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Abstract— Multifactor user authentication systems enhance
security by augmenting passwords with the verification of addi-
tional pieces of information such as the possession of a particular
device. This paper presents an innovative user authentication
scheme that verifies the possession of one’s smartphone by
uniquely identifying its camera. High-frequency components
of the photo-response nonuniformity of the optical sensor are
extracted from raw images and used as a weak physical unclon-
able function. A novel scheme for efficient transmission and
server-side verification is also designed based on adaptive random
projections and on an innovative fuzzy extractor using polar
codes. The security of the system is thoroughly analyzed under
different attack scenarios both theoretically and experimentally.

Index Terms— User authentication, PRNU, random projec-
tions, fuzzy extractors, polar codes.

I. INTRODUCTION

THE very large diffusion in everyday life of web-based
services like social networks, internet banking, cloud-

based storage, requires the development of user authentication
techniques that are both secure and user friendly [1]. In this
sense, the traditional mechanism based on secret passwords
shows several shortcomings. Security means that long and
unpredictable passwords should be generated and remembered,
which is not user friendly. As a consequence, short and
easily predictable passwords are commonly reused, which
considerably reduces the security of the system.

Recently, several solutions have been proposed for provid-
ing an additional level of security in current user authen-
tication systems. A common approach is to resort to a
multifactor authentication scheme, in which the knowledge
of a secret password is complemented with the possession
of one, or more, physical or software tokens [2]. Typical
solutions currently implemented on several existing web ser-
vices are the generation of one-time passwords (OTPs) on a
dedicated token, or receiving a OTP by text message on the
user’s smartphone [3]–[5]. Even if multifactor authentication
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effectively solves the security problem, the existing solutions
typically reduce user friendliness. As an alternative, several
authors have proposed authentication systems based on the
possession of unique signals that are not easily reproducible.
A natural choice is using biometric traits like fingerprints,
irises, or faces [6]–[8]. An innovative approach consists in
deriving a secret from some physical characteristics of an
integrated circuit that are deemed unique, implementing a
so-called physical unclonable function (PUF) [9].

In this paper, we propose a novel authentication system
that relies on an unclonable physical property of digital
image sensors named photo-response non-uniformity (PRNU).
The PRNU is a sensor-specific multiplicative noise pattern
that has enjoyed great popularity in the last decade because
it can be used to solve several forensic problems. Exam-
ples of its many applications are: determining which camera
has acquired a given photo [10], [11], clustering collections
of images by their source camera [12], [13], camera-based
image retrieval [14], [15] and detecting and localizing image
forgeries [16], [17].

The concept proposed in this paper is to use the PRNU of
the camera sensor of the user’s smartphone as a weak PUF [9],
that can be used as a possession factor in a multifactor
authentication scheme, or even employed in a single step
authentication protocol. Due to the ubiquitous diffusion of
smartphones, such a system is potentially much user friendlier
than existing solutions, enabling the implementation of an
application that automatically acquires pictures, computes a
compact code derived from the sensor PRNU and transmits it
to a remote verification server requiring minimal or no user
interaction. However, turning this idea into a practical authen-
tication system requires to solve several important problems,
as well as rigorously show the security of such solutions.

First, the PRNU survives JPEG compression, as well as
some image processing operations, and it can be found in
photos that are publicly available, e.g., on social networks [18].
Luckily, the PRNU is inevitably degraded by such operations,
while in the framework of user authentication, the legitimate
user has full control over the camera and could extract the
PRNU with an arbitrarily high quality. In the following,
we consider extracting the PRNU from RAW images and keep-
ing only its high-frequency components. Since JPEG compres-
sion acts as a lowpass filter, the high-frequency components
are unavailable or severely degraded in publicly available
images and can only be estimated if one has access to the
raw data.
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Second, the PRNU has the same size as the image sensor.
Sending a complete PRNU signal over a mobile connection
could be impractical in several scenarios, as well as storing
the reference PRNUs of a large number of users at the server
side. In this case, we propose to compress the PRNU using
random projections. Recent results show that this technique
can reduce the PRNU size by several orders of magnitude,
without significantly affecting the matching performance [14].
Moreover, this also provides an additional security layer since
the actual PRNU is never disclosed and if a compressed PRNU
is compromised this can be revoked and replaced by a freshly
generated compression.

Lastly, the server should not store a copy of the PRNU, or its
compressed version. This problem can be solved by resorting
to techniques used for biometric template protection [19], [20].
Namely, we present an innovative implementation of a secure
sketch and a fuzzy extractor based on polar codes, which
is specifically tailored to compressed PRNUs. Since in the
proposed system an attacker may have a partial knowledge
of the PRNU from publicly available photos, the proposed
construction incorporates a specific coding technique for the
wiretap channel based on polar codes, which effectively pre-
vents the attacker from gaining access to the system.

A. Related Works and Contribution

The idea of using high frequency components of PRNU has
been recently introduced in a different context in [21]. The
authors considered the case of fingerprint-copy attacks [22],
where an attacker wants to plant a fingerprint in an image
but only has access to JPEG images of the camera, while
the defender has access to RAW data. The user authentication
scenario significantly differs from a copy attack and provides
unique requirements. Our goal is to show that an attacker
that can only access JPEG-compressed images cannot reliably
estimate the high-frequency components of the PRNU that
the legitimate user employs as fingerprint. In our analysis,
the legitimate user has full control over the raw image quality,
and the number of images that can be used to generate the
reference and test fingerprints. The attacker potentially has
access to a large number of high-quality JPEG images and
tries to extract a fingerprint that is highly correlated with
the legitimate one. In this work, we assume that an attacker
can only access public images in JPEG format and we do
not consider the possible theft of RAW images. With respect
to [21] we also provide a different fingerprint extraction
method that is not constrained to work on 8 × 8 blocks.
A significantly larger database with RAW and JPEG images,
mostly from smartphone cameras, has been assembled in order
to test attacks with hundreds of high-quality JPEG images.

The use of random projections for biometric template pro-
tection has been proposed in a number of works [23]–[26],
and later extended also to PUFs [27]. With respect to existing
papers, we introduce a novel adaptive random projection
technique, similar to a technique proposed in [28] and then
further expanded and carefully analysed in [29]. Moreover,
using the PRNU as a PUF requires an ad-hoc design of the
fuzzy extractor, for which we provide an original construction

based on polar codes and a rigorous security analysis. Finally,
we provide a rigorous security analysis of the whole proposed
system under different attack scenarios.

Very recently, the authors of [30] proposed to combine
several device sensor features, including PRNU, and apply
machine learning for smartphone authentication. The paper
provides some interesting insights on the distinctiveness of
smartphone sensors, however security issues are not addressed
and a complete authentication system is not discussed. The
possibility of using PRNU for authentication is also discussed
at high level in this recent contribution [31], but no technical
solutions are proposed, and a rigorous security analysis is not
provided.

B. Paper Organization

The paper is organized as follows. In Section II we pro-
vide some background on PRNU, random projections, fuzzy
extractors, and polar codes. A high level description of the
proposed system is given in Section III, while the techni-
cal details regarding fingerprint estimation/compression and
user verification are discussed in Section IV and Section V,
respectively. In Section VI we provide a rigorous security
analysis of the proposed system under different scenarios,
while in Section VII we validate the system through extensive
experiments. Finally, conclusions are drawn in Section VIII.

II. BACKGROUND

The following subsections provide some background mate-
rial to help the reader understanding the rest of the paper.
We first (Sec. II-A) present some notation used throughout the
paper. Sec. II-B recalls the basics of PRNU of digital imaging
sensors. Sec. II-C introduces random projections, a useful
dimensionality reduction method. Sec. II-D discusses fuzzy
extractors, a set of techniques to extract uniform random-
ness from a source that is not exactly reproducible. Finally,
Sec. II-E reviews polar codes, a channel coding technique.

