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Hardware Acceleration of Background Modeling in
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Abstract—In intelligent video surveillance systems, scalability
(of the number of simultaneous video streams) is important. Two
key factors which hinder scalability are the time spent in decom-
pressing the input video streams, and the limited computational
power of the processor. This paper demonstrates how a combina-
tion of algorithmic and hardware techniques can overcome these
limitations, and significantly increase the number of simultaneous
streams. The techniques used are processing in the compressed
domain, and exploitation of the multicore and vector processing
capability of modern processors. The paper presents a system
which performs background modeling, using a Mixture of Gaus-
sians approach. This is an important first step in the segmentation
of moving targets. The paper explores the effects of reducing the
number of coefficients in the compressed domain, in terms of
throughput speed and quality of the background modeling. The
speedups achieved by exploiting compressed domain processing,
multicore and vector processing are explored individually. Exper-
iments show that a combination of all these techniques can give a
speedup of 170 times on a single CPU compared to a purely serial,
spatial domain implementation, with a slight gain in quality.

Index Terms—Background subtraction, compressed domain,
hardware acceleration, multicore, SSE, video surveillance.

I. INTRODUCTION

A KEY issue for intelligent video surveillance systems
is that of scalability. Real-world deployment of video

surveillance systems can involve hundreds, or even thousands,
of cameras. Thus it is vital that video analytics are scalable with
respect to both robust performance and also computability.
Scalability is achieved for these systems by decomposing
them into subsystems consisting of 8, 16, 32 or 64 IP cameras
connected to a single server. Thus, we argue that scalability
can be achieved with respect to video analytics, if we can
process the data in real-time produced by one of these subsys-
tems. With regard to computational efficiency, an important
consideration is the hardware/software architecture of the
video analytics processing. The main commercial approach
to achieving computational efficiency is the use of the Texas
Da Vinci Multimedia DSP chipset. In the video surveillance
research community, the use of GPUs for implementation of
video analytics has been investigated. However, a drawback
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of this approach is the PCI bus bottleneck between the GPU
and CPU. More recently, the availability of multicore CPUs
and vectorization has provided another option with respect to
computational efficiency.
Another consideration with respect to scalability and com-

putational efficiency is that the video data are transmitted and
stored in the compressed domain. However, most video analytic
algorithms operate in the spatial domain; therefore, the video
data has to be decompressed. From a computational viewpoint,
decompression of, say, 64 video streams is nontrivial. Further-
more, the presence of compression artifacts can also reduce per-
formance. One approach to reducing this computational over-
head, therefore, is to implement the video analytics in the com-
pressed domain.
The first step in video analytics is usually some form of fore-

ground detection based on backgroundmodeling. The gold stan-
dard in this regard, both commercially and in research, is the
mixture of Gaussians (MoG) algorithm [1]. Therefore, in this
work we investigate the implementation of this algorithm in the
compressed domain using multicore and vectorization. Specif-
ically, we set ourselves the challenge: Can we perform fore-
ground detection on 64 streams of video in real-time on a single
chip without compromising performance? The work reported in
this paper tries to answer this.

II. RELATED WORK

A. Background Modeling in the Compressed Domain

One of the most popular methods for extracting moving ob-
jects from a scene is background subtraction (BS). BS is one
of the first low-level processing operations in virtually any in-
telligent video surveillance system, and it is the operation of
identifying and segmenting moving objects in video frames by
separating the still areas, called the background (BG), from the
moving objects, called foreground (FG). Any BS algorithm first
constructs a representation of the BG called the background
model. Then, each subsequent frame is subtracted from this
background model to give the resulting FG. Adaptive BS al-
gorithms will also update the model along the sequence to com-
pensate for eventual changes in illumination or other changes in
the background [2].
The main advantage of including a BS stage in a video

surveillance system is the increase in performance of subse-
quent higher-level video analysis [3].
As shown in [4], background modeling (BM) algorithms in

the compressed domain can broadly be classified into three cate-
gories, depending on the compression features used: algorithms
based only on Discrete Cosine Transform (DCT) coefficients
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[5]–[8]; algorithms based only on the motion vectors (MV) [9],
[10]; and algorithms based on both [11].
Several studies have focused on BM algorithms using only

DCT coefficients. In [5] the authors propose a framework that
uses competing Hidden Markov Models over small neighbor-
hoods, which are capable of maintaining a valid background
model. In this case, the small neighborhoods are the JPEG 8
8 blocks of DCT coefficients. For this framework, the main

challenge is background initialization, which requires a large
amount of time. Another drawback is that this framework is only
well suited for indoor surveillance. In [6] the author proposes a
fast and efficient adaptive method for modeling the background,
which uses two features extracted from each 8 8 block of
DCT coefficients in a JPEG frame. The first feature is the first
DCT coefficient (also called the DC coefficient), and the second
feature is a weighted sum of a few DCT low frequency coeffi-
cients (also called the AC coefficients). A Gaussian distribu-
tion is used to model each of the two features. In addition, fur-
ther processing is used to handle variations in the environment
and improve the segmentation. By combining the model built
around the two features with different characteristics (the DC
coefficient is more sensitive to changes in illumination and the
low frequency AC coefficients are more sensitive to changes in
texture), the author claims that themodel is robust to many of the
problems linked with BS in video sequences representing out-
door scenes, such as gradual and sudden illumination changes,
and small repetitive background movements. The authors of [7]
use the same principle of modeling the background using two
features extracted directly from each 8 8 block of DCT coef-
ficients in a frame as part of a more complex tracking system.
The main difference between the two is the choice of the second
feature, which is represented by the first three AC coefficients
in [7]. Also in [12]–[14], the Running Average algorithm with
DCT coefficients is compared with algorithms in the spatial
domain.
One of the most referenced papers addressing the problem

of background modeling in the compressed domain, using only
DCT coefficients, is [8]. Here, the authors present a framework
composed of three algorithms for BM (Running Average, Me-
dian and Mixture of Gaussians) and a two-stage segmentation
approach with pixel-level resolution. In the first stage, the back-
ground model is generated by one of the algorithms, which is
further used to identify the block regions that are fully or par-
tially occupied by a foreground object. In the second stage, the
pixels from the partially occupied blocks are then processed
(classified) in the spatial domain. Even though the processing
is performed in the spatial domain for the partially occupied
blocks, the authors prove through theoretical analysis and prac-
tical measurements that their algorithms in the compressed do-
main are several times faster than their spatial domain counter-
parts [15] and with better segmentation results.

