
914 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

Statistical Features-Based Real-Time
Detection of Drifted Twitter Spam

Chao Chen, Yu Wang, Jun Zhang, Yang Xiang, Wanlei Zhou, Senior Member, IEEE, and Geyong Min

Abstract— Twitter spam has become a critical problem
nowadays. Recent works focus on applying machine learning
techniques for Twitter spam detection, which make use of the
statistical features of tweets. In our labeled tweets data set,
however, we observe that the statistical properties of spam tweets
vary over time, and thus, the performance of existing machine
learning-based classifiers decreases. This issue is referred to
as “Twitter Spam Drift”. In order to tackle this problem, we
first carry out a deep analysis on the statistical features of one
million spam tweets and one million non-spam tweets, and then
propose a novel Lfun scheme. The proposed scheme can discover
“changed” spam tweets from unlabeled tweets and incorporate
them into classifier’s training process. A number of experiments
are performed to evaluate the proposed scheme. The results show
that our proposed Lfun scheme can significantly improve the
spam detection accuracy in real-world scenarios.

Index Terms— Social network security, twitter spam detection,
machine learning.

I. INTRODUCTION

TWITTER has become one of the most popular social
networks in the last decade. It is rated as the most

popular social network among teenagers according to a recent
report [17]. However, the exponential growth of Twitter also
contributes to the increase of spamming activities. Twitter
spam, which is referred to as unsolicited tweets containing
malicious link that directs victims to external sites containing
malware downloads, phishing, drug sales, or scams, etc. [1],
not only interferes user experiences, but also damages the
whole Internet. In September 2014, the Internet of New
Zealand was melt down due to the spread of malware down-
loading spam. This kind of spam lured users to click links

Manuscript received August 6, 2015; revised February 28, 2016 and
August 1, 2016; accepted October 9, 2016. Date of publication October 26,
2016; date of current version January 30, 2017. This work was supported
by the ARC Linkage Project under Grant LP120200266. The work of
J. Zhang was supported by the National Natural Science Foundation of
China under Grant 61401371. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Hafiz Malik.
(Corresponding author: Y. Wang.)

C. Chen is with the University of Electronic Science and Technology
of China, Chengdu 610051, China, and also with the School of
Information Technology, Deakin University, Burwood, VIC 3125, Australia
(e-mail: chao.chen@deakin.edu.au).

Y. Wang, J. Zhang, Y. Xiang, and W. Zhou are with the School
of Information Technology, Deakin University, Burwood, VIC 3125,
Australia (e-mail: y.wang@deakin.edu.au; jun.zhang@deakin.edu.au;
yang.xiang@deakin.edu.au; wanlei.zhou@deakin.edu.au).

G. Min is with the College of Engineering, Mathematics, and Physical
Sciences, University of Exeter, Exeter, EX4 4QF, U.K. (e-mail:
g.min@exeter.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2016.2621888

which claimed to contain Hollywood star photos, but in
fact directed users to download malware to perform DDoS
attacks [29].

Consequently, security companies, as well as Twitter itself,
are combating spammers to make Twitter as a spam-free
platform. For example, Trend Micro uses a blacklisting service
called Web Reputation Technology system to filter spam
URLs for users who have its products installed [27]. Twitter
also implements blacklist filtering as a component in their
detection system called BotMaker [21]. However, blacklist
fails to protect victims from new spam due to its time lag [18].
Research shows that, more than 90% victims may visit a new
spam link before it is blocked by blacklists [37]. In order to
address the limitation of blacklists, researchers have proposed
some machine learning based schemes which can make use of
spammers’ or spam tweets’ statistical features to detect spam
without checking the URLs [14], [40].

Machine Learning (ML) based detection schemes involve
several steps. First, statistical features, which can differentiate
spam from non-spam, are extracted from tweets or Twitter
users (such as account age, number of followers or friends and
number of characters in a tweet). Then a small set of samples
are labelled with class, i.e. spam or non-spam, as training data.
After that, machine learning based classifiers are trained by the
labelled samples, and finally the trained classifiers can be used
to detect spam. A number of ML based detection schemes have
been proposed by researchers [1], [35], [39], [43].

However, the observation in our collected data set shows
that the characteristics of spam tweets are varying over time.
We refer to this issue as “Twitter Spam Drift”. As previous
ML based classifiers are not updated with the “changed” spam
tweets, the performance of such classifiers are dramatically
influenced by “Spam Drift” when detecting new coming spam
tweets. Why do spam tweets drift over time? It is because
that spammers are struggling with security companies and
researchers. While researchers are working to detect spam,
spammers are also trying to avoid being detected. This leads
spammers to evade current detection features through posting
more tweets or creating spam with the similar semantic
meaning but using different text [34], [39].

In this work, we firstly illustrate the “Twitter spam drift”
problem through analysing the statistical properties of Twitter
spam in our collected dataset and then its impact on detection
performance of several classifiers. By observing that there are
“changed” spam samples in the coming tweets, we propose
a novel Lfun (Learning from unlabelled tweets) approach,
which updates classifiers with the spam samples from the

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHEN et al.: STATISTICAL FEATURES-BASED REAL-TIME DETECTION OF DRIFTED TWITTER SPAM 915

unlabelled incoming tweets. In summary, our contributions are
listed below:
• We collect and label a real-world dataset, which contains

10 consecutive days’ tweets with 100k spam tweets and
100k non-spam tweets in each day (2 million tweets in
total). This dataset is available for researchers to study
Twitter spam.1

• We investigate the “Twitter Spam Drift” problem from
both data analysis and experimental evaluation aspects.
To the best of our knowledge, we are the first to study
this problem in Twitter spam detection.

• We propose a novel Lfun approach which learns from
unlabelled tweets to deal with “Twitter Spam Drift”.
Through our evaluations, we show that our proposed
Lfun can effectively detect Twitter spam by reducing the
impact of “Spam Drift” issue.

The rest of this paper is organized as follows. Section II
presents a review on machine learning based methods for Twit-
ter spam detection. In Section III, the collection and labelling
of the data used in our work is introduced. Meanwhile, the
“Spam Drift” problem is illustrated and justified. Then we
introduce our Lfun approach in Section IV, and analyse the
performance benefit of our approach. Section V evaluates our
Lfun approach and compares it with four traditional machine
learning algorithms. Finally, Section VII concludes this work
and introduces our future work.

