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No Bot Expects the DeepCAPTCHA!
Introducing Immutable Adversarial Examples,
With Applications to CAPTCHA Generation

Margarita Osadchy, Julio Hernandez-Castro, Stuart Gibson, Orr Dunkelman, and Daniel Pérez-Cabo

Abstract— Recent advances in deep learning (DL) allow for
solving complex AI problems that used to be considered very
hard. While this progress has advanced many fields, it is
considered to be bad news for Completely Automated Public
Turing tests to tell Computers and Humans Apart (CAPTCHAs),
the security of which rests on the hardness of some learning
problems. In this paper, we introduce DeepCAPTCHA, a new
and secure CAPTCHA scheme based on adversarial examples, an
inherit limitation of the current DL networks. These adversarial
examples are constructed inputs, either synthesized from scratch
or computed by adding a small and specific perturbation called
adversarial noise to correctly classified items, causing the targeted
DL network to misclassify them. We show that plain adversarial
noise is insufficient to achieve secure CAPTCHA schemes, which
leads us to introduce immutable adversarial noise—an adversarial
noise that is resistant to removal attempts. In this paper, we
implement a proof of concept system, and its analysis shows that
the scheme offers high security and good usability compared with
the best previously existing CAPTCHAs.

Index Terms— CAPTCHA, deep learning, CNN, adversarial
examples, HIP.

I. INTRODUCTION

CAPTCHAS are traditionally defined as automatically
constructed problems, that are very difficult to solve

for artificial intelligence (AI) algorithms, but easy for
humans. Due to the fast progress in AI, an increasing
number of CAPTCHA designs have become ineffective,
as the underlying AI problems have become solvable by
algorithmic tools. Specifically, recent advances in Deep
Learning (DL) reduced the gap between human and machine
ability in solving problems that have been typically used in
CAPTCHAs in the past. A series of breakthroughs in AI
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even led some researches to claim that DL would lead to the
“end” of CAPTCHAs [4], [14].

However, despite having achieved human-competitive accu-
racy in complex tasks such as speech processing and image
recognition, DL still has some important shortcomings with
regards to human ability [42]. In particular, they are vulnerable
to small perturbations of the input, that are imperceptible by
humans but can cause misclassification. Such perturbations,
called adversarial noise, can be specially crafted for a given
input that forces misclassification by the Machine Learning
(ML) model.

Although initially discovered in the specific context of Deep
Learning, this phenomenon was observed later in other classi-
fiers, such as linear, quadratic, decision trees, and KNN [15],
[33], [35], [42]. Moreover, Szegedy et al. [42] showed that
adversarial examples designed to be misclassified by one ML
model are often also misclassified by different (unrelated) ML
models. Such transferability allows adversarial examples to be
used in misclassification attacks on machine learning systems,
even without having access to the underlying model [33], [35].
Consequently, adversarial examples pose a serious security
threat for numerous existing machine learning based solutions
such as those employing image classification (e.g., biometric
authentication, OCR), text classification (e.g., spam filters),
speech understanding (e.g, voice commands [6]), malware
detection [48], and face recognition [40].

On the other hand, adversarial examples can be used in
a constructive way and improve computer security. In this
paper, we propose using adversarial examples for CAPTCHA
generation within an object classification framework, involving
a large number of classes. Adversarial examples are appealing
for CAPTCHA applications as they are very difficult for
Machine Learning tools (in particular advanced DL networks)
and easy for humans (adversarial noise tends to be small and
does not affect human perception of image content).1

To provide a secure CAPTCHA, adversarial examples 1)
should be effective against any ML tool and 2) should be
robust to preprocessing attacks, that aim to remove the adver-
sarial noise.

A. Effectiveness of Adversarial Examples Against ML

The ML community has been actively searching for methods
that are robust to adversarial examples. The most effective

1The idea of using adversarial images for CAPTCHA was independently
suggested in [41] as a general concept.
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among the proposed solutions, but still very far from provid-
ing sufficient robustness, is training the model on adversar-
ial examples [15], [42]. The more sophisticated approaches
include 1) training a highly specialized network to deal with
very specific types of adversarial noise [34]; 2) combining
autoencoders, trained to map adversarial examples to clean
inputs, with the original network [16]. The combined archi-
tecture adds a significant amount of computation and at the
same time is vulnerable to adversarial examples, crafted for
the new architecture.

We note (and later discuss) that high-capacity models (such
as Radial Basis Functions (RBF)) are more robust to adver-
sarial examples, but they are unable to cope with large-scale
tasks, for example those involving more than 1000 categories.
To conclude, current ML solutions do not provide a generic
defense against adversarial examples.

B. Resilience to Preprocessing Attacks

In this paper we performed an analysis of robustness of
different types of adversarial examples against preprocessing
attacks. We discovered that filtering attacks which try to
remove the adversarial noise could be effective and could
even remove the adversarial noise completely in specific
domains (such as black and white images). Thus in order to
use adversarial examples in CAPTCHA settings, one should
improve the robustness of adversarial noise to filtering attacks.

C. Our Contribution

This paper proposes DeepCAPTCHA – a new concept
of CAPTCHA generation that employs specifically designed
adversarial noise to deceive Deep Learning classification tools
(as well as other ML tools due to transferability of adversarial
examples [33]). The noise is kept small such that recognition
by humans is not significantly affected, while resisting the
removal attacks.

Previous methods for adversarial noise generation lack the
robustness to filtering or any other attacks that attempt to
remove the adversarial noise. We are the first to address this
problem and we solve it by generating immutable adversarial
noise with emphasis on image filtering. We analyze the secu-
rity of our construction against a number of complementary
attacks and show that it is highly robust to all of them.

Finally, we introduce the first proof-of-concept implemen-
tation of DeepCAPTCHA. Our results show that the approach
has merit in terms of both security and usability.

II. RELATED WORK

We start our discussion with reviewing the most prominent
work in CAPTCHA generation and then we turn to the Deep
Learning area, focusing on methods for creating adversarial
examples.

A. A Brief Introduction to CAPTCHAs

Since their introduction as a method of distinguishing
humans from machines [45], CAPTCHAs (also called inverse
Turing tests [30]) have been widely used in Internet security

for various tasks. Their chief uses are mitigating the impact of
Distributed Denial of Service (DDoS) attacks, slowing down
automatic registration of free email addresses or spam posting
to forums, and also as a defense against automatic scraping of
web contents [45].

Despite their utility, current CAPTCHA schemes are not
considered popular by users as they present an additional
obstacle to accessing internet services and many schemes
suffer from very poor usability [5], [51].

1) Text Based Schemes: The first generation of CAPTCHAs
used deformations of written text. This approach has now
became less popular due to its susceptibility to segmentation
attacks [50]. In response, some developers increased distortion
levels, using methods such as character overlapping, which
increases security [8]. Unfortunately, such measures have also
resulted in schemes that are frequently unreadable by humans.
We note that some text-based implementations are susceptible
to general purpose tools [4].

