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A Study on Reconstruction of Linear Scrambler
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Abstract—In this paper, the reconstruction of the feedback poly-
nomial as well as the initial state of a linear feedback shift reg-
ister (LFSR) in a synchronous scrambler placed after a channel
encoder is studied. The study is first based on the assumption that
the channel is noiseless and then extended to the noisy channel con-
dition. The dual words, which are orthogonal to the codewords
generated by the channel encoder, are used in the reconstruction
algorithm. The number of bits required by the new algorithm is
compared with another recently proposed algorithm and results
show that the number of bits required to do the reconstruction can
be significantly reduced.

Index Terms—Binary symmetric channel, linear feedback shift
register, scrambler.

I. INTRODUCTION

A LINEAR scrambler is usually used in a communication
system to convert a data bit sequence into a pseudo-

random sequence that is free from long strings of 1 s and 0 s.
It is easy to implement with a wide variety of scrambler poly-
nomials to choose from and the choice of which one to use has
relatively little impact on the performance of the communica-
tion system. However, basing on the scrambler reconstruction
technique detailed in [1], it is found in [2] that not all scrambler
polynomials offer equal protection against reconstruction. In
this work, we examined further the reconstruction of the feed-
back polynomial of a linear scrambler assuming the source bits
are being encoded with forward error correction coding before
being scrambled. The findings of this work are envisaged
to aid the design of secured digital communication systems
implemented in a flexible platform such as software defined
radio (SDR). Our results point out what can be done to pre-
vent reconstruction of a communication system; for example,
various scrambler reconstruction techniques were proposed in
[1]–[5]. The proposed approach will also add to the plethora
of techniques for designing an intelligent receiver which can
adapt itself to the different building blocks of the transmitter
such as those proposed in [6]–[8]. It is also an extension of
the results and findings on recovery of error-correcting codes
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which include linear block codes [9]–[11] and convolutional
codes [12]–[16].
There are generally two types of linear scrambler, namely

synchronous scrambler and self-synchronized scrambler. Both
types of scrambler usually consist of a LFSR whose output se-
quence is combinedwith the input sequence and
the result is the scrambled sequence , i.e.,

(1)

where denotes modulo 2 summation. In this paper, for
simplicity, only synchronous scramblers are considered.
Reconstruction of a synchronous scrambler consists of re-
constructing the feedback polynomial of the LFSR as well
as its initial state. When some input and scrambled bits are
known, the Berlekamp-Massey algorithm [3] can be used to
reconstruct the feedback polynomial of the LFSR. In [4], a
method is proposed to estimate the initial state of the LFSR
from the scrambled sequence only, and by assuming that the
feedback polynomial of the LFSR is also known. Recently, in
[1], an algorithm is proposed by Cluzeau for reconstructing the
feedback polynomial of the LFSR by only using the scrambled
sequence. In the following, this algorithm will be referred to as
Cluzeau’s algorithm.
Although Cluzeau’s algorithm is much more efficient than

the brute force search algorithm in the recovery of the feedback
polynomials of the LFSR, it is based on the critical assumption
that the source bits, which XOR directly with the outputs of the
LFSR, are distributed with a biased probability Pr

, where . Although this assumption usually holds
for natural sources, when the source bits pass through a channel
encoder before they are scrambled, the bias existing in the bit
sequence might become very small. Consequently, the number
of bits required to do the reconstruction becomes exorbitantly
large. To deal with this problem, in this paper, a scheme is pro-
posed to use the property of “dual words”, which are orthogonal
to the codewords generated by the channel encoder, instead of
the bias existing in the encoded bit sequence, to achieve recon-
struction of the scrambler. It can be observed that by using the
proposed scheme, the number of bits required for reconstruction
is reduced drastically.
The paper is organized as follows. In Section II, Cluzeau’s

algorithm is reviewed. In Section III, the bias existing in the
encoded bit sequence after a channel encoder is analyzed. In
Section IV, the scheme to recover the feedback polynomial as
well as the initial state of the LFSR in a linear scrambler placed
after a channel encoder is proposed. In Section V, the problem
of reconstruction of the scrambler in the presence of channel
noise is investigated. Some security propositions are given in
the concluding section in Section VI.

1556-6013/$31.00 © 2013 IEEE
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Fig. 1. Structure of synchronous scrambler.