B. Hardware Acceleration for Background Modeling

Several hardware-accelerated implementations for fore-
ground detection and segmentation systems based on BM in
the spatial domain have been developed. In [16], the authors
implemented a BM algorithm based on an adaptive mixture
of Gaussians (AGMM). Using an NVIDIA GPU with the

CUDA [17] they achieved 18 acceleration compared with
an implementation on an Intel multicore CPU using multi-
threading. In the same paper, an implementation on IBMs
Cell Broadband Engine Architecture (CBEA) achieved 3
the acceleration compared with the same Intel multicore CPU
benchmark. In [18], the authors implement a system that uses
selective HOG-based features and BS based on a GMM for
pedestrian detection. They report that, using an Intel i7 and a
low budget NVIDA GeForce 480GTX card, they are able to
process 48 frames/second with high accuracy. Although the
system does not achieve a significant speedup, the implemen-
tation is complex, and the BS represents only a part of the total
computation. The authors of [19] implement only the AGMM
algorithm. They report that the system can process close to
250 frames/second for high-resolution images, and close to
1600 frames/second for low-resolution images even when
using a low-end NVIDIA GeForce 9600GT. Using the same
GPU, they also report an acceleration of over 11 compared
with a reference CPU implementation.
It is possible to conclude that, although there has been a sig-

nificant amount of research in BM and higher level video anal-
ysis in the compressed domain, it is clear that the compressed
domain has not been explored as extensively as the spatial do-
main with respect to algorithmic performance and hardware ac-
celeration. To the best of our knowledge, there are no significant
hardware accelerated implementations of BM algorithms in the
compressed domain. This is the key novel contribution of the
work reported in this paper.
Due to current industry practices, video surveillance footage

is stored in MJPEG compressed format in order to be accepted
as evidence in law courts. In addition, all surveillance video
cameras currently available on the market can stream images in
the MJPEG compressed format. For these reasons, the research
will be based on it.

III. BACKGROUND

A. MJPEG/JPEG Compression Format

MJPEG is a video compression format that takes advantage
only of the pixels redundancy within a frame (spatial pixels re-
dundancy). Each frame in a MJPEG video stream is a JPEG
encoded image, which is independent of any previous or fu-
ture frames; therefore, the compressed domain data available
for processing in MJPEG compressed video streams is the DCT
coefficients of the current frame [20].
The JPEG image compression standard [21] defines different

modes of operation. Among the different modes of operation the
most representative mode is the baseline JPEG mode, which is
described next for a gray-scale image.
First, the baseline JPEG encoder splits the image into 8

8 nonoverlapping blocks of pixels and the pixels intensity is
shifted from a range of 0:255 to a range of 127:127 in order to
evenly distribute the values around zero. Further, each block is
almost independently encoded, as in Fig. 1, using the following
steps.
The forward type II two-dimensional discrete cosine trans-

form (2D-DCT type II) is first applied to the 8 8 block of
pixels, resulting in an 8 8 block of DCT coefficients. The
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Fig. 1. JPEG compression/decompression.

top-left frequency component in the transformed block is called
the DC coefficient and it is equivalent to the average intensity
value of the pixels in the block. Next, the 64 DCT coefficients
are quantized using different quantization thresholds for dif-
ferent frequency components. This is the step that gives rise
to the lossy nature of the JPEG compression. During quantiza-
tion the high frequency coefficients are more often than not set
to zero. By applying this transformation, the entropy encoding
step will become much more effective, because it reduces the
dynamic range of the DCT coefficients and, as a consequence,
fewer bits are needed for representation. After quantization, the
64 DCT coefficients are rearranged in a zigzag order. In this way
the low frequency coefficients, which, in contrast to high-fre-
quency coefficients, are mainly nonzero, are grouped at the start
of the array. The high frequency coefficients, which are usu-
ally zero, are grouped at the end of the array. This transform is
called zigzag reordering. The DC coefficients of the neighboring
blocks tend to be highly correlated. The JPEG compression al-
gorithm exploits this property and predicts the value of the cur-
rent DC coefficient based on the value of DC coefficient of the
previous block. This transform is called DPCM DC (differen-
tial pulse-code modulation). After zigzag reordering and DPCM
DC, the array containing the DCT coefficients usually turns out
to have some nonzero values scattered between zeros. Using
this property, the JPEG format encodes the nonzero values and
the number of previous zeros in just a pair of numbers. This
transform is called run-length encoding (RLE) of DCT coeffi-
cients. The entropy encoding transform assigns variable length
codes to pairs of values created during RLE, so that less prob-
able pairs are represented by longer encoded binary codes and
more probable pairs are represented by shorter encoded binary
codes. JPEG compression uses Huffman encoding for entropy
encoding. At the end, the entropy encoded data, the quantiza-
tion table and the Huffman table are combined with markers
to create the final byte stream (data stream). The markers are
nothing more than delimiters for the different component parts
of the byte stream. During the decompression, the JPEG decoder
performs the inverse of the operations previously described in
reverse order: starting with entropy decoding and finishing with
the inverse DCT transform and inverse level shifting. Due to
quantization transform, the decompressed image is not identical
to the original one.
Because of the computation required to decompress an

MJPEG video stream, processing the DCT coefficients directly
is attractive. However, extracting the DCT coefficients from the
video stream still requires a significant amount of processing,
though inverse DCT is not required. The process is called
partial decompression. The compressed domain representation
of each frame is a 2D matrix of blocks, where each block
comprises the DCT coefficients for the 8 8 block of pixels.