II. RELATED WORK

Due to the increasing popularity of Twitter, spammers have
transferred from other platforms, such as email and blog, to
Twitter. To make Twitter as a clean social platform, security
companies and researchers are working hard to eliminate
spam. Security companies, such as Trend Micro [27], mainly
rely on blacklists to filter spam links. However, blacklists fail
to protect users on time due to the time lag. To avoid the limi-
tation of blacklists, some early works proposed by researchers
use heuristic rules to filter Twitter spam. Reference [41] used
a simple algorithm to detect spam in #robotpickupline (the
hashtag was created by themselves) through these three rules:
suspicious URL searching, username pattern matching and
keyword detection. Reference [23] simply removed all the
tweets which contained more than three hashtags to filter
spam in their dataset to eliminate the impact of spam for their
research.

Later on, some works applied machine learning algorithms
for Twitter spam detection. References [1], [24], [35], [38]
made use of account and content based features, such as
account age, the number of followers/followings, the length
of tweet, etc. to distinguish spammers and non-spammers.
Wang et al. proposed a Bayesian classifier based approach
to detect spammers on Twitter [38], while Benevenuto et al.
detected both spammers and spam by using Support Vector
Machine [1]. In [35], Stringhini et al. trained a Random Forest
classifier, and used the classifier to detect spam from three
social networks, Twitter, Facebook and MySpace. Lee et al.
deployed some honeypots to get spammers’ profiles, and

1You can download our dataset from http://nsclab.org/nsclab/resources/

extracted the statistical features for spam detection with several
ML algorithms, such as Decorate, RandomSubSpace and
J48 [24].

Features used in previous works [1], [24], [35], [38] can
be fabricated easily through purchasing more followers, post-
ing more tweets, or mixing spam with normal tweets [39].
Thus, some researchers [34], [39] proposed robust features
which rely on the social graph to avoid feature fabrication.
Song et al. extracted the distance and connectivity between a
tweet sender and its receiver to determine whether it was spam
or not [34]. After importing their features into previous feature
set, the performance of several classifiers were improved to
nearly 99% True Positive and less than 1% False Positive.
While in [39], Yang et al. proposed more robust features, such
as Local Clustering Coefficient, Betweenness Centrality and
Bidirectional Links Ratio. By comparing with four existing
works [1], [24], [35], [38], their feature set can outperform all
the previous works.

Instead, [25] and [36] solely relied on the embedded URLs
in tweets to detect spam. A number of URL based features
were used by [36], such as the domain tokens, path tokens and
query parameters of the URL, along with some features from
the landing page, DNS information, and domain information.
In [25], the authors studied the characteristics of Correlated
URL Redirect Chains, and further collected relevant features,
like URL redirect chain length, Relative number of different
initial URLs etc. These features also showed their discrimina-
tive power when used for classifying spam.

However, all the above mentioned works do not consider the
“Spam Drift” problem. Their detection accuracy will decrease
as time goes on, since spammers are changing strategies to
avoid being detected. Egele et al. proposed a historical model
based spam detection scheme, whose detection accuracy would
not be affected by “Spam Drift” [12]. They built several
models, like Language model and Posting Time model, for
each user. Once the model behaved abnormally, there might
be a compromise of this account, and this account was likely
to be used to spread spam by attackers. This method can
only detect whether an account was compromised or not, but
cannot identify the spamming accounts which were created by
spammers fraudulently.

Different to related works, we are going to thoroughly
study the “Spam Drift” problem. In addition, we will propose
an innovative scheme called Lfun which learns from the
unlabelled tweets and can tackle this issue in identifying
Twitter spam. Thus, our work can make great contributions
to the research area of Twitter spam detection.

III. PROBLEM OF TWITTER SPAM DRIFT

A. 10-day groundtruth

A labelled dataset is important for classification tasks, such
as Twitter spam detection. In this work, we used Twitter’s
Streaming API to collect tweets with URLs in a period of
10 consecutive days. While it is possible to send spam without
embedding URLs on Twitter, the majority of spam contains
URLs [7], [12], [16]. We have inspected hundreds of spam
tweets by hand and only find a few tweets without URLs
which could be considered as spam. In addition, spammers

916 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

TABLE I

EXTRACTED FEATURES

mainly use embedded URLs to make it more convenient to
direct victims to external sites to achieve their goals, such as
phishing, scams, and malware downloading [43]. Therefore,
we only focus on spam tweets with URLs.

Currently, researchers use two ways to build ground-truth,
manual inspection and blacklists filtering. While manual
inspection can label a small number of training data, it is very
time- and resource-consuming. A large group of people are
needed to check tens of thousands of tweets. Although HIT
(human intelligence task) websites can help label the tweets,
it is also costly and sometimes the results are doubtful [3].
Others apply existing blacklisting services, such as Google
SafeBrowsing and URIBL [15] to label spam tweets. Never-
theless, these services’ API limits make it impossible to label
a large amount of tweets.

We apply Trend Micro’s Web Reputation Technology to
identify which tweets are deemed spam [4]. Trend Micro’s
WRT system maintains a large dataset of URL reputation
records, which are derived from their customers’ opt-in URL
filtering records. WRT system is dedicated to collecting the
latest and the most popular URLs, to analysing them, and then
to providing Trend Micro customers with real-time protection
while they are surfing the web. Hence, through checking URLs
with the WRT system, we are able to identify whether a URL
is malicious or not. We define those which contain malicious
URLs as Twitter spam. WRT system is reliable as the protec-
tion rate of it is 100%, as stated in AV Comparatives’ testing
report [8]. In addition, we have done a manual inspection of
hundreds of tweets to confirm the reliability of WRT. In our
collected data, we labelled one million spam tweets and one
million non-spam tweets for 10 days, with 100k spam tweets
and 100k non-spam tweets for each day.

Feature extraction is a key component in machine learning
based classification tasks [42]. Some studies [1], [35], [38]
have applied a few features which make use of historical
information of a user, such as tweets that the user sent in
a period of time. While these features may be more discrimi-
native, it is not possible to collect them due to the restrictions
of Twitter’s API. Other researchers [34], [39] applied some
social graph based features, which are hard to be evaded.
Nevertheless, It is significantly expensive to collect those
features, as they cannot be calculated until the social graph
is formed. Thus, those expensive features are not suitable for

real-time detection, despite that they have more discriminative
power in separating spammers and legitimate users. The longer
time a spam tweet exists, the more chance it can be exposure
to victims. Thus, it is very important to detect spam tweets
as early as possible. To reduce the loss caused by spam, real-
time detection is in demand. Consequently, we only focus on
extracting light-weight features which can be used for timely
detection as in [19]. These features can be straightforwardly
extracted from the collected tweets’ JSON data structure [28]
with little computation. We have totally extracted 12 features
from our dataset as listed in TABLE I.

