
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015 1137

A PUF-FSM Binding Scheme for FPGA IP
Protection and Pay-Per-Device Licensing

Jiliang Zhang, Yaping Lin, Yongqiang Lyu, and Gang Qu, Senior Member, IEEE

Abstract— With its reprogrammability, low design cost, and
increasing capacity, field-programmable gate array (FPGA)
has become a popular design platform and a target for
intellectual property (IP) infringement. Currently available
IP protection solutions are usually limited to protect single FPGA
configurations and require permanent secret key storage in the
FPGA. In addition, they cannot provide a commercially popular
pay-per-device licensing solution. In this paper, we propose a
novel IP protection mechanism to restrict IP’s execution only on
specific FPGA devices in order to efficiently protect IPs from
being cloned, copied, or used with unauthorized integration.
This mechanism can also enforce the pay-per-device licensing,
which enables the system developers to purchase IPs from
the core vendors at the low price based on usage instead of
paying the expensive unlimited IP license fees. In our proposed
binding-based mechanism, FPGA vendors embed into each
enrolled FPGA device with a physical unclonable function (PUF)
customized for FPGAs; IP vendors embed augmented finite-state
machines (FSM) into the original IPs such that the FSM can
be activated by the PUF responses from the FPGA device.
We propose protocols to lock and unlock FPGA IPs, demonstrate
how PUF can be embedded onto FPGA devices, and analyze
the security vulnerabilities of our PUF-FSM binding method.
We implement a 128-bit delay-based PUF on 28-nm FPGAs
with only 258 RAM-lookup tables and 256 flipflops. The PUF
responses are unique and reliable against environment changes.
We also synthesize a variety of FSM benchmark circuits. On large
benchmarks, the average timing overhead is 0.64% and power
overhead in 0.01%.

Index Terms— Binding, field-programmable gate
array (FPGA), finite state machine (FSM), hardware metering,
intellectual property (IP) protection, physical unclonable
functions (PUFs).

I. INTRODUCTION

A. Motivations

F IELD-PROGRAMMABLE gate arrays (FPGAs) are the
semiconductor devices that can be reprogrammed by the

Manuscript received January 3, 2014; revised May 30, 2014 and
November 29, 2014; accepted January 28, 2015. Date of publication
February 5, 2015; date of current version April 13, 2015. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61173038 and Grant 61228204 and in part by a scholarship from
China Scholarship Council under Grant 201306130042. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Farinaz Koushanfar.

J. Zhang and Y. Lin are with the College of Information Science
and Engineering, Hunan University, Changsha 410082, China (e-mail:
hnu.zjl@gmail.com; yplin@hnu.edu.cn).

Y. Lyu is with the Research Institute of Information Technology, Tsinghua
University, Beijing 100084, China (e-mail: luyq@tsinghua.edu.cn).

G. Qu is with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, MD 20742 USA
(e-mail: gangqu@umd.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2015.2400413

end-users to implement any digital system. Comparing
to the implementation with Application-specific Integrated
Circuits (ASICs), FPGA design has the advantages of shorter
time-to-market, lower non-recurring engineering costs and
higher flexibility. These have made FPGA a popular design
platform for many applications such as automotive electron-
ics, consumer electronics and aerospace equipments. In this
FPGA-based design platform, third-party intellectual proper-
ties (IPs) are widely used due to both the technical merits (e.g.,
the IPs proven functionality, compatibility, and performance)
and non-technical concerns (e.g., time-to-market, cost, and
patent enforcement). However, there are severe piracy attacks
to the FPGA IPs and the current licensing schemes are also
not flexible enough to precisely control the authorized usage.

Firstly, from the perspective of the attack, piracy attacks,
such as cloning, copy, misuse and unauthorized integration,
are considered to be the most common security vulnerability
of volatile FPGAs [1]. Un-configured FPGA devices are
off-the-shelf products, and the configuration bitstreams can
be obtained by eavesdropping or directly from the volatile
SRAM FPGAs [1], which not only reduces the profits and
market share, but also causes the damage to the brand
reputation and even leads to severe early product failures
and safety hazards [1], [2]. Furthermore, this is not limited
to high-value single FPGA designs; the third-party FPGA
intellectual property (IP) cores are also vulnerable to those
attacks.

Secondly, from the perspective of licensing, it is often vital
to ensure that the configuration bit-streams can only be used
on the licensed FPGA devices. In such a case, IP core vendors
would prefer to sell their IP products through pay-per-device
licensing rather than through up-front license fees that allows
users to configure any FPGA device. In order to adapt the
IP core business model for the low/medium-volume FPGA
applications [3], effective pay-per-device licensing techniques
are in urgent need.

Mainstream FPGA vendors have been paying more and
more efforts in protecting their IPs from piracy attacks
and improving licensing schemes to activate and protect the
IP-based commercial flow. However, the state-of-art tech-
niques still have some drawbacks. In this paper, we consider
hardware IPs (HWIPs) as the soft-core (synthesized from
HDL) hardware modules stored in the FPGA configuration
bitstreams [11]. Our goal is to develop techniques to solve the
piracy and licensing challenges. We propose to solve these
problems by a binding mechanism that seeks to restrict the
execution of the protected IPs to the authorized FPGA devices
only.

1556-6013 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1138 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015

B. Limitations of Prior Art

FPGA HWIP protection techniques have been well-studied
in academic [2]–[5] and widely used in industry [6]–[9].
However, all the existing HWIP protection techniques are
based on encryption and have the following main drawbacks:

1) The commercially available encryption-based techniques
can only protect the single large FPGA configurations.

2) The commercially encryption-based techniques cannot
provide a solution to the commercially popular
pay-per-device licensing requirement for both single
large configurations and individual IP cores.

3) The current encryption-based FPGA IP protection meth-
ods introduce security vulnerabilities (e.g., physical
attacks and side channel attacks) for permanent key
storage and management.

C. Our Contributions
In this paper, we propose a binding scheme that binds

the HWIPs to specific FPGA devices via the interaction
between physical unclonable functions (PUF) built on the
FPGA devices and the FSMs in the HWIPs in order to
address the limitations of existing FPGA HWIP protection
techniques. We first report this concept in [37]. In this article,
1) we provide a concrete construction and implementation
of a delay-based PUF on 28nm FPGAs as a reference
design of our binding scheme; 2) we implement and verify
the proposed binding scheme by synthesizing MCNC’91
circuits and large FSM benchmarks from GenFSM on FPGAs;
3) we elaborate the details of the proposed binding scheme
with illustrative example and in-depth discussion on design
flow, system integration, and security vulnerabilities. To the
best of our knowledge, this is the first non-encryption based
FPGA HWIP binding method. Comparing to the traditional
encryption-based HWIP protection methods, our approach has
the following advantages:

1) It can be used to protect both single FPGA configura-
tions and third-party FPGA IP cores. Currently available
encryption-based commercial methods can only protect
the former, but not the latter.

2) It supports the pay-per-device licensing mechanism.
The FPGA configuration bitstream can only be used
to configure specific FPGA devices, giving IP vendors
control of their IPs and allowing product developers to
pay licensing fee only for the FPGA devices they are
using.

3) It does not need permanent storage for secret keys in the
FPGA. In our binding scheme, the secret PUF response
can be ephemeral and immediately cleared after use.
Therefore, it eliminates the security vulnerabilities of
the permanent key management and exchange.

4) It has low hardware overhead. We implement the pro-
posed method on Virtex-5 FPGA devices and find that
the 128-bit delay-based PUF needs about 256 slices
[41] and the modified FSM only introduces 0.64%
timing overhead and 0.01% power overhead on average
for ten large FSM designs. As a comparison, previous
FPGA IP protection schemes consume 6776 LUTs for a
SHA-1 core and an ECDH core [4], [5].

