
As in experiment 1, for comparison purposes, also the strength
assigned by the NIST, Yahoo, Gmail and Dropbox appear in
the following columns of the table.

1) Multimodal Meter: Even though this is just a particular
deterministic example, the multimodal scores shown in the
table raise some interesting points regarding the usual trends
in human password selection and how these really affect the
strength of the final password:

• Example 1 in Table IV is most often ranked in all datasets
among the top 5 most used passwords. As such, it is
present in any blacklist of banned passwords. Conse-
quently, it is detected as a trivial password and is assigned
a strength very close to 0.

• A large strength difference may be observed between
passwords 1 (trivial very common password) and 2, which
differ in just two characters. This length variation makes
the second password resistant to brute-force attacks,
which accounts for the strength increase.
Please recall that, as mentioned in the training phase of
the algorithm (see Sect. III), the length of brute-forceable
passwords is a parameter that can be adjusted depending
on the specific conditions of each application.

• Adding more characters (another known word) between
passwords 2 and 3, significantly increases the strength
level. Even if it only contains lower-case letters,
password 3 is now length 15 and is the result of a
combination of three words, which gives it a fair strength
level.

• Passwords 3, 4, 5, 6 and 7 show that, for the same
length 15, adding just one character of a different class
(i.e., upper-case, digits, or special character), does not
necessarily have a significant impact on the strength
of the password: this depends heavily on the spe-
cific character added and the position in which it is
added.

• Comparing passwords 3 and 8 it may be noticed that, for
the same length, adding several characters of a different
class (i.e., upper-case letters, password 8) to a password
composed of just one-class characters (i.e., lower-case
letters, password 3), has a positive impact in its strength.

• The comparison of passwords 8, 9 and 10, shows
that, for the same length, adding characters of different
new classes (i.e., digits and special characters, pass-
words 9 and 10) to a password composed of already
two-class characters (i.e., lower- and upper-case letters,
password 8), usually implies a moderate increase in the
strength. As before, the significance of this increase
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depends on the specific characters that are added and the
position in which they are added.

• Password 11 shows that, as a quite consistent trend:
in case of passwords originally based on known words,
longer passwords are in general stronger than shorter
passwords, even if the latter have more character classes.

• Finally, passwords 12 and 13 show that randomness is,
together with length, the best policy to produce strong
passwords. As it can be seen, password 12 is length 8 and
contains only numbers and lower-case letters, however, its
strength is comparable to password 10 which contains
all character types and is length 15. Similarly, pass-
word 13 which is also length 8 but contains all character
types has a strength equivalent to example 11 which is
length 25.

Regarding the other four considered meters from the state
of the art, different inconsistencies can be pointed out from
their results in Table IV:

2) Nist Meter: It fails to give reasonable strength esti-
mations for some of the examples. For instance, the initial
password, which is probably the first guess that any attacker
would make, is given a medium strength value. Furthermore:
a random password such as 12 is assigned the same value as
“password”; another random password like 13 is assigned only
a slightly higher value than a password with just lower-case
letters composed of two known words such as “mypassword”
(number 2). These observations reinforce the results from
experiment 1: this meter has a tendency to overestimate weak
passwords and to underestimate strong ones.

3) Yahoo Meter: The same as NIST, it overestimates the
strength of the first password. Furthermore, password 1 is
given the same strength as password 11, which is 25-character
long. This is probably due the fact that both passwords contain
only lower-case letters.

4) Gmail Meter: As seen in experiment 1, this meter tends
to overestimate the strength of passwords. As the previous two
meters, it does not provide a good estimation for password 1.
Also, it does not seem reasonable to consider the same strength
level for passwords 11-13, than for passwords 3-7.

5) Dropbox Meter: On the other side of the spectrum,
Dropbox seems to underestimate the strength of passwords.
It is very arguable whether “password” (which is rightly
given the lowest strength level) should be assigned the same
strength as “MyPassw0rdR0cks”. Similarly, a 25-character
password (number 11) is just given a medium strength.