B. Problem Statement

In the real world, the statistical features of spam tweets
are changing in unpredicted ways over time. As a result,
machine learning based detection system becomes inaccurate.
The issue is referred to as “Spam Drift” problem in our
previous paper [5]. Here, we present an investigation of
“Spam Drift” problem from the aspect of the change of mean
value of each feature from day to day.

Fig. 1 shows the changing trend of average value of each
feature for two classes in 10 days. In general, the variation of
average value of feature from spam tweets is greater than that
of non-spam tweets. Fig. 1a shows that, the average value of
Account Age for spam tweets ranges from 530 to 730, and the
variation is dramatic. However, it deviates from 710 to 740 for
non-spam tweets, which is relatively stable. It is due to the fact
that spammers are creating a large number of new accounts to
send spam once their old account are blocked. For instance,
we have 3 spammers with account age of 2 days, 6 days,
10 days in the first day, the average value of Account Age is
(2 +6 +10)/3 = 6 days. In the second day, if the spam-
mer whose account age is 2 days is detected and removed,
the average value of Account Age is (6+10)/2 = 8 days,
which increases. In addition, spammers may also generate
new accounts with 0 day Account Age to spread spam after
some of their accounts are block, which can lead the decrease
of average value of Account Age. That is why the average
value of Account Age is fluctuating. Naturally, spammers tend
to keep following new friends as they want to be exposed
to public more frequently, whereas for non-spammers, their
number of followings are not changing too much once they
have built their friend circle, as we can see from Fig. 1c.

CHEN et al.: STATISTICAL FEATURES-BASED REAL-TIME DETECTION OF DRIFTED TWITTER SPAM 917

Fig. 1. Changes of average values of features. (a) Account age. (b) No. of followings. (c) No. of user mentions per tweet.

TABLE II

KL DIVERGENCE OF SPAM AND NONSPAM TWEETS OF TWO CONSECUTIVE DAYS

As expected, most of the other features have the same trend:
the average value of one feature varies for spam tweets, while
it is stable for non-spam tweets.

To sum up, the characteristics of spam tweets is varying
from day to day, while that of non-spam tweets is not changing
much, as we see from Fig. 1. “Spam Drift” is a crucial issue
in Twitter spam detection, which is in great need to be solved.

C. Problem Justification

In previous section, we simply compare some representative
statistics, such as the mean values of features to show the
“Spam Drift” problem. To further illustrate the changing of
the statistical features in a dataset, a natural approach is to
model the distribution of the data [10]. There are two kinds
of approaches: parametric and non-parametric. Parametric
approaches are very powerful when the specific distribution
of the dataset, like Normal Distribution, is already known.
However, the distribution of the Twitter spam data is unknown,
thus it is not possible to apply parametric approaches.
Consequently, non-parametric methods, such as statistical
tests, which make no assumptions of the dataset distributions
are used by researchers [13].

The statistical tests are to compute the distance of two
distributions to determine the change. One of the most com-
mon measures to compute the distance of distributions is
Kullback-Leibler (KL) Divergence [10], [32]. The suitability
of KL Divergence to be used in measuring distributions can
be found in [10]. In [26], Juan et al. also use KL Divergence

to model language models of tweets. KL Divergence, which
is also known as relative entropy is defined as

Dkl (P‖Q) =
∑

i

P(i)log
P(i)

Q(i)
.

It is used to compare two probability distributions. We need
to map data points into distributions to apply the formula.
According to [9], let s = {x1, x2, . . . , xn} be a multi-set from
a finite set F containing numerical feature values, and denote
N(x |s) the number of appearances of x ∈ s, thus the relative
proportion of each x is donated by

Ps(x) = N(x |s)
n

.

However, the ratio of p/q is undefined if Q(i) = 0.
As suggested by [22], the estimate Ps is replaced as,

Ps(x) = N(x |s)+ 0.5

n + |F |/2 .

when |F | is number of elements in the finite set F. The
distance between two day’s tweets, D1 and D2 is,

D(D1‖D2) =
∑

x∈F

PD1(x)log
PD1(x)

PD2(x)
.

We compute the KL Divergence of each feature of spam
and non-spam tweets in two adjacent days, which is listed
in TABLE II. The shadowed ones are the KL Divergence
of features of non-spam tweets, while the others are the
KL Divergence of features of spam tweets. KL Divergence

918 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

Fig. 2. Illustration of “Spam Drift”.

indicates the dissimilarity of two distributions. The larger the
value is, the more different the two distributions are. As shown
in Table II, the KL Divergence of spam tweets in two adjacent
days are much larger than that of the non-spam tweets for
more than half the features. Taking f1 (“account_age”) for
example, the KL Divergence of spam between Day 1 and
Day 2 is 0.36, while it is only 0.04 for non-spam, which
indicates that the distribution of f1 of spam in Day 1 is
much different to it in D2, compared with non-spam tweets’
distribution. From these KL Divergence values, we can see
that the distribution of spam tweets’ features is changing
unpredictably from day to day. Nevertheless, the distribution
of training data is unchanged. As the knowledge structure
which learns from the unchanged training data is not updated
while being used to classify new incoming tweets, the per-
formance of classifiers becomes inaccurate. As it is illustrated
in Fig. 2, while the spam changes, the decision boundary is not
updated. Consequently, more spam tweets are misclassified as
non-spam.

IV. PROPOSED SCHEME: Lfun

Existing machine learning based spam detection methods
suffer from the problem of “Spam Drift” due to the change
of statistical features of spam tweets as time goes on. When
“spam drifts”, the old classification model is not updated with
“changed” spam samples, as a result, the classification results
will gradually become inaccurate. To solve this problem,
obtaining the “changed” samples to update the classification
model is very important. By observing that there are such
samples in the unlabelled incoming tweets which are very
easy to collect, we propose a scheme called “Lfun” to address
“Spam Drift” problem.

This section presents our Lfun scheme to deal with the
drift problem in Twitter spam detection. Fig. 3 illustrates
the framework of our proposed scheme. There are two main
components in this framework: LDT is to learn from detected
spam tweets and LHL is to learn from human labelling.
In “Drifted Spam Detection” scenario, we have already got
a small amount of labelled spam and non-spam tweets. How-
ever, there are not enough samples of “changed” spam. It is

Fig. 3. Lfun framework.

extraordinary expensive to have human label a large amount
of “changed” tweets. Consequently, we make use of the above
mentioned two components to automatically extract “changed”
spam tweets from a set of unlabelled tweets, which are very
easy to collected from Twitter. Once getting enough labelled
“changed” spam tweets, we implement the scheme which
employs a sufficiently powerful algorithm, Random Forest,
to perform classification. Our Lfun scheme is summarised
in Algorithm 1.