D. Outline of the Paper

The rest of this paper is organized as follows. Related work
is surveyed in Section II. The necessary background informa-
tion on PUF, FSM, and parties involved in HWIP binding
is presented in Section III. The proposed binding method
and its working mechanism are elaborated in Section IV.
An IP locking mechanism and a reference implementation
of PUF for the proposed binding method are then given
in Section V and Section VI, respectively. Potential security
threats and countermeasures are analyzed in Section VII.
The detailed experimental results and analysis are reported
in Section VIII. Finally, we conclude in Section IX.

II. RELATED WORK

A. FPGA HWIP Protection Techniques

Many intellectual property protection techniques for FPGAs
have been proposed in academic and industry.

In commercial tools, bit-stream encryption [6]–[9] is the
most popular intellectual property protection method against
direct cloning of single large FPGA configurations for
high-end FPGA devices. Some recent FPGAs employ the
advanced encryption standard (AES) core or triple data encryp-
tion standard (3DES) core to support the encryption of the
FPGA configuration bitstreams; some FPGAs employ keyed-
hash message authentication code (HMAC) core to enable
bit-stream authentication [8]. They all need the on-chip cryp-
tographic decryption module and the permanent secure key
storage. Unfortunately, these solutions come with some prac-
tical limitations: they are not appropriate for resource-limited
environments, and more importantly, it is well-known that such
permanent key storage scheme allows attackers to attack at any
time.

In the academic domain, Gneysu et al. [4] proposed a
protection scheme for the FPGA bitstreams, which uses the
secondary secure key register and the authenticated bitstream
encryption and requires minor modification to the current
FPGA technology. They employed a public-key-based pro-
tocol between the IP providers and the FPGA-based system
developers, and a trusted third party (TTP) is used to handle
key exchange and installation in the symmetric-key-decryption
engines. This solution is only suitable for the protection
of single large FPGA configurations, and the protection of
individual HWIP cores remains as a challenging problem.
Drimer et al. [5] presented an encryption-based method to
protect multiple IPs, and Kepa et al. [13] proposed a secure
reconfigurable controller based method to support license
enforcement within the partial reconfiguration flow. More
recently, Maes et al. [2] introduced a valuable “pay-per-use”
licensing scheme to protect multiple FPGA IPs through the
self-reconfiguring capabilities of modern FPGAs and a TTP
for metering the service.

As we can see from the above, all commercial and
academic FPGA configuration bitstream protection meth-
ods are encryption-based; they have three shortcomings:
1) the commercial methods are limited to the protection of
single large FPGA configurations; 2) they cannot support
the pay-per-device licensing; 3) the previous encryption-based

ZHANG et al.: PUF-FSM BINDING SCHEME FOR FPGA IP PROTECTION AND PAY-PER-DEVICE LICENSING 1139

HWIP protection methods require permanent key storage
and on-chip cryptographic decryption modules to decrypt the
bitstream, which introduces some security vulnerabilities and
high overhead. Our approach overcomes these limitations.

B. Metering ASIC Intellectual Properties

A number of watermarking methods for ASIC/FPGA
intellectual property protection have been proposed [32]–[35].
However, watermarking techniques are passive and only
used to identify the intellectual property. In 2001,
Koushanfar and Qu [38] proposed the first hardware
metering method that can enable the design house to
gain the post-fabrication control by passive or active control
of the number of produced ICs. Alkabani et al. [24]
proposed an anti-overbuilding mechanism which exploits
the functional description of the design and the unique
and unclonable IC identifiers. The locks can be embedded
via modifying the hardware computational model such as
an FSM. They also presented another FSM manipulation
method [25] which introduces only a few new states. These
solutions are only suitable for protecting single ASIC chips.
Later on, they further extended their scheme to actively
control multiple IP cores [26] for ASIC chips. Recently,
Koushanfar [27] improved again the locking structure in [24]
by a multi-point function. Meanwhile, Roy et al. [20]
presented another kind of cryptography-based metering
methods, but their solution has a very high overhead. These
metering mechanisms are designed for anti-overbuilding
ASIC devices, they are not appropriate for pay-per-device
licensing of FPGA designs.

In this paper, our proposed FPGA HWIP binding technique
not only addresses the main drawbacks of the traditional
FPGA HWIP protection methods, it can also support a
pay-per-device licensing scheme. This provides technical sup-
port for the product developers (system developers) to pay
IP licensing fees only for the FPGA devices they are using.
It also enables the IP vendors to freely distribute their
IPs because they can ensure that the distributed IPs run only
on specific FPGAs rather than all the FPGAs. This binding
scheme brings a remarkable advantage for the IP-based busi-
ness model: the IP owners can take the full control over the
use of their IP cores and protect them from unlicensed use;
the FPGA-based product developers who could not afford the
expensive unlimited IP license are now also able to obtain a
number of single instances of the required IP cores at a much
lower cost.

III. PRELIMINARIES

In this section, we will introduce the general terms and
concepts used throughout the paper. More specific definitions
would be described as necessary.

A. Physical Unclonable Function (PUF)

PUF provides a unique chip-dependent mapping from a
set of digital inputs (challenges) to a set of digital out-
puts (responses) based on the unclonable properties of the

underlying physical device. Although it is difficult to come up
with a uniform definition for all types of PUFs, they should
all satisfy the following properties [39]:

• Persistent and unpredictable. The response (Ri) to a
challenge (Ci) is random and unpredictable, but should
remain the same for the same challenge over multiple
observations.

• Unclonable. It is impossible to obtain Ri from Ci without
the physical presence of the PUF. In other words, given
a PUF, it is infeasible for an adversary to build another
PUF that provides the same responses to every possible
challenge. This is assumed to be true due to the uncon-
trollable technology variations.

• Tamper evident. Invasive attacks to PUFs will destroy the
PUFs and thus can be detected easily.

Because of those properties, PUF has become an
efficient mechanism to address security and trust problems in
many applications, such as binding software IPs to specific
FPGAs [11], hardware/software authentication [16], FPGA IP
protection [18], [43], anti-overbuilding [24]–[27] and resisting
FPGA replay attacks [36].

B. Finite State Machine (FSM)

FSM is a popular model for sequential systems. In this
paper, we employ FSMs to bind HWIPs to the FPGAs with
PUFs to restrict the HWIP’s usage so that it can only work
on the enrolled FPGA devices. Similar to the FSM-based
works such as [15] and [24]–[27], the method proposed in
this paper is not applicable to some high-speed designs that do
not have FSMs. These high-speed designs are normally small
dedicated modules such as digital filters, channel equalizers,
address decoders and arithmetic logic units. Fortunately, for
the HWIPs in industrial designs that we target to protect, the
sequential components or functions, and therefore FSMs, are
ubiquitous [15].

C. Parties Involved in HWIP Binding

In order to facilitate our study, we consider the following
parties involved in the binding mechanism and their respective
roles:

• FPGA vendor (FV): FV designs and manufactures
un-configured FPGA devices and can securely deploy
PUF in the fabric of these devices.

• System developer (SD): SD integrates the third-party IPs
along with their own designs to create a commercial prod-
uct on an FPGA chip. The product will be synthesized
into a configuration bitstream file for the FPGA chip to
download using the computer aided design (CAD) tools
provided by the FV.

• IP core vendor (CV): CV creates innovative logic circuits
(HWIP cores) and sells them to SDs for profits. CV needs
an effective technique to keep the full control over the use
of the HWIP cores.

• End user (EU): EU purchases the FPGA products
developed by the SD. The SD expects that EUs cannot
‘clone’ the products by copying the FPGA configuration
bitstream file and run on unauthorized FPGA devices.

1140 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015

Fig. 1. Design flow of modifying hardware IP.

Our goal is to design a new binding mechanism so the
SDs and CVs can protect their FPGA designs or IPs from
piracy without introducing much inconvenience and large
performance degradation to the EUs and FVs.