Fig. 2. Distributions of Z.

II. CLUZEAU’S ALGORITHM FOR RECONSTRUCTING A
SYNCHRONOUS SCRAMBLER

In a synchronous scrambler, is generated independently of
and , as shown in Fig. 1.
Instead of brute force searching for the feedback polynomial

directly, Cluzeau’s algorithm searches for sparse multi-
ples of with the degree of the sparse multiples varying
from low to high. After two multiples of are detected, it
returns the nontrivial greatest common divisor (gcd) of the two
detected multiples as the detected feedback polynomial. The
determination of whether a sparse polynomial is a multiple of

or not is based on a statistical test on the absolute value
of a variable , which is given by

(2)

where is a modulo 2 summation of scrambled bits, i.e.,
, , and is

the number of bits required for the reconstruction. Let
. When is a multiple of , we have

(3)

since and . According to
the statistical analysis results given in [1], is biasedly dis-
tributed with Pr , if the input bits
are biasedly distributed with Pr , where

. Consequently, the value of , i.e.,

, is Gaussian distributed with the
mean value given by

(4)

and the variance [5] given by

(5)

It can also be shown that when is not a multiple of
, Pr , implying that has a Gaussian

distribution with the mean value 0 and the variance .
The two distributions are depicted in Fig. 2.
From Fig. 2, it can be observed that when the two distribu-

tions of have a small enough intersection, a threshold can
be used to determine whether is a multiple of , i.e.,
when , is not a multiple of ; otherwise,

is a multiple of . The threshold and the number
of bits required for the reconstruction depend on two factors,
i.e., the false-alarm probability and the nondetection proba-
bility . Let

(6)

and

(7)

where denotes the normal distribution function. From (6) and
(7), it can be derived that the threshold is

(8)

and the number of bits required for the reconstruction is

(9)

where is the normalized upper bound of , which is given by

(10)

More detailed description of Cluzeau’s algorithm can be found
in [1] and [5].

III. BIAS AFTER CHANNEL ENCODER

In many communication systems, error correcting codes
are used to combat errors introduced by the communication
channel. In this work, we considered the case when the channel
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Fig. 3. Chain of scrambler and channel encoder.

encoder is placed between the source and the scrambler as
shown in Fig. 3.
In the following, the bias existing in the encoded bit sequence

after a channel encoder will be analyzed. Two commonly used
error correcting codes are considered, i.e., linear block code and
convolutional code.

A. Bias of a Bit Sequence After a Linear Block Encoder

Generally, for a binary linear block code , where
is the number of information bits and is the number of coded
bits, a generator matrix can be defined by the following

array:

...
...

(11)
where or and are linearly inde-
pendent -tuples that form a basis for . Considering a -tuple
message, i.e.,

the encoder transforms the message independently into an
-tuple codeword by

...
(12)

Any encoded bit can be written as a
linear binary summation of the message bits, i.e.,

(13)

Suppose the source bit sequence is produced by a bi-
ased and memoryless source with bias , and the number of
nonzero terms (the weight) in the th column of is

, then the probability that is given
by

(14)

According to (14), the bias existing in the th encoded bit is
. As and , we have .

TABLE I
BIAS AFTER SOME BCH ENCODERS

The bias existing in the whole encoded bit sequence, , can be
expressed by

(15)

From the above equation, it can be observed that the bias ex-
isting in the encoded bit sequence is less than or equal to the
bias existing in the bit sequence before the encoder. Consider
the systematic encoder, for which
and . The bias existing in the encoded
bit sequence can be roughly estimated by

(16)

To verify (16), the bias existing in the bit sequences of the
output of the BCH encoders are obtained by computer simula-
tions and results are shown in Table I. In each simulation, a bit
sequence which contains information bits is input
into a BCH encoder (systematic encoder) and the simulation is
repeated 100 times. The bias existing in the bit sequence before
the encoder is set to 0.1. From Table I, it can be observed that
the bias after the BCH encoder determined by the simulation re-
sults matches very well with that computed by (16).

B. Bias of a Bit Sequence After a Convolutional Encoder

An convolutional code, where is the number of
information bits, is the number of coded bits and is the
constraint length, can be defined by a generator matrix

which consists of binary “impulse responses” ,
where denotes the th input and denotes the th
output , i.e.,

...
...