A. Learning from Detected Spam Tweets

LDT is used to deal with a classification scenario where
there is a sufficiently robust algorithm, but in lack of more
data [30]. By learning from a large number of unlabelled data,
LDT can obtain sufficient new information, which can be used
to update the classification model.

In a LDT learning scenario, we are given a labelled
data set Tl = {(x1, y1), (x2, y2), . . . , (xm, ym)}, containing
m labelled tweets, where xi ∈ R

k(i = 1, 2, . . . ,m) is the
feature vector of a tweet, yi ∈ {spam, non − spam} is the
category label of a tweet. We are also given a large data set
Tu = {xm+1, ym+1), (xm+2, ym+2), . . . , (xm+n, ym+n)} con-
taining n unlabelled tweets (n >> m). Then a classifier ϕ is
trained by Tl . ϕ can be used to divide Tu into spam Tspam

and non-spam Tnon−spam . Labelled spam tweets from Tu will
be added into the labelled data set Tl to form a new training
data set.

The basic of LDT is to find a function ϕ : R
k −→

{spam, non − spam} to predict the label y ∈ {spam, non −
spam} of new tweets when trained by Tl+spam , which is the
combination of the labelled data set Tl and spam tweets Tspam

identified from Tu . Particularly, the unlabelled data set Tu used
in LDT does not have to share the same distribution with the
labelled data set Tl [20]. In addition, only detected spam tweets
will be added into the training data. The reason is that, we’ve
already gained sufficient information of non-spam tweets, as
the statistical properties are not changing for non-spam tweets.
It is not necessary for us to gain more information about non-
spam tweets.

CHEN et al.: STATISTICAL FEATURES-BASED REAL-TIME DETECTION OF DRIFTED TWITTER SPAM 919

Algorithm 1 Lfun Algorithm
Require: labelled training set {ψ1, ..., ψN },

unlabelled tweets Tunlabelled ,
a binary classification algorithm �,

Ensure: manually labelled selected tweets Tm

1: Tlabelled ←⋃N
i=1 ψi

// Use � to create a classifier Cls from Tlabelled :
2: Cls ← � : Tlabelled

// Tunlabelled is classified as Tspam and Tnon−spam :
3: Tspam + Tnon−spam ← Tunlabelled

// Merge spam tweets Tspam classified by Cls into
Tlabelled :

4: Tex ← Tlabelled + Tspam

// use Tex to re-train the classifier Cls :
5: Cls ← � : Tex

// determine the incoming tweet’s suitability for
selection:

6: U ← ∅
7: for i = 1 to k do
8: if Ui meet the selection criteria S then
9: U ← (U ∪Ui)

10: end if
11: end for

// manually labelling each ui in U
12: Tm ← ∅
13: for i = 1 to k do
14: manually label each ui

15: Tm ← (Tm ∪ ui)
16: end for

However, the spam tweets detected by the classifier that is
trained using Tl also have the same or similar distribution of
old spam. We need samples from “changed spam” to calibrate
the classifier. We then use LHL (in Section IV-B) to get
“changed spam” samples.

B. Learning from Human Labelling

In a supervised spam detection system, a learning algorithm,
such as Random Forest, must be trained by sufficient labelled
data to obtain more accurate detection results. However,
labelled instances are very expensive and time-consuming to
obtain. Fortunately, we have a huge number of unlabelled
tweets which can be easily collected. The LHL in our Lfun is
best suited where there are numerous unlabelled data instances,
and human annotator anticipating to label many of them to
train an accurate system [33]. LHL aims to minimize the
labelling cost by using different learning criteria to select most
informative samples from unlabelled data to be labelled by a
human annotator [44]. We also import active learning in our
Lfun scheme.

Now let us define our learning component in a formal way.
In supervised Twitter spam detection, we are given a labelled
training data set Ttraining = {(x1, y1), (x2, y2), . . . , (xm, ym)},
containing m labelled tweets, where xi ∈ R

k(i = 1, 2, . . . ,m)
is the feature vector of a tweet, yi ∈ {spam, non − spam} is
the category label of a tweet. The label yi of a tweet xi is

donated as y = f (x). The task is then to learn a function f̂
which can correctly classify a tweet to spam or non-spam.
We use generalisation error to measure the accuracy of the
learned function:

Error(f̂) =
∑

x∈Ttraining

L
(

f (x), ˆf (x)
)

P(x).

In practice, f (x) is not available for testing data instances.
Therefore, it is usual to estimate the generalisation error by
the test error:

Error(f̂) =
∑

x∈Ttesting

L
(

f (x), ˆf (x)
)

P(x),

where Ttest ing refers to the testing tweets, and prediction error
can be measured by a loss function L, such as mean squared
error (MSE) [31]:

LM S E

(
f (x), ˆf (x)

)
=

(
f (x)− ˆf (x)

)2
.

The learning criteria is set to select the most useful instances
Xselected and add them to the training set Ttraining for achiev-
ing some certain objectives. Let us consider this objective as
the minimization of generation error of a learned function
trained by Ttraining . So the learning criteria can be donated as

Error(Ttraining ∪ {Xselected }).
The goal of this kind of learning is to select instances Xselected

which can minimize the generalisation error Error(Xselected):

argmin Error(Xselected).

As a result, good selection criteria must be estimated to
minimize the error. In Lfun scheme, we apply the selection
criteria, called “Probability Threshold Filter Model”, to select
the most informative tweets to tackle “Spam Drift”. In order
to achieve this, Random Forest (RF) is used to determine
the probability of a tweet whether it belongs to spam or not.
Random Forest [2] can generate many classification trees after
being trained with Tex from Asymmetric Self-Learning. When
classifying a new incoming tweet, each tree in the forest will
give a class prediction. Then forest chooses the classification
result which has the most votes. In our case, we set the
number of trees to m, if n trees vote for the class “spam”, the
probability of the tweet to be classified as “spam” is Pr = n

m .
Through our empirical study, the mis-classification mostly

occurred when Pr ∈ [0.4, 0.7]. So we set the threshold τ to
Pr ∈ [0.4, 0.7]. After we pre-filter some candidate tweets to
be labelled using the “Probability Threshold Filter Model”, the
number of tweets is still too many. We then randomly select
a smaller number of tweets from the candidate tweets (we
set it to be 100 in our experiments) to be manually labelled.
As shown in Fig. 3, the manually labelled tweets, along with
Tex will be used to train a new classifier, which can tackle
“Spam Drift” problem.