IV. THE PROPOSED BINDING SCHEME

Traditionally, the HWIPs are written without any concern
of binding to any specific FPGA. The configuration bitstream
can be used to configure any FPGA device of the same
type. Given a HWIP, our goal is to modify the original
FSM of the HWIP to produce an augmented FSM which
is functionally equivalent to the former. The modified FSM
reacts with the intrinsic PUF located in the specific FPGA
hardware, and it can perform exactly the same as that of
the HWIP as long as the challenges issued by the HWIP
obtain correct responses through the PUF. This means that
only the FPGA chips authorized by the CVs can guarantee
the correct functionalities. Meanwhile, as long as there are
PUFs embedded in the FPGA chips from the FV, and the
CV modifies their IP designs to support PUF, no more changes
are needed at any party when a new HWIP is developed and
needs to be deployed to a new FPGA device. The details of
the binding scheme are depicted in figures 1, 2, and 3 and
described as follows.

A. Design Flow

The design flow of modifying the HWIP together with
a standard FPGA design methodology is shown in Fig. 1.
First, the CV uses the high-level design description to setup
the behavioral model of the FSM. Next the original FSM is
modified so that the added FSM structure (such as additional
states and transitions) and the original FSM form a new
augmented FSM. The standard phases of the FPGA design
methodology (e.g., design synthesis, placement and routing)
can then be carried out. Finally, the HWIP configuration
bitstream file can be downloaded into an FPGA device to run.
Although there is an inevitable verification/testing overhead
due to the added features in the augmented FSM, the entire
traditional design methodology is maintained so the introduced
design overhead can be controlled.

TABLE I

SYMBOLS AND ACRONYMS USED IN THE PROTOCOL

B. Description of the Protocol

For reader’s convenience, we list the symbols and acronyms
used in the protocol, as shown in Table I. The proposed
PUF-FSM binding protocol is described as follows.

1) FPGA Device Enrollment: The device enrollment
protocol is shown in Fig. 2(a). To enable the proposed scheme,
the FPGA vendor (FV) initially tests the PUF for every
piece of FPGA chip to obtain their random challenge-response
pairs (CRPs) before selling them. The PUF challenges are
stored in the non-volatile on-chip memory, which is automat-
ically configured on Fi

PU F immediately when the device is
powered on. Note that the PUF challenges can be public and do
not need to be encrypted or hidden because of the uniqueness
and unpredictability of the PUF responses. In addition, FV can
also generate the I D(Fi

PU F) which is a public unique serial
number burned in at manufacturing time (e.g., Xilinx Device
DNA [19]). If the core vendor (CV) or system developer (SD)
wants to buy the FPGA embedded with the PUF, Fi

PU F , to
start the HWIP/system development, the FV will respond with
the I D(Fi

PU F) from database and then sell the FPGA device
Fi

PU F to the CV/SD.
2) Hardware IP Core Enrollment and Distribution: As

Fig. 2(b) shows, before the system developer (SD) devel-
ops its product, the core vendor (CV) creates the IP with
I D(H W I Pj). The CV then synthesizes the H W I Pj with
the PUF-binding FSM into the bit-stream to generate the
new version b{H W I Pj }locked . This process can be expressed
as b{H W I Pj }locked = Lock b{H W I Pj }. The CV stores
I D(H W I Pj) and b{H W I Pj }locked in its database, and
releases I D(H W I Pj) for sale. When a SD needs the H W I Pj

to develop FPGA-based products, it asks for buying it via
sending the I D(H W I Pj) to the CV. The CV then looks up
the database for I D(H W I Pj) and sends the corresponding
b{H W I Pj }locked , the locked HWIP bit-stream, to the SD.

3) Hardware IP Core Licensing: As Fig. 2(c) shows, when
the system developer (SD) requires to unlock the purchased
b{H W I Pj }locked in their FPGA-based products, it sends
I D(Fi

PU F) and I D(H W I Pj) to the core vendor (CV). The
CV will send I D(Fi

PU F) to the FPGA vendor (FV) to
obtain the corresponding CRPs and then calculate licenses
based on the CRPs and the modified FSM. The computed
licenses can be public. Finally, the licenses are sent to the
SD to unlock b{H W I Pj }. This process can be expressed as
b{H W I Pj }unlocked = b{H W I Pj }locked (Licenses). Note that
the CRPs should be securely transferred from the FV to the
CV or SD.

ZHANG et al.: PUF-FSM BINDING SCHEME FOR FPGA IP PROTECTION AND PAY-PER-DEVICE LICENSING 1141

Fig. 2. Hardware IP core binding protocol. (a) FV generates I D(Fi
PU F) and CRPs and then sells devices to SD and CV. (b) CV generates the

locked H W I Pj and distributes it to SD. (c) CV licenses H W I Pj to SD. (d) SD licenses Product j to EU.

Fig. 3. Configuration process of an FPGA-based product containing multiple
locked hardware IP cores.

4) Product Licensing: As Fig. 2(d) shows, if an end
user (EU) would like to buy the products developed by the
system developer (SD) to run on a specific FPGA device
Fi

PU F , it should send I D(Fi
PU F) and ID(Product j) to SD.

The SD will send I D(Fi
PU F) to FV to obtain the corre-

sponding CRPs and then calculate licenses based on the
FPGA-PUF responses and the modified FSM. Note that the
licenses can be public. Finally, the licenses are sent to
EUs to unlock b{H W I Pj }. This process can be denoted as
b{Product j}unlocked = b{Product j}locked (Licenses).

C. System Integration

The proposed binding scheme can support multiple HWIP
cores to be integrated on a single FPGA design. To develop
an FPGA-based product, the system developer (SD) obtains

an FPGA device with the hard core PUF inside from the
FPGA vendor (FV) [following Fig. 2(a)], the required third-
party HWIP cores from the core vendors (CVs) [following
Fig. 2(b)] and the required licenses for these cores from the
CVs [following Fig. 2(c)]. For example, when there are two
different HWIP cores from two different CVs; the SD can
integrate them into the same FPGA device by putting the
PUF challenges from the FV and the authorized licenses from
the CVs in a nonvolatile memory (NVM) next to the FPGA
device, then our IP protection scheme will work as shown
in Fig. 3. When the system is powered on, the activation
process checks the PUF-based licenses of the IPs and loads
the unlocked IP cores into the reconfigurable FPGA fabric.
If a purchased HWIP is copied to an unauthorized FPGA
device, even the same license cannot unlock the HWIP because
the unauthorized FPGA could not generate the same PUF
responses as the authorized one.

V. HWIP LOCKING MECHANISM

A. Locking the Hardware IP

In this section, we describe a prototyping design of the
lock mechanism proposed in the binding scheme. The lock is
achieved by exploiting PUF’s unique properties (unclonable,
persistent and unpredictable). As Fig. 4 shows, we use the
PUF response to control the transitions of the FSM in the
HWIP. The error corrected PUF response is used to uniquely
determine the transitions of the state transition graph (STG)
of the HWIP (the IP behavior); without the correct PUF
response, the STG would not perform correctly. Therefore,
the circuit is kept locked until the correct license (formed by

1142 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015

Fig. 4. PUF response is used to uniquely control the transitions of the STG.

Fig. 5. The binding FSM structure. The original states are shown in dark
and the added states are shown in white on the STG of the added FSM.

the correct PUF response) unlocks it. It should be noticed
that the computed licenses can also be public and different
PUF responses can be used to calculate different licenses.
Additionally, the FPGA vendor often computes the error
correcting code (ECC) to adjust for any bit-flip to the PUF
output (response) because the PUF output is hard to maintain
absolutely stable due to the noise or other sources of physical
uncertainty.

As an example, considering the original STG with 6 states,
S0 ∼ S5, in Fig. 5, the transition from state S0 to S1 is excited
by a specific input combination. S0 is called the reset state of
the original FSM and S1 is the next state of this transition.
Now we introduce the method to generate a new FSM with
additional structure to bind with PUF. We add M (M is an
even number) layers of states to form the added FSM. Any
even-number layer consists of m states and any odd-number
layer only has one state. We define a fixed power-up state Sr

for the binding FSM. The first transition step starts from Sr

with m transitional edges to each of the other m states. Then
the second transition step goes from each of these m states
to the next layer (odd layer). After the M-layer (M transition
steps) transitions, the state transits to S0 which is the unlocked
state (the reset state).