B. Background Modeling Using Online Mixture of Gaussians

This section will introduce the Mixture of Gaussians (MoG)
algorithm for which a hardware acceleration strategy will be
presented later.
MoG is one of the most common BM algorithms in the

literature. The algorithm received considerable interest from
the moment it was introduced in [15]. The popularity of this
algorithm is due to two important aspects. First, it can model
backgrounds containing nonstatic objects, such as tree branches
or bushes moving in the wind (multimodel background). The al-
gorithm can handle multimodel backgrounds because it follows
the evolution of a set of Gaussian distributions simultane-
ously (where is a small number). Second, a recursive (or
online) formulation of the algorithm can significantly reduce
its complexity. However, the algorithm remains complex and
challenging. There are two notable drawbacks ofMoG [3]. First,
algorithm parameters require careful tuning. An extensive dis-
cussion about this and possible solutions can be found in [1]; due
to the speed of our accelerated implementations (see the results
section) and to the limited space in a paper we simply used the
brute force method to find reasonable values for the parameters.
Second, for the case where the scene remains stationary for too
long, the variance of the Gaussian distributions will become
too small and any sudden change in the global illumination
will force most of the scene to be classified as foreground. This
problem can be easily solved during implementation by using a
minimum variance to cap the lower bound value of the variance;
this measure prevents the model from over-fitting the data.
Further, we describe an unified view of the algorithms in [8],

[15]. Considering the case of a sequence of gray-scale images,
we have the following two situations. In the spatial domain, the
input to a BM algorithm is, for each pixel position, a scalar value
(one-dimensional feature vector) which is the pixel intensity at
that location in the image. In the compressed domain, the input
is, for each 8 8 block, a 64-dimensional feature vector which
is obtained by concatenating the rows (or the columns) of the
8 8 block of DCT coefficients at that block location in the
JPEG image. The underlying learning method used by the MoG
algorithm to update the model parameters is not influenced by
the type of feature vector used as input, and it can be applied to
data coming from the spatial or compressed domain [8], [15].
The MoG algorithm uses a mixture of Gaussian distributions
to maintain a probability density function (PDF) for each fea-
ture vector (pixel intensity or block of DCT coefficients) in the
current frame. This PDF is updated each frame.
Given the recent history of a fea-

ture vector , the distribution of the current feature vector is:

(1)
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where is the model parameter vector
and are the weight, mean and variance of the th

Gaussian distribution, , in the mixture and .
The Gaussians are -dimensional, where is equal to the size
of the feature vector . To simplify the computation, as in [8],
[15], wemake the following simplifications: ( is
the unit matrix); although the Gaussians are -dimensional, the
variance is a scalar value (but the mean is a vector of length ).
The algorithm has two stages. The first stage is the binary

classification of the current feature vector as BG or FG ac-
cording to the background model; the second stage is the online
update of the parameters using the current feature vector. The
binary classification stage takes place as follows. The algorithm
selects the first most significant distributions to be part of the
background model, where:

(2)

and is a user-defined threshold . For the current
feature vector , a matching distribution is sought using the
following equation:

(3)

where is a deviation. If more than one matching distribution
is found, the one closest to the feature vector is selected. This is
done using the following equation:

(4)

The current feature vector , is classified as BG if there is a
matching distribution and this matching distribution is part of
the B selected distributions to represent the background
. Otherwise, is classified as FG.
Next, the online update stage takes place as follows. If a

matching distribution is found, the parameters of that distri-
bution are updated as follows:

(5)

where is a user-defined learning rate and is a
calculated learning rate:

(6)

The parameters of the other distributions are updated
as follows:

(7)

If no matching distribution is found, the one with the smallest
weight is replaced by a new one with the following
parameters:

(8)

where is a small weight and a large variance.

After updating the parameters, the weights are renormalized,
so that they still add up to 1 and the distributions are ordered in
descending order of their significance, , where:

(9)

The reordering is necessary to ensure that only the relevant dis-
tributions are selected as part of the background model. A dis-
tribution is considered to be relevant when it has a large weight
(evidence) and a small variance.

C. Hardware Acceleration

As mentioned in the introduction, real-world video surveil-
lance systems can include deployments of a large number of
cameras, which in turn generate a large amount of video data.
Processing all this data in real-time requires a huge amount
of computation. Modern CPUs commonly have multiple cores
(typically 4–8) capable of parallel processing, where each core
is equipped with short vector units capable of handling mul-
tiple data elements simultaneously. To handle the computation
in a scalable and efficient manner, it is necessary to take ad-
vantage of all the resources available on the modern CPUs. To
do so, the use of specific programming APIs and technologies
is needed.
To use such CPUs to their full capacity, let us imagine a very

simple image processing operation. The subtraction of two im-
ages, in a classic scenario, requires iterating over all elements in
the two images and subtracting the pixel intensities at each loca-
tion, using one core. By using, for example, a CPU with 4-cores
and 4-ways SIMD processing units, the images are first split in
four and the individual parts processed in parallel on the 4-cores;
then each part is further split into vectors of four pixels which
are processed simultaneously using the SIMD units. These op-
timizations can in theory give a speedup of 16 compared to a
purely serial implementation.
At present, OpenMP [22] is the industry standard for parallel