C. Performance Benefit Justification

We study the performance benefit of the proposed Lfun
scheme by providing the theoretical analysis in this section.
Fig. 4 illustrates the performance benefit by using simulation.

920 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

Fig. 4. Performance benefit illustration.

We use three normal distributions (listed below) to simu-
late this: w0 represents the distribution of non-spam, while
w1 and w2 represents the distribution of spam before and after
using our Lfun approach, respectively.

⎧
⎪⎨

⎪⎩

w0 ∼ N(μ0, σ
2
0)

w1 ∼ N(μ1, σ
2
12)

w2 ∼ N(μ2, σ
2
12)

The PDFs (probability distribution functions) [11] of these
three distributions, w0, w1 and w2 are illustrated as p0, p1
and p2 in Fig. 4. We assume that only the mean μ1 of w1
changes to μ2, but the variance σ12 is not changing.

As p1 translated to p2, we can always find m, which can
make

m − c2 = μ1 − μ2, (1)

and

p1(m) = p2(c2). (2)

As c2 < c1, we have

p0(c2) < p0(c1). (3)

We also have

p0(c1) = p1(c1), p0(c2) = p2(c2). (4)

From Equation. 3 and Equation. 4, we get

p1(c1) > p2(c2). (5)

From Equation. 2 and Equation. 5, we can have

p1(c1) > p1(m). (6)

As a result,

m > c1. (7)

Taking into account Equation. 7 and Equation. 1, we can have
c1 − c2 < μ1 − μ2. So,

c2 − μ2 > c1 − μ1. (8)

The error rate of classification before Lfun,

P1(error) = P(x > c1)+ P(x < c2)

=
∫ ∞

c1

p1(t)dt +
∫ c1

−∞
p0(t)dt

= 1− φ(c1 − μ1

σ12
)+ φ(c1 − μ0

σ0
).

Similarly, we have the error rate after using Lfun

P2(error) = 1− φ(c2 − μ2

σ12
)+ φ(c2 − μ0

σ0
).

The difference of P1(error) and P2(error),

P1(error)− P2(error) =
[
φ(

c2 − μ2

σ12
)− φ(c1 − μ1

σ12
)
]

+
[
φ(

c1 − μ0

σ0
)− φ(c2 − μ0

σ0
)
]
,

(9)

while

φ(x) = 1√
2π

∫ x

0
e−t2/2dt . (10)

The differentiation of Equation 10 is φ′(x) = 1√
2π

e−x2/2 > 0.
So, we can have φ(a) > φ(b) when a > b. From Equation.
8, we know c2−μ2

σ12
> c1−μ1

σ12
. Consequently,

φ(
c2 − μ2

σ12
) > φ(

c1 − μ1

σ12
). (11)

As c1 > c2, we have c1−μ0
σ0

> c2−μ0
σ0

. Then, we know

φ(
c1 − μ0

σ0
) > φ(

c2 − μ0

σ0
). (12)

Substitute Equation. 11 and 12 into 9, we will have

P1(error)− P2(error) > 0. (13)

Obviously, our proposed approach can effectively reduce the
probability of error from Equation 13.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
Lfun scheme in detecting “drifted” Twitter spam. All the
experiments are carried out on our real-world 10 consecutive
days’ tweets with each day containing 100k spam tweets and
100k non-spam tweets.

As in existing works [39], we also use F-measure and
Detection Rate to measure the performance. Despite that both
of the metrics are used to evaluate all the classes’ performance,
we only focus on the F-measure and Detection Rate of spam
class. F-measure is an evaluation metric which combines
precision and recall to measure the per-class performance of
classification or detection algorithms. It can be calculated by

F − measure = 2 ∗ Precision ∗ Recall

Precision + Recall
.

Detection Rate is defined as the ratio of those tweets correctly
classified as belonging to class spam to the total number of
tweets in class spam, it can be calculated by

Detection Rate = T P

T P + F N
.

CHEN et al.: STATISTICAL FEATURES-BASED REAL-TIME DETECTION OF DRIFTED TWITTER SPAM 921

Fig. 5. Trend of detection rate. (a) Random forest. (b) C4.5 Decision tree. (c) Bayes network.

In the evaluation, we have designed three sets of
experiments in order to show the impact of spam drift (in
Section V-A) firstly, then the benefit of our proposed Lfun
(in Section V-B) and the comparisons with other traditional
machine learning algorithms (in Section V-C). We repeat the
experiments for 100 times with different random training
samples and report the average values on all the 100 runs.

A. Impact of Spam Drift

In order to evaluate the impact of “Spam Drift” problem,
we perform a number of experiments in this section. It is
aiming to show that the performance of a traditional classifier,
for example C4.5 Decision Tree, varies over time when
“Spam Drift” exists.

During these experiments, Day 1 data is divided into
two parts, half for training pool where training data can be
extracted from, and another half for testing purpose. We create
a classifier by using a supervised classification algorithm, and
train it with 10k spam and 10k non-spam tweets which are
randomly sampled from the training pool of Day 1. Then the
classifier is used to classify the testing data in Day1, as well
as the testing samples in Day 2 to Day 10.

Fig. 5 shows the Detection Rate of both spam and non-spam
tweets on three classifiers, Random Forest, C4.5 Decision
Tree and Bayes Network. We can see that, the Detection
Rate of non-spam is very stable, it keeps above 90% for
Random Forest and C4.5 Decision Tree, and near 90% for
Bayes Network, despite the change of testing data. However,
when it comes to spam tweets, the Detection Rate fluctuates
dramatically, and the overall trend is decreasing. The Detection
Rates for Random Forest and C4.5 Decision Tree are 90% in
the first day, but they could decrease to less then 40% in the
9th day. This phenomenon also applies with Bayes Network,
the Detection Rate decreases from 70% on 1st day to less than
50% for most of the other testing days.

B. Performance of Lfun

We evaluate the performance of Lfun here, by using
F-measure and Detection Rate. The number labelled training
samples from old day (i.e. Day 1 and Day 2 in this case)
is 5000. The number of manually labelled samples during
Lfun is set to 100.

Fig. 6. Detection rate of Lfun. (a) Day 1 training, Day 2 to 9 testing.
(b) Day 2 training, Day 3 to 10 testing.

Fig. 7. F-measure of Lfun. (a) Day 1 training, Day 2 to 9 testing.
(b) Day 2 training, Day 3 to 10 testing.