Assuming the input of the original STG is k-bit long, we
define a k-bit input sequence: {b1b2 · · · bk}t

i ({t|t ∈ N, 1 ≤
t ≤ 2k, k ∈ N}; i ∈ N, 1 ≤ i ≤ M) where i denotes the
i -th transitional step and t denotes the specific transition in
the i -th transitional step. The k-bit input is the function of a
L-bit PUF response which determines the transition path in
the transitional steps. The odd-number transitional steps are
determined by partial bits of the PUF response, and the even-
number transitions of the FSM are determined by the license
and the rest PUF response.

Fig. 6. An example of the lock mechanism and the generation of the licenses
for sequential circuit dk16.

For an added FSM structure of M layers, every transitional
step needs log2(m)-bit PUF output. Hence, the length of
required PUF bits can be formulated as Eq. (1) shows.

L PU F = M × log2(m) (1)

In addition, log2(m)-bit license should also be provided in
the even-layer transitional step. The length of license bits can
be computed by:

Llicense = M

2
× log2(m) (2)

Note that L PU F and Llicense should be sufficiently long in
practice in order to guarantee the security of this model.

To illustrate the key idea of our approach, we give an
example of the implementation of the lock and the generation
of the licenses for benchmark circuit dk16 shown in Fig. 6.
Considering a two-layer added FSM structure composed by
two transition steps, assume k = 2, hence each transitional step
consists of 4 (22 = 4) edges forming the 4 transition paths. In
the step 1, we use {b1b2}t

i (t = 1, 2, 3, 4) which is designed to
be 4 different values to distinguish the 4 edges. Then the value
of {b1b2}t

i will be decided by a 2-bit PUF output value once
the design begins to run, it begins from Sr to one of the four
connected states depending on the first 2-bit PUF outputs. As
the first 2-bit PUF output value is “01”, which equals to the
designed {01}2

1, thus the 1st step will transition from Sr to S7.
Then in the 2nd step, the design can only possibly transition
from S7 to S10 when the first two input bits equal to {10}2

2.
To possibly enable the transition, the second 2-bit PUF output
“00” should be XOR’d with a 2-bit key that is able to generate
the result of “10” (in this case the key should be “10”). The
FSM can transit from state Sr to s_1 (the original reset state
of dk16) with the calculated license and the PUF response.

B. Unlocking the Hardware IP

The PUF outputs L PU F bits to determine the transitions
of the binding FSM. Now, an attacker with no information
about the transition table of the FSM cannot find the correct

ZHANG et al.: PUF-FSM BINDING SCHEME FOR FPGA IP PROTECTION AND PAY-PER-DEVICE LICENSING 1143

Fig. 7. The structure of the delay-based PUF design.

sequence of the primary input combinations to arrive at the
reset state S0. Hence, the CV is the only one who can compute
the license to unlock the b{H W I Pj }locked .

The unlocking process is stated as follows. The FV provides
enrolled PUF-embedded FPGA Fi

PU F ; each Fi
PU F provides a

specific set of PUF challenges. If a b{H W I Pj }locked is ille-
gally over-used, copied or cloned by a SD, it would be locked
into the fixed power-up state, Sr , on the event of powering up
the Fi

PU F because it does not have the correct PUF responses
for the challenges. Hence, in order to unlock the design, the
CV must use the received L PU F -PUF responses from the FV
who tests the PUF responses on the provided PUF challenges,
and then calculates the correct Llicense-bit license for SD.
SD can use this license to unlock the b{H W I Pj }locked

correctly.

VI. THE REFERENCE IMPLEMENTATION OF PUF

Many kinds of PUF have been proposed in the past
decade [42], such as optical PUF, SRAM PUF, arbiter PUF and
ring oscillator PUF. Some of them have also been implemented
on FPGAs [17], [18], [21], [22]. The proposed binding method
can work with any PUF implemented on FPGA that satisfies
the properties defined in section III.A. Which PUF to use is
up to the FPGA vendor. In this study, we give a concrete
implementation based on a delay-based PUF for the designers
to refer to. This PUF is designed specifically for FPGAs.
It does not need the hard macro with fix routing and is
completely described in VHDL with the merits of easy-of-use
and low silicon area overhead [41].

A. A Delay-Based PUF

In this paper, we designed and implemented a delay-based
PUF on 28nm FPGAs, which takes advantage of the manu-
factured difference of the switching latencies of two carry-
chain multiplexers on the FPGA to produce a positive pulse
(glitch) at the output of downstream multiplexer. The glitch
can be used to set the output of a D flip-flop to logic-1 from
the default logic-0, which forms a one-bit PUF response. The
detailed structure of the PUF design is illustrated in Fig. 7.
The shift register contents are pre-initialized as follows:

• Input A: 0x5555 (0101010101010101)
• Input B: 0xAAAA (1010101010101010)

Fig. 8. The new prototype implementation of a primitive PUF on
Xilinx Zynq-7000 FPGA.

When the look-up-table (LUT) A and its driving multiplexer A
are faster than the LUT B and multiplexer B, the output OUT
would be logic-1.

Note that the current delay-based PUF [41] for FPGAs
cannot be directly implemented on the latest Xilinx FPGAs
such as Virtex-7, Kintex-7, Artix-7 and Zynq-7000 since the
structure of SLICE of the latest Xilinx FPGAs are different
from that of the previous FPGA families such as Virtex-5.
In the architecture of Virtex-5 FPGAs, once a LUT in SLICEM
is configured into a shift register, the logic-0 data input of
multiplexer can be connected to a logic-0 signal to meet the
design requirement. However, in the SLICEM of Zynq-7000
FPGAs, two optional paths of logic-0 data input of the carry
chain multiplexer have been used as output or input of a
shift register, which cannot meet the requirement that logic-0
data input of multiplexer should be always connected to a
logic-0 signal.

To solve this problem, we use four SLICEs to implement
one bit PUF signature. In the layout of Xilinx Zynq-7000
XC7Z020 FPGA, there are two SLICEs in one CLB. A SLICE
whose X coordinate is even number is SLICEM; then the other
SLICE in the same CLB would be SLICEL. Two SLICEMs
are configured into two shift registers respectively, while their
corresponding SLICELs are configured into a carry chain
multiplexer. As shown in Fig. 8, four slices are used to
implement a new primitive PUF. The dotted line represents
the direction of data flow.

B. Reliability-Enhancing Techniques

Silicon PUF is based on manufacture variation, which
may be very sensitive to the operating environment such
as voltage and temperature, particularly for delay based
PUF [10], [22]. It is very hard for any known PUF to
maintain an absolutely stable response. Methods such as error
correcting [21], [40], pattern matching [44], [45],

1144 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015

and temperature aware collaboration [46] have been proposed
to correct bit flips in PUF responses to generate stable PUF
output.

These state-of-the-arts have already been very successful in
reducing and correcting the PUF bit errors. For example, by
using the Index-Based Syndrome coding (IBS), error correc-
tion performed on output responses of ring oscillator (RO)
PUFs implemented on Virtex-5 FPGAs has an error rate less
than 10−6 when temperature goes from −55°C to 125°C
under 1.0V operating voltage with a ± 10% variation [40].
Maes et al. demonstrated that an efficient and extremely low
overhead BCH decoder specially for correcting bit flips in PUF
responses utilizes merely 112 Slices on a Xilinx Spartan-6
FPGA [21]. Paral and Devadas proposed to use string pattern
matching to generate reliable PUF responses, both the false
positive and false negative rates can be less than 10−9 [44].
Yin and Qu built a temperature aware collaborative RO PUF
where they measure the PUF output values at different temper-
atures and choose the correct one based on the real operating
temperature from on-chip temperature sensors, which ideally
guarantees no bit error [46].