A. Notations

Lower-case (upper-case) bold symbols denote real-valued
vectors (matrices). Lower-case letters indicate scalars or bit
strings. Upper-case letters denote random variables. Symbols
P and E denote the probability and expectation operators,
respectively.

The predictability of a random variable A is measured by
the min-entropy, defined as H∞(A) = − log(maxa P(A = a)).
A variable whose min-entropy is m bits is as hard to predict
as a uniformly random string of m bits.

If the adversary observes a variable B which is correlated
with A, the expected predictability of A can be expressed by
the average min-entropy of A given B , defined as H̃∞(A|B) =
− log(Eb[2H∞(A|B=b)]).

It is also useful to define how much two random variables
differ using the statistical distance between variable A and B ,
defined as dS(A, B) = 1

2

∑
v |P (A = v) − P (B = v)|.

Table I summarises the main symbols used throughout the
paper, along with their description.
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TABLE I

SYMBOLS

B. PRNU

PRNU [11], [32] of imaging sensors is a property unique to
each sensor array due to the different ability of each individual
optical sensor to convert photons to electrons. This difference
is mainly caused by impurities in silicon wafers and its effect
is a noise pattern affecting every image taken by that specific
sensor. Hence, the PRNU can be thought of as a spread–
spectrum fingerprint of the sensor.

The literature on camera forensics [11], [33] widely consid-
ers the PRNU as unique for each camera since it has very large
entropy and therefore the probability of two cameras having
the same pattern is negligible. For instance, Bayram et al. [34]
estimate the entropy of the PRNU to be 20 bits per pixel, and
considering that the PRNU has the same pixel size as the
sensor, and the value for each pixel is uncorrelated with the
others, the PRNU has very large discriminative power. Being
a multiplicative pattern, its strength with respect to other noise
sources depends on the brightness of the acquired image.

The PRNU characterizing one sensor can be extracted from
a set of images (typically, 20 to 50 smooth images are enough).
The procedure to extract the fingerprint k of a sensor from a
set of pictures depends on the model used to characterize the
optical sensor. The sensor output o can be modelled as

o = oid + oid · k + e, (1)

where oid is the ideal sensor output, oid · k is the PRNU term
and e collects other sources of noise. Assuming to be able to
obtain through proper filtering a denoised version of o, referred
to as odn, then this can be used as an approximation of the
ideal sensor output and subtracted from each side of (1) to
obtain the so-called noise residual, which can be modeled as:

r = o − odn = o · k + ẽ, (2)

where ẽ accounts for e and for the non-idealities of the
model [11]. Supposing that a certain number C of images is
available, the maximum likelihood estimate k̂ can be obtained
as

k̂ =
C∑

l=1

(
r(l) · o(l)

)
/

C∑

l=1

(o(l))2. (3)

To improve further the quality of the estimation, artifacts
shared among cameras of the same brand or model can be
removed by subtracting row and column averages. In the case

of color images, the estimation must be performed separately
on each color channel, and then an RGB–to–gray conversion
can be applied.

Finally, a pair of fingerprint vectors k1, k2 is typically
compared using their correlation coefficient, defined as

ρ = kT
1 k2

‖k1‖2‖k2‖2
.

C. Random Projections

Random projections (RPs) are a method for dimensionality
reduction [35]. A collection X ⊂ R

n of signals living in a
high-dimensional space can be embedded with low distortion
into low-dimensional representations Y ⊂ R

m (also known
as measurements, or random projections, with m < n) by
computing inner products with random vectors. In matrix
form this is written as y = �x, for x ∈ X , y ∈ Y , and
where � is often referred to as sensing matrix. Measure-
ments can also be quantized to achieve more storage-efficient
representations. The key property of random projections is
that they approximately preserve distances. A classic result is
that real-valued random projections, where the sensing matrix
is made of independent and identically distributed (i.i.d.)
Gaussian entries, are a mapping that satisfies the Johnson-
Lindenstrauss (JL) lemma [36], meaning that �2 distances are
nearly preserved. A key property following from the JL lemma
is that the number of measurements m depends only on the
desired distortion on distances between signals introduced by
the embedding, and on the number of signals that are to be
embedded but not on the dimensionality of input space n.

Of particular interest are binary random projections that
are computed with a sensing matrix made of i.i.d. Gaussian
entries, and then quantized to one bit by keeping the sign of the
measurement. The Hamming distance between the resulting
binary vectors approximately preserves the angle between the
signals in the original space [37], i.e.,

P

(
sign(φT

i u) = sign(φT
i v)

)
= 1 − θ

π
,

being θ = cos−1
(

uT v
‖u‖‖v‖

)
, and φi the i -th row of �.

It is often impractical to use a fully random sensing matrix,
either because the high dimensionality of the signals requires
to generate too many random numbers or because performing
the full matrix-vector product is too computationally intensive.
Circulant matrices with randomized column signs [38] are an
appealing solution because they allow to generate only the
first row of the sensing matrix and compute the measurements
using the FFT.

In [14], [15], RPs were used to perform dimensionality
reduction of PRNU patterns, showing significant gains in terms
of storage requirements as well as in the complexity of the
match or search in large database operations.

D. Fuzzy Extractors

Fuzzy extractors denote a set of techniques for extract-
ing nearly uniform randomness from sources of information
that are neither exactly reproducible nor uniformly distrib-
uted [19], [20]. These techniques were originally developed
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for generating strong keys from biometric data, however
they can be applied to any form of noisy data used for
authentication, like PUFs. More precisely, such techniques
rely on two primitives: 1) a fuzzy extractor that extracts
nearly uniform randomness from an input in an error-tolerant
way, i.e., close inputs are guaranteed to generate the same
randomness; 2) a secure sketch producing public information
about a secret input w that does not reveal anything about w,
yet allows to recover w when combined with another value
that is sufficiently close to w.

In our scheme, we will employ a slightly relaxed definition
of secure sketches and, in turn, of fuzzy extractors, that
accounts for a negligible probability of not recovering the
secret input w. This definition applies when the error pattern
on w can be modeled by a binary symmetric channel with
crossover probability p (BSC-p).

Definition 1: An (n, m, m̃, p, α)-secure sketch consists in a
pair of functions SS : {0, 1}n → {0, 1}∗ and Rec : {0, 1}n ×
{0, 1}∗ → {0, 1}n with the following properties:

1) Correctness: if w′ is the output of a BSC-p when the
input is w, then Rec(w′, SS(w)) = w with probability
at least 1 − α.

2) Security: if H∞(W ) = m then H̃∞(W |SS(W )) ≥ m̃.
Definition 2: An (n, m, �, p, α, ε)-fuzzy extractor consists

in a pair of functions Gen : {0, 1}n → {0, 1}� × {0, 1}∗ and
Rep : {0, 1}n×{0, 1}∗ → {0, 1}� with the following properties:

1) Correctness: if (x, s) = Gen(w) and w′ is the output
of a BSC-p when the input is w, then Rep(w′, s) = x
with probability at least 1 − α.

2) Security: if (x, s) = Gen(w) and H∞(W ) = m
then dS((X, S), (U�, S)) ≤ ε, where U� is a uniformly
distributed string of � bits.

From the above definitions, it is evident that a fuzzy extrac-
tor can be constructed on top of a secure sketch, provided
that one can extract sufficiently uniform randomness from the
secret input w [20].

E. Polar Codes

Polar coding is a channel coding technique introduced by
Arıkan in [39] that provably achieves the capacity of binary
memoryless symmetric (BMS) channels. Let us consider the
2n × 2n matrix Gn = G⊕n , obtained as the n-fold Kronecker
product of the kernel matrix

G =
[

1 0
1 1

]

.