Fig. 6 shows the Detection Rate of Lfun, when Day 1 data
(Fig. 6a) or Day 2 data (Fig. 6b) is used for training and the
rest days are used for testing. We can see from Fig. 6a that,
the Detection Rates of original Random Forest are relatively
low. For example, the Detection Rate when testing on Day 9 is
only around 40%. However, our RF-Lfun can reach over 90%
Detection Rate on the same day. While Random Forest can
only achieve Detection Rate ranging from 45% to 80%, our
RF-Lfun can rise as high as 90% Detection Rate. This also
happens when training data is from Day 2, and testing data is
from Day 3 to Day 10, as illustrated in Fig. 6b. The highest
Detection Rate of Random Forest is around 85%, but that of
RF-Lfun is over 95%. Generally, our Lfun can detect most of
the spam tweets even with “Spam Drift”. The reason is that,
our Lfun brings more samples of “changed spam tweets” to
update the training process.

Fig. 7 shows the F-measure of Random Forest using Lfun
approach compared with it without using Lfun. We can
see that, the F-measure of original Random Forest keeps

922 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

Fig. 8. Comparisons with other Algorithms (changing testing days). (a) Overall accuracy. (b) F-measure. (c) Detection rate.

Fig. 9. Comparisons with other algorithms (training on day 1 and testing on day 5). (a) Overall accuracy. (b) F-measure. (c) Detection rate.

decreasing from 80% to 55% as the testing data changes
from Day 2 to Day 9 in Fig. 7a. However, once it is
applied with our Lfun approach, the F-measure becomes
stable, which is always greater than 80%, except on Day 8.
Similarly, when the training data is from Day 2, F-measure of
Random Forest is decreasing as well. But F-measure of our
Lfun-RF is not fluctuating, as shown in Fig. 7b. Nevertheless,
the proposed Lfun can effectively improve the F-measure and
the improvement is up to 25% in the best case.

C. Comparisons With Other Algorithms

In this section, we compare our Lfun approach with
four traditional machine learning algorithms (Random Forest,
C4.5 Decision Tree, Bayes Network and SVM) to detect spam
tweets in the “drift” scenario. There are two sets of experi-
ments carried out. One set is to evaluate the performance while
training data is from Day 1, and testing data are varying from
Day 2 to Day 9. Another set is to evaluate the performance
when training and testing data are from two specified days,
but the number of labelled training data is changing from
1000 to 10000.

1) Comparisons With Changing Days: Fig. 8 demon-
strates the experimental results in terms of overall accuracy,
F-measure and detection rate of Lfun compared to other
algorithms, when the testing days are varying. We can see from
Fig. 8a that, the overall accuracy of Lfun outperforms all the
other algorithms, followed by Random Forest, C4.5 Decision
Tree, Bayes Network and SVM. In terms of F-measure (see
Fig. 8b), our Lfun is also the best among all the algorithms.

For example, it is over 30% higher than C4.5 Decision Tree
when testing data is from Day 9. Furthermore, the performance
of Lfun is much better in terms of detection rate. Fig. 8c show
that, the detection rate of Lfun is above 90% for most of the
days. However, the detection rate of all the others is below
80%. Especially, Bayes Network has the lowest detection rate,
which is below 50%. In general, our Lfun is the best among
all the algorithms evaluated by all the three metrics.

2) Comparisons With Changing Labelled Training Samples:
Fig. 9 and Fig. 10 report the evaluation results when the
number of labelled training samples is changing. The training
and testing data is from Day 1 and Day 5 in Fig. 9, while the
training and testing data is from Day 4 and Day 8 in Fig. 10.
We can see that the overall accuracy of Lfun increases from
70% to 80% with the increase of labelled training samples.
It is better than the four algorithms in comparison, as the
best of them (C4.5 Decision Tree) can only achieve less
than 74% overall accuracy. When it comes to F-measure, the
performance of Lfun is still the best; it is 10% higher than
that of C4.5 Decision Tree and nearly 30% higher than that
of SVM. In terms of detection rate, our Lfun is about 30%
higher than the second best algorithm. Similarly in Fig. 10,
Lfun outperforms all the other algorithms.

VI. DISCUSSIONS

In research community, there are also some machine learn-
ing approaches related to our proposed method. For exam-
ple, online learning and incremental learning. They are both
common machine learning algorithms to continuously update

CHEN et al.: STATISTICAL FEATURES-BASED REAL-TIME DETECTION OF DRIFTED TWITTER SPAM 923

Fig. 10. Comparisons with other algorithms (training on day 4 and testing on day 8). (a) Overall accuracy. (b) F-measure. (c) Detection rate.

the prediction model with new training data for better future
classification. They can generate a prediction model and put
it into operation without much training data at first, but they
require new training data to update the model. When it comes
to online Twitter spam classification, it is very difficult to label
enough training samples to update the model. The reasons are
two-folds. Firstly, it is significantly time-consuming to label a
large amount of tweets by human. Secondly, it is difficult to
gain enough spam tweets even we have got a large number
of human-labelled tweets, as the spam rate of Twitter is
about 5% [6]. If there are not enough spam samples
(Lfun does not need non-spam samples as non-spam tweets
are not drifting) to retrain the model, it is not able to solve
the “spam drift” issue.

Our Lfun approach has the same advantage of online
learning and incremental learning, i.e., it can be deployed
without much training data at the beginning, but to be
updated when new training data comes. Different to online and
incremental learning, we incorporate both automated labelling
and human labelling. The LDT component learns from the
detected tweets. This competent is automatically updated with
detected spam tweets with no human effort. To better adjust
the prediction model, we also import LHL component, which
learns from human labelling. To minimize human effort, LHL
only samples a very small number of tweets for labelling, for
example, 100 tweets in our experiments. In addition, it does
not randomly pick up tweets to label, but to be in line with
selection criteria called “Probability Threshold Filter Model”
which can choose the most useful tweets. Benefiting from
these two components, our Lfun approach can successfully
deal with “spam drift”, but with the least human effort.

VII. CONCLUSION AND FUTURE WORK

In this paper, we firstly identify the “Spam Drift” problem
in statistical features based Twitter spam detection. In order to
solve this problem, we propose a Lfun approach. In our Lfun
scheme, classifiers will be re-trained by the added “changed
spam” tweets which are learnt from unlabelled samples,
thus it can reduce the impact of “Spam Drift” significantly.
We evaluate the performance of Lfun approach in terms of
Detection Rate and F-measure. Experimental results show that
both detection rate and F-measure are improved a lot when
applying with our Lfun approach. We also compare Lfun to
four traditional machine learning algorithms, and find that

our Lfun outperforms all four algorithms in terms of overall
accuracy, F-measure and Detection Rate.