Moreover, electro-migration, hot carrier injection (HCI),
negative bias temperature instability (NBTI) and temperature-
dependent dielectric breakdown (TDDB) cause the
device aging, which would impact the stability of PUF
signatures [47], [48]. For example, Ganta et al. [48] observe
that around 4% of the RO-PUF bits are prone to instability
due to aging in various operating conditions. Recently, the
corresponding aging resistant techniques [49], [50] are also
developed.

As we will report in Section VIII, our reference delay-
based PUF does have bit errors when operating at different
temperatures. However, such error will not cause any false
positive or false negative, which means that we will be able
to distinguish a PUF response with bit errors from a PUF
response from a different device. To keep our discussion
focused on the new PUF-FSM binding scheme for FPGA IP
protection and pay-per-device licensing, we will not elaborate
how to improve the reliability of the above reference delay-
based PUF and the associated cost. When high reliable PUF
responses are critical, one can always use one or more of
the reliability-enhancing techniques. It will be a task for the
vendors and IP developers to balance the tradeoff between
PUF reliability and design overhead.

C. The Integration Architecture

The delay-based PUF in this paper is designed in HDL,
and hence has the merits of easy-of-use and high flexibility.
The PUF can be implanted into FPGA in the form of soft-
core or hard-core. Soft-core PUF is implemented in FPGA
fabric while hard-core PUF actually physically implemented
as a structure in the silicon connected to the FPGA fabric.
Both hard-cores and soft-cores have been widely adopted
in FPGA industry. An example of FPGA with hard-cores
is the ARM Cortex-A9 dual-core MCU used in the new
Xilinx Zynq-7000 System on a Programmable Chip (SOPC).
On the other hand, soft-cores are more commonly used in
FPGAs such as MicroBlaze, Nios II and OpenRISC.

Fig. 9. An example of a soft-core PUF implanted in a SOPC.

Fig. 9 illustrates how a soft-core PUF can be implanted
into a SOPC. The PUF is mounted on PLB bus to connect
to a Xilinx MicroBlaze soft-core embedded processor. In our
proposed binding scheme, the PUF will only be used when
there is a need to unlock the IPs, normally during the FPGA
power-up process. When the FPGA is running, the PUF will
not be needed anymore. Therefore, we propose to power off
the PUF unit once the IPs are unlocked. This mechanism can
easily be implemented with some control logic and brings
several advantages. First, by shutting down the hard-core or
soft-core PUF unit, it will not consume unnecessary power;
second, when the PUF unit is off, there will not be any leak
of timing, power, or electromagnetic emanation from the PUF
unit, so it will be more resilient to potential side channel
attacks.

VII. THE SECURITY ANALYSIS

The objective of the proposed PUF-FSM binding method is
to protect the HWIPs from the piracy attacks such as cloning,
copying, unauthorized redistribution, over-use, etc. To analyze
the security of this method, we consider the following existing
attacks:

• Brute force. The adversary tries to guess the correct
license to unlock the b{H W I Pj }locked . By using the
unclonable PUF responses to control the transition of
the added STG, the space of the correct license becomes
exponential, making such brute force attack infeasible.
For example, when L PU F = 256-bit (License = 128-bit),
the search space of such brute force attack will be all the
2128 possible license values.

• PUF removal/tampering attack. The adversary tries to
remove/tamper the PUF on the FPGA, for example by
replacing the PUF with a SRAM that contains PUF
responses from a previously unlocked hardware IP. Then
the license for unlocking the previous HWIP can be used
to unlock a new HWIP. There are several countermeasures
to address this kind of attack, such as adding obfuscated
states within the FSM for PUF checking [27]. Our binding
scheme can adopt these countermeasures.

• Simulating PUF. According to the intrinsic properties
of the PUFs described above, it is impractical to dupli-
cate a PUF with functional and timing characteristics
identical to another PUF. Although machine learning

ZHANG et al.: PUF-FSM BINDING SCHEME FOR FPGA IP PROTECTION AND PAY-PER-DEVICE LICENSING 1145

techniques [14] have been used to model some strong
PUFs with high prediction rate, they need a huge amount
of PUF CRPs during the learning phase. Therefore, this
attack will not be effective to weak PUFs such as the
one used in this paper, SRAM PUF [18], [29] and similar
architectures.

• Tapping PUF responses. In the binding scheme, the secret
PUF response is ephemeral (the response is only used
to unlock HWIPs at boot time) and will be immedi-
ately cleared after use, and hence it resists tapping PUF
responses.

• Reverse engineering the added FSM. An adversary tries
to extract the STG and separate/remove the added STG
from the original STG. However, STG recovery is a
computationally intractable problem [15], [24], [28], and
there exist effective methods that we can use in our
scheme against such attacks such as creating black holes
in the added FSM and merging the added FSM with the
test and other FSMs [24].

• Side channel attacks. These attacks statistically analyze
the time, power consumption or electromagnetic ema-
nation of the cryptographic devices to gain knowledge
about integrated secrets. Our delay-based glitch PUF
architecture (see Fig. 7) uses multiple flip-flops in parallel
and leaves little room for side channel attacks. For elec-
tromagnetic emanation analysis, it is practically difficult
to locate each flip-flop on the die of an FPGA and to focus
the EM probe mainly on the radiation of its components.
Timing and power analysis attacks are unlikely because
all the flip-flops will be on regardless of the PUF bit
will be a 0 or a 1 and the PUF will only be used
at the IP unlocking phrase. However, our approach is
not completely side channel attack free as it is well-
known that any PUF-based security mechanism would
be vulnerable to side channel attacks unless appropriate
countermeasures are taken [21].

VIII. EXPERIMENTAL RESULTS AND ANALYSIS

We have performed a set of experiments to evaluate the
effectiveness of the proposed new binding method. The exper-
iments include two parts: the reference implementation of
the delay-based PUF on the 28nm Xilinx FPGAs, Zynq-7000
FPGAs; and the evaluation of the PUF-bound FSM on FPGAs.

A. Design Evaluation of a Delay-Based PUF

We implemented 16 identical 64-bit PUFs at different loca-
tions on a Xilinx Zynq-7000 FPGA. We used range constraints
(ROLC_RANGE statement) supported by the Xilinx integrated
development kit to place the PUF design to the designated
area. Hence, the responses from these PUFs will be indepen-
dent. It is well-known that the manufacture variation between
two chips is normally larger than the variation between dif-
ferent regions on the same chip. Consequently, if the PUFs
located in the different regions on a single FPGA produce
unique outputs, we would have the strong confidence that the
PUF outputs from different chips should also be unique [41].
In this section, we first show the area overhead caused by

the PUFs, and then discuss the uniqueness and reliability of
the PUF outputs.

1) Area Overhead: The Xilinx Zynq-7000 XC7Z020 FPGA
has about 53,200 LUTs, 17400 of which can be used as
storage or shift registers. In our experiments, a 128-bit PUF
will consume 258 shift register LUTs (utilization: 1%) and
256 flip-flops (utilization: 1%). Hence, the reference PUF
implementation’s area overhead can be neglected.

2) Uniqueness: The uniqueness shows how uniquely a PUF
response can be, which determines the quality of the PUF. It is
not acceptable if different PUFs produce the same or very
similar responses when fed with the same challenge. We use
Hamming Distance (HD) to evaluate the PUF response’s
uniqueness. For a pair of n-bit PUF responses: Pi and Pj

(i �= j), their HD is the number of bits that Pi and Pj

are different. A PUF response is unique as long as it
has a non-zero HD with the responses of other challenges.
However, due to reliability concerns (see item 3) below
for more details), the PUF responses under different oper-
ating environments may have bit errors and thus produce
the same response on different challenges when their des-
ignate responses have a very small HD. We define, for
k n-bit PUF responses: P1, P2, · · · , Pk , their average pairwise
HD as:

u = 2

k(k − 1)

k−1∑

i=1

k∑

j=i+1

H D(Pi , Pj)

n
× 100% (3)

where,

H D(Pi , Pj) =
n∑

m=1

(ri,m ⊕ r j,m)

ri,m is the m-th response bit of the n-bit response string from
PUF Pi .