programming of shared memory multiprocessors. Multicore
CPUs are considered to be shared memory multiprocessors.
OpenMP uses the shared memory model to represent the
interaction between threads and the memory, and uses the
fork/join execution model to manage multithreaded execution
[23]. The shared memory model has the following character-
istics. One or more threads can run on a processor/core, but
all threads have access to the shared memory. Data can exist
as shared (in which case it can be accessed by all threads) or
private (in which case it can be accessed only by the thread
that owns it). Data transfers between threads and the private
or shared memory is transparent, but the synchronization is
mostly explicit (i.e. it is the programmer’s responsibility). The
fork/join execution model has the following characteristics.
The processing starts with a single thread, called the master
thread, and it runs sequentially until a parallel region construct
is encountered. When this happens, the master thread will
create a team of parallel threads (fork), and will divide the
execution of the code inside the parallel region among the team
of threads. After a team of threads finishes the code inside the
parallel region, they synchronize and terminate (join), leaving
the master thread to continue the program sequentially. From
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the programmer’s point of view, OpenMP is composed of a set
of compiler directives, a library of support functions and a set
of environment variables.
Furthermore, each core commonly has both scalar units and

short vector units, so vectorization is a form of parallelism avail-
able at the core level and the individual CPU cores can achieve
vectorization independently. The vector units are single instruc-
tion, multiple data (SIMD) processing units and can process
multiple data elements using the same instruction (data-level
parallelism). The use of SIMD units should accelerate the calcu-
lations by a factor equal to the length of the unit (for example, a
4-way SIMD processing unit should in theory accelerate the cal-
culations by a factor of four). On the Intel andAMDCPUmicro-
architectures the vector processing units use vector registers of
128 bits, which are able to handle the following data types: in-
teger (usually 8 16-bits or 4 32-bits) and float (4 32-bits
or 2 64-bits). This technology is called Streaming SIMD Ex-
tensions Technology (SSE) [24]. Some modern compilers can
auto-vectorize scalar code to some extent, but usually just for
simple cases. For complex cases, programmers have to explic-
itly use the vector data types and write code in a SIMD manner.
From the programmer’s perspective, SSE programming [24]
can be done in C/C++ using compiler intrinsics (which are com-
piled to one or a small set of assembly instructions), or directly
in assembly language.
There are three important aspects that anyone should be

aware of when developing algorithms using SSE [24]–[27]: the
alignment of data in memory, the layout of data in memory, and
the instructions available. The best performance for accessing
data in memory using the SSE instructions is achieved when
the memory address of the accessed data (usually a 4-element
vector) is divisible by 16 (16-byte aligned). The performance
impact of misaligned memory accesses and methods to avoid
them have been previously studied in [27].
When vectorizing code which is processing an array of struc-

tured objects (e.g. an array of grouped Gaussian parameters),
the recommended layout for data is to have a separate array for
each component of the structure (e.g. an array of means, an array
of variances, etc.) This is called Structure of Arrays (SoA). An
alternative layout is the more ‘natural’ (from an object oriented
point of view) layout of a single array of structures. This is called
Array of Structures (AoS). The advantage of SoA is that it keeps
the homogeneous data components together in memory. This
makes it easy to load and process them with the same instruc-
tion (or set of instructions). The performance impact of using
different data memory layouts has been previously studied in
[26]. For example, an RGB image using SoA layout is repre-
sented by three memory areas, where each memory area stores
the data of one channel for all pixels. In contrast, using AoS
layout, just one memory area is required, but each pixel occu-
pies three consecutive memory locations, one for each channel
(R, G, B).
The SSE vector instructions can be grouped into categories

[24], such as: load/store, arithmetic, logic, comparisons, mis-
cellaneous (min/max, type conversions, rounding, cache con-
trol, etc.) and application specific (fast-block difference, etc.)
and they are closely tied to the type of the vector elements.
For most float vector instructions, SSE offers a corresponding

scalar version. These should not be confused with the classic
(x86) scalar instructions because they operate on the vector reg-
isters (even though they are applied only on the first element
of the vector register). Instructions for different data types, and
even different instructions for the same data type, can be ser-
viced by different parts of the processor. In fact, modern CPUs
can issue up to six instructions per clock cycle, which increases
the chances of executing instructions in parallel if there are no
data dependencies between the operands of consecutive instruc-
tions. SSE is IEEE floating-point compliant, except for the re-
ciprocal and square root reciprocal instructions. Division is one
of the most expensive SSE instructions. The two instructions
have been introduced to speed up algorithms involving division
where high precision is not the first requirement. Another fea-
ture of the SSE instruction set is that it can handle conditional
code without having to individually process each element in a
vector register. This is possible by using a combination of log-
ical SSE instructions or the newer blend instruction. The blend
instruction takes two vector registers and selects their elements
according to a mask. Usually the mask comes from a vector
comparison instruction.

IV. ACCELERATING THE MIXTURE OF GAUSSIANS IN THE
COMPRESSED DOMAIN

To accelerate multistream background subtraction, there
are two forms of parallelism to be exploited: multicore (at the
high level) and vector processing (low level). Our approach to
exploiting multiple cores is straightforward: each input video
stream is processed by a separate thread, with no need for
communication with other threads. We do not partition the
data for a video stream across multiple threads. So there is no
significant programming effort involved in exploiting multicore
parallelism. Each thread performs the partial decompression
followed by background modeling on a complete video stream.
To exploit vector processing, our approach is to vectorize the

processing of Gaussian mixtures, rather than processing image
blocks in parallel. Since it is sufficient to use a mixture of four
Gaussians, and given the size of SSE vector registers, it is ap-
propriate to vectorize the processing of the Gaussians. Further,
since each Gaussian has three parameters (plus sometimes a
fourth index—see below), we also have the option of using ei-
ther a SoA approach or, if need be, an AoS approach.
One further possible dimension for increasing the amount

of parallelism is to reduce the precision of the Gaussian com-
ponents from 32 bit float to 16 bit fixed point. This would in
theory provided a further speed up of 2 . However, having ex-
plored this, it was discovered that the increased complexity of
the coding for 16 bit representation meant that the overall per-
formance was actually slower than for processing 32 bit floats.
In what follows, we therefore do not consider the question of
precision any further.
Because of the complexity of SSE programming, the

remainder of this section focuses on the SSE accelerated im-
plementation of the MoG algorithm in the compressed domain.
As previously specified, the MoG algorithm in the com-

pressed domain classifies and models the PDF of an entire
block of DCT coefficients simultaneously using a mixture of
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Fig. 2. Data layout used for the model parameters in the compressed domain.