There is also a limitation in our Lfun scheme. The benefit
of “old” labelled spam is to eliminate the impact of “spam
drift” to classify more accurate spam tweets in future days.
The effectiveness of “old” spam has been proved by our
experiments during a short period. However, the effectiveness
will decrease as the correlation of “very old” spam becomes
less with the new spam in the long term run. In the future, we
will incorporate incremental adjustment to adjust the training
data, such as dropping the “too old” samples after a certain
time. It can not only eliminate unuseful information in the
training data but also make it faster to train the model as the
number of training samples decrease.

ACKNOWLEDGMENT

The authors would like to thank Trend Micro for providing
us the service to label spam tweets.

REFERENCES

[1] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, “Detect-
ing spammer on twitter,” in Proc. 7th Annu. Collaboration, Electron.
Messaging, Anti-Abuse Spam Conf., Jul. 2010, p. 12.

[2] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[3] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
twitter,” in Proc. 20th Int. Conf. World Wide Web, 2011, pp. 675–684.

[4] C. Chen, J. Zhang, X. Chen, Y. Xiang, and W. Zhou, “6 million spam
tweets: A large ground truth for timely twitter spam detection,” in
Proc. IEEE Commun. Inf. Syst. Security Symp. (ICCCISS), Jun. 2015,
pp. 8689–8694.

[5] C. Chen, J. Zhang, Y. Xiang, and W. Zhou, “Asymmetric self-learning
for tackling twitter spam drift,” in Proc. 3rd Int. Workshop Security
Privacy Big Data (BigSecurity), Apr. 2015, pp. 237–242.

[6] C. Chen, J. Zhang, Y. Xiang, W. Zhou, and J. Oliver, “Spammers are
becoming ‘smarter’ on twitter,” IT Prof., vol. 18, no. 2, pp. 14–18,
Apr. 2016.

[7] E. M. Clark, J. R. Williams, C. A. Jones, R. A. Galbraith,
C. M. Danforth, and P. S. Dodds, “Sifting robotic from organic text:
A natural language approach for detecting automation on twitter,”
J. Comput. Sci., vol. 16, p. 1–7, Sep. 2016.

[8] (2016). Whole Product Dynamic Real-World Protection Test, Av Com-
paratives, accessed on Aug. 1, 2015. [Online]. Available: http://www.av-
comparatives.org/wp-content/uploads/2016/07/avc_prot_2016a_en.pdf

[9] I. Csiszar and J. Körner, Information Theory: Coding Theorems For
Discrete Memoryless Systems. Cambridge, U.K.: Cambridge Univ. Press,
2011.

[10] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, “An
information-theoretic approach to detecting changes in multi-
dimensional data streams,” in Proc. Symp. Interface Statist., Comput.
Sci., Appl., 2006, pp. 1–24.

924 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 4, APRIL 2017

[11] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
Hoboken, NJ, USA: Wiley, 2000.

[12] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, “Compa: Detecting
compromised accounts on social networks,” in Proc. Annu. Netw. Distrib.
Syst. Security Symp., 2013.

[13] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” J. ACM Comput. Surv., vol. 46,
no. 4, p. 44, Apr. 2014.

[14] H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. Choudhary, “Towards
Online spam filtering in social networks,” in Proc. NDSS, 2012,
pp. 1–16.

[15] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y. Zhao, “Detecting and
characterizing social spam campaigns,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., 2010, pp. 35–47.

[16] H. Gao et al., “Spam ain’t as diverse as it seems: Throttling OSN spam
with templates underneath,” in Proc. 30th Annu. Comput. Security Appl.
Conf., 2014, pp. 76–85.

[17] A. Greig. (2013). Twitter Overtakes Facebook as the Most
Popular Social Network for Teens,According to Study, DailyMail,
accessed on Aug. 1, 2015. [Online]. Available: http://www.dailymail.
co.uk/news/article-2475591/Twitter-overtakes-Facebook-popular-social-
network-teens-according-study.html

[18] C. Grier, K. Thomas, V. Paxson, and M. Zhang, “@spam: The under-
ground on 140 characters or less,” in Proc. 17th ACM Conf. Comput.
Commun. Security, 2010, pp. 27–37.

[19] A. Gupta, P. Kumaraguru, C. Castillo, and P. Meier, TweetCred: Real-
Time Credibility Assessment of Content on Twitter. New York City, NY,
USA: Springer, 2014.

[20] K. Huang, Z. Xu, I. King, M. Lyu, and C. Campbell, “Supervised
self-taught learning: Actively transferring knowledge from unlabeled
data,” in Proc. Neural Netw., IJCNN Int. Joint Conf., Jun. 2009,
pp. 1272–1277.

[21] R. Jeyaraman. (2014). Fighting Spam With Botmaker,
Twitter, accessed on Aug. 1, 2015. [Online]. Available:
https://blog.twitter.com/2014/fighting-spam-with-botmaker

[22] R. Krichevsky and V. Trofimov, “The performance of universal encod-
ing,” IEEE Trans. Inf. Theory, vol. 27, no. 2, pp. 199–207, Mar. 1981.

[23] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proc. 19th Int. Conf. World Wide Web,
2010, pp. 591–600.

[24] K. Lee, J. Caverlee, and S. Webb, “Uncovering social spammers: Social
honeypots + machine learning,” in Proc. 33rd Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr.,2010, pp. 435–442.

[25] S. Lee and J. Kim, “Warningbird: A near real-time detection system for
suspicious URLs in twitter stream,” IEEE Trans. Depend. Sec. Comput.,
vol. 10, no. 3, pp. 183–195, May 2013.

[26] J. M. Romo and L. Araujo, “Detecting malicious tweets in trending
topics using a statistical analysis of language,” Expert Syst. Appl.,
vol. 40, no. 8, p. 2992–3000, 2013.

[27] J. Oliver, P. Pajares, C. Ke, C. Chen, and Y. Xiang, “An in-depth
analysis of abuse on twitter,” Trend Micro, Irving, TX, USA, Tech. Rep.,
Sep. 2014.

[28] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff, “Overview of the TREC-
2011 microblog track,” in Proc. 20th Text Retr. Conf. (TREC), 2011.

[29] C. Pash. (2014). The lure of Naked Hollywood Star Photos
Sent the Internet into Meltdown in New Zealand, Bus.
Insider, accessed on Aug. 1, 2015 [Online]. Available:
http://www.businessinsider.com.au/the-lure-of-naked-hollywood-star-
photos-sent-the-internet-into-meltdown-in-new-zealand-2014-9

[30] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in Proc. 24th Int. Conf.
Mach. Learn., 2007, pp. 759–766.