. . .
...

(17)
where

(18)



LIU et al.: STUDY ON RECONSTRUCTION OF LINEAR SCRAMBLER USING DUAL WORDS OF CHANNEL ENCODER 545

Fig. 4. Dot product of a dual word of a linear block code with the received bit sequence.

TABLE II
BIAS AFTER SOME RATE 1/2 CONVOLUTIONAL ENCODERS

Supposing the bit sequence at the th input of the convolutional
encoder is , the bit sequence at the th
output is given by

(19)
where is the convolution operation. Suppose the number of
nonzero terms in is , then the bias of the whole encoded
bit sequence, , can be expressed as

(20)

To verify (20), the bias existing in the bit sequences after
some optimum rate 1/2 convolutional code encoders [17] are
obtained by computer simulations and results are shown in
Table II. In each simulation, a bit sequence which contains
1,000,000 information bits is input into a convolutional encoder
and the simulation is repeated 1000 times. The bias existing in
the bit sequence before the encoder is assumed to be 0.1.
From Table II, it can again be observed that in general, the

bias existing in the bit sequence after the sequence has passed
through a convolutional encoder is very low as is normally

.

IV. RECONSTRUCTION OF THE SCRAMBLER AFTER
A CHANNEL CODE

In the last section, our analysis shows that after passing
through a channel encoder, the bias existing in the bit sequence
drops, especially when convolutional codes are used. In this
section, a novel scheme for reconstruction of the feedback
polynomial and initial state of the LFSR in a scrambler which
is placed after a channel encoder is proposed. This scheme

exploits the property of dual words instead of the bias existing
in the encoded bit sequence. In the following, the reconstruc-
tion of the scrambler placed after a linear block code will be
considered first and after that, the proposed scheme will be
extended to the case of convolutional code.

A. Reconstruction of the Scrambler After Linear Block Code

1) Reconstruction of the Feedback Polynomial of the LFSR:
Consider a binary linear block code with generator
matrix . Rows in form a basis for . The parity-check
matrix for is a matrix whose rows span the
dual code , i.e.,

...
(21)

and . , denote rows
in and they are called dual words

of .
To use the property of dual words to reconstruct the feedback

polynomial of the LFSR, firstly, the received bit sequence
is divided into blocks , with each block

containing bits, i.e., . Then,
a new sequence can be generated, in which
each bit is the dot product of with a dual word, say , as
shown in Fig. 4.
From Fig. 4, it can be seen that

... (22)

As , , where is the -tuple
codeword at time index and
are the outputs of the scrambler, we have

(23)
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According to the property of dual words, ; therefore,
can be written as

(24)

i.e.,

... (25)

Proposition 1: For a set of integers
, if for any

, then is a multiple
of the feedback polynomial .

Proof: According to (23), can be written as

(26)

Similarly,

...

(27)

Therefore,

(28)

As is a dual word, cannot be all
0. Therefore, only
holds when , i.e.,

. It means
is a multiple of the feedback polynomial .
It is interesting to note that since the encoded bits are removed

according to (24), the sequence can be taken as a combina-
tion of some th decimated sequences of the original sequence
produced by the LFSR. Some properties of such a decimated
sequence have been found in [19]. Actually, proposition 1 can
also be proved by using properties of the decimated sequence
proposed in [19].
From Proposition 1, it can be observed that when the se-

quence is obtained, Cluzeau’s algorithm, with only minor
changes, can be applied to to find the feedback polynomial
of the LFSR. In the following, the scheme to determine the
feedback polynomial of the LFSR in a scrambler placed after
a channel encoder is described:
1) Divide the received bit sequence into
blocks , with each block containing bits.

2) Generate a new bit sequence , in which each bit is the
dot product of the received block with a dual word.

3) For , , compute
the number of bits in , , required for the summation of

Fig. 5. Distributions of .

. How to compute will be described later. Let
.

4) Initialize with .
5) For varying from to , compute

(29)

and

(30)

6) If , store in a table.
7) For in the table, compute the nontrivial
greatest common divisor (gcd) of .