Gaussian distributions. Therefore, the parameters for one
Gaussian distribution in a mixture are: one weight (which
represents the probability of a block to match that particular
distribution, and is calculated based on previous observations),
one variance and a set of D-means (one for each DCT coef-
ficient in the block). The number of Gaussian distributions
in a mixture has been set to a fixed value of four .
This is (more than) adequate algorithmically, and matches
the hardware constraints imposed by the size of the vector
registers . One variation which
we have introduced to the standard algorithm (introduced to
map better onto the vector registers) is that we always maintain
four Gaussians, instead of dynamically varying the number
up to four. Also, in order to avoid some expensive memory
copy operations in the later steps of the algorithm, a new index
parameter, ID, is added to each distribution (see step 6 below
for more details). These IDs will be used to access the correct
set of means in the means memory area corresponding to a
particular mixture. The IDs of the distributions in a mixture
are initialized to (0, 1, 2, 3). The representation (layout) of the
background model parameters in memory is SoA (Fig. 2).
Before processing a DCT block, the weights, IDs and vari-

ances of all distributions in the associated mixture are loaded
into three vector registers. Due to these loads the CPU will
also automatically load these values into the level 1 (L1) cache
memory. The four sets of means corresponding to a mixture are
loaded only when needed in the later steps. The parameters are
saved back in the memory after their values have been updated
and the process is repeated for the next block. The result of the
assessment of the current block is a value which represents the
binary classification of the block as FG or BG. In practice, the
update steps for a block are as follows.

Step 1. Identify how many distributions make up the
background model, according to (2). The result is an
index, , with a value between zero and three. The
distributions are already ordered according to their signif-
icance. The algorithm loads the weight of one distribution
at a time (using SSE scalar load—movss), adds it to a
sum (using SSE scalar add—addss) and compares the
sum with the matching threshold (using SSE scalar
compare—comiss).
Step 2. Identify the closest distribution to the current
block using (3) and (4). The result of this step is an index,

, with value between zero and three if the current
block matches any of the distributions, or 1 otherwise.
The algorithm computes the distances between the current
block and all the distributions in the mixture simultane-
ously using vector instructions. The computation of one of

the distances is equivalent to processing a scalar product
between a vector and itself, which is a classic reduction
problem, where the vector is the result of the difference
between the current DCT block and the means set of
one of the distributions. The distances can be processed
simultaneously because the DCT block is read only once,
and used for all distances. These distances are then stored
in memory. Further, using the SSE scalar instructions,
a short algorithm is implemented to find the index of
the closest distribution based on the already computed
distances (which is a typical “minimum” problem).
Step 3. Classify the current block of DCT coefficients as
BG or FG using the indices computed in step 1 and
step 2 . The pixel is classified as BG if and

.
Step 4. Update all the distribution parameters. How this
is done depends on the index computed in step 2 ,
which identifies the closest distribution. There are two
cases:
Step 4.a. If there is a matching distribution ,
then its parameters are updated according to (5) and (6).
The parameters of the remaining distributions are updated
according to (7). Specific SSE programming techniques are
used to avoid “branching” code. First, the weights and vari-
ances are updated using vector instructions twice, once ac-
cording to (5) and once according to (7). Then, the index
from step 2 is used to build the mask used by the
vector Blend instruction (see Section III-C for details) to
select the correct updated parameters for each distribu-
tion. This procedure adds more computation but avoids
“branching” code. Note that the update of the means is
done last and is highly efficient, because it is performed
on the full length of the vector registers (see SoA layout,
Section III-C).
Step 4.b. If there is no matching distribution, the distri-
bution with the smallest weight is replaced by a new one
according to (8). For this, the distribution containing the
smallest weight is identified (again using SSE scalar in-
structions) and then its parameters are reinitialized. An im-
portant note for step 4(a and b) is that the selection of the
correct set of means associated with a particular distribu-
tion in a mixture is done using the ID parameter which we
have added earlier to each distribution (see step 6).
Step 5. Renormalize the weights to add up to 1. For this,
specific SSE programming techniques are used in order to
handle the horizontal operation (sum) on the vector register
containing the weights. The vector division necessary for
renormalization (divps) has been replaced with a vector
multiplication (mulps) between the weights register and the
vector reciprocal (rcpps) of the previously calculated sum.
Step 6. Reorder the distributions based on their signifi-
cance. Here, few implementation details deserve mention.
The significance values, , are computed according to
(9) using SSE vector instructions (here the vector divi-
sion has been replaced). Further (Fig. 3), to prepare for re-
ordering all distributions in a mixture, a 4 4 matrix trans-
position operation is required. This transformation will re-
organize the parameters of the unsorted distributions from
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Fig. 3. Data transformations and sorting.

Fig. 4. Data layout used for the model parameters in the spatial domain.