2) Image Based Schemes: Motivated by the vulnerability
of text based schemes, image based CAPTCHAs have been
developed, following the belief that these were more resilient
to automated attacks [10], [11], [13], [53]. For example, early
text based versions of the reCAPTCHA [46] system were
superseded by a combined text and image based approach.
However, the new scheme was also subsequently attacked
in [14].

An alternative approach is CORTCHA (Context-based
Object Recognition to Tell Computers and Humans Apart)
that claims resilience to machine learning attacks [53]. This
system uses the contextual relationships between objects in an
image, in which users are required to re-position objects to
form meaningful groupings. This task requires a higher level
reasoning in addition to simple object recognition.

3) Alternative Schemes: Considerable effort is currently
being invested in novel ways of implementing secure and
usable CAPTCHAs. Two of the most popular research themes
are video-based CAPTCHAs such as NuCAPTCHA [32],
and game-based CAPTCHAs [28]. The former have gener-
ally shown inadequate security levels so far [3], [49]. The
latter designs are in general inspired by the AreYouHuman
CAPTCHA [1]. One of the most interesting proposals in this
group is [28], an example of a DGC (Dynamic Cognitive
Game) CAPTCHA that has the additional advantage of offer-
ing some resistance to relay attacks, and a high usability.
Unfortunately, in its current form, it is vulnerable to automated
dictionary attacks. One can also argue that recent develop-
ments in game playing by computers, that match or improve
human abilities by using deep reinforcement learning [27],
question the prospects of future game based proposals. Finally,
a number of puzzle-based CAPTCHAs that seemingly offered
some promise have recently been subjected to devastating
attacks [17].

4) Deep Learning Attacks: The general consensus within
the cyber security community is that CAPTCHAs, that simul-
taneously combine good usability and security, are becoming
increasingly hard to design due to potential threats from bots
armed with Deep Learning [4], [14], [41] capabilities. This has
led to the popularity of Google’s NoCAPTCHA re-CAPTCHA
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despite its violation of a number of important CAPTCHA and
general security principles.2

Definition of Secure CAPTCHA: Different authors claim
different security levels as the minimal standard for new
CAPTCHA designs. In the literature we can find requirements
for false positive rate (the probability of automatic bypassing
of the CAPTCHA system) ranging from 0.6% to around 5%.
Throughout this paper we define the threshold of at most
1.5% false positive rate to be the security requirement for a
CAPTCHA.

B. Deep Learning and Adversarial Examples

Deep Learning networks are designed to learn multiple
levels of representation and abstraction for different types of
data such as images, video, text, speech and other domains.
Convolutional Neural Networks (CNNs) are DL algorithms
that have been successfully applied to image classification
tasks since 1989 [22]. Hereafter, we will use the terms CNN
and DL network interchangeably.

1) Foundations of Adversarial Examples: Machine learning
models are often vulnerable to adversarial manipulations of
their input [9]. It was suggested [12] that this limitation could
be expressed in terms of a distinguishability measure between
classes. Using this measure, which is dependent on the chosen
family of classifiers, they showed a fundamental limit on the
robustness of low-capacity classifiers (e.g., linear, quadratic)
to adversarial perturbations. It was also suggested that higher
capacity models with highly non-linear decision boundaries
are significantly more robust to adversarial inputs.

Deep neural networks were also shown to be vulnera-
ble to adversarial perturbation. First examples of adversarial
perturbations for deep networks were proposed in [42] as
inputs, constructed by adding a small tailored noise component
to correctly classified items that cause the DL network to
misclassify them with high confidence.

Neural Networks can learn different capacity models, rang-
ing from linear to highly non-linear. DL architectures are
considered to have very large capacity, allowing highly non-
linear functions to be learned. However, training such DL
networks is hard and doing it efficiently remains an open
problem. The only architectures (and activation functions) that
are currently practical to train over complex problems have a
piecewise linear nature which is the most likely reason for
their vulnerability to adversarial examples [15].

Previous work [15], [35], [42] showed that adversarial
examples generalize well across different models and datasets.
Consequently, adversarial examples pose a security threat even
when the attacker does not have access to the target’s model
parameters and/or training set [35].

2) Constructing Adversarial Examples: Different tech-
niques for constructing adversarial inputs have been proposed
in recent works. The approach in [31] causes a neural net-
work to classify an input as a legitimate object with high
confidence, even though it is perceived as random noise or a

2For example, the P in CAPTCHA stands for Public, and NoCAPTCHA
inner functioning is not public, based on the time-dishonored concept of
“security by obscurity” by employing heavily obfuscated Javascript code.

simple geometric pattern by a human. The techniques proposed
in [15], [18], and [42] compute an image-dependent and small-
magnitude adversarial noise component such that, when added
to the original image, results in a perturbation that is not
perceptible to the human eye but causes the DL network
to completely misclassify the image with high confidence.
The method in [34] focuses on making the adversarial noise
affect only a small portion of the image pixels, but the noise
itself could be larger than in previous methods. In contrast
to the approach of targeting the prediction of the classifier
(as discussed above), Sabour et al. [38] proposed adversarial
examples that change a hidden representation of the network,
making it very close to an example with a different label.
Miyato et al. [26] considered a different setting in which
labels of images are unavailable. This approach targeted the
posterior distribution of the classifier corresponding to small
perturbations of the original image.

3) Robustness to Adversarial Examples: Previous
work [12], [15] outlined a number of solutions for adversarial
instability. One of them was to switch to highly non-linear
models, for instance, RBF Neural Networks or RBF Support
Vector Machines. These are shown to be significantly more
robust to adversarial examples, but are currently considered
impractical to train for the large-scale problems (for example
1000-way categorization).

Improving the robustness of DL tools against adversarial
perturbations has been an active field of research since their
discovery. The first proposition in this direction was to train
DL networks directly on adversarial examples. This made
the network robust against the examples in the training set
and improved the overall generalization abilities of the net-
work [12], [15]. However, it did not resolve the problem as
other adversarial samples could still be efficiently constructed.
A method called defensive distillation was proposed in [36].
This approach provides a high level of robustness, but only
against a very specific type of adversarial noise (see [36]
for details.) Gu and Rigazio [16] trained an autoencoder to
predict the original example from the one with adversarial
perturbations. However, the combination of such an autoen-
coder and the original network was shown to be vulnerable to
new adversarial examples, specially crafted for such combined
architectures. Moreover, such combinations increase the clas-
sification time. Hence, this approach seems to be somewhat
unsuitable for computer security applications, where efficiency
and versatility are crucial. To conclude, the current state of
technology does not offer a solution for a large scale (+1000
categories) multi-class recognition problem that is robust to
adversarial examples. Moreover, it was shown that adversarial
examples are consistently difficult to classify across different
network architectures and even different machine learning
models (e.g, svm, decision trees, logistic regression, KNN
classifier) [15], [33], [35], [42].