The results of experiment 2 do not mean that the multimodal
meter is flawless. Most likely, particular examples can be
found for which it provides questionable strength estimations.
Finding such counterexamples is one of the objectives of
releasing the Multi-PaStMe application. However, together
with experiment 1, it does show that the proposed meter is,
in many ways, more reliable than other popular methods.

In a nutshell, the results reached in the two evaluation
experiments give some more solid ground to confirm what
is nowadays a widely held intuition among the password
community: in order to select strong passwords, get random,
get long, or, even better, get both.

VII. DISCUSSION: THE USE OF PASSWORDS AND

STRENGTH METERS

The old debate still remains: Are passwords obsolete? The
ever-lasting question has recently recovered all its strength
following the series of cyber-attacks that have either been
based on password guessing or that have led to password
breaches. For the time being, what is clear is that passwords
are, and will be, around for quite some time.

Password critics base their position on an argument difficult
to refute: password security has many weaknesses, some of
which are not difficult to be exploited. While this is certainly
true, security is just one side of the coin. The other side is con-
venience [31]. If passwords are so bad as authentication means,
why are they so stubbornly resilient? Why haven’t they been
replaced long ago by any of the other existing authentication
methods? The explanation to the their popularity is simple:
they are easy to implement by service providers and they are
easy to utilize by end-users. They may not be very secure, but
they certainly are convenient.

Is there an over-use of passwords? Probably so. If security is
a must, other type of authentication methods should be used.
For instance, in recent years, the banking sector has widely
deployed multifactor authentication for their online services
in response to the growing number of cyber-attacks targeting
end-users and leading to big economic losses [32].

Should we then forget about passwords? Probably not. It is
doubtful whether a high-security multifactor authentication is
the best solution in order to login to our favourite on-line
cooking blog. A simple password like “cupcakes” will most
likely do the job. Will we forget it? Certainly not. Is it secure?
Neither. But then again, in this case, are we looking for high
convenience or for high security?

In any case, a common and advisable practice is to guide
users in the process of selecting a password at the time of reg-
istration to a service. Users should be informed regarding the
strength of the password they select and the risks associated to
it. If this feedback is reliable, it is then the user’s responsibility
to decide the type of password he wants to select in order to
protect: A) his on-line bank account; B) his cooking recipes.

The key concept in the previous discussion is: reliable
feedback. To date, such a feedback has been traditionally
supported by: 1) password composition policies [33]; or
2) password strength meters [7].

Traditional password composition policies oblige users to
observe certain requirements in most cases related to the
length and/or complexity of their passwords [33]. These rules
are thought to increase the password space and are therefore
an efficient protection against brute-force attacks (similar to
module 1A of the multimodal approach). In spite of their
wide use, different studies have pointed out some of the
general limitations that password composition policies present
in different degrees [3], [34]–[36]: 1) in many cases they
are regarded as annoying by end-users and 2) they do not
necessarily lead to stronger passwords. For example, a pass-
word composition policy that requires the use of at least a
capital letter and a number would reject a random password
of 20 lower-case characters. Furthermore, certain policies can
even be counterproductive, by inducing users to follow certain
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patterns that can later be exploited by guessing attacks. For
instance, it is true that forcing the user to include a capital
letter in the password increases substantially the password
space to be searched by brute-force attacks. However, it is
also true that most users will include the capital letter at the
beginning of the password if they are not given any other
directive. Dictionary attacks can take advantage of this known
behavior by simply adding the rule “capitalize first letter”.

Given the limitations of rule-based password composition
policies [37], password strength meters have emerged as
an alternative to help users in their password selection [8].
Password strength meters can be used to enforce password
policies or simply to advice users allowing them a higher
degree of freedom regarding the password they choose, with-
out constraining them to follow any specific pattern. As feed-
back, the user receives a strength estimation of the selected
password. That is, meters are designed to help users under-
stand if their password choices will resist attempts to crack
them. Although the core idea behind is sound, the problem
of most current strength meters is their lack of reliability [6].
This is a big problem, as a bad password strength meter can
be worse than useless: it can induce users to believe that they
are selecting strong passwords when they are not.