SoA to AoS format. The operation can be done using only
vector registers (without accessing the memory) and some
specific SSE instructions for reordering the data in these
registers. For the actual sorting we use a 4-ways sorting
network [28] which offers an optimal number of compar-
isons. The sorting network implementation requires SSE
scalar instructions for handling the conditions and vector
instructions to swap a full register at a time (movps). After
sorting, another 4 4 matrix transposition operation is
necessary to switch the parameters back to SoA format.
This implementation turns out to be highly efficient be-
cause no memory operations are required and the instruc-
tions involved in the transposition are low latency. But
the most important optimization here is the introduction
of the ID parameter to each distribution. The introduction
of this parameter eliminated the necessity to move around
the large sets of means associated with the -dimensional
Gaussian distributions during the sorting operation.

For benchmarking reasons an SSE optimized version of the
MoG algorithm in the spatial domain was also implemented.
Here, the parameters for one Gaussian distribution in a mixture
are: one weight, one mean and one variance per pixel. The ID
parameter is not necessary anymore. Due to the same hardware
constraints the number of Gaussian distributions in a mixture
has also been set to four . The representation (layout)
of the background model parameters in memory remains SoA
(Fig. 4), as in processing in the compressed domain. Although
the SSE implementations of the MoG algorithm for the two do-
mains seem very similar, a few differences are visible straight
away. The compressed domain implementation is using a very
compact memory representation of themodel parameters, which
is possible because it keeps the means of all distributions of a
mixture associated with a block of DCT coefficients in a con-
tiguous memory block. This makes their update, during step 4,

much more efficient. Also, the compressed domain implemen-
tation has to maintain a lot fewer parameters. As already men-
tioned in [8], for a 8 8 pixel block, the algorithm uses
parameters in the spatial domain compared with just in
the compressed domain ( represents the number of distribu-
tions in a mixture). The ID parameter is not included in these
numbers because it does not require updating.

V. EXPERIMENTS AND RESULTS

In this section we describe experiments aimed at answering
the question: “Can we obtain significant acceleration of the
MoG algorithm in the compressed domain, while maintaining
foreground detection performance?”
Section V-A evaluates the acceleration obtained with partial

decompression, multicore and vector processing. Section V-B
is concerned with comparing the foreground detection of the
MoG algorithm in the compressed domain against the standard
implementation in the spatial domain.

A. Partial Decompression and Hardware Acceleration for
Background Modeling

1) Partial Decompression: In the spatial domain, a frame is
represented as a 2D matrix of pixels. To get access to the spa-
tial pixel data in a video frame, the video stream has first to
be fully decompressed. In the compressed domain, a frame is
represented as a 2D matrix of blocks of DCT coefficients. This
representation of a frame can be extracted from a video stream
without fully decompressing the stream. Before any computa-
tion can begin, the video sequences need to be partially decom-
pressed (if processing in the compressed domain) or fully de-
compressed (if processing in the spatial domain).
To evaluate our implementation of partial decompression,

its performance was compared with five different full decom-
pression implementations. For the latter, three different libraries
were used: the standard Libjpeg v8c, Intel’s Libjpeg-based li-
brary (IJG v6b), and Intel’s proprietary library UIC which uses
the Intel Performance Primitives Library (IPP). Two different
compilers were also used: Microsoft’s C++ Compiler (MC), and
Intel’s C++ Compiler (IC). Our MJPEG partial decoder makes
use of the IPP library for Huffman decoding. The tests were car-
ried out by simulating four camera streams, by replicating the
input video sequence.
To test the performance on “big data”, we used a video se-

quence with a high resolution, called PETS2001 (Fig. 5), which
comprises 2688 frames, each of size 768 576 pixels. All im-
ages were first loaded into memory (decompression times do
not include the time to read the images from the hard drive).
The CPU used for these tests is an Intel i7 960 4-core CPU. For
the multithreaded implementation, OpenMP was used to launch
4 threads, mapped to the 4 cores.
Table I shows the decompression times per frame, for the five

full decompression versions, and for the partial decompression.
We can draw the following conclusions from the table.
The fastest full decompression version is UIC. The use of IPP

approximately doubles the performance. The speed of partial
decompression is 4.3 times that of the fastest full decompres-
sion version. At a frame rate of 25 frames per second, the time
for partial decompression equates to the ability to process 210
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Fig. 5. PETS2001 video sequence.

TABLE I
DECOMPRESSION SPEED RESULTS PER FRAME

simultaneous video streams (not allowing for the input of the
streams to memory).When processing fewer video streams (e.g.
64), this allows more time for processing tasks such as back-
ground modeling and subtraction.
2) Hardware Acceleration for Background Modeling: Ex-

periments on the PETS2001 test video sequence (Fig. 5) showed
that, averaged over the entire video sequence, only 14–16% of
the 64 DCT coefficients in a block are nonzero, and all DCT
blocks have 32 or fewer nonzero DCT coefficients. The number
of nonzero DCT coefficients per block depends on two factors.
First, the quantization table used during compression; a stronger
quantization table will increase the number of zero DCT co-
efficients. Second, the complexity and level of activity in the
scene; for example, in the PETS2001 video sequence, the sky
areas can be encoded with just one nonzero DCT coefficient per
block, the grass areas are typically encoded with 6–10 nonzero
DCT coefficients per block, and the regions covered by the cars
are encoded with over 10 DCT coefficients per block. In gen-
eral, blocks containing many edges or complex texture patterns
are encoded using a larger number of DCT coefficients. These
experiments led us to test the MoG background modeling algo-
rithm in the compressed domain using 32 and 16 coefficients
per block.
Table II presents the execution times for the spatial domain

implementation versus compressed domain implementation for
three different numbers of DCT coefficients per block (64, 32,
16). For each case, it shows execution times for a single core
and a 4-core implementation, first using scalar (nonvector) and
then using vector implementations of the algorithm. The tests
were run on the same PETS2001 video sequence and under the
same conditions.
The results show that the multicore, vectorized versions of

the compressed domain implementation using 16 DCT coeffi-
cients outperform the purely serial spatial domain version by an
impressive factor of 170 .
The overall speedup is the result of the combination of sev-

eral different optimization, which all complement each other.
By processing in the compressed domain instead of the spatial