Suppose a block of N = 2n bits are encoded by Gn and
then fed to N independent copies of a BMS channel. If we
consider the N equivalent bit channels from the input bits to
the output of the corresponding BMS channel, it is shown
in [39] that as n grows these bit channels polarize, i.e., if C
denotes the capacity of the BMS channels, a fraction nC of
the bit channels have a capacity approaching 1, whereas the
other bit channels have a capacity close to zero. The rationale
of polar coding is to transmit information bits only on the
good channels, whereas the other bits are set to zero.

Fig. 1. System block diagram.

Given a BMS channel Q(y|x), its performance can be
analyzed using the Bhattacharyya parameter, defined as

Z(Q) =
∑

y

√
Q(y|0)Q(y|1). (4)

The usual design strategy for polar codes is to compute the
parameter Z(Qi ) for all the N equivalent bit channels Qi ,
i = 1, . . . , N , and use only the k = Rn channels having
smaller Z(Qi ) for transmitting information bits, where R < C
is the desired rate of the code. This is equivalent to using
as generator matrix of the code the submatrix obtained from
the corresponding k rows of Gn . An important result for
polar codes states that the probability of error of a successive
cancellation decoder (SCD) can be upper bounded as [39]

Pe ≤
∑

i∈A
Z(Qi ) (5)

where A denotes the set of bit channels used by the code.
In practice, the computation of the parameters Z(Qi ) is

tractable only for the binary erasure channel, since for every
other channel the output alphabet of Qi grows exponentially.
However, useful upper and lower bounds on Z(Qi ) can
be computed quite efficiently using channel degrading and
upgrading techniques [40], [41].

III. PROPOSED TECHNIQUE

The main idea of the proposed technique is to use the
PRNU fingerprint of the optical sensor of a user’s device,
e.g. a smartphone or a tablet, as a PUF for authentication.
An overview block diagram is shown in Fig. 1.

In a first phase, the user enrolls into the system by providing
a high quality estimate of the device fingerprint, obtained from
a certain number of photos acquired in controlled conditions.
Instead of directly sending the fingerprint, which usually
consists in millions of real numbers, the user first compresses
it by means of random projections. The user also stores some
side information related to the seed of the pseudorandom
number generator and the positions of the entries with largest
magnitude (outliers) within those random projections, which
will be then used in the authentication phase. The exact
algorithm as well as the role of the outliers will be made
clear in the following sections. At the server side, the com-
pressed fingerprint is processed by a fuzzy extractor. Namely,
the server extracts a uniformly random bit string from the
compressed fingerprint and stores a secure hash of this bit
string, together with a secure sketch of the fingerprint.
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Fig. 2. Fingerprint extraction procedure.

In the authentication phase, the user reproduces a noisy
version of the device fingerprint by acquiring a fresh set of
photos and compressing the resulting fingerprint according to
the stored side information. The server then uses the fuzzy
extractor scheme for reproducing the secret bit string from the
received compressed fingerprint and the secure sketch, and
compares the recovered bit string with the stored secure hash.
If the user provides a version of the compressed fingerprint
sufficiently close to the enrolled one, then the server can
reproduce the same bit string of the enrollment phase and
grants access to the system; otherwise, it denies access.

With respect to existing authentication systems based on
biometrics/PUFs and fuzzy extractors, the proposed technique
introduces two important novelties. First, the actual PRNU-
based PUF is obtained by means of a novel compression
technique based on adaptive random projections. Besides
reducing the size of the transmitted fingerprint, this technique
provides an additional security layer, as will be discussed in
the following sections. Secondly, the PRNU of a sensor is not
a completely private information, since it can be approximated
from public photos acquired by that sensor. In order to solve
this problem, we introduce a novel fingerprint estimation
technique that relies on RAW data acquired by the sensor,
which is not usually available from public photos. Moreover,
we design the fuzzy extractor in such a way that it is robust
with respect to illegitimate fingerprints obtained from public
photos. In the following sections, we will discuss the details
of both PRNU-based PUF computation and user verification
based on the proposed fuzzy extractor.

IV. PRNU-BASED PUF

This section describes in detail the client-side functional
blocks introduced in the previous section concerning finger-
print extraction and compression.

A. Fingerprint Extraction

In order to devise a PUF for the authentication scheme,
we propose to use high frequency components of the PRNU
pattern estimated from RAW photos. The motivation is to
obtain a fingerprint that is capable of discriminating different
sensors and, at the same time, that is uncorrelated with any
estimate that can be extracted from JPEG data. In the following
we propose an extraction method from RAW images and
then model JPEG images to devise an extraction method that
better approximates the output of the extraction method from
RAW images, in order to study an attack tailored to the
proposed system. Since the RAW acquisition process can be
controlled and the fingerprint extraction has to run efficiently
on a user’s smartphone, we suppose that the user acquires
approximately flat images to streamline the extraction process.

1) Extracting High-Frequency PRNU From RAW Data: The
process described in this section is summarized in Fig. 2.
It is important to notice that since the authentication process

relies on photos taken at that specific moment rather than
using already available photos, the acquisition process can be
controlled, i.e., it is possible to select the shooting parame-
ters so to acquire photos that will yield the highest quality
estimates of the PRNU. In particular, the exposure should be
as high as possible without saturating the pixel values and
the content should be uniform and possibly out of focus so
that the scene can be well approximated by a constant value.
Moreover, we can use a set of fixed values for ISO sensitivity,
aperture, and focal length, so that different PRNU estimates
will not be affected by those shooting parameters.

The RAW image is first demosaiced and color calibrated to
obtain image o = [r, g, b]. The luminance component of such
image is then obtained by applying the transformation

λ = 0.299r + 0.587g + 0.114b .

It is possible to extract an estimate of the high-frequency
components of the PRNU pattern to be used as fingerprint by
means of a highpass filter (hereafter denoted as HPF) applied
to the luminance component of the demosaiced and color
calibrated image. This filter can be implemented as a product
in the DCT domain. In Sec. VII we explore two possible
solutions where the filtering is performed blockwise (to mimic
JPEG), or on the whole image. Hence a first estimate of the
fingerprint is:

kRAW = HPF (λ) ≈ oid · HPF (k) + e′.

Since the scene, represented by the term oid, is flat it is clear
that a highpass version of the PRNU pattern is observed. When
multiple images o(l) are available the fingerprint is jointly
estimated as

kRAW =
∑

l o(l) · HPF
(
λ(l)

)

∑
l(o

(l))2
. (6)

However, some artifacts may be present, either because
of the blockiness introduced by a blockwise highpass fil-
ter or because of non-unique artifacts (NUA) [33] such as
CFA interpolation, linear pattern, etc.. Such artifacts may
introduce ambiguities in the camera detection process and
should be removed. Hence, as a post-processing operation
we remove row and column means in a checkerboard pattern
and perform Wiener filtering to suppress any periodic arti-
fact. Such post-processing operations are well known in the
literature to suppress non-unique artifacts. Some cameras may
provide corrections for optical distortions, typically involving a
resampling step. Such artifacts are notably difficult to remove
and lower the detection rate in camera identification appli-
cations [42], [43]. However, since we access the RAW data
before any kind of post-processing, our PRNU estimates will
not contain this kind of artifacts.