[31] N. Rubens, D. Kaplan, and M. Sugiyama, “Active learning in recom-
mender systems,” in Recommender Systems Handbook. New York City,
NY, USA: Springer, 2011.

[32] R. Sebastiao and J. A. Gama, “Change detection in learning histograms
from data streams,” in Proc. Aritficial Intell. 13th Portuguese Conf.
Progr. Artificial Intell., 2007, pp. 112–123.

[33] B. Settles, “Active learning literature survey,” Univ. Wisconsin, Madison,
vol. 52, nos. 55–66, p. 11, 2010.

[34] J. Song, S. Lee, and J. Kim, “Spam filtering in twitter using sender-
receiver relationship,” in Proc. 14th Int. Conf. Recent Adv. Intrusion
Detection, 2011, pp. 301–317.

[35] G. Stringhini, C. Kruegel, and G. Vigna, “Detecting spammers on social
networks,” in Proc. 26th Annu. Comput. Security Appl. Conf., 2010,
pp. 1–9.

[36] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and
evaluation of a real-time URL spam filtering service,” in Proc. IEEE
Symp. Security Privacy, 2011, pp. 447–462.

[37] K. Thomas, C. Grier, D. Song, and V. Paxson, “Suspended accounts
in retrospect: An analysis of twitter spam,” in Proc. ACM SIGCOMM
Conf. Internet Meas. Cof., 2011, pp. 243–258.

[38] A. H. Wang, “Don’t follow me: Spam detection in twitter,” in Proc. Int.
Conf. Security Cryptography (SECRYPT), 2010, pp. 1–10.

[39] C. Yang, R. Harkreader, and G. Gu, “Empirical evaluation and new
design for fighting evolving twitter spammers,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 8, pp. 1280–1293, Aug. 2013.

[40] C. Yang, R. Harkreader, J. Zhang, S. Shin, and G. Gu, “Analyzing
spammers’ social networks for fun and profit: A case study of cyber
criminal ecosystem on twitter,” in Proc. 21st Int. Conf. World Wide
Web, 2012, pp. 71–80.

[41] S. Yardi, D. Romero, G. Schoenebeck, and D. Boyd, “Detecting spam in
a twitter network,” First Monday, vol. 15, nos. 1–4, pp. 1–13, Jan. 2010.

[42] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet traffic
classification by aggregating correlated naive bayes predictions,” IEEE
Trans. Inf. Forensics Security, vol. 8, no. 1, pp. 5–15, Jan. 2013.

[43] X. Zhang, S. Zhu, and W. Liang, “Detecting spam and promoting
campaigns in the twitter social network,” in Proc. Data Mining IEEE
12th Int. Conf. (ICDM), 2012, pp. 1194–1199.

[44] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning
with drifting streaming data,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 1, pp. 27–39, Jan. 2014.

Chao Chen received the B.Tech. degree (Hons.)
from Deakin University, Australia, in 2012. He
is currently pursuing the Ph.D. degree with the
School of Information Technology, Deakin Univer-
sity. His research interests include network security
and online social network security.

Yu Wang received the Ph.D. degree in computer
science from Deakin University, Victoria, Australia.
He is currently with the School of Information
Technology, Deakin University. His research inter-
ests include network traffic modeling and classifica-
tion, social networks, mobile networks, and network
security.

Jun Zhang received the Ph.D. degree in com-
puter science from the University of Wollongong,
Wollongong, Australia, in 2011. He is currently
with the School of Information Technology, Deakin
University, Melbourne, Australia. He has authored
over 50 research papers in refereed international
journals and conferences, such as IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE TRANS-
ACTIONS ON IMAGE PROCESSING, IEEE TRANS-
ACTIONS ON PARALLEL AND DISTRIBUTED SYS-
TEMS, IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY, IEEE TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS—PART B, and IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT. His research interests include network and
system security, pattern recognition, and multimedia retrieval.

CHEN et al.: STATISTICAL FEATURES-BASED REAL-TIME DETECTION OF DRIFTED TWITTER SPAM 925

Yang Xiang received the Ph.D. degree in computer
science from Deakin University, Australia.

He is currently the Director of the Center for Cyber
Security Research and also a Professor with the
School of Information Technology, Deakin Univer-
sity. He has authored over 100 research papers in
many international journals and conferences, such
as IEEE TRANSACTIONS ON PARALLEL AND DIS-
TRIBUTED SYSTEMS, IEEE TRANSACTIONS ON

INFORMATION SECURITY AND FORENSICS, and
IEEE JOURNAL ON SELECTED AREAS IN COM-

MUNICATIONS. His research interests include network and system security,
distributed systems, and networking. In particular, he is currently leading
in a research group developing active defense systems against large-scale
distributed network attacks. He is the Chief Investigator of several projects in
network and system security, funded by the Australian Research Council. He
has served as the Program/General Chair for many international conferences
such as the ICA3PP 12/11, IEEE/IFIP EUC 11, IEEE TrustCom 11, IEEE
HPCC 10/09, IEEE IC- PADS 08, and the NSS 11/10/09/08/07. He has
been the PC member of over 50 international conferences in distributed
systems, networking, and security. He serves as an Associate Editor of IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS and an Editor
of Journal of Network and Computer Applications.

Wanlei Zhou (SM’09) received the B.Eng. and
M.Eng. degrees from the Harbin Institute of Tech-
nology, Harbin, China, in 1982 and 1984, respec-
tively, the Ph.D. degree from Australian National
University, Canberra, in 1991, and the D.Sc. degree
from Deakin University, Melbourne, Australia, in
2002. He was with a number of organisations
including, the University of Electronic Science and
Technology of China, Chengdu, China, Apollo/HP,
Massachusetts, USA, the National University of
Singapore, Singapore, and Monash University,

Melbourne, Australia. He is currently the Chair Professor of Information
Technology and also an Associate Dean with the Faculty of Science, Engi-
neering and Built Environment, Deakin University, Melbourne, Australia. He
has authored over 300 papers in refereed international journals and refereed
international conferences proceedings. His research interests include network
security, distributed and parallel systems, bioinformatics, mobile computing,
and e-learning.

Geyong Min received the B.Sc. degree in computer
science from the Huazhong University of Science
and Technology, China, in 1995, and the Ph.D.
degree in computing science from the University of
Glasgow, U.K., in 2003. He is currently a Professor
of High Performance Computing and Networking
with the Department of Mathematics and Computer
Science, College of Engineering, Mathematics, and
Physical Sciences, University of Exeter, U.K. His
research interests include future internet, computer
networks, wireless communications, multimedia sys-

tems, information security, high performance computing, ubiquitous comput-
ing, modeling, and performance engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