These limitations, combined with the fact that adversarial
noise could be made almost imperceptible to the human eye,
render the idea of using adversarial examples as the basis for
new CAPTCHA challenges very appealing. However, in order
to use adversarial noise in CAPTCHAs or other security appli-
cations, it should be resistant to removal attacks which can
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employ alternative tools and, in particular, image processing
methods. We show here that none of the existing methods
for adversarial example construction are sufficiently robust to
such attacks. Even though the approach in [34] proposed the
construction of adversarial examples in a computer security
context, it also lacks the necessary robustness.

III. TEST BED DETAILS

We have used two sets of problems for the adversarial
examples discussed in the paper. The first one is the MNIST
database for digits [23]. The second, which was used in
the majority of our experiments, is the ILSVRC-2012 data-
base [37], containing 1000 categories of natural images. We
used MatConvNet [44] implementations of CNN for MNIST
classification and of CNN-F deep network [7] for object
classification.

We crafted adversarial examples using these two DL net-
works. The networks were trained on the training set of
the corresponding database. The adversarial examples were
created using the validation (test) set.

All experiments described in this work were conducted on a
Linux 3.13.0 Ubuntu machine with an Intel(R) QuadCore(TM)
i3-4160 CPU @ 3.60GHz, 32GB RAM, with a GTX 970 GPU
card, using MATLAB 8.3.0.532 (R2014a.)

IV. IMMUTABLE ADVERSARIAL NOISE GENERATION

Adversarial noise is specifically designed to deceive DL
networks. However, an attacker can preprocess network inputs
in an attempt to remove this adversarial perturbation. Hence, in
a computer security setting, adversarial noise must withstand
any general preprocessing technique aimed at cancelling its
effects.

We introduce the concept of Immutable Adversarial Noise
(IAN), as an adversarial perturbation that withstands these
cancellation attempts. We explicitly define the requirements
for creating IAN that are useful for CAPTCHA generation.
Then, we analyze previous algorithms for adversarial example
generation and show that they do not meet these requirements.
Finally, we present our new scheme for IAN generation, that
satisfies these new requirements.

A. Requirements for IAN in CAPTCHA

An algorithm for the construction of immutable adversarial
noise useful in CAPTCHA generation needs to meet the
following requirements:

1) Adversarial: The added noise should be successful in
deceiving the targeted system according to the defined
security level (specifically to our requirement, at least
98.5% of the time.)

2) Robust: The added noise should be very difficult to
remove by any computationally efficient means; for
example by filtering or by ML approaches.

3) Perceptually Small: The added noise should be small
enough to not interfere with a successful recognition of
the image contents by humans.

4) Efficient: The algorithm should be computationally effi-
cient, to allow for the generation of possibly millions of

challenges per second. This is fundamental for deploying
the CAPTCHA successfully in production environments.

A basic requirement for CAPTCHAs is that challenges do
not repeat and are not predictable (i.e., guessing one out of
m possible answers should succeed with probability 1/m).
Hence, the source used for generating adversarial examples
should be bottomless and uniform. An algorithm that can cre-
ate an adversarial example from an arbitrary image, together
with such a bottomless and uniform source of images can
certainly generate a bottomless and uniform set of challenges,
as required.

B. Previous Methodologies for Generating Adversarial
Examples

We briefly introduce in the following the most popular
methods for adversarial noise generation, and discuss why they
do not meet the above requirements.

Our idea is simple: use images that are easily recognized by
humans but are adversarial to DL algorithms. Consequently,
methods that cause a DL network to classify images of noise
or geometric patterns as objects such as the one in [31] are
not adequate for our goal.

We analyzed in detail the optimization method proposed
in [42] and the fast gradient sign method suggested in [15].
These two methods for constructing adversarial perturbations
are the most mature, and have been previously considered in
the literature when exploring countermeasures against adver-
sarial examples. We believe that methods such as [18] and
[34] will show a similar behavior, as they rely on the similar
concept of adding a noise component to the original image.
The methods in [26] and [38], on the other hand, considered
a completely different setting which may be useful for future
works.

To exemplify the removal of adversarial noise, we focus on
two classical image classification tasks: digit recognition and
object recognition. Digit recognition was used in earlier gener-
ations of CAPTCHA, but, as we show later, object recognition
provides a significantly better base for our proposal, both from
security and usability points of view.

1) The Optimization Method: Szegedy et al. [42] introduced
the concept of adversarial examples in the context of DL
networks and proposed a straightforward way of computing
them using the following optimization problem:

arg min
�I

‖�I ‖2 s.t . Net (I +�I ) = Cd (1)

where I is the original input from class Ci , �I is the
adversarial noise, Net is the DL classification algorithm, and
Cd is the deceiving class, such that Cd �= Ci . Once the
adversarial noise is computed, the corresponding adversarial
image is constructed by adding the adversarial noise to the
original input I .

We implemented and tested the optimization method
described by Eq. (1), over a set of 1000 images on the MNIST
and ILSVRC-2012 datasets.

Fast computation of adversarial examples is an essential
requirement for any viable CAPTCHA deployment, since
it will need to generate millions of challenges per second.
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TABLE I

COMPARISON BETWEEN ADVERSARIAL NOISE GENERATION METHODS. REPORTED TIMES SHOW THE EFFICIENCY OF THE GENERATION ALGORITHM;

ADVERSARIAL SUCCESS INDICATES THE PERCENTAGE OF EXAMPLES THAT SUCCEEDED TO FORCE THE TARGET DL NETWORK TO CLASSIFY THE

ADVERSARIAL EXAMPLE WITH THE TARGET CATEGORY (CHOSEN AT RANDOM); RESISTANCE LEVEL INDICATES THE PERCENTAGE OF ADVERSARIAL

INPUTS (OUT OF 1000) THAT WERE NOT REVERTED TO THEIR ORIGINAL CATEGORY BY APPLYING THE BEST PERFORMING PREPROCESSING

METHOD (THRESHOLDING FOR THE MNIST SET AND MEDIAN FILTER OF SIZE 5×5 FOR THE ILSVRC-12 SET), WHERE BIGGER NUMBERS

REPRESENT BETTER PERFORMANCE

The optimization method described above is unfortunately too
slow, hence for practical purposes we limited the number
of iterations to a fixed threshold (it stops when this limit
is reached). This, however, resulted in a failure to produce
the desired class in some cases. The timing statistics of the
experiment and the success rate are shown in Table I.

Based on these results, we can conclude that the optimiza-
tion algorithm is not suitable for our needs: it is computation-
ally expensive and it does not converge in some cases. The
inefficiency of this method has been reported before, and is
explicitly mentioned in [15] and [42].

Despite its poor efficiency, we analyzed the resistance to
preprocessing attacks of the adversarial noise created by the
optimization method. We computed 1000 adversarial images
(as described above) for the MNIST and ILSVRC-2012
datasets. Then we tested various filters and parameters and
found that for the MNIST data set, which is exclusively formed
of images of white digits on a black background (just two
intensity values, 255 and 0), the adversarial noise can be
successfully removed by applying a half range threshold (128)
on the pixel values. This is an extremely simple and fast
procedure that cancels the adversarial effect in 95% of the
tested images.