If each PUF response is unique and logic-0 and logic-1
are distributed in responses uniformly, the expectation of HDs
between the PUF responses should be 50%. In our experiment,
we use k = 16 and n = 64. From the (16 ∗ 15)/2 = 120
data points of pairwise HD, we have u = 49.6%, which
means that on average, any pair of PUF responses have a
HD of 31.75 bits.

To further investigate the PUF response’s uniqueness, we
consider the frequency histogram of these 120 pairwise HD
which is shown in Fig. 10. These HDs are concentrated around
the expected value of 32 (which is half of 64 bits) with max-
imum equals to 45 and minimum equals to 18. This implies
that for two different challenges to generate the same response,
at least one of the PUF response has to have 9 out of the total
64 bits flipped, as we will see next, this is almost impossible to
happen with the current PUF technologies. Consequently, we
conclude that the implemented PUF achieves good response
uniqueness.

3) Reliability: Reliability is used to assess the stability
of PUF responses in different environments. Ideally, PUF
responses challenged by the same input should remain the
same in repeated multiple tests. However, PUF responses
may change due to factors such as ambient temperature
variation and supply voltage fluctuation since these factors

1146 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015

Fig. 10. PUF response uniqueness: Hamming distance distribution.

Fig. 11. PUF response variability at high vs. normal temperature.

may affect circuit delay in practice. As a most-effective
factor appearing in normal using scenarios, the temperature
variation plays very important role to the PUF performance
because it can affect the circuit delay. In this study, we
select the temperature as the effecting environmental factor
to verify the PUF performance. We expect the PUF can also
have good uniqueness and reliability when the FPGA runs
at high temperature which may be caused by high working
load, poor ventilation and high environmental temperature
and so on.

We used the Xilinx Chip-Scope to monitor and read the
temperature of FPGA chip with PUFs embedded. Room tem-
perature was 15°C, and the normal temperature of the FPGA
chip is about 40°C. Then we used an electric hair dryer to
raise the FPGA chip temperature to 70°C and tested the PUF
responses.

In order to verify the reliability of the PUF at the high
temperature, the 64-bit PUF responses were recorded when
the FPGA temperatures were about 70°C. The HDs were
then calculated between the high-temperature responses and
the normal-temperature responses for the 16 testing PUFs as
Fig. 11 shows. As for the same PUF under the same challenge
at high and normal temperatures, the maximal, minimal and
average HD of the responses were 9, 2 and 5.5 respectively;
there were 81.25% HDs distributed within the range [3, 8]
(small difference). As shown in Fig. 11, when the temperature

TABLE II

STATISTICS FOR MCNC’91 BENCHMARKS

rose from 40 °C to 70 °C, the reliability degradation was
small: the average HD increased from 2.38 to 5.50, and the
maximum increased from 6 to 9. From Fig. 10 and Fig. 11,
one can see clearly there is no overlap between the number of
bit errors at high temperature (maximum to be 9 bits) and the
Hamming distance of two different PUF responses (minimum
at 18 bits). This phenomenon is known as a vacuum belt: if
we use any value x between 10 and 17 as a threshold, when
the number of bit difference between the PUF response at run
time and the original correct PUF response is less than x, they
are errors from the same PUF response; otherwise, they are
from different PUF response. Therefore, there will not be any
false positive or false negative. As we have discussed earlier
in Section VI.B, when the design exhibits large variation to
operating environment and there is no vacuum belt, we can
apply reliability-enhancing techniques to reduce the bit errors
from PUF response.

B. Overhead Analysis of Modifying FSM

We performed experiments to evaluate the overhead
incurred by modifying FSM on the MCNC’91 benchmark
sequential circuits and FSM circuits randomly generated by
GenFSM [31]. The circuits are described in KISS2 format.
Firstly, we use a JAVA program to add the states and transitions
for the circuits in KISS2 format, and then use the kiss2vl tool
[30] to convert KISS2 to Verilog. Finally, each FSM circuit
in Verilog format was synthesized and implemented using the
Xilinx ISE 14.1 on the Xilinx Virtex5 FPGA XC5VLX50T,
featuring 7200 slices and 28800 Slice LUTs. All experiments
were conducted on a 2.4GHz AMD Athlon(tm) 64 Processor
3800+ Dell OptiPlex 740 machine with 1GB RAM.

Table II gives the original synthesis summary conducted
on MCNC’91 benchmark designs. The columns “|S|”, “PI”,
“PO” and “T” are the numbers of states, input variables,
output variables and transitions, respectively, in each FSM
benchmark. The columns “LUTs”, “Slices”, “Delay” and
“Power” are the “Number of Slice LUTs”, “Number of occu-
pied Slices”, “Minimum period” and the “Estimated power”,
respectively, of the design with the original FSM as reported
by the ISE tools. The Minimum period was obtained by using
the Timing Analyzer, and the Power is the estimated power
obtained by using the XPower Analyzer.

In our experiment, the number of replicated states m in each
odd layer and the number of layers M in the added FSM were

ZHANG et al.: PUF-FSM BINDING SCHEME FOR FPGA IP PROTECTION AND PAY-PER-DEVICE LICENSING 1147

TABLE III

STATISTICS FOR MCNC’91 BENCHMARKS WITH OUR METHOD WHEN m = 4 & M = 4

TABLE IV

STATISTICS FOR MCNC’91 BENCHMARKS WITH OUR METHOD WHEN m = 4 & M = 6

TABLE V

STATISTICS FOR LARGE FSMs GENERATED BY GENFSM WITH OUR METHOD WHEN m = 4 & M = 4

set as parameters. Table III and Table IV show the synthesis
summary on the benchmark circuits processed by our method
when (m = 4 & M = 4) and (m = 4 & M = 6), respectively.
Resources overhead is denoted by the increased “Number
of Slice LUTs” and “Number of occupied Slices”. Timing
overhead is measured by the increased Minimum period.
�R-LUTs and �R-Slices are normalized resources overhead
in our proposed scheme in LUTs and Slices, respectively. �D,
and �P are the normalized overhead in delay and power,
respectively. We can see from Table III and Table IV that
the resources, timing and power overhead due to modifying
FSM seems to be independent of the benchmark circuit size.
The average resources, power and timing overhead is 52.02%
for LUTs (55.34% for Slices), 11.77% and 0.03% when
m = 4 & M = 4; and 61.27% for LUTs (49.21% for
Slices), 13.91% and 0.03% when m = 4 & M = 6.

The Table III and Table IV reveal that the power is rather
low, and the timing degradation is moderate (11.77% for
Table III and 13.91% for Table IV on average) and even
negative in some instances. A negative percentage implies
that our method has actually improved the performance. The
high area overhead and moderate timing overhead on these
small benchmark circuits is a direct result of the simplicity of
these circuits as they contain only control paths. In practice,
an actual HWIP would be much larger with lots of other
components in addition to control paths. In those cases, we
expect the overhead to be small.

To demonstrate this, we use GenFSM [31] to generate ten
random STGs with hundreds of states and hundreds to thou-
sands of state transitions for experimentation by specifying the
number of inputs, outputs and states. The experimental results,
as shown in Table V, indicate that our method introduces very

1148 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015

Fig. 12. Area, delay, and power overhead with different M = (2,4,6,8,10,12) and m = (2,4,6,8,10) for circuit planet.

low “�R-LUTs”, “�R-Slices”, “�D” and “�P” for large FSM
designs, the average of resources, timing and power overhead
are −2.67% for LUTs (−6.25% for Slices), 0.64% and 0.01%
respectively. In addition, it must be noted that the overhead
could be much less in large designs where there are many
components other than control paths, such as memory and
I/O peripheries. Furthermore, the control path realized by the
binding FSM on each benchmark is only a small part of the
overall size of the design (≤ 1%) [23]. Therefore, adding more
control paths to the binding FSM would be acceptable with
low overhead on area, timing and power in practice.