Steps 1 to 4 are repeated until a
is found or all combinations of are

tested.
The scheme proposed above is based on the fact that if

is a multiple of the feedback poly-
nomial, will always be 0 for varying from to ,
and therefore, the value of should be . If

is not a multiple of the feedback
polynomial, Pr and will be Gaussian
distributed with the mean value 0 and the variance . The
distribution of is shown in Fig. 5.
Similar to Cluzeau’s algorithm, the number of bits in used in

the summation of , will affect the false-alarm probability
and nondetection probability . As shown in Fig. 5, the

value of is always equal to when is a multiple of
. That means when the proposed scheme is used.

The false-alarm can happen only when but is
not a multiple of , and the probability is given by

(31)
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TABLE III
SIMULATION RESULTS FOR RECONSTRUCTION OF SCRAMBLERS PLACED AFTER LINEAR BLOCK CODES

It can be observed that a small value of , say 50, can already
make . The total number of bits in used in the
reconstruction is . According to (22) and Fig. 4, each
bit in is a dot product of a dual word with a received block
consisting of bits. Therefore, the total number of bits required
by the proposed scheme is

(32)

Comparing (32) with (9), it can be observed that the number
of bits required to do the reconstruction by the proposed algo-
rithm does not depend on the bias anymore. Obviously, when
is small, it is most probably that . To show this fact
clearer, the proposed algorithm is applied to reconstruct some
feedback polynomials of LFSR in synchronous scramblers
placed after different linear block codes. The number of bits
required by the proposed algorithm are shown in Table III.
The number of bits required by Cluzeau’s algorithm are
also shown in Table III for comparison. In the simulation, it is
assumed that the bias existing in the bit sequence before the
block encoder is 0.1 and . For Cluzeau’s algorithm, it is
assumed that and . For the proposed
algorithm, it is assumed that , which will lead to

and .
From Table III, it can be observed that the number of bits

required by the proposed algorithm to do the reconstruction is
much lower than that required by Cluzeau’s algorithm, espe-
cially when Hamming (7,4) code is used. This is because the
property of the dual word is exploited by the proposed algorithm
instead of the bias in the encoded bit sequence. Since the code
rate of Hamming (7,4) code is the lowest among the 3 types of
codes shown in Table III, the bias existing in the encoded bit
sequence is also the lowest, and the number of bits required to
do the reconstruction is the longest when Cluzeau’s algorithm
is used.
It should be noted that in Table III, the gcd of the two de-

tected multiples is normally not the feedback polynomial but
a multiple of the feedback polynomial. Suppose the gcd of the
two detected multiples is . To find the correct feedback
polynomial, is firstly factorized. The correct feedback
polynomial can then be found by descrambling the bit sequence
by using each polynomial factor of respectively, and see

which one would lead to a descrambled bit sequence that sat-
isfies the condition that the dot product of each codeword in
the sequence with the dual words ,
equals to 0. For example, the first two detected multiples in
Table III are and . Their gcd
is , which is the product of 3 poly-
nomial factors , and

. After descrambling the bit sequence by
each polynomial factor, it is found that only
leads to a sensible descrambled sequence. Hence, it is the cor-
rect feedback polynomial.
2) Reconstruction of the Initial State of the LFSR: After the

feedback polynomial of the LFSR is determined, to descramble
the received bit sequence, the initial state of the LFSR needs
also to be recovered. In the following, a scheme to determine
the initial state of the LFSR is described. This scheme is sim-
ilar to the scheme proposed in [4], which also uses the encoder
redundancy to determine the initial state of the LFSR.
Suppose the feedback polynomial of the LFSR is denoted by

, where is the degree
of the feedback polynomial and , then the output of
the LFSR at time index is

(33)

Suppose the state of the LFSR at time index is

(34)

and a transition matrix is defined as

...
...

...
. . .

...
... (35)

According to (33) and the property of the LFSR, the LFSR state
at time index , can be written as

(36)
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Let the array be defined as

(37)

can then be calculated by

(38)

According to (26) and (38), can be rewritten as

(39)

where is a identity matrix. Similarly, can
be rewritten as

...

(40)

Suppose is a matrix that is given by

...

(41)
Then the initial state can be calculated by

(42)

In many cases, there are more than one dual word for an error
correcting code. According to (41), for the same feedback poly-
nomial and different dual words, the matrices are different.
For each and vector , an initial state can
be obtained by using (42). Obviously, if the feedback polyno-
mial is the true feedback polynomial of the LFSR, obtained
from (42) are the same no matter which dual word is used. Oth-
erwise, obtained from different dual words are most likely to
be different. This property can be used to determine the correct
feedback polynomial of the LFSR without descrambling the bit
sequence.