So, password strength meters can be a powerful tool in
password selection, as long as they truly serve their purpose:
providing reliable feedback to the user. The experiments
provided in the present article have shown precisely that: the
new proposed multimodal approach is a reliable estimator
of password strength, improving the output given by other
largely used methods. Furthermore, it is aligned with the
new draft of the NIST recommendation [38], that clearly
changes the philosophy of previous versions towards new more
comprehensive guidelines not only focused on rules.

Regarding the practical use of the proposed meter, different
studies on strength meters have shown that users are more
responsive to word-based feedback, rather than numerical
values that are difficult to interpret [2], [8]. This is the
case, for instance, of the three commercial strength meters
analysed in the experimental sections (i.e., yahoo, gmail and
dropbox) which consider a ranking of 4-5 different strength
levels such as: ‘very weak’, ‘weak’, ‘so-so’, ‘good’ and
‘strong’. Following this good practice, the multimodal score
range (0-10) could be divided into a fixed number of strength
levels.

VIII. CONCLUSIONS

As described in Part I of this series of two papers [1],
the new multimodal strength meter was initially devised fol-
lowing:

1) The general principle “strength in numbers” which,
for this particular case, can be phrased as: do not
dismiss certain imperfect password strength approaches
leaving all the responsibility of correctly estimating the
robustness of passwords to just one algorithm. Instead,
combine different methods specialized in detecting a
particular group of weak passwords to generate a more
general and reliable overall approach.

2) The “complementarity principle” from the information
fusion field: the combination of complementary systems
measuring different properties of the same problem tends
to provide better results than the individual algorithms
by themselves. We refer the reader to Annex B, provided
as accompanying material of the present paper, for
further discussion on the complementarity of the two
Markov-based modules of the multimodal meter.

The evaluation presented in the current paper has proven the
sensibility of the approach and how, based on both principles,
the final multimodal method is capable of outperforming
largely used meters from the state of the art.

As a first phase, the algorithms has been trained in order
to adjust it to a quite typical environment: English-based
application, not designed for a specific community but thought
for generic users (e.g., online email), vulnerable to offline
attacks, using a simple hashing algorithm such as MD5. After
that initial training phase, the algorithm has been evaluated
following an innovative experimental framework including
a three-dimensional evaluation: statistical, deterministic and
third parties public comparison. The results from these exper-
iments produced the next conclusions:

• Experiment 1 has shown that, from a statistical perspec-
tive, the algorithm presents a high correlation between
the complexity of the attack that broke a given password
and the strength assigned to that password.

• Experiment 2 supported the claim that, also when con-
sidering specific password examples, the algorithm gives
sensible strength estimations.

• Experiments 1 and 2 combined have assessed the high
reliability and consistency of the strength estimations
provided by the proposed multimodal method compared
to other popular meters from the state of the art.

It should also be highlighted as a salient feature of the
proposed method its high flexibility. It can be adjusted during
the training phase to work on application specific environ-
ments or adapted to a certain password policy. Such capability
is the key to overcoming one of the traditional shortcomings
of previous strength meters, which would assign the same
strength to a given password independently of the context
where it was used. By exploiting this adaptability, the meter
can also evolve over time in order to naturally adjust to new
password selection trends. This could be the case, for instance,
of a certain community of users that, driven by a given
password policy, begins to systematically choose passwords
with a predictable structure that could be exploited by an
attacker [34], [35]. In this situation, the model would be able to
adapt to the new trend and start rating such passwords as low
security ones. This adjustment process would be accomplished
by retraining the probability matrices on new data representing
the variability of that particular population.

As a wrap up conclusion of the present series of two works,
it may be stated that, in spite of some dooming predictions
regarding their future [39], passwords are still the most
commonly used method of web-based personal authentication
and it is not likely that they will be replaced in the coming
years [40]. Therefore, it is not enough to just blame the
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users for potential security breaches, but we should focus on
devising new methods to help them choose better and stronger
passwords. Hopefully, works such as the present one can help
to move forward in the path towards this goal.
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