2) Extracting High-Frequency PRNU From JPEG Data:
The scope of this section is to develop a method to extract a
fingerprint from JPEG images in such a way that it achieves
the highest possible correlation with the fingerprint extracted
from RAW data as described in the previous section. This
method is what would be used by an attacker having access
to publicly available JPEG images.
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JPEG compression uses a quantization table in the discrete
cosine transform (DCT) domain to shrink the coefficients in
a way that preserves perceived visual quality. This typically
results in many high frequency coefficients being set to zero,
thus losing all the information associated to high frequencies.
If we follow the usual model for the acquired image presented
in (1) we can approximate the image after JPEG compression,
denoted as oJPG, as a lowpass filtered version of the original,
where the cutoff frequency of the filter essentially depends on
the compression quality factor. We denote such lowpass filter
with LPF.

oJPG = LPF
(

oid+oidk+e
)

= LPF
(

oid
)
+LPF

(
oidk

)
+e′.

Conventionally, one wants to estimate k by means of flat
images so that oid ≈ const., obtaining after denoising the
noise residual

r = oid · LPF (k) + e′′. (7)

It is clear that using flat images one can only observe a lowpass
version of the PRNU pattern. However, if the image is not flat,
the noise residual is

r = LPF
(

oidk
)

+ e′′. (8)

The idea is to replicate the extraction procedure used for
RAW data, i.e. highpass filtering, but on the noise residual
since the attacker does not have control on the quality of
the JPEG images and the flat assumption may or may not
hold. First, the luminance noise residual is extracted, then it
is filtered with the same highpass filter used to extract the
RAW fingerprint and finally a weighted average as in (6)
is performed if multiple images are available. Finally, mean
removal and Wiener filtering are performed as post-processing
operations. Notice that according to (8) the noise residual is a
lowpass version of the PRNU modulated by the input image.
If highpass filtering is performed one obtains

r′ = HPF
(
LPF

(
oidk

))
+ ẽ = F

(
oidk

)
+ ẽ.

This means that if the highpass filter is properly designed
only a very weak signal can be observed due to the leakage
of the combination of the two filters, represented by F . The
experimental results show that higher correlation values can
be achieved by this method instead of using the conventional
method that does not include the highpass filter in the extrac-
tion chain. Notice that this procedure is not optimal, as the
optimal extraction method would retrieve HPF (k). However,
this would require solving a challenging deconvolution prob-
lem to disentangle the PRNU term from the image content in
the observed LPF

(
oidk

)
.

We remark that the existence of methods that improve the
estimation of the high-frequency PRNU components beyond
what we proposed in this section does not compromise the
overall authentication scheme described in this paper. In fact,
the legitimate user has full access to the RAW data provided
by the device and can increase the difficulty of an attack
by increasing the cutoff frequency of the filter or increasing
the number of acquired photos to achieve arbitrarily high
fingerprint quality levels.

B. Fingerprint Compression

Since the fingerprint must be sent to a server for verification
purposes, it is of paramount importance to compress it to
a size that makes transmission over bandlimited channels
manageable. The objective of the compression step is to
transform the real-valued, high-dimensional fingerprint into a
short binary code. Correlated fingerprints must be mapped into
similar binary codes.

In Sec.II-C we presented binary-quantized random pro-
jections, characterized by the property that their Hamming
distance concentrates around the angle between the original
uncompressed fingerprints. One can therefore use them to
obtain compact binary codes. Since the fingerprints are high-
dimensional objects, a complexity issue arises in the calcula-
tion of the random projections. This can be solved by using
circulant random matrices with randomized column signs,
as shown in [14]. For such matrices, only the first row must
be generated at random and the matrix-vector product can be
efficiently performed using the FFT.

In this paper, however, we propose to use a modified version
of such random projections, that we call adaptive random pro-
jections [29]. The key property of adaptive random projections
is that some randomness is traded for a better (more compact)
representation of signals correlated with a particular signal of
interest. This solution has three main advantages in the context
of the proposed user authentication system:

• more compact codes allow to save transmission time;
• more compact codes allow a more efficient and easier

design of the fuzzy extractor at server side;
• adaptivity allows to preserve as much as possible

of the inter-class correlation gap between fingerprints
extracted from JPEG data and fingerprints extracted from
RAW data; this also simplifies the design of the channel
code in the fuzzy extractor because it maximizes the
margin between the bit-error probability observed by a
legitimate user and that observer by an attacker.

During the registration phase, a high-quality version of the
fingerprint k ∈ R

n is available. A vector φ with n i.i.d.
Gaussian entries is generated and circularly convolved with
k using the FFT to implement a circulant sensing matrix. The
result of this operation is first subsampled to keep the first
mpool values. The m < mpool entries with largest magnitude
are identified and their locations l stored locally on the user
device as side information. Finally, the sign of the entries at
those locations is saved as compressed fingerprint w of m bits.
During the verification phase, a test fingerprint k′ is presented
for compression, and its projections are computed by keeping
only the sign of the entries indexed by l.

The value of mpool determines the storage overhead required
for the location information. Choosing m outliers from a
larger pool improves the adaptivity to the reference signal
but increases the storage overhead. The effect of adaptiv-
ity is shown in Fig. 3 where the expected value of the
Hamming distance between the binary codes is plotted against
the correlation coefficient between the original uncompressed
fingerprints. Notice that the adaptive method allows to achieve
smaller values for the Hamming distance and maximize the
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Fig. 3. Adaptive random projections. mpool = 220, m = 215.

Fig. 4. Generation of sketch and hash.

Fig. 5. User verification.

margin between the class of invalid fingerprints having very
low correlation values and the class of valid fingerprints having
higher correlation values.

V. USER VERIFICATION

Due to the non-exact repeatability of the PRNU fingerprint
estimation procedure, during the verification phase the user
will produce a compressed fingerprint that contains some
bit errors with respect to the enrolled fingerprint. Moreover,
an attacker having access to a certain number of publicly
available JPEG photos acquired by the user’s device may also
be able to provide a noisy version of the enrolled fingerprint,
albeit with a much higher number of bit errors.

In order to cope with this scenario, we design a novel fuzzy
extractor scheme. The proposed solution is based on the fuzzy
commitment scheme proposed in [44] and a coding scheme for
the wiretap channel that uses polar codes [45]. The proposed
scheme is based on a generation function and a verification
function, whose block diagrams are depicted in Fig. 4 and
Fig. 5, respectively.

During the enrollment phase, the server generates a uni-
formly random string x of k bits. From this secret string,
the server computes a hash h = SH(x), where SH(·) denotes

a secure hashing function, and a secure sketch s = w ⊕ C(x),
where w is the compressed fingerprint received from the user
and C denotes a (m, k) error correcting code based on polar
codes. The server then discards x and stores h and s.

During the verification phase, the server computes the k-bit
string x ′ = D(w′ ⊕ s), where w′ is the noisy fingerprint and
D denotes the decoding algorithm of the error correcting code,
and authenticates the user only if SH(x ′) = h.

The error correcting code is not a standard (m, k) polar
code, but is constructed according to the scheme in [45].
Let us assume a BSC-pl for the legitimate channel and a
BSC- pa for the attacker channel, and denote them as
Q(l) and Q(a), respectively. The code construction requires
choosing a security parameter t > m(1 − H2(pa)), where
H2(p) = −p log2(p)− (1− p) log2(1− p) denotes the binary
entropy function, and verifying that k + t < m(1 − H2(pl)).
Then, we define two subsets Al and Aa ⊂ Al of the indices
i = 1, . . . , N satisfying

|Al | = k + t, ∀i ∈ Al , j /∈ Al , Z(Q(l)
i ) ≤ Z(Q(l)

j )

|Aa| = t, ∀i ∈ Aa, j ∈ Al \ Aa, Z(Q(a)
i ) ≤ Z(Q(a)

j )

The encoder generates t uniformly random bits r , assigns them
to the bit channels in Aa , and maps the k message bits x onto
the remaining channels in Al \Aa . The code is then generated
by using the corresponding rows in Gm . In order to take into
account the randomization in the encoding process, in the
following the encoder function will be denoted as C(x, r). The
decoder simply applies the SCD to the received codeword and
discards the t bits corresponding to Aa . It can be checked that
the above construction verifies Definition 2:

Proposition 3: If H∞(W ) = m, then the above construc-
tion is an (m, m, k, pl, α, 0)-fuzzy extractor, where α =
∑

i∈Al
Z(Q(l)

i ). Moreover, there exist m∗ and β < 1/2 such

that, for m ≥ m∗, we have α ≤ 2−mβ
.