B. Reconstruction of the Scrambler After a Convolutional
Code

Similar to linear block code, the generator matrix of
a convolutional code generates a vector space of
dimension over the finite field . This vector space
has an orthogonal space of dimension and any element

in this space satisfies the property:
.

can therefore be “translated” into a “dual word”. Suppose
where or . The

binary vector

of length will be the corresponding dual word.
After the dual word is obtained, the rest of the steps for re-

construction of the feedback polynomial and initial state of the

Fig. 6. Dot product of a dual word of a convolutional code with the received
bit sequence.

LFSR are the same as those used for the linear block code. The
only difference is that the received bit sequence is not divided
into blocks. In fact, the dual word will be orthogonal to any seg-
ment of bits in the coded sequence, when the starting
offset of the bits is or a multiple of . An example of
the dot product of the dual word of a convolutional code with
the received bit sequence is shown in Fig. 6.
In Fig. 6, the convolutional code is a (2,1,5) convolutional

code with generator matrix [11011 11001]. It is found that the
dual word of the convolutional code is 1101001111. As shown in
Fig. 6, is generated by making a dot product of the dual word
with 10 bits in the coded sequence at time index . For every
increase of the time index , the starting offset of the 10 bits
will be increased by bits. To see the effect of the pro-
posed algorithm clearer, it is used to reconstruct some feedback
polynomials of LFSR in synchronous scramblers placed after
different convolutional codes with optimum distance spectrum
[18]. The multiples detected and the number of bits required by
the proposed algorithm are shown in Table IV. The number of
bits required by Cluzeau’s algorithm are also shown in Table IV
for comparison. The setting of parameters for the simulation are
the same as before.
From Table IV, it can be observed that the reduction of the

number of bits required to do the reconstruction is very signifi-
cant. This is because firstly, as described previously, the bias ex-
isting in the bit sequence after the sequence has passed through
a convolutional encoder is very low, and consequently is very
big according to (9). Secondly, for convolutional code, the value
of is usually very small ( 10), and consequently is small
according to (32). Therefore, the proposed scheme is the most
suitable for convolutional code as the number of bits required
by it to do the reconstruction is very small.

V. RECONSTRUCTION OF SCRAMBLER WHEN CHANNEL
NOISE IS PRESENT

In the previous sections, it is assumed that the channel is
noiseless, i.e., there is no error in the received bit sequence.
In practical situations, there is usually noise in the channel and
some of the received bits will be wrong, as shown in Fig. 7.
When channel errors are present, the dual words are no longer
completely orthogonal to the received encoded bit sequence and
the scheme proposed in Section IV cannot be applied directly.
Suppose the channel is modelled as a binary symmetric

channel (BSC). The probabilities that the channel error
is equal to 1 and 0 are Pr

and Pr respectively. Let
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TABLE IV
SIMULATION RESULTS FOR RECONSTRUCTION OF SCRAMBLER PLACED AFTER CONVOLUTIONAL CODES

Fig. 7. Chain of scrambler, channel encoder, and channel.

the -tuple channel errors at time index be denoted by
; the -tuple received code-

word with errors, , is given by

(43)

Since , the dot product of the dual word with
the received bit sequence is given by

(44)

According to the property of the dual word, we have ;
therefore,

(45)

i.e.,

... (46)

Proposition 2: Suppose
. When is

not a multiple of the feedback polynomial , Pr
. When is a multiple of
, Pr , where is the weight

of the dual word and ( is the channel crossover
probability).

Proof: For linear block codes, can be written as

(47)

Similarly,

...

(48)

Therefore,

...