And finally, we discuss the impact of various m and M
on resources, timing and power overhead for benchmarks.
Fig. 12 shows the impact of various M and various m on
resources, timing and power overhead for benchmark planet
when M was assigned to 2, 4, 6, 8, 10, 12 and m was
assigned to 2, 4, 6, 8, 10, successively. It can be seen that the
power overhead is negligible, and the resources and timing
overhead are roughly positive-correlated to both M and m,
but nonlinear due to the optimization of the circuits during
synthesis.

From the above results, we see that the PUF-FSM binding
scheme can control the overhead on the area, power and timing
especially in large designs. Proper m and M values can also
be considered near the empirically proper values.

IX. CONCLUSION AND FUTURE WORK

This article presents a new binding method that enables
binding hardware IPs to specific FPGAs by utilizing the PUF
and the FSM of circuits. The method is fundamentally dif-
ferent from the traditional encryption-based HWIP protection
methods and offers the following advantages: 1) it can be
used to protect the third-party FPGA IP cores in addition to
the single FPGA configuration bitstream; 2) it does not need
any third parties or permanent storage for secret keys in the
FPGA; 3) it supports the pay-per-device licensing mechanism;
and 4) it has low hardware cost. Experimental results on a
reference implementation of the binding scheme show that a
128-bit delay-based PUF utilizes only 258 RAM-LUTs and
256 flip-flops on 28nm Xilinx FPGAs and the modified FSM
only introduces 0.64% timing overhead and 0.01% power
overhead on average for ten FSM designs randomly generated
by GenGSM.

We conclude with a discussion on the limitations of
our PUF-FSM binding scheme which lead to several future
research directions. First, in our approach, we modify the FSM
of a design to lock it and use the PUF response to unlock
it. This effectively protects the whole design, not only the
FSM, from attacks such as cloning, copying, misusing and
unauthorized integration. However, the design compo-
nents without bound FSMs will still be vulnerable to

ZHANG et al.: PUF-FSM BINDING SCHEME FOR FPGA IP PROTECTION AND PAY-PER-DEVICE LICENSING 1149

tamping attacks. Anti-tampering is beyond the scope of this
article, but it will be interesting to study how our approach
can be combined with anti-tamper methods such as those
described in [12]. Second, although we have argued that
our approach is more resilient again physical attacks than
encryption-based IP protection method. From the physical
security perspective, it is well-known that any implemen-
tation of a cryptographic primitive and PUF-based security
mechanism would be vulnerable to side channel attacks when
no appropriate countermeasures are taken [21]. It will be of
high interest to develop effective countermeasures to enhance
resiliency against various types of physical attacks.

ACKNOWLEDGMENT

The authors would like to thank Dr. Qiang Wu,
Dr. Qiang Zhou, Wenjie Che and Kecheng Yang for reviewing
this article and providing us feedback. We would also like to
thank the anonymous reviewers for their insightful suggestions
and comments.

REFERENCES

[1] S. Drimer, “Security for volatile FPGAs,” Ph.D. dissertation,
Dept. Comput. Lab., Univ. Cambridge, Cambridge, U.K.,
Tech. Rep. UCAM-CL-TR-763, Nov. 2009.

[2] R. Maes, D. Schellekens, and I. Verbauwhede, “A pay-per-use licensing
scheme for hardware IP cores in recent SRAM-based FPGAs,” IEEE
Trans. Inf. Forensics Security, vol. 7, no. 1, pp. 98–108, Feb. 2012.

[3] T. Kean, “Cryptographic rights management of FPGA intellectual prop-
erty cores,” in Proc. ACM/SIGDA 10th Int. Symp. Field-Program. Gate
Arrays (FPGA), 2002, pp. 113–118.

[4] T. Güneysu, B. Möller, and C. Paar, “Dynamic intellectual property
protection for reconfigurable devices,” in Proc. Int. Conf. Field-Program.
Technol. (ICFPT), Dec. 2007, pp. 169–176.

[5] S. Drimer, T. Güneysu, M. G. Kuhn, and C. Paar. (2008). Protect-
ing Multiple Cores in a Single FPGA Design. [Online]. Available:
http://www.cl.cam.ac.uk/~sd410/papers/protect_many_cores.pdf

[6] “Design security in Stratix III devices (v1.5),” Altera, San Jose, CA,
USA, White Paper 01010, Sep. 2009.

[7] “Using high security features in Virtex-II series FPGAs (v1.0),” Xilinx,
San Jose, CA, USA, Appl. Note 766, Jul. 2004.

[8] S. Trimberger, J. Moore, and W. Lu, “Authenticated encryption for
FPGA bitstreams,” in Proc. 19th ACM/SIGDA Symp. Field-Program.
Gate Arrays (FPGA), 2011, pp. 83–86.

[9] “Protecting the FPGA design from common threats (v1.0),” Altera,
San Jose, CA, USA, White Paper 01111, Jun. 2009.

[10] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. 44th ACM/IEEE
Design Autom. Conf. (DAC), Jun. 2007, pp. 9–14.

[11] M. A. Gora, A. Maiti, and P. Schaumont, “A flexible design flow for
software IP binding in FPGA,” IEEE Trans. Ind. Informat., vol. 6, no. 4,
pp. 719–728, Nov. 2010.

[12] S. J. Stone, “Anti-tamper method for field programmable gate arrays
through dynamic reconfiguration and decoy circuits,” M.S. thesis,
Dept. Elect. Comput. Eng., Air Force Inst. Technol., Wright-Patterson
Air Force Base, OH, USA, 2008.

[13] K. Kepa, F. Morgan, and K. Kosciuszkiewicz, “IP protection in partially
reconfigurable FPGAs,” in Proc. IEEE Int. Conf. Field-Program. Logic
Appl. (FPL), Aug./Sep. 2009, pp. 403–409.

[14] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proc. 17th ACM Conf. Comput. Commun. Secur. (CCS), 2010,
pp. 237–249.

[15] A. L. Oliveira, “Robust techniques for watermarking sequential circuit
designs,” in Proc. 36th Annu. ACM/IEEE Design Autom. Conf. (DAC),
Jun. 1999, pp. 837–842.

[16] E. Simpson and P. Schaumont, “Offline hardware/software authentication
for reconfigurable platforms,” in Proc. 8th Int. Conf. Cryptogr. Hardw.
Embedded Syst. (CHES), 2006, pp. 311–323.

[17] M. Majzoobi and F. Koushanfar, “Time-bounded authentication
of FPGAs,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3,
pp. 1123–1135, Sep. 2011.

[18] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Proc. 9th Int. Workshop
Cryptogr. Hardw. Embedded Syst. (CHES), 2007, pp. 63–80.

[19] “Security solutions using Spartan-3 generation FPGAs (v1.1),” Xilinx,
San Jose, CA, USA, White Paper 266, Apr. 2008.

[20] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy
of integrated circuits,” in Proc. Eur. Design Test Conf. (DATE), 2008,
pp. 1069–1074.

[21] R. Maes, A. Van Herrewege, and I. Verbauwhede, “PUFKY: A fully
functional PUF-based cryptographic key generator,” in Proc. 14th Int.
Conf. Cryptogr. Hardw. Embedded Syst. (CHES), 2012, pp. 302–319.

[22] M. Majzoobi, A. Kharaya, F. Koushanfar, and S. Devadas. (2014). “Auto-
mated design, implementation, and evaluation of arbiter-based PUF on
FPGA using programmable delay lines,” Rice Univ., Houston, TX, USA,
Tech. Rep. 2014/639. [Online]. Available: http://eprint.iacr.org/

[23] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 4th ed. San Mateo, CA, USA: Morgan Kaufmann,
2006.

[24] Y. M. Alkabani and F. Koushanfar, “Active hardware metering for
intellectual property protection and security,” in Proc. 16th USENIX
Secur. Symp., 2007, pp. 291–306.

[25] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of ICs
for piracy prevention and digital right management,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2007, pp. 674–677.