Proof: The correctness property follows from the fact that,
if w′ = w⊕e, then w′⊕s = C(x, r)⊕e. Hence, the scheme is
equivalent to transmitting C(x, r) through Q(l) and, according
to (5), a polar code designed for Q(l) has a probability of block
error upper bounded by α. The security property derives from
the fact that X is uniformly random and, for H∞(W ) = m, X
and S are independent. The last claim is a direct consequence
of Theorem 1 in [45].

VI. SECURITY ANALYSIS

The security of the proposed authentication scheme depends
on the probability that an attacker gains access to the system.
In the following, we will make two important security assump-
tions: i) the attacker does not have access to any RAW photos
of the user’s device; i i) the attacker can access only a finite
number N of JPEG photos of the user’s device.

Regarding the other system parameters, we will consider
four different security scenarios, depending on whether the
attacker can access the parameters stored on the server, i.e., the
sketch s and the secure hash h, or the parameters stored by
the client, i.e., the seed for generating � and the location
vector l. We will show that the proposed system is secure in
all the scenarios, although with different security levels.
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A. Scenario 1: Server and Client Are Both Safe

This is the best case scenario, when the attacker can only
access N JPEG photos. Let us denote these photos as Oa .
It is easy to see that these photos give no information about
the enrolled compressed fingerprint w:

Lemma 4: If � is drawn from a Gaussian ensemble and
w = sign(�lk), where �l denotes the submatrix of � formed
by the rows indexed by l, then H̃∞(W |Oa) = m.

Proof: We note that I (W ; Oa) ≤ I (W ; k) = 0. The first
inequality holds since Oa → k → W is a Markov chain,
whereas the last equality is due to the fact that W depends
only on the spherical angle of �k that, for � drawn from
a Gaussian ensemble, is independent from k and uniformly
distributed on the unit sphere (see Lemma 1 in [46]). Hence,
H̃∞(W |Oa) = H∞(W ) = m.

In this scenario, the best an attacker can do is to draw w
uniformly at random. The probability of success of this attack
can be upper bounded as follows:

Theorem 5: Under Scenario 1, the probability of success of
the attacker verifies Pa ≤ 2−k .

Proof: Under a fixed x , the attacker succeeds if he/she
chooses w ∈ Cx , where Cx = {w|SCDk(w) = x} and SCDk(·)
denotes the output of the successive cancellation decoder on
the k bits corresponding to x . Since x is uniformly random
and not under the attacker’s control, the probability of success
is obtained as

Pa = Ex [P (w ∈ Cx)] = Ex

[ |Cx |
2m

]

= 1

2m+k

∑

x

|Cx | ≤ 1

2k

where the last inequality holds since Cx are disjoint sets.
A possible remark is that Lemma 4 does not hold if �

is circulant. In such cases, we can have the same result by
modifying fingerprint compression as w = sign(�lk) ⊕ b,
where b is a uniformly random m-bit vector that the client
stores along with � and l.

Notice that in this scenario the security is guaranteed by
the secrecy of the projection matrix and an attacker may
even have access to RAW photos without compromising the
system.

B. Scenario 2: Server Is Compromised

Under this scenario, the attacker can see Oa , s, and h. Let
us consider an intermediate scenario in which the attacker
observes only s. Since H∞(W ) = m, according to Propo-
sition 3 the fuzzy extractor verifies the security properties
with ε = 0, i.e., the secret x is indistinguishable from a
uniformly random k-bit vector, even when observing s. This
can be equivalently stated as H̃∞(W |S) = k, i.e., s is a
(m, m, k, pl, α)-secure sketch (this result can be proved using
Lemma 4.5 in [20]).

Thanks to Lemma 4, the above result holds also when
the attacker observes Oa and s, since H̃∞(W |S, Oa) =
H̃∞(W |S). This follows from the fact that Oa → W → S
is a Markov chain and W is independent from Oa . In both
scenarios, the attacker can only guess x ′, pick a random r ,
and try whether w′ = C(x ′, r) ⊕ s is accepted by the system,
which has a success probability Pa = 2−k .

When the attacker also observes h, the system does not
satisfy any more the above statistical security definition, since
it is easy to verify H̃∞(W |S, H = h) = log NC (h), where
NC (h) is the number of collisions yielding value h in the
secure hashing function, when computed over all possible x .
In this scenario, the attacker is able to verify any feasible w
until he/she finds a w′ satisfying w′ = s ⊕ C(x ′, r), with
SH(x ′) = h. Nevertheless, with a proper secure hashing
function the system is computationally secure:

Proposition 6: If SH(·) is ideal, then under Scenario 2 the
expected complexity of an attack is Na = 	

(
2min{k,nhash})

operations, where nhash is the hash length in bits.
Proof: If k > nhash, a pre-image attack on a nhash-bit ideal

secure hash requires 2nhash guesses on average. If k < nhash,
finding the right x requires 2k+1

2 guesses on average.

C. Scenario 3: Client Is Compromised

In this scenario, the attacker sees Oa , �, and l. Intuitively,
the attacker can exploit Oa to estimate a degraded version of
the reference fingerprint k and then compress it with �l in
order to produce a noisy estimate of w. The relationship
between Oa and k is very difficult to characterize in a rigorous
way, since it depends on both the content of the images in Oa

and the acquisition and compression pipeline of the device.
Hence, in this case it is extremely difficult, if not impossible,
finding a useful characterization of H̃∞(W |Oa,�, l).

We will introduce a further security assumption to have a
tractable analysis of this scenario, i.e., we will assume that the
channel described by P(Oa,�, l|w) is a degraded version of
m independent BSC-pa channels. More formally, we assume
that there exists a channel P(Oa,�, l|w′) such that

P(Oa,�, l|w) =
∑

w′
P(Oa,�, l|w′)

∏

i

Q(a)(w′
i |wi ). (9)

The above property is equivalent to assuming that an attacker
using maximum likelihood estimation cannot obtain a better
estimate of w than that obtained observing the output of m
independent BSC-pa channels when the input is w.

Under this assumption, it is possible to exploit the properties
of the wiretap channel coding method of Sec. V for proving the
following upper bound on the attacker’s probability of success:

Theorem 7: There exist c < 1 and m∗ such that, for
m > m∗, the probability of success of the attacker verifies

Pa ≤
(

1 − H −1
2 (c)

)k
. (10)

Proof: Since t > m(1 − H2(pa)) = m I (Q(a)), where
I (Q(a)) denotes the symmetric capacity of Q(a), according to
Proposition 20 in [45] there exist c < 1 and m∗ such that, for
m > m∗ and for i ∈ Al \Aa , we have I (Q(a)

i ) ≤ 1 − c. Using
Fano’s inequality, the probability of error of the SCD when
decoding xi can be lower bounded as

pe,i ≥ H −1
2

(
H (Xi |W, X (i−1), R)

)

= H −1
2

(
1 − I (Q(a)

i )
)

≥ H −1
2 (c).

Hence, the proof follows from Pa = ∏
i∈Al

(1 − pe,i) ≤∏
i∈Al \Aa

(1 − pe,i ) and |Al \ Aa | = k.
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Actually, if one is able to provide an upper bound on
I (Q(a)

i ) for every i ∈ Al \ Aa , the bound in (10) can be
tightened. For example, using the technique described in [41]
upgraded versions of Q(a)

i can be computed, from which it
is possible to find values δi such that pe,i ≥ δi and obtain
Pa ≤ ∏

i∈Al\Aa
(1 − δi ).