(49)

According to the property of the LFSR, when
is not a multiple of , and as Pr

, it is apparent that Pr . When
is amultiple of ,

for any and we have

(50)

In (50), is a modulo 2 summation of channel errors ,
where is the weight of the dual word. Similar to (14), it can
be derived that

(51)
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For convolutional codes, similarly, is a modulo 2 summa-
tion of channel errors . However, according to Fig. 6, some
of the channel errors might be overlapped; therefore, we have

(52)

Suppose , where is the number of bits
in required for the reconstruction when noise is present. Ac-
cording to Proposition 2 and the scheme described in Section IV,
when is not a mul-
tiple of , is Gaussian distributed with the mean value 0
and variance . Similar to the derivation of the distribution of
[5], when is a multiple of , it can be derived that
is Gaussian distributed with the mean value

and variance . Therefore,
the algorithm proposed in Section IV can still be used with a
minor change in Step 4, i.e., a threshold can be used to deter-
mine whether is a multiple of the feedback polynomial.
Similar to Cluzeau’s algorithm described in Section II, when the
false-alarm probability and the nondetection probability
are given, the threshold can be determined by

(53)

where

(54)

and

(55)

From (54) and (55), it can be derived that the total number of
bits used in the reconstruction is given by

(56)

In Figs. 8 and 9, the numbers of bits required for reconstruc-
tion when channel noise is present are shown for different error
correcting codes and channel error probabilities. It is assumed
that , and . The feedback polyno-
mial is assumed to be .
From Figs. 8 and 9, it can be observed that the number of

bits required to do the reconstruction when channel noise is
present is larger, as compared with that required in a noiseless
condition. The larger the channel error probability, the larger
the number of bits required to do the reconstruction. Another
factor which affects the number of bits for the reconstruction
is the dual word weight . Obviously, with the increase of ,
the number of bits required will increase accordingly, especially
when the channel error probability is large. Therefore, for the
same error correcting code, the dual word of minimum weight
is the best choice for the reconstruction.
In practical situations, the number of bits available for recon-

struction is usually limited. In that case, the false-alarm proba-

Fig. 8. Number of bits required for reconstruction when linear block codes are
used and channel noise is present.

Fig. 9. Number of bits required for reconstruction when convolutional codes
are used and channel noise is present.

bility or the nondetection probability will be affected. Suppose
the number of bits in available for reconstruction is and
the false-alarm probability is determined in advance, i.e., is
determined in advance. The threshold is then given by

(57)

and the nondetection probability can then be calculated by

(58)
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Fig. 10. Nondetection probabilities versus the number of bits available for reconstruction.

In Fig. 10, the nondetection probabilities versus different
number of bits available for reconstruction are plotted. It is
assumed that , and the feedback polynomial
is .
For recovering the initial state of the LFSR when noise is

present, some known techniques, such as those proposed in [20],
[21], can be used.

VI. CONCLUSION

In this paper, the problem of reconstruction of the LFSR in a
linear scrambler placed after a channel encoder is studied. The
existing algorithm, i.e., Cluzeau’s algorithm, is very promising
in reconstructing the feedback polynomial based on the assump-
tion that the source bits are biasedly distributed. However, after
passing through a channel encoder, the bias (relative numbers of
1 s and 0 s) in the bit sequence drops, especially when a convolu-
tional code is used, and the number of bits required by Cluzeau’s
algorithm will become exorbitantly large. In this paper, a new
scheme which, instead of relying on the bias in the bit sequence,
uses the orthogonality between the dual words and codewords
generated by the channel encoder is studied. Our analysis shows
that by using this proposed scheme, the feedback polynomial
can be reconstructed much faster, as the number of bits required
to do the reconstruction is reduced greatly, especially when con-
volutional codes are used as the error correcting codes. When
channel noise is added, the above scheme can still be used to
perform reconstruction, as long as the number of bits used to do
the reconstruction is increased accordingly. It is noted that the
larger the channel error probability, the larger the number of bits
required to do the reconstruction.
Based on the above results, it is clear that scrambling the

source bits before applying the FEC offers better protection
against scrambler reconstruction when all else being equal.
Secondly, it has been shown that for a linear block code, the

bias of the binary bits stream before scrambling can be approx-
imated by the product of the bias of the source bits and the code
rate (16). For convolutional encoder, the resultant bias is much
lower (20). However, using dual words of the encoder, our re-
sults show that a convolutional code-linear scrambler pair is
a much weaker pair compared with a linear block code-linear

scrambler pair. This is because any shift of a multiple of bits
of a dual word is orthogonal to the coded sequence, and for most
practical convolutional code, is typically a small number.
The work presented in this paper is focused on determining