TABLE II
PROCESSING SPEED RESULTS PER FRAME

domain, the number of modeling parameters is immediately re-
duced by almost a third. Also, the number of coefficients per
block can be reduced from 64 to 16 while maintaining segmen-
tation quality (see Section V-B). Together, these algorithmic op-
timizations contribute a speed up of approximately 8 .
The subsequent individual contributions of the two forms

of parallelism are: vectorization which contributes a further
speedup of 6.7 (this is greater than the expected 4 max-
imum because the low level of programming required leads to
reduced internal data transfers) and the use of multicore (four
core) contributes a further 3.2 .
With a frame rate of 25 frames per second, the optimized im-

plementation of the algorithm in the compressed domain using
16 DCT coefficients per block equates to the ability to perform
background modeling on 292 video streams in real-time. This is
equivalent to processing one frame every 0.14 ms. Further, by
using the results from the previous section (where it was shown
that a JPEG image can be partially decompressed in around
0.19 ms) it can be seen that, by using the same implementation,
it is possible to perform combined partial decompression and
background modeling on an equivalent of 122 video streams in
real-time. The entire analysis is based on video streams with
frames of 768 576 pixels in size in order to provide relevant
results.

B. Quantitative and Qualitative Analysis

For quantitative evaluation we calculate for every frame the
number of foreground pixels correctly classified as foreground,
called true positives ; the number of background pixels in a
frame misclassified as foreground pixels, called false positives

; the number of background pixels in a frame classified
as background, called true negatives and the number of
foreground pixels in a framemisclassified as background, called
false negatives . From these we calculate, the total error

:

(10)



1570 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 10, OCTOBER 2013

TABLE III
QUANTITATIVE ANALYSIS OF THE ALGORITHMS USING WALLFLOWER DATASET

the probability of detection and false alarm

(11)

the precision and recall

(12)

the similarity and score

(13)

The value range of these metrics is between zero and one.
For (also called Recall), Precision, Similarity and ,
[12]–[14], higher values represent greater accuracy. For ,
smaller values represent greater accuracy.
Ideally, an evaluation of the above methods should use

datasets with video resolutions typical of modern cameras
(e.g. 768 576). However, there are certain standard datasets
which are commonly used in the literature. These are usually
low resolution (e.g. 160 120 or around this size). While
processing in the compressed domain is much better suited
to larger frame sizes, for familiarity we have selected the
Wallflower dataset and a small collection of video sequences
with dynamic background for the quantitative and qualitative
analysis.
1) Wallflower Dataset: This dataset contains seven different

scenes, which cover many of the possible scenarios that can
arise when studying algorithms for foreground detection:
displaced background (MO); gradual change in the global
illumination (TOD); sudden change in the global illumination
(LS); multimodal background (WT); low contrast between
foreground and background (C); fast moving objects during
background initialization (B); and slow moving object ap-
pearance during initialization (FA). The dataset contains one
manually segmented frame per video sequence.
The algorithms compared are: MoG(s) which is the algorithm

implementation in the spatial domain and MoG(c)-64, 32, 16
which is the algorithm implementation in the compressed do-
main using 64, 32 and 16 DCT coefficients per block. The pa-
rameters are presented in Table IV where SD are the parameters

TABLE IV
PARAMETERS SET FOR WALLFLOWER DATASET

for spatial domain and CD are the parameters for compressed
domain (see Section III-B for the meaning of the parameters).
The MoG(c) implementation requires a higher initial variance
because it operates at the block level. The parameter values are
the same for all seven video sequences and they have been se-
lected to generate optimal classification results over all video
sequences, not for individual sequences. Also, they have not
been changed during the tests. To remove random noise, post-
processing has been applied using morphological filtering using
a small diamond kernel with a diameter of three pixels.
Clearly all algorithms fail for the LS sequence as also re-

ported in [29]; so for comparison, instead of , we use
which represents the total error without the errors generated by
the LS video sequence. The results are presented in Table III for
all seven video sequences. From the table, it can be seen that
MoG(c)-64, 32, 16 all have a smaller than MoG(s). Also,
our algorithms have similar and values with the ones
reported in [29]. Fig. 6 presents the qualitative results which
show a good correspondence between the segmentation masks
obtained with the MoG(c)-64, 32, 16 and those for MoG(s). Ob-
viously, the former have a blocky appearance due to the fact we
model the background at the block level and also the images
are low resolution. However, we argue that the foreground def-
inition is sufficient for further analysis such as tracking. This is
supported by the quantitative results in Table III.
2) Dynamic Background Dataset: Although useful for

benchmarking our results against previous work, we believe
that the Wallflower dataset is not particularly suited to empha-
sizing the advantages of processing in the compressed domain.
The drawbacks are the low resolution of the video frames
(160 120 pixels, corresponding to only 20 15 blocks of
DCT coefficients) and the fact that the video sequences contain
either very small foreground objects (no more than 3–4 blocks
of 8 8 pixels) or large foreground objects that cover most



POPA et al.: HARDWARE ACCELERATION OF BACKGROUND MODELING IN THE COMPRESSED DOMAIN 1571

Fig. 6. Wallflower dataset results. From first to last row: test frames, ground truth for test frames, results for MoG algorithm in the spatial domain and compressed
domain using 64, 32, and 16 DCT coefficients.