It was also noted in [16] that applying a convolution with
a Gaussian kernel of size 11 to the input layer of the CNN
trained on MNIST, helps in classifying correctly 50% of the
adversarial examples created by the optimization method. We
achieved an even better result of 62.7% with a median filter of
size 5x5, but both of these results are way below the success
of the much simpler thresholding method.

These findings demonstrate that images composed of only
two colors (such as those in MNIST) are a poor source of
adversarial examples.

Canceling adversarial noise in natural RGB images is more
challenging, and can not be generally achieved by a simple
thresholding. We found that a 5x5 pixel median filter was
most successful in removing adversarial noise from the images
drawn out of the ILSVRC-2012 data set. Note that for an
attack on a CAPTCHA to be successful, it is important
for the machine classification to match human classification
accuracy. Thus the classification of the filtered samples should
be compared to the true label (rather than to the classification
label of the original input, that could be wrong some times).

The classification label computed by the network on fil-
tered adversarial examples constructed from the ILSVRC-
2012 dataset matched their true label in 16.2% of the cases
(see Table I). This result is not very high, but it shows that
it fails by quite some margin to provide the required security
level for modern CAPTCHAs.

2) The Fast Gradient Sign Method: A much faster method
for generating adversarial examples was proposed in [15].
The approach is called the fast gradient sign method (FGS)
and it computes the adversarial noise as follows:

�I = ε · sign(∇I J (W, I, Ci ))

where J (W, I, Ci ) is a cost function of the neural network
(given image I and class Ci ), ∇I J (W, I, Ci ) is its gradient
with respect to the input I , W are the trained network
parameters, and ε is a constant which controls the amount
of noise inserted. Similarly to [42], the adversarial image is
obtained by adding the adversarial noise �I to the original
image I .

The FGS method does not produce adversarial examples
that deceive the system with the chosen target label. Its goal is
simply to change the classification of the adversarial example,
away from the original label. This is done by shifting the
input image in the direction of the highest gradient by a
constant factor. The bigger this constant is, the larger both
the adversarial effect and the degradation of the image are.
The FGS method is significantly faster than the previous
optimization approach (Table I.)

The adversarial noise for the MNIST dataset produced by
the FGS method was also easily removed by thresholding the
pixel values at the half range threshold, achieving an even
higher success of 97.60% (out of 1000 images).4 An example
of FGS adversarial noise removal from an MNIST sample is
shown in Figure 1.

For the object recognition task (over the ILSVRC-2012
dataset) the FGS succeeded in creating an adversarial example
97.8% of the time, as shown in Table I. Unfortunately, the
median filter (of size 5x5) was able to restore the classification
of the adversarial examples to their true label in a staggering
60.81% of the cases, deeming this method unusable for our
purposes.

4A median filter of size 5x5 succeeded in removing the adversarial noise
in 55.20% of the cases.
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Fig. 1. Adversarial example on MNIST: The original black and white image is shown in (a), an adversarial example, produced by the FGS method is shown
in (b) including gray-level intensities. (c) shows the corresponding adversarial noise changing the classification into an 8. This noise is successfully removed
by thresholding (the resulting image is depicted in (d)) as well as by a median filter of size 5x5 (whose result is shown in (e).)

Since the FGS method does a very small step away from the
correct label, the resulting noise 1) has a very small magnitude
and 2) the dependency of the noise on the source image is
low and it is similar in appearance to “salt and pepper” noise.
These properties explain the success of the median and other
standard filters.

C. IAN: Our New Approach to Adversarial Noise

As we showed earlier, adversarial noise can be easily
removed from black and white images, thus MNIST is
clearly not a good dataset for creating immutable adversarial
examples, despite the existing literature. We therefore choose
natural images of objects, containing richer variations in color,
shapes, texture, etc. as the platform for IAN construction.

We base our method for adversarial noise construction on
the FGS method, since CAPTCHA applications requires a
very fast computation of adversarial examples, and speed is
one of the main advantages of this algorithm. However, the
FGS lacks two important properties. First, it only perturbs
the original label of the classification, but it offers no guar-
antees that the new label would be semantically different
from the original one. Our experiments on ImageNet with
1000 categories showed that the FGS changes the label to
semantically similar classes in many cases (for example, hand
held computer to cellular telephone). This can have seriously
effects on the usability, and possibly the security, of the
CAPTCHA system.

We propose an iterative version of FGS that accepts in
addition to the original image also a target label and a
confidence level and guarantees that the produced adversarial
example is classified with the target label and at the desired
confidence (while keeping the added noise minimal).5 To this
end, we run a noise generation step with a small ε in the
direction that increases the activation of the target label (as
specified in Eq. 2) for several iterations until it reaches the
target label and the desired confidence level. We call this
method an iterative fast gradient sign (IFGS). To increase the
activation of the target label we update the input image I as
follows:

I = I − ε · sign(∇I J (W, I, Cd )) (2)

The second property that FGS lacks is resilience to filtering
attacks. As discussed in Section IV-B.2 the success of stan-
dard filtering stems from the small magnitude of the noise.
Increasing the magnitude of the noise would significantly

5A similar algorithm was independently discovered in [20].

damage the content of the image resulting in poor human
recognition. Moreover, we observed that FGS noise tends to be
stationary over the image, which facilitates standard filtering.
To resolve these problems, we suggest the following approach:
Our construction for the generation of immutable adversarial
noise starts with an adversarial image, produced by the IFGS,
with a small noise constant ε. It then filters the adversarial
image and tries to recognize it. If it succeeds, then we increase
the noise and run IFGS with the new noise constant. We
iterate the process until the noise cannot be removed. The
iterative approach guarantees that the increase in magnitude
does not exceed the desired level (allows for easy human
recognition). In addition running IFGS several times increases
the dependency of the noise on the source image, preventing
standard filters from removing it. We detail the construction
in the pseudocode shown in Algorithm 1.

A median filter of size 5x5 was used in our construction, as
it showed experimentally the highest success in removing the
adversarial noise generated by the fast gradient sign method
when compared with other standard filters such as the average,
Gaussian lowpass and Laplacian, and was faster than more
complex filters such as non-local means [2] and wavelet
denoising [25].

Algorithm 1 IAN_Generation
Require: Net a trained DL network; I a source image; Ci

is the true class of I ; Cd a deceiving class; p a confidence
level of the network; M f a Median filter.
Begin:
adv(I, Cd , p) ← I ; {adv(I, Cd , p) the adversarial
example}
�← 0;
while Net (M f (adv(I, Cd , p))) = Ci do

while Net (adv(I, Cd , p)) �= Cd or confidence < p do
� = −ε · sign(∇I Net (I, Cd ));
adv(I, Cd , p)← adv(I, Cd , p)+�;

end while
ε = ε + δε ; {Increase the noise constant;}

end while
Output: �

We tested the proposed method on the same set of 1000
images with initial value of ε = 5 and δε = 5. The eval-
uation results, shown in Table I, prove that our method for
IAN generation satisfies all four requirements, as defined in
Section IV-A. It is important to note that the additional checks
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to ensure robustness against the median filter M f do not slow
down the generation process significantly.