the scrambler polynomial assuming dual word is known and
word synchronization has been achieved a priori. A more chal-
lenging reconstruction problem would be to reconstruct both the
code and the scrambler at the same time. One possible solution
to this problem is to incorporate a scheme which recovers the
code’s length and achieves synchronization without considering
the scrambler, such as schemes proposed in [10], [11] into the
scheme proposed in this paper. For example, for a short linear
block code or a convolutional code, an exhaustive search can be
used to test all possible dual words and generate all possible .
Obviously, after applying the scheme proposed in Section IV-A
to , in noiseless case, only the generated by the correct dual
word will lead to two different distributions of as shown in
Fig. 5. In a noisy condition, the situation is similar. For longer
block codes, more sophisticated schemes need to be used for
recovering both the code and the scrambler at the same time.
Finally, the weight of the dual word plays a key part in the re-
construction, as low weight dual words are easier to be found
and in noisy condition, low weight dual words lead to fewer bits
required for the reconstruction. Therefore, one might consider
using error correcting codes which do not have low weight dual
words. How to find such codes is also an interesting topic for
future work.

REFERENCES
[1] M. Cluzeau, “Reconstruction of a linear scrambler,” IEEE Trans. Com-

puters, vol. 56, no. 9, pp. 1283–1291, Sep. 2007.
[2] X. Wu, S. N. Koh, and C. C. Chui, “Primitive polynomials for robust

scramblers and stream ciphers against reverse engineering,” in Proc.
IEEE ISIT, Austin, TX, USA, Jun. 13–18, 2010, pp. 2473–2477.

[3] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.
Inf. Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[4] R. Gautier, G. Burel, J. Letessier, and O. Berder, “Blind estimation of
scrambler offset using encoder redundancy,” in Proc. 36th Asilomar
Conf. Signals, Systems and Computers, Pacific Grove, CA, USA, Nov.
3–6, 2002, vol. 1, pp. 626–630.

[5] X. B. Liu, S. N. Koh, X. W. Wu, and C. C. Chui, “Reconstructing a
linear scrambler with improved detection capability and in the pres-
ence of noise,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 1, pp.
208–218, Feb. 2012.



552 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 8, NO. 3, MARCH 2013

[6] K. Umebayashi, S. Ishii, and R. Kohno, “Blind adaptive estimation of
modulation scheme for software defined radio,” in Proc. PIMRC, 2000,
Sep. 18–21, 2000, vol. 1, pp. 43–47.

[7] H. Ishii, S. Kawamura, T. Suzuki, M. Kuroda, H. Hosoya, and H. Fu-
jishima, “An adaptive receiver based on software defined radio tech-
niques,” in Proc. 12th PIMRC, USA, Sep. 2001, vol. 2, pp. 120–124.

[8] C. Han, A. Doufexi, S. Armour, K. H. Ng, and J. McGeehan, “Adap-
tive MIMO OFDMA for future generation cellular systems in real-
istic outdoor environment,” in Proc. IEEE VTC Spring, May 2006, pp.
142–146.

[9] A. Valembois, “Detection and recognition of a binary linear code,”Dis-
crete Appl. Math., vol. 111, no. 1–2, pp. 199–218, Jul. 2001.

[10] M. Cluzeau, “Block code reconstruction using iterative decoding tech-
niques,” in Proc. IEEE ISIT, Seattle, WA, USA, 2006, pp. 2269–2273.

[11] M. Cluzeau and M. Finiasz, “Recovering a code’s length and synchro-
nization from a noisy intercepted bitstream,” inProc. IEEE ISIT, Seoul,
Korea, 2009, pp. 2737–2741.

[12] E. Filiol, “Reconstruction of convolutional encoder over ,” in
Proc. Sixth IMA Conf. Cryptography and Coding, 1997, no. 1355, pp.
100–110, Lecture Notes in Computer Science, Springer Verlag.

[13] E. Filiol, “Reconstruction of punctured convolutional encoders,”
in Proc. IEEE Int. Symp. Information Theory and Applications
(ISITA’00), 2000, pp. 4–7, SITA and IEICE Publishing.

[14] J. Barbier, G. Sicot, and S. Houcke, “Algebraic approach for the re-
construction of linear and convolutional error correcting codes,” Int. J.
Appl. Math. Comput. Sci., vol. 3, no. 3, pp. 113–118, 2006.

[15] J. Dingel and J. Hagenauer, “Parameter estimation of a convolutional
encoder from noisy observations,” in Proc. IEEE ISIT, Nice, France,
2007, pp. 1776–1780.