D. Scenario 4: Server and Client Are Both Compromised

This is the worst case scenario, in which only the high
quality fingerprint k remains hidden from the attacker. As in
Scenario 2, let us consider an intermediate scenario in which
the attacker observes Oa , �, l, and the sketch s. Even if we
rely on the assumption in (9), in this scenario the attacker
is not constrained by the performance of the SCD. Since
w⊕s is a valid codeword of the polar code, a computationally
unbounded attacker could apply maximum likelihood (ML)
decoding in order to obtain the most likely codeword C(x ′)
and attack the system with C(x ′) ⊕ s. Let us define �a =
(Oa,�, l). The success probability of this attack is easily
obtained as

Pa = E�a,s

[
max

x
P(x |�a, s)

]
= 2−H̃∞(X |�a,S). (11)

The expectation over �a, s is justified since these quantities
are not under the attacker’s control.

Proposition 8: Under the assumption in (9), the success
probability pa is upper bounded by the expected ML decoding
performance of the polar code on the attacker’s channel
Q̃(a)(z|w) = ∏

i Q(a)(zi |wi ), i.e.,

Pa ≤ 1

2k+t

∑

z,r

max
x

Q̃(a) (z|C(x, r)) . (12)

Proof: The proof follows from the chain of inequalities:

Pa = E�a,s

[
max

x
P(x |�a, s)

]
=

∑

�a,s

max
x

P(x,�a, s)

=
∑

�a,s

max
x

P(�a|x, s)P(x, s)

= 1

2k+m

∑

�a ,s

max
x

P(�a|x, s) (13)

= 1

2k+m+t

∑

�a,s,r

max
x

P(�a|x, s, r) (14)

= 1

2k+m+t

∑

�a,s,r

max
x

P(�a|w = C(x, r) ⊕ s) (15)

= 1

2k+m+t

∑

�a,s,r

max
x

∑

z

P(�a|z)Q̃(a)(z|C(x, r) ⊕ s)

≤ 1

2k+m+t

∑

�a,s,r

∑

z

P(�a |z) max
x

Q̃(a)(z|C(x, r) ⊕ s)

= 1

2k+m+t

∑

z,s,r

max
x

Q̃(a)(z|C(x, r) ⊕ s)

= 1

2k+t

∑

z,r

max
x

Q̃(a)(z|C(x, r)) (16)

where (13) holds since x, s are independent and are uniformly
distributed, (14) makes explicit the marginalization over r , (15)
follows since w is completely determined by x , r , and s, and
(16) is due to the symmetry of Q(a).

Unfortunately, computing the right hand side of (12) given
Q(a) has exponential complexity in m, so we cannot come up
with a tractable upper bound. However, a reasonable conjec-
ture is that ML decoding would not dramatically improve over
the SCD and an exponentially decreasing bound as in (10) is
still valid.

Even if we cannot obtain a formal proof that the system
achieves statistical security in this scenario, we can prove that
the system verifies Wyner’s weak security definition [47]:

Theorem 9: Under the assumption in (9), the system
satisfies

lim
k→∞

I (X; �a, S)

k
= 0.

Proof: We have the following chain of mutual information
inequalities

I (X; �a, S) = I (X; S) + I (X; �a|S) (17)

= I (X; �a|S) (18)

≤ I (X; W ′|S) (19)

= I (X; W ′, S) (20)

= I (X; W ′ ⊕ S) (21)

where (17) is the chain rule for mutual information, (18) is
true since X and S are independent, (19) comes from the data
processing inequality, (20) is again due to the independence
of X, S, and (21) holds since X → W ′ ⊕ S → (W ′, S) is
a Markov chain. For the last claim, it suffices to notice that
W ′ = W ⊕ E , where E is the error pattern of the BSC-pa ,
S = W ⊕ C(X, R), and W and E are both independent of X ,
so X does not say anything more about the joint distribution
of (W ′, S) once W ′ ⊕ S = C(X, R) ⊕ E is disclosed.

Now, let U = W ′ ⊕ S. It is easy to see that U is the output
of a BSC-pa when the input is C(X, R). Let us consider the
bit channels used by the polar code, i.e., i ∈ Al . Since |Al | <
m I (Q(l)), according to Theorem 1 in [45], there exist m∗ and
β < 1/2 such that, for m > m∗, Z(Q(l)

i ) ≤ 2−mβ
/m. If we

define the set

A(β)
a =

{

i |Z(Q(a)
i ) ≤ 2−mβ

m

}

since |Aa | > m I (Q(a)), there exists m∗∗ such that, for m >

m∗∗, |A(β)
a | < |Aa |. Moreover, thanks to Lemma 4 in [45],

for m > max{m∗, m∗∗}, we have A(β)
a ⊂ Al which implies

A(β)
a ⊂ Aa .
Let V denote the message transmitted on the bit channels

i ∈ Al \ A(β)
a . It is immediate to verify V = X‖RAa\A(β)

a
,

i.e., V is the concatenation of X and the random bits in R
that do not belong to A(β)

a . Hence, the proof follows from

I (X; U) = I (X‖RAa \A(β)
a

; U) − I (RAa\A(β)
a

; U)

≤ I (X‖RAa \A(β)
a

; U) = I (V ; U)
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and Theorem 8 in [45], which states limk→∞ I (V ; U)/
k = 0.

The above claims do not hold anymore when the attacker
observes also h, since a computationally unbounded adversary
could try every possible x until h = SH(x). Nevertheless,
we can lower bound the expected complexity of an attack
according to the success probability when h is not known.

Proposition 10: If SH(·) is ideal, then under Sce-
nario 4 the expected complexity of an attack is Na =
	

(
2min{H̃∞(X |�a,S),nhash}

)
.

Proof: If k > nhash, see Prop. 6. If k < nhash, the expected
number of random guesses is

Na =
2k

∑

i=1

i Pa,i ≥
P−1

a∑

1=1

i Pa = P−1
a + 1

2

where Pa,i is the probability of success of the i th guess and
Pa is the probability of success of the most likely guess, which
is given in (11).

Actually, the above bound is a bit pessimistic, since it
assumes that the adversary knows the likelihood of each
guess. A computationally bounded adversary will not be
able to evaluate such probabilities exactly, since this requires
ML decoding. However, finding a practical bound on the
complexity of the attack remains an open problem.

VII. EXPERIMENTAL RESULTS

The following experiments are aimed at proving the
functionality of all the system blocks presented in Fig.1.
In particular, the experiments aim at verifying that: i) the
fingerprint extraction procedure generates fingerprints that
can discriminate cameras; ii) fingerprint extraction from
RAW images allows to achieve significantly higher corre-
lation than from JPEG images, thus clearly separating the
two classes; iii) compression via adaptive random projections
still allows such separation; iv) the fuzzy extractor based on
polar codes introduces a negligible probability of rejection of
legitimate users.

First (Sec. VII-A), the fingerprint extraction technique is
validated by analyzing the correlation values obtained with the
fingerprints extracted from RAW and JPEG images. In order
to perform such tests, we created a database of 14 cameras
(13 Android smartphones and 1 DSLR) able to acquire
RAW images. The devices are reported in Table II, which
also shows the ordering in which they appear throughout
the experiments. Notice that we have multiple devices of the
same model for some of the smartphones. This allows us to
check that the fingerprint is actually able to discriminate the
specific device. The smartphones use Android as it allows
to acquire RAW images through the Camera 2 API [48]
supported by version 5.0 or higher of the operating system.
We remark that no Apple devices have been used since at the
time of the experiment we did not find a reliable way to get
RAW data.1 Following the assumptions detailed in Section III
we acquired RAW images in controlled conditions, setting
a suitable exposure, minimal ISO sensitivity and shooting

1iOS 10 released in September 2016 now supports RAW acquisition.