Figure 2c shows an example of an adversarial image,
created by adding the IAN (Figure 2b) produced by our novel
algorithm to the original image (Figure 2a). Figure 2d depicts
the outcome of applying the median filter to the adversarial
image. The resulting image is not recognized correctly by the
DL network. Moreover, the filtering moved the classification
to a category which is further away (in terms of the distance
between the class positions in the score vector) from the true
one. The distance between the true and deceiving classes is
214, and between the true class and the class assigned to
the image after filtering (a removal attack) is 259. At the
same time, while being more noticeable than in the previous
algorithms, the relatively small amount of added noise still
allows a human to easily recognize the image contents.

V. DEEPCAPTCHA

We now propose a novel CAPTCHA scheme that we named
DeepCAPTCHA, which is based on a large-scale recognition
task, involving at least 1,000 different categories. The scheme
utilizes a DL network, trained to recognize these categories
with high accuracy.

DeepCAPTCHA presents an adversarial example as an
image recognition challenge. The adversarial example is
obtained by creating and adding IAN to its source image.
The deceiving class in IAN must differ from the true class
of the source image (both classes are from the 1,000 cate-
gories involved in the recognition task). The source image
is chosen at random from a very large (bottomless) source
of images with uniform distribution over classes, and dis-
carded once the adversarial image is created. The label of
the image is obtained by classifying it using the deep net-
work and verifying that the top score is over a predefined
confidence level.

Contrary to previous CAPTCHAs that use letters or digits,
we use objects in order to make the classification task larger
and to provide enough variability in the image to make it
robust to attacks that aim to remove the adversarial noise.
Using object recognition as a challenge poses two usability
issues: 1) object names are sometimes ambiguous, 2) typing
in the challenge solution requires adapting the system to
the user’s language. We propose to solve these issues by
providing a set of pictorial answers, i.e., a set of images, each
representing a different class. Obviously, the answers contain
the correct class, as well as random classes (excluding the
deceiving class).

The task for the user is to choose (click on) the image from
the supplied set of answers that belongs to the same class as
the object in the test image – the adversarial example. Since
we keep the adversarial noise small, a human could easily
recognize the object in the adversarial example and choose the
correct class as the answer. The only possible ML tool that
can solve such a large-scale image recognition problem is a
DL network. However, the adversarial noise used to create the
adversarial example is designed to deceive the DL tools into
recognizing the adversarial image as from a different category.

Hence, the proposed challenge is designed to be easy for
humans and very difficult for automatic tools.

A. The Proposed Model

We now provide a formal description of our proposed
design. Let Net be a DL network trained to classify n (n ≥
1000) classes with high (human-competitive) classification
accuracy. Let C = {C1, ..., Cn} be a set of labels for these n
classes. Let I be an image of class Ci ∈ C . Let C∗i = C\{Ci },6
and let Cd be a deceiving label which is chosen at random from
C∗i . The DeepCAPTCHA challenge comprises the following
elements:
• An adversarial image adv(I, Cd , p), constructed from

I by the addition of an immutable adversarial noise
component (constructed by Algorithm 1) that changes the
classification by the DL Net to class Cd with confidence
at least p.7

• m−1 answers, which can be fixed images corresponding
to m − 1 labels chosen at random and without repetition
from C∗i \{Cd };

• A fixed image with label Ci , different from I .
The m − 1 suggestions and the true answer are displayed
in a random order. The challenge for the user is to choose
the representative image of Ci from the answers. The original
image I is assumed to be a fresh image which is randomly
picked from different sources (databases and/or online social
networks), and it is discarded after creating the adversarial
example (i.e., we never use the same source image twice).

The pseudocode for the DeepCAPTCHA challenge gener-
ation is shown in Algorithm 2 and an example, generated by
our proof-of-concept implementation (detailed in Section VII),
is depicted in Figure 3.

Algorithm 2 Compute a DeepCAPTCHA challenge
Require: [C1, . . . , Cn] a set of n classes; {I j }nj=1 fixed answers

of the n classes; i ←r [1, 2, . . . , n] the index of a random class
Ci , and I ∈R Ci a random element; m the number of possible
answers; p the desired misclassification confidence; Net a trained
DL network; M f a Median filter.
Begin:
Randomly pick a destination class Cd , d �= i ;
Set � = IAN_Generation(Net , I , Ci , Cd , p, M f );
adv(I, Cd , p) = I +�; {The immutable adversarial example}
Discard I;
Randomly select m − 1 different indexes j1, . . . , jm−1 from
[1, . . . , n]\{i, d};
Choose the representative images [I j1 , . . . , I jm−1 ] of the corre-
sponding classes;
Output: adv(I, Cd , p), and a random permutation of m possible
answers {I, I j1 , . . . , I jm−1}.

VI. SECURITY ANALYSIS

In the following we analyze several different but comple-
mentary approaches that potential attackers could use against

6We note that in some cases, depending on the variability of the data set
and other circumstances, it could be advisable to remove classes similar to
Ci from C∗i .

7In our experiments we have used p = 0.8.
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TABLE II

FILTERS EMPLOYED IN THE FILTERING ATTACK, AND THEIR RESPECTIVE SUCCESS RATES (OUT OF 1000 TRIALS). NOTE THAT THE MEDIAN FILTER

WAS USED IN THE GENERATION PROCESS, THUS THE CHALLENGE IS ROBUST TO THE MEDIAN FILTER BY CONSTRUCTION

Fig. 2. An example of the IAN generation algorithm. Image (a) is the original image, correctly classified as a Shetland sheepdog with a high confidence of
0.6731 (b) is the computed immutable adversarial noise, (c) is the adversarial image (the sum of the image in (a) and the IAN in (b)), classified as a tandem
or bicycle-built-for-two with a 0.9771 confidence and (d) the result of applying M f , classified as a chainlink fence with confidence 0.1452.

Fig. 3. An example of a DeepCAPTCHA challenge. The large image above
is the computed adversarial example, and the smaller ones are the set of
possible answers.

the proposed DeepCAPTCHA system. We start the analysis by
discussing a straightforward guessing attack, we then continue
to evaluate attacks that use image processing techniques,
aiming to revert the adversarial image to its original class
by applying image processing filters. We then turn to more
sophisticated attacks that employ machine learning tools.
Finally, we discuss possible solutions to relay attacks. We set
the security requirement for the success of an attack to a false
acceptance rate (FAR) of at most 1.5%.

A. Random Guessing Attack

Using m answers per challenge provides a theoretical bound
of ( 1

m )n for the probability that a bot will successfully pass n
challenges.8 Therefore, n = − log p

log m are required for achieving

8Assuming independence between tests.

a False Acceptance Rate (FAR)9 of p. As we show later (in
Section VII-A), m = 12 offers sufficient usability (low False
Rejection Rate (FRR) and fast enough answers), hence for our
target FAR of at most 1.5%, n should be greater than 1.67,
e.g., n = 2 (resulting in an FAR of 0.7%).10

One can, alternatively, combine challenges with different
numbers of answers in consecutive rounds, or increase n.
These allow a better tailoring of the FAR and the FRR (both
can be computed following the figures shown on Table IV).
The latter approach offers a finer balance between security and
usability.