[26] Y. Alkabani and F. Koushanfar, “Active control and digital rights
management of integrated circuit IP cores,” in Proc. Int. Conf. Compil.,
Archit., Synth. Embedded Syst., 2008, pp. 227–234.

[27] F. Koushanfar, “Provably secure active IC metering techniques for piracy
avoidance and digital rights management,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 51–63, Feb. 2012.

[28] A. Cui, C.-H. Chang, S. Tahar, and A. T. Abdel-Hamid, “A robust FSM
watermarking scheme for IP protection of sequential circuit design,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 5,
pp. 678–690, May 2011.

[29] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up SRAM state as
an identifying fingerprint and source of true random numbers,” IEEE
Trans. Comput., vol. 58, no. 9, pp. 1198–1210, Sep. 2009.

[30] C. Pruteanu. (2000). Kiss to Verilog FSM Converter. [Online]. Available:
http://codrin.freeshell.org/

[31] C. Pruteanu and C.-G. Haba, “GenFSM: A finite state machine gen-
eration tool,” in Proc. 9th Int. Conf. Develop. Appl. Syst., 2008,
pp. 165–168.

[32] A. B. Kahng et al., “Watermarking techniques for intellectual property
protection,” in Proc. 35th Annu. Design Autom. Conf. (DAC), 1998,
pp. 776–781.

[33] G. Qu and M. Potkonjak, Intellectual Property Protection in VLSI
Designs: Theory and Practice. Boston, MA, USA: Kluwer, 2003.

[34] J. Zhang, Y. Lin, Q. Wu, and W. Che, “Watermarking FPGA bitfile
for intellectual property protection,” Radioengineering, vol. 21, no. 2,
pp. 764–771, 2012.

[35] J. Zhang, Y. Lin, W. Che, Q. Wu, Y. Lyu, and K. Zhao, “Efficient
verification of IP watermarks in FPGA designs through lookup table
content extracting,” IEICE Electron. Exp., vol. 9, no. 22, pp. 1735–1741,
2012.

[36] J. Zhang, Y. Lin, and G. Qu, “Reconfigurable binding against FPGA
replay attacks,” ACM Trans. Design Autom. Electron. Syst., vol. 20,
no. 2, Feb. 2015, Art. ID 33.

[37] J. Zhang et al., “FPGA IP protection by binding finite state machine to
physical unclonable function,” in Proc. 23rd Int. Conf. Field-Program.
Logic Appl. (FPL), Sep. 2013, pp. 1–4.

[38] F. Koushanfar and G. Qu, “Hardware metering,” in Proc. 38th Annu.
Design Autom. Conf. (DAC), 2001, pp. 490–493.

[39] J.-L. Zhang, G. Qu, Y.-Q. Lv, and Q. Zhou, “A survey on silicon PUFs
and recent advances in ring oscillator PUFs,” J. Comput. Sci. Technol.,
vol. 29, no. 4, pp. 664–678, 2014.

[40] M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Des. Test Comput., vol. 27, no. 1,
pp. 48–65, Jan./Feb. 2010.

[41] J. H. Anderson, “A PUF design for secure FPGA-based
embedded systems,” in Proc. 15th Asia South Pacific, Design Autom.
Conf. (ASP-DAC), 2010, pp. 1–6.

[42] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study
on the state of the art and future research directions,” in Towards
Hardware-Intrinsic Security. Berlin, Germany: Springer-Verlag, 2010,
pp. 3–37.

1150 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 6, JUNE 2015

[43] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Physical
unclonable functions and public-key crypto for FPGA IP protection,”
in Proc. Int. Conf. Field Program. Logic Appl. (FPL), Aug. 2007,
pp. 189–195.

[44] Z. Paral and S. Devadas, “Reliable and efficient PUF-based key genera-
tion using pattern matching,” in Proc. IEEE Int. Symp. Hardw.-Oriented
Secur. Trust (HOST), Jun. 2011, pp. 128–133.

[45] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Slender PUF protocol: A lightweight, robust, and secure authenti-
cation by substring matching,” in Proc. IEEE Symp. Secur. Privacy
Workshops (SPW), May 2012, pp. 33–44.

[46] G. Qu and C.-E. Yin, “Temperature-aware cooperative ring oscil-
lator PUF,” in Proc. IEEE Int. Workshop Hardw.-Oriented Secur.
Trust (HOST), Jul. 2009, pp. 36–42.

[47] A. Maiti, L. McDougall, and P. Schaumont, “The impact of aging on
an FPGA-based physical unclonable function,” in Proc. Int. Conf. Field
Program. Logic Appl. (FPL), Sep. 2011, pp. 151–156.

[48] D. Ganta and L. Nazhandali, “Study of IC aging on ring oscillator phys-
ical unclonable functions,” in Proc. 15th Int. Symp. Quality Electron.
Design (ISQED), Mar. 2014, pp. 461–466.

[49] M. Rahman, D. Forte, J. Fahrny, and M. Tehranipoor, “ARO-PUF: An
aging-resistant ring oscillator PUF design,” in Proc. Design, Autom., Test
Eur. Conf. Exhibit. (DATE), 2014, pp. 1–6.

[50] R. Maes and V. van der Leest, “Countering the effects of silicon aging
on SRAM PUFs,” in Proc. IEEE Int. Symp. Hardw.-Oriented Secur.
Trust (HOST), May 2014, pp. 148–153.

Jiliang Zhang received the B.E. degree in chemical
engineering and technology from the Shandong Uni-
versity of Science and Technology, Qingdao, China,
in 2009, and the Ph.D. degree in computer applica-
tion technology from Hunan University, Changsha,
China, in 2015. From 2013 to 2014, he was a
Research Scholar with the Maryland Embedded Sys-
tems and Hardware Security Laboratory, University
of Maryland, College Park, MD, USA. His research
interests include hardware security, such as secu-
rity for field-programmable gate arrays, PUF and

PUF-related applications, IC obfuscation, and IP protection.

Yaping Lin received the B.S. degree from
Hunan University, Changsha, China, in 1982, the
M.S. degree from the University of Defense
Technology, Changsha, in 1985, and the
Ph.D. degree from Hunan University, in 2000. From
2004 to 2005, he was a Visiting Scholar with the
University of Texas at Arlington, Arlington, TX,
USA. He is currently a Professor with the College
of Information Science and Engineering, Hunan
University. His primary research interests are in
the area of computer networking and information

security with a focus on sensor networks, cloud security, and hardware
related security.

Yongqiang Lyu received the B.S. degree in
computer science from Xidian University, Xi’an,
China, in 2001, and the M.S. and Ph.D. degrees in
computer science from Tsinghua University, Beijing,
China, in 2003 and 2006, respectively. He is cur-
rently an Assistant Professor with the Research
Institute of Information Technology, Tsinghua
University. His research interest focuses on the
hardware–software fusion architecture in emerging
computing systems.

Gang Qu (SM’07) received the B.S. and
M.S. degrees in mathematics from the University
of Science and Technology of China, Hefei,
China, in 1992 and 1994, respectively, and
the Ph.D. degree in computer science from
the University of California at Los Angeles,
Los Angeles, CA, USA, in 2000. Upon graduation,
he joined the University of Maryland, College
Park, MD, USA, where he is currently a Professor
with the Department of Electrical and Computer
Engineering and the Institute for Systems Research.

He is a member of the Maryland Cybersecurity Center and the Maryland
Energy Research Center. He is the Director of Maryland Embedded Systems
and Hardware Security Laboratory, College Park, and the Wireless Sensors
Laboratory.

His primary research interests are in the area of embedded systems and
very large scale integration (VLSI) computer aided design (CAD) with
a focus on low power system design and hardware related security and
trust. He studies optimization and combinatorial problems and applies his
theoretical discovery to applications in VLSI CAD, wireless sensor network,
bioinformatics, and cybersecurity. He has received many awards for his
academic achievements, teaching, and service to the research community.
He serves as an Associate Editor of the IEEE EMBEDDED SYSTEMS

LETTERS, and the Integration, the VLSI Journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