of the video frame. For video sequences which contain small
foreground objects, the misclassification of a few blocks has
a significant impact in terms of FN and FP pixels. For small
video frames, which contain a large object, the misclassifi-
cation of blocks at the foreground/background boundary can
also have a big impact in terms of FP pixels. This is also an
issue with many other well-known test sequences. Also, we are
particularly interested in sequences containing dynamic texture
backgrounds caused either by sensor or background motion.
In particular, we are currently working on a project concerned
with developing an intelligent surveillance system for public
transport [30].
For these reasons we further evaluated the algorithm perfor-

mance using three other video sequences containing dynamic
texture backgrounds. The first video sequence has a dynamic
texture background of water waves [31], with a foreground of
a floating bottle and with a resolution of 320 240 pixels.
The first eighty frames show just the background water motion,
whilst the subsequent thirty frames contain the bottle floating
on the water. The second video sequence is a particularly chal-
lenging surveillance scene captured inside a moving bus, also
with a resolution of 320 240 pixels. Here, the initial ninety-
four frames show the inside of the upper bus saloon whilst in
motion and with no passengers. In addition to fast illumination
changes, those parts of the scene corresponding towindows con-
tain dynamic textures due to the moving background outside the

bus. The remaining one hundred and six frames show a pas-
senger coming into the visual field of the camera and taking a
seat on the bus.Many of the wallflower challenges are contained
within this one dataset. The bus sequence and its ground truth
can be downloaded from [32]. Ground truth is available for all
frames for both video sequences. The third sequence contains a
scene of the sea and a path. After a period a person walks into the
scene along the path. The resolution for this video sequence is
160 128 pixels, and ground truth is provided for only twenty
of the frames containing the subject.
Fig. 7 shows relevant ROC curves for each video sequence,

created using parameters from Table VI (SD—spatial domain,
CD—compressed domain). To generate the ROC curve, was
varied, and for each value the average and was calcu-
lated over all frames in the sequence. Analysis of Fig. 7 shows
that the performance of MoG(c) is better than that of MoG(s)
for all three sequences (identical curves to that of MoG(c)-16
were obtained for MoG(c)-64 and -32, however, for clarity only
the former is shown). The performance is markedly superior for
the bottle sequence and less so for the bus and sea sequences.
Table V shows further quantitative analysis of the two video

sequences. For this analysis, we have selected an optimal
value using the ROC curve ( for bottle video sequence,

for bus video sequence, for sea video sequence),
and calculated the average of the different metric values over
all the frames for which ground truth is available. Table V
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Fig. 7. ROC curves for: bottle (left), bus (middle), sea (right) video sequences.

TABLE V
QUANTITATIVE ANALYSIS OF THE ALGORITHM USING BOTTLE, BUS AND SEA VIDEO SEQUENCES

TABLE VI
PARAMETERS SET FOR DYNAMIC TEXTURES DATASET

shows that the MoG(c) gives superior results to MoG(s) for
all metrics for the first two sequences. For the sea sequence,
the metric values are roughly the same for both algorithms.
Fig. 8 shows the qualitative analysis of three frames from each
video sequence. It can be clearly seen that the obtained
with MoG(s), due to the moving background outside the bus
window, are clearly reduced for MoG(c). For the bottle and sea
sequences, the have been removed completely. On the
other hand the foreground object definition for MoG(c) appears
block-like due to the fact that detection is performed over 8
8 neighborhoods.
Figs. 7 and 8 emphasize the fact that the compressed domain

algorithm seems to better model dynamic texture backgrounds.
This is possible because the compressed domain version of the
algorithm takes into account pixel neighborhoods, not just iso-
lated pixels. Also, this makes the algorithmsmore robust against
changes in the local illumination. Another important observa-
tion is that we can use just 16 DCT coefficients per block with
no loss in detection performance.

VI. CONCLUSIONS

The implementation of background modeling presented in
this paper uses compressed domain processing with a reduced

number of 16 DCT coefficients, plus hardware acceleration, to
achieve a speedup of up to 170 compared to a purely serial
implementation of the same algorithm in the spatial domain.
At 25 fps, this speed up equates to the ability to segment in
real-time the equivalent of around 122 video streams (including
the time for partial decompression), which exceeds our initial
target of 64 simultaneous video streams.
The overall speedup is the result of the combination of sev-

eral different optimizations, which all complement each other.
By processing in the compressed domain instead of the spatial
domain, the number of modeling parameters is immediately re-
duced by almost a third. Also, the number of coefficients per
block can be reduced from 64 to 16 while maintaining segmen-
tation quality. Together, these algorithmic optimizations con-
tribute a speed up of approximately 8 .
The subsequent individual contributions of the two forms

of parallelism are: vectorization which contributes a further
speedup of 6.7 (this is greater than the expected 4 max-
imum because the low level of programming required leads to
reduced internal data transfers) and the use of multicore (four
core) contributes a further 3.2 .
In the spatial domain implementation, the use of the SIMD

units provided only 1.3 speed up, because of the low compu-
tation to data ratio. This shows the interesting result that oper-
ating in the compressed domain can increase the potential for
hardware acceleration.
From the point of view of programming effort, the use of mul-

ticore required minimal effort. On the other hand, the use of
SIMD processing was by far the most difficult task. It required
considerable programming effort and a steep learning curve be-
cause of the low level, architecture dependent nature of the pro-
gramming. The effort in implementing the compressed domain
processing lay somewhere between these two steps, once the
partial decompression code was available.
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Fig. 8. Bottle (left), bus (middle), and sea (right) dataset results. From top to bottom: test frames, ground truth for test frames, results for MoG algorithm in the
spatial domain and compressed domain using 64, 32, 16 DCT coefficients.

For the case of background modeling at least, the speed up
obtained did not come at the expense of a loss in segmenta-
tion quality when moving from the spatial to the compressed
domain.
Future work will extend the foreground detection in the com-

pressed domain to human detection and tracking for a multi-
camera system.
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