B. Filtering Attacks

We examined the robustness of our IAN generating algo-
rithm to a set of image filters particularly aimed at removing
the added noise. Any of these attacks will succeed if they
are able to remove sufficient noise to correctly classify an
adversarial example into the class of its original image.

We tested seven filters with a wide range of parameters on a
set of 1000 adversarial examples, created with the generation
algorithm presented in Algorithm 1. This set of filters included
the median filter, averaging filter, circular averaging filter,
Gaussian lowpass filter, a filter approximating the shape of the
two-dimensional Laplacian operator, non-local means [2], and
wavelet denoising [25] filters. Table II shows the success rates
of the different filters (along with the optimal parameter choice
for the filter). The success rates of all filters are significantly
below the security requirement of 1.5%.

9In our context, FAR stands for the probability that a bot succeeds to pass
the DeepCAPTCHA whereas FRR stands for the probability that a human
fails to pass DeepCAPTCHA.

10We note that increasing the permissable FAR to 1.5625% would allow
using two challenges of 8 answers each. This will improve the usability of
the system as shown in Section VII-A. However, we prioritize the security
and thus choose 12 answers for challenge.
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C. Machine Learning Based Attacks

We start by defining the attacker model, and then analyze in-
depth the most prominent attacks that could be applied against
DeepCAPTCHA.

1) The Attacker Model:

Knowledge of the algorithm and its internal
parameters: The attacker has a full knowledge of the
CNN (its architecture and parameters, or knowledge
of the training set that allows training of a simi-
lar CNN), used in the adversarial noise generation
algorithm and of the generation algorithm itself,
including its internal parameters.
Access to DeepCAPTCHA challenges: The attacker
has access to all generated adversarial examples (but
not to their source) as well as to the images which
serve as the representatives of the classes (one or
more per class).
No Access to the Source Images: The source
images (used to generate the adversarial examples)
are chosen at random from crawling a number of
high volume online social media and similar sites,
thus the size of the source image pool can be
considered infinite for all practical purposes. Once
the adversarial image is created, the corresponding
original image is discarded instantly from the Deep-
CAPTCHA and never reused.11 Theoretically, the
attacker may access the sources as well (or have
access to an indexing service such as Google), but
if the chosen image is “fresh” (not indexed yet)
and chosen from a large set of sources, he has
no knowledge about the particular image used for
generating the adversarial example.
Access to other machine learning tools: The
attacker has the ability to use any other classifier
in an attempt to classify the adversarial examples or
to train the same or other DL networks on them.
This can be done with the aim of finding alternative
networks with similar accuracy over the baseline
classification problem, but having more robustness
against adversarial examples.

Therefore, in the highly likely case that the attacker does
not have access to the source images, the DeepCAPTCHA
scheme is secure and usable even when all other aspects of
the attacker model are satisfied.

2) Alternative Classifier Attack: The most straightforward
attack on DeepCAPTCHA is probably the one that tries to
use other classifiers, in an attempt to correctly recognize the
adversarial example.

A machine learning algorithm, to be used success-
fully in such an attack, should be 1) robust to adver-
sarial examples in general or at least to those used
in DeepCAPTCHA; 2) scalable to a large number of
categories (+1000).

11Obviously, unless the system stores all previous source images, then
repetitions may exist by random chance (depending on the sampling process).
Designing efficient methods to ensure that no such repetitions exist, is outside
the scope of this paper.

TABLE III

TRANSFERABILITY OF ADVERSARIAL EXAMPLES TO OTHER DEEP

NETWORKS. 1000 ADVERSARIAL EXAMPLES WERE CREATED USING

CNN-F FROM CLEAN IMAGES IN THE VALIDATION SET OF ILSVRC-12.

THE TABLE REPORTS THE CLASSIFICATION ACCURACY OF THE

TESTED NETWORKS ON THE CLEAN AND ADVERSARIAL

VERSIONS OF THESE IMAGES

Highly non-linear models such as RBF-SVM, or RBF net-
works are known to be more robust to this adversarial phenom-
enon [12], [15]. But these non-linear classifiers are currently
not scalable to be able to cover +1000 categories. Thus, they
do not offer a practical method for breaking DeepCAPTCHA
or future similar schemes until major breakthroughs in ML
allow for training highly non-linear models over problems with
a large number of classes.

Since the adversarial generation algorithm uses a specific
network, one can consider a potential attack using another
DL network with a different architecture and/or parameter-
ization. However, it was previously shown that adversarial
examples generalize well to different architectures and initial-
izations [15], [24], [42].

To verify the robustness of our construction against attacks
that use alternative DL algorithms, we tested several publicly
available DL networks trained on the same set of images
to classify the adversarial examples in DeepCAPTCHA.
Specifically, we used the CNN-F network from [7] to gen-
erate the CAPTCHA and we tested the ability to recog-
nize the adversarial examples using three other deep learn-
ing networks. Two of these networks have a different
architecture: CNN-M is similar to Zeiler and Fergus [52]
and CNN-S is similar to OverFeat [39]. The third net-
work — AlexNet from [19], has an architecture similar to
CNN-F, with the difference that CNN-F has a reduced number
of convolutional layers and a denser connectivity between
convolutional layers. Table III compares the classification
results of the tested networks on the clean and adversarial
version of 1000 images. The results show that none of these
tools reached the 1.5% threshold.

We verified the transferability of adversarial examples,
created by Algorithm 1, across different classification models.
Specifically, we tested a linear SVM classifier trained on a
bag of visual words (as provided in the toolkit of ILSVRC-
10 competition) extracted from the training set of ILSVRC-12
and tested their classification rate on the clean validation set
of ILSVRC-12 and on the adversarial set used to test deep
networks. This model achieved 23.99% classification rate on
the clean validation set (which is comparable to the results
reported in the literature). However, the classification rate on
the adversarial set achieved only 0.5% which is below our
security threshold.



OSADCHY et al.: NO BOT EXPECTS THE DeepCAPTCHA! INTRODUCING IMMUTABLE ADVERSARIAL EXAMPLES 2649

3) Adversarial Training: Since adversarial examples are
effective at fooling other ML tools trained on clean examples,
another attack to consider is fine tuning an existing DL
network on adversarial examples. Previous work suggested to
improve the robustness of DL to adversarial examples by an
iterative process that alternates between creating adversarial
examples for a current network and fine-tuning this network
on a mixed set of regular and adversarial examples [42].
This approach was only tested on the MNIST data set,
which is relatively small. Still, the reported results show very
limited success. Namely, running five iterations of training
on adversarial examples improved the error rate from 96.1%
to 92.1% [43]. Combining networks produced during the
iterative adversarial training into a committee and taking an
average prediction of all committee members as the score
for classification, improved the error to 35.5% [43]. Finally,
Goodfelow et al. [15] suggested adversarial training which
combines the loss of a training sample with the loss of its
adversarial variant. Such training reduced the error on adver-
sarial examples generated via the original model to 19.6%.