TABLE II

LIST OF DEVICES USED IN THE EXPERIMENTS

out-of-focus pictures of walls in order to have a uniform
content. Each camera has at least 150 RAW photos that
have been then partitioned into training (20 photos) and test
sets (at least 130 photos). JPEG images were acquired with
the default camera application at maximum resolution and
maximum JPEG quality. Whenever further manual options
were available we forced the lowest ISO setting and controlled
the exposure as well. Most of the devices use the standard
JPEG quantization matrix with quality factor QF=95, one
device uses QF=97 and the DSLR has a custom higher quality
matrix. We acquired at least 200 flat images and 200 images
with content. For the DSLR camera we used 1016 flat images
and 2978 natural images, all well exposed and unprocessed,
to test an attack with a significant number of high quality
images.

Then (Sec. VII-B) compression by means of adaptive ran-
dom projections is introduced. The results are then used to
determine the parameters of a polar code that allows for the
decoding of legitimate fingerprints while blocking illegitimate
ones.

Sec. VII-C shows the performance of the designed polar
code using synthetic data and an ideal BSC channel.

Sec. VII-D clarifies the error bounds for an attacker when
the client is compromised introduced in VI-C, by explicitly
calculating them for the designed polar code.

Finally, VII-E uses the polar code on the actual fingerprints
generated from real photos.

A. Performance of Uncompressed Fingerprints

We tested the following fingerprint extraction methods from
RAW images:

• blockwise: the image is partitioned into blocks of size
32 × 32, highpass filtered blockwise with a (32, 32, 7)
filter, meaning that only the DCT coefficients on the
bottom-right 7 antidiagonals are kept. Postprocessing
mean removal and Wiener filtering operations are global;

• full: the image is cropped to a 2048 × 2048 area, and
this area is filtered with a (2048, 2048, 918) filter. Post-
processing mean removal and Wiener filtering are applied
after highpass filtering.

We generated the reference fingerprint of a camera averag-
ing the PRNU estimates obtained from Nref images according
to Eq.(6). We fixed this value to Nref = 20 as a good
compromise between obtaining the highest possible quality
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Fig. 6. Correlation matrix. Each camera in the dataset has a reference
fingerprint extracted from RAW images and a test fingerprint also extracted
from RAW images is tested against the references of all devices (Nref = 20,
Ntest = 2). (a) Blockwise. (b) Full.

for the reference fingerprint and computational effort required
by the user’s smartphone in the enrollment phase. Similarly,
test fingerprints are also obtained averaging multiple images,
although fewer in order to have shorter delays during the
verification phase. Ntest represents the number of RAW images
whose PRNU estimate is averaged to obtain the test finger-
print. We experimented with using from 1 up to 5 images.

1) Inter/Intra-Camera Detection: First, it is necessary
to study whether such extraction method is discriminative
enough, i.e., if it can correctly discriminate different camera
sensors, and in particular suppress any artifact common to the
same camera model. Fig. 6 shows the correlation coefficients
between a test fingerprint (row) and the reference (column) in
matrix form for the blockwise and full methods (warmer color
means higher correlation). Visual inspection shows that the
system seems able to discriminate between different cameras.
Fig. 7 aggregates the results over the test sets for all the
cameras to report histograms for the off-diagonal entries,
i.e., the correlation achieved by a test fingerprint estimated
from Ntest RAW photos of a certain camera against the refer-
ence fingerprints of the other cameras (inter-camera detection).
Instead, Table III reports the worst-case value for the entries
on the diagonal, i.e. when a test fingerprint is correlated with
the reference of its own camera (intra-camera detection). The
worst-case value is the minimum such correlation that we
observed. By comparing the values reached by the tails of 7
and Table III, it can be noticed that intra-camera correlations
are always significantly larger than inter-camera correlations,
allowing perfect discrimination between the devices, even if
the model of the device is the same.

Notice that Fig. 7 also tests a filter with a different cutoff
frequency to show that the distribution for non-matching
cameras has a variance that is mostly determined by the
cutoff frequency of the highpass filter. The higher the cutoff,
the fewer coefficients will be maintained, thus losing discrimi-
native power. As a first rough approximation the non-matching
correlation coefficients are Gaussian with zero mean and
variance 2/((c + 1)c) for the full method and a (·, ·, c) filter.
Thus a first tradeoff emerges in the choice of the filter that
should have a high enough cutoff to ensure a low correlation
with JPEG images, but at the same time low enough for the
fingerprint to be discriminative.

Fig. 7. Histogram of all off-diagonal correlations. With reference to the
experiment of Fig. 6 all the off-diagonal values are collected. Additionally,
a second filter (2048,2048,508) is tested for the full method to show the effect
of fewer independent coefficients (Nref = 20, Ntest = 2). (a) Blockwise.
(b) Full.

TABLE III

MINIMUM INTRA-CAMERA CORRELATIONS WITH TEST
FINGERPRINTS COMPUTED FROM RAW PICTURES

2) RAW vs JPEG Detection: In this section we are interested
in intra-camera detection only, and, in particular, in deter-
mining if the correlation achieved by fingerprints extracted
from JPEG images is substantially lower than that achieved by
fingerprints extracted from RAW images. The fingerprint gen-
erated from JPEG images is only tested against the reference
of the corresponding camera because this is the attack model
we are interested in for the user authentication scenario, i.e.
someone that tries to use the publicly available JPEG photos
of someone to authenticate as her.

The experiments with JPEG images have been performed
in the following way. Flat images and natural images are not
mixed but used separately in order to check if content has any
effect on the quality of the fingerprint. Out of all the available
images, 20 random subsets of 100 photos each are selected
and a fingerprint is estimated from each subset. Furthermore,
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Fig. 8. Correlation cumulative distributions. Cumulative distribution of correlation values between the reference fingerprint extracted from RAW images
and a test fingerprint extracted from RAW images of the same camera, for all available test fingerprints and cameras. Complementary cumulative distribution
of correlation values between the reference fingerprint extracted from RAW images and a test fingerprint extracted from several JPEG images of the same
camera, for all available test fingerprints and cameras, and all JPEG tests (20 attacks with 100 photos each and best attack with all the photos). (a) Blockwise.
(b) Full.

a “best” attack is simulated using all the available images for
that camera (typically at least 200).

Fig. 8 reports the results of the experiment over the whole
dataset by plotting the cumulative distribution of all correlation
values achieved for all the cameras. The reference fingerprint
of each camera is generated from Nref = 20 RAW images.
The tests from RAW images use the images from the test
sets (which are different from those used to generate the
reference) and multiple configurations are tested by varying
Ntest from 1 to 5 pictures. Since there are at least 130 photos
in test set for each camera, the Ntest = 1 trace is composed
of more than 130 × 14 = 1820 correlation values, while the
Ntest = 5 trace has more than 130/5 × 14 = 364 values. The
decreasing curve in the same figure also shows the percentage
of tests with JPEG images exhibiting a correlation lower than
the value on the abscissa (i.e., the curve is the complementary
CDF, i.e., 1 - CDF). This curve includes all the JPEG tests,
i.e., both the 20 attacks with 100 photos each and the best
attack with all the photos. It can be noticed that with the
chosen system parameters there indeed exists a gap between
the highest correlation achieved from JPEG data and lowest
achieved from RAW data, appearing graphically where the
tails of the empirical CDF reach 0. Notice that the lowest
values of correlation appearing in the RAW data are due
to cameras no.1 and no.8, which have rather dark reference
RAW images. Despite such non-ideal conditions, they still
display correlation values that are significantly higher than
those obtained by using hundreds of JPEG images. Indeed,
the performance of the RAW data could be further improved
by increasing the exposure.