Even though the new networks enjoy a somewhat increased
robustness to adversarial examples, generated by the network
prior to adversarial training, one can easily generate adver-
sarial examples against the retrained networks (as noted by
Warde-Farley and Goodfellow [47]). Moreover, the results
of adversarial training were reported for the MNIST set,
which is composed of images with low entropy, and thus the
adversarial noise could be easily neutralized by very simple
tools (See section IV). Previous quantitative results for natural
images categories are restricted to one-step methods, which
improve their robustness as a result of adversarial training [21].
However, as we showed in Section IV-B, adversarial noise
created by one-step methods can also be removed with high
success using a very simple filtering.

An adversary wishing to use adversarial training for attack-
ing the DeepCAPTCHA system would need to obtain adver-
sarial examples which are correctly labelled (the ground truth
labels). Given the success of deceiving the existing network,
this would force the adversary to employ humans to provide
the labels (at a higher cost). Moreover, the DeepCAPTCHA
system can also be retrained (to imitate the process done by
the adversary) to produce new adversarial examples against
the newly trained network. As the DeepCAPTCHA system
knows the true labels, the defender has the upper hand — for
a smaller cost and effort she can alter her network to imitate
the adversary.

We ran an instance of an adversarial training attack on
DeepCAPTCHA using the ILSVRC-2012 database [37]. We
used a two step process that iteratively improves the robustness
of the input network by adversarial training. The process
inputs CNN-F network [7] (used for DeepCAPTCHA) fully
trained on clean examples. The first step of the training process
produces adversarial examples using our novel algorithm (see
Algorithm 1) via the current network and adds them to the pool
of adversarial examples. The second step fine tunes the current
network on the mix of clean and adversarial examples from
the updated pool. We ran the process for 5 iterations adding
2000 adversarial examples in each iteration. After training,

the error on a validation set constructed from the previous
generations of adversarial examples was reduced to 92.3%
on average (over the intermediate networks) with a minimal
error of 87%. However, newly produced adversarial examples
deceive all these networks in 100% of the cases.

Building a committee from the intermediate networks (pro-
duced by the iterative training process) achieved a minor
reduction in error on the newly generated adversarial examples
(crafted via the last version of the network). Specifically,
basing the classification on the sum of scores of all committee
members was able to reduce the error from 100% to 98.9%.
Devising adversarial examples that can deceive multiple mod-
els has been recently shown in [24]. Similar strategies can
be followed to improve robustness against a committee of
classifiers.

To conclude, it seems that adversarial training attacks
against DeepCAPTCHA can be mitigated by retraining the
network (periodically) on previously created adversarial
examples.

4) Noise Approximation Attack: Given that the challenges
were generated by adding adversarial noise, the attacker may
hope to approximate this noise (to remove it) using DL. We
show next that for suitably chosen image sources, this attack
is successful less than 1.5% of the time.

Recall that the images belong to known classes. Therefore,
the attacker can try and explore the similarity between images
of the same class in order to approximate the noise that
changes the classification from the true category (Ci ) to the
deceiving one (Cd ). To approach this goal one would consider
collecting representative samples of a category and learning a
noise per each sample in that class and for each other category
in the system.

For the attack to be effective, the variation between the
instances of the same class should be small, for example a
category comprising images of the letter ‘A’ printed with a
similar font. In other words, the adversarial noise that takes
an element from Ci and “transforms” it into an element in Cd ,
should be relatively independent of the actual element.

Fortunately, this property rarely holds for general object
categories like the ones we are using for DeepCAPTCHA. In
fact, this is exactly what causes the baseline classification to
be difficult in the first place, requiring a sophisticated feature
extraction process (such as a CNN) to overcome the very high
intra-class variation.

Along these lines, we implemented and tested an attack
we have named the noise approximation attack. Consider
a working example with the following settings: a thousand
image categories, where each category is represented by
1200 images12 and there are 12 candidate answers per Deep-
CAPTCHA challenge. If the images used for answers are
static, then their labels could be pre-computed by running the
network over all classes only once. Then, for each challenge,
the labels of the answers could be retrieved very efficiently.

In the pre-computation step, the attacker can compute the
adversarial noises that transform every image in the dataset

12To make the CAPTCHA more secure, we chose classes with large
variability between the categories.
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into every other category. This implies a total of 1, 200∗999 =
1, 198, 800 adversarial noise images (i.e., for a representative
image I ′ ∈ Ci and a target category d compute all its �d

I ′,i =
I ′ − adv(I, Cd , p) values).

In the online phase of the attack, the attacker is
presented with the challenge, including the adversarial
example13 adv(I, Cd , p) and a random permutation of 12
possible answers {Ii , I j1 , . . . , I j11} (where i is the label of the
correct class, and d is the decoy label of the adversarial exam-
ple). Then, the attacker runs the network over adv(I, Cd , p)
and retrieves the decoy label d . As the attacker knows that the
noise caused the image I to be classified in Cd (rather than
one of the 12 classes represented by the set of answers), he
tries to remove the adversarial noise that transforms I ′ ∈ Ci

into Cd from adv(I, Cd , p). Specifically, for each class j of
the 12 answers, and for each representative image I ′ ∈ C j ,
the attacker computes the estimation of the original image as:
I ∗ = adv(I, Cd , p)−�d

I ′, j , and then runs the network on the
estimate I ∗, which results in 1200 ∗ 12 = 14400 attempts per
challenge (as the representative sets are of size 1200 images,
and there are 12 candidate sets). This is a large number, but
if the images in the same category are very similar (e.g.,
same letter), then even the first attempt could be successful.
To prevent such security issues one should exclusively use
natural images of real objects with moderate to high intra-
class variation as a source for CAPTCHA generation.

We ran an instance of the noise approximation attack, where
the true category was lion (that exhibits moderate intra-class
variation) and the target category was rooster. A total of
3 out of 1200 challenges were broken using this approach.
This implies that the noise approximation attack is interesting
and potentially relevant, and that despite its low success
rate of 0.25% it needs to be taken into account in future
implementations, to ensure it stays below the 1.5% threshold.

We also verified that categories with a low inner-class
variability are highly susceptible to the proposed noise approx-
imation attack. Specifically, we used MNIST data set to collect
adversarial noises that cause CNN to classify images of digit
‘1’ as ‘2’ for a set of 200 adversarial examples. We tested the
noise approximation attack using these noises on a different
set of 200 adversarial examples (of ‘1’ recognized as ‘2’). The
attack succeeded to remove the adversarial noise in all tested
images. Furthermore, it was very effective computationally, as
it succeeded to remove the adversarial noise from a test image
on the first attempt (subtracting the first stored noise) 90% of
the time. Consequently, MNIST and similar low variation data
collections are not a suitable source for adversarial examples.

D. Relay Attacks

Relay attacks are becoming increasingly relevant in the con-
text of CAPTCHAs, and have been revealed to be very difficult
to fight against and relatively easy to deploy. They are also
called ‘human relay’ attacks, ‘human farms’ or ‘sweatshop’
attacks in the literature. They are based on exploiting cheap
labor for relaying CAPTCHA challenges to humans who can

13We remind the reader that I is not available to the adversary as per our
assumptions.

solve thousands of them per hour at a low cost (e.g., around
$1, as reported in [29].)

These attacks are very difficult to stop, and there are very
few proposals in the literature that offer any real protection
against them. One such approach is a Dynamic Cognitive
Game CAPTCHA [28] that, while offering some resistance
to relay attacks is, in its current form, vulnerable to low-
complexity automated dictionary attacks.

We note that any generic defense against relay attacks can
be applied to the DeepCAPTCHA system: from relying on
the client’s original IP address to browser-specific character-
istics, or the use of timing information. For example, as we
have good timing estimates for the average solution times of
DeepCAPTCHA challenges, one can easily introduce a time
threshold to detect such attacks as suggested in [28].

VII. POC: DEEPCAPTCHA-ILSVRC-2012 SYSTEM

We implemented a proof-of-concept system using the
CNN-F deep network from [7], trained on the ILSVRC-2012
database [37]. This set contains 1000 categories of natural
images from ImageNet. The DL network was trained on the
training set of the ILSVRC-2012 database, and we used the
validation set that contains 50,000 images as a pool for source
images (such a pool is used only for the PoC system; in a real-
life system, a source image should be taken from a web source
and discarded after creating the challenge). For each challenge
we picked an image at random and produced an adversarial
example for it using the IAN generation method, detailed
in Algorithm 1. We selected one representative image per
category from the training set (to guarantee that the answers do
not contain the image, used to generate adversarial examples)
for the answers.

The PoC system was implemented as a web application in
order to conduct a number of usability tests. In our implemen-
tation we varied the number of answers to test the best trade-
off between usability and security (more choices increase the
security, but are harder for users and the solution takes more
time). The number of challenges per session was set to 10
(note that our security analysis suggests that 2–3 answers are
enough to reach the desired security level). An example of a
challenge from the PoC system is shown in Figure 3.

A. Usability Analysis of the PoC System

We tested the proof-of-concept implementation of our Deep-
CAPTCHA system using 472 participants contacted using the
Microworkers.com online micro crowd sourcing service. Each
participant was requested to provide anonymous statistical data
about their age, gender and familiarity with computers before
starting the test. Participants were next presented with 10
DeepCAPTCHA challenges of varying difficulties and gave
feedback on usability once they had completed the challenges.
This provided us with 4720 answered tests, of which we
removed 182 (approx. a 3.85%) to avoid outliers. In particular,
we removed tests or sessions if they fall into any of these three
categories14: 1. Sessions with average time per test longer than

14We assume that long solving times are due to users that were interrupted
during the tests, and the low success rates are due to users that did not follow
the instructions, or chose their answers at random.
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TABLE IV

USABILITY RESULTS FOR THE DEEPCAPTCHA PROOF OF CONCEPT IMPLEMENTATION, WITH DIFFERENT NUMBER OF ANSWERS

Fig. 4. Self reported user friendliness of DeepCAPTCHA. Answers in the
range 1-10, 10 being best.

Fig. 5. Self reported DeepCAPTCHA difficulty, compared with existing
CAPTCHAS, for variants from 8 to 20 answers.

40 seconds, 2. Tests with answer times above 45 seconds,
and 3. Sessions with a success rate of 10% or lower.

We tried to get some insights into the best trade-off
between usability and security by testing different numbers
of answers, in the range 8+ 4k, k ∈ {0, . . . , 3}, so users
were randomly assigned variants of the tests with differ-
ent number of answers for studying the impact of this
change. The most relevant usability results are shown in
Table IV. The participants reported high satisfaction with
DeepCAPTCHA usability (see Figure 4). The data shown in
Figure 4 is an average across all variants, from 8 to 20 answers.
As expected, the perceived user-friendliness and difficulty (see
Figure 5) of the DeepCAPTCHA deteriorated steadily from the
versions with 8 answers to those with 20.

It is interesting to note that participants who declared
their gender as female performed significantly better than
the males, across all variants, the gap becoming wider with
the increasing difficulty of the CAPTCHA task, as seen in
Figure 6. Consistent with this finding is the additional fact
that females not only achieved better accuracy but also did it
using less time on average than males.

Fig. 6. Accuracy across self-reported gender for variants from 8 to 20
answers.

We define a secure CAPTCHA as one that has a less than
1.5% chance of being successfully attacked by a bot, and a
usable CAPTCHA as one with a challenge pass rate above
75% when attempted by a human within an average time of
15s. These thresholds are in line with those previously reported
and with other CAPTCHA schemes.

Based on the results collected so far in our preliminary
tests, and the security analysis in Section VI, we conclude
that the best trade-off between security and usability is met
by the version of our test with 12 answers per challenge and
two challenges in a CAPTCHA session. This configuration
meets the accepted security and usability requisites. Namely,
humans showed a success rate of 86.67% per challenge, hence
the overall success probability is (assuming independence)
about 0.86672 = 0.751. The average time for the session was
about 2 · 7.66s = 15.32s (the median is significantly faster —
10.4s). The security analysis showed that a probability of a
bot bypassing the scheme is not higher than 0.7% (by random
guessing).

We expect that once users will become more familiar with
the task and the system (as the system gains popularity), the
solution times and the success rates would improve.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we introduced DeepCAPTCHA, a secure
new CAPTCHA mechanism based on immutable adversarial
noise that deceives DL tools and cannot be removed using
preprocessing. DeepCAPTCHA offers a playful and friendly
interface for performing one of the most loathed Internet-
related tasks — solving CAPTCHAs. We also implemented a
first proof-of-concept system and examined it in great detail.15

15DeepCAPTCHA can be accessed at http://crypto.cs.haifa.ac.il/~daniel
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We are the first to pose the question of adversarial examples’
immutability, in particular to techniques that attempt to remove
the adversarial noise. Our analysis showed that previous meth-
ods are not robust to such attacks. To this end, we proposed a
new construction for generating immutable adversarial exam-
ples which is significantly more robust to attacks, attempting
to remove this noise, than existing methods.

There are three main directions for future CAPTCHA
research:

• Design a new large-scale classification task for Deep-
CAPTCHA that contains a new data set of at least 1000
dissimilar categories of objects. This task also includes
collecting (and labelling) a new data set for training of
the CNN.

• Adversarial examples are trained per classification prob-
lem, meaning that they can operate on the set of labels
they have been trained for. Switching to an alternative set
of labels is likely to reduce their effectiveness. Another
interesting future research topic could be to develop IANs
for these scenarios, e.g., for hierarchy-based labels (such
as Animal-Dog-Poodle.)

• The study and introduction of CAPTCHAs based on
different modalities, such as sound/speech processing
(e.g., to address users with visual impairments).

Finally, we believe that IANs could have a wide range
of applications in computer security. They may be used to
bypass current ML-based security mechanisms such as spam
filters and behavior-based anti-malware tools. Additionally, our
proposed attacks on adversarial noise may be of independent
interest and lead to new research outcomes.
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