For reference, Table III reports the minimum correlation
achieved by RAW data and the number of test photos used,
while Table IV reports the maximum correlation achieved by
JPEG data and the number of photos used.

Finally, Fig. 9 shows how the correlation value achieved by
the fingerprint extracted from JPEG data varies as a function of

Fig. 9. JPEG correlation against number of used photos for camera no.7.

the number of photos used in its estimation. It can be noticed
that the curve quickly saturates and that a large number of
photos is then needed to achieve minimal gains.

B. Performance Under Adaptive Random Projections

The experiment in this section is the same as the one
on intra-camera detection on the whole dataset presented in
the previous subsection on RAW vs JPEG detection. The
difference is that it now uses fingerprints compressed with
the adaptive random projection method instead of uncom-
pressed fingerprints. The correlation coefficient previously
used to measure similarity between uncompressed fingerprints
is replaced by the Hamming distance between the binary
strings representing compressed fingerprints. The purpose of
the experiment is to determine the number m of adaptive
random projections to be used to compress the fingerprints.
A sufficient number of random projection is needed in order
to have low embedding variance. i.e. the Hamming distance
between compressed fingerprints tightly concentrates around
the expected value of the embedding. The experiments also
provide the parameters pl and pa, which are used to model the
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Fig. 10. Hamming distance cumulative distributions. (m = 215, mpool = 220). Equivalent of Fig. 8 after compression. (a) Blockwise. (b) Full.

TABLE IV

MAXIMUM INTRA-CAMERA CORRELATIONS WITH TEST
FINGERPRINTS COMPUTED FROM JPEG PICTURES

crossover probability for the worst-case BSC of the legitimate
user and the best-case BSC of the attacker, respectively.
Fig. 10 is the analogue of Fig. 8 after compression. It reports
the empirical cumulative distribution of Hamming distances
between the test fingerprints extracted from RAW images
of the correct camera as well as one minus the cumulative
distribution of Hamming distance when the fingerprints are
extracted from JPEG images. It can be noticed that the
curve follows the mapping from uncompressed correlations to
Hamming distances shown in Fig. 3 since the chosen parame-
ters are mpool = 220 and m = 215. The values mpool = 219

and m = 214 were also tested but we do not report them due
to space constraints. The expected value of the embedding

is approximately the same for both choices but the variance
is lower when m = 215. The gap between the values of
distances obtained with JPEG images and those obtained with
RAW images is still present even though the variance in
the distance measure introduced by the embedding used for
compression causes the tails of the cumulative distributions
to touch when a single test photo is used for verification.
The minimum Hamming distances observed in the JPEG
tests are: 0.469 (block, m = 215), 0.453 (full, m = 215),
0.464 (block, m = 214), 0.458 (full, m = 214). In light of
the results, we can choose a value of pa = 0.45 as a worst-
case Hamming distance obtainable by an attacker using JPEG
images and pl = 0.40 as an upper bound on the distance
typically obtained by legitimate users. We remark that the
experiments show that a few legitimate test images exceed this
value of pl , especially when the number of test photos is low.
However, this is due to some photos in our database having
non-ideal exposure values. Indeed, a more careful exposure
control yielding brighter images or an increase in the number
of test/train photos could significantly lower the Hamming
distance below the 0.40 threshold.

C. Polar Code With Synthetic Data

The purpose of this section is to choose a suitable set of
parameters to design a polar code with security features for the
wiretap channel as described in Sec. V. We use the pl and pa

values derived from the experiments with compressed finger-
prints to model the the worst-case channel seen by the legiti-
mate user and the best-case channel seen by the attacker as a
BSC- pl and BSC- pa , respectively. In the following experiment
we tested the code by generating uniformly distributed binary
vectors with length m bits that are encoded with the designed
code, fed to independent BSC-p, and decoded using an SCD.
Fig. 11 shows the block error probability as a function of the
crossover probability p, averaged over 3 million independent
experiments. Due to pa = 0.45, the security parameter t was
chosen to be t = 256 > m(1−H2(pa)) = 236 bits for m = 215

and t = 128 > 118 bits for m = 214. The secret length is
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Fig. 11. Block error rates for the designed (k, t, m) polar code and successive
cancellation decoding.

TABLE V

SUCCESS PROBABILITY OF AN ATTACK UNDER SCENARIO 3

k = 256 bits and k = 128 bits respectively. The experiment
confirms the expected behaviour of the code with a transition
region between p = 0.45 and p = 0.40 and small block
error rates for p < 0.40. Notice that the faster roll-off of the
configuration with m = 215, k = 256, t = 256 allows to have
a lower probability of rejection when a legitimate fingerprint
has limited quality, i.e. when p is close to 0.4.

D. Attacker Error Bounds Under Scenario 3

Under attack scenario 3 (Sec.VI-C) the security of the
system is guaranteed by the wiretap channel coding method
of Sec. V. The upper bound on the probability of success of
the attacker presented in (10) may seem rather loose. In this
section we use the polar code designed in the previous section
and explicitly characterize the performance of its bitchannels
in order to provide a tighter bound than (10) and therefore
show that an attacker has negligible probability of success.

In particular, we use the technique described in [41] to
derive an upgraded version of the bitchannels for the previ-
ously designed code and a BSC-pa with pa = 0.45. Since
we can compute the error probability δi for each upgraded
bitchannel and that upper bounds the error probability of the
actual bitchannel, a (k+t)-bit message is successfully decoded
if all the chosen (k + t) bitchannels do not incur in an error,
i.e., Pa ≤ ∏

i∈Al \Aa
(1 − δi ). Table V reports the numerical

value of such upper bound on the probability of success of
the attacker. It can be noticed that the success probability is
upper bounded by a negligible value. Parameter μ controls
the accuracy and computational complexity of the estimation
procedure that avoids the exponential complexity of exact
estimation (refer to [41] for further details).

TABLE VI

ACCEPTANCE RATE

E. Polar Code With Real Data

In this section we employ the designed polar code using the
compressed fingerprints extracted from actual photos. Table VI
reports the acceptance rate, i.e., the percentage of times a user
authenticating with RAW or JPEG images passed the server-
side verification implemented using the previously designed
polar code. In particular, the correct RAW columns refer
to using a fingerprint extracted from RAW images of the
correct camera, while wrong RAW refers to using a fingerprint
extracted from RAW images of a different camera (since all
the acceptance rates for all values of Ntest are always 0 we
summarised them in a single column).

VIII. CONCLUSIONS

We proposed a user authentication scheme based on using
the high-frequency components of the PRNU pattern of optical
sensors as a weak PUF. This was shown experimentally to
provide a fingerprint that cannot be reliably extracted if only
JPEG compressed images are available. Moreover, we devised
a practical scheme to transmit such fingerprint to a verification
server. In the proposed approach, the compression step is
intimately linked to the server-side verification functionality
implemented via a fuzzy extractor without the need to directly
store the fingerprint.

We showed that the system is provably secure under dif-
ferent attack scenarios. One of the assumptions made in this
paper is that a user does not publicly disclose RAW images
acquired by the device to be used for authentication purposes.
This is a quite reasonable assumption since it is not common
practice to do so, especially for smartphones. Nevertheless,
the security analysis shows that other elements of the system
such as the random projection matrix can guarantee security
even if RAW images are leaked.

Future work may focus on improving the technique for fin-
gerprint extraction from RAW images. The current technique
mimics the processing chain of JPEG in order to achieve
orthogonality with fingerprints extracted from compressed
images. However, this may not be the optimal method.
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