[16] M. Côte and N. Sendrier, “Reconstruction of convolutional codes from
noisy observation,” in Proc. IEEE ISIT, Seoul, Korea, Jun. 28–Jul. 3
2009, pp. 546–550.

[17] B. Sklar, Digital Communications, Fundamentals and Applications,
2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002.

[18] P. Frenger, P. Orten, and T. Ottosson, “Convolutional codes with op-
timum distance spectrum,” IEEE Commun. Lett., vol. 3, no. 11, pp.
317–319, Nov. 1999.

[19] E. Filiol, “Decimation attack of stream ciphers,” in Proc. INDOCRYPT
2000, LNCS 1977, 2000, pp. 31–42, Springer Verlag.

[20] W. Meier and O. Staffelbach, “Fast correlation attack on stream
ciphers,” in Proc. Advances in Cryptology (EUROCRYPT’88),
1988, vol. 330, pp. 301–314, Lecture Notes in Computer Science,
Springer-Verlag.

[21] W. Meier and O. Staffelbach, “Fast correlation attack on certain stream
ciphers,” J. Cryptology, vol. 1, no. 3, pp. 159–176, 1989.

Xiao-Bei Liu received the B.S. degree in electrical
and communication engineering from Fudan Univer-
sity, Shanghai, China, in 1998, and the Ph.D. degree
fromNanyang Technological University (NTU), Sin-
gapore, in 2004.
From 1998 to 2000, she was an engineer with

Datang Mobile Communications Equipment Co.,
Ltd., and from 2007 to 2010, she was a senior
digital signal processing engineer in Wireless Sound
Solutions Pte. Ltd. She is currently a research fellow
in the Positioning and Wireless Technology Centre

of NTU and her research interests include digital signal processing in wireless
communications, modulation/coding techniques, and secured communications.

Soo Ngee Koh received the B.Eng. degree from the
University of Singapore and the B.Sc. degree from
the University of London, both in 1979. He received
the M.Sc. and Ph.D. degrees from Loughborough
University, U.K., in 1981 and 1984, respectively.
Prior to his return to Singapore, he worked as a

consultant at the British Telecom Research Labora-
tories in England. He joined Nanyang Technological
University (NTU) of Singapore in 1985. He was the
founding Head of the Communication Engineering
Division of the School of Electrical and Electronic

Engineering (EEE) of NTU from 1995 to 2005, founding Cochair of the Interna-
tional Conference on Information, Communications and Signal Processing, and
Associate Chair (Academic) from 2005 to 2011. He is currently a Professor of
the School. He has published more than 140 papers in international journals and
conference proceedings, and holds two international patents on speech coder de-
sign. His research interests include speech processing, coding, enhancement and
recognition, computer-aided language learning, blind source separation, and se-
cured communication.

Chee-Cheon Chui received the B.Eng. degree from
the National University of Singapore, Singapore,
in 1994, and the M.Sc. and Ph.D. degrees from the
University of Southern California, USA, in 2001 and
2005, respectively, all in electrical engineering.
He is currently with TL@NTU, Singapore as a re-

search scientist, engaging in research and develop-
ment and management of numerous projects in the
field of wireless communications. He has also held
various positions in the executive committee of the
IEEE Singapore local Communications Chapter. His

current research interests include receiver synchronization, time-synchroniza-
tion of wireless systems, physical-layer security, wireless communication signal
processing, and forward error correction coding.

Xin-WenWu (M’00) received the B.S. and M.S. de-
grees in 1989 and 1992, respectively, from East China
Normal University, Shanghai, and the Ph.D. degree in
1995 from the Institute of Systems Science, Chinese
Academy of Sciences, Beijing.
From 1995 through 2003, he was affiliated with

the Institute of Mathematics, Chinese Academy of
Sciences. From January to October 1996, and from
October 1997 to December 1998, he was a visiting
research associate at the Center for Advanced
Computer Studies at the University of Louisiana,

Lafayette, LA, USA. From Jun. 1999 to May 2000, he was a postdoctoral
researcher at the Department of Electrical and Computer Engineering, Uni-
versity of California at San Diego. During February 2003–October 2005, he
worked at the Department of Electrical and Electronic Engineering, University
of Melbourne, holding a research fellowship. From November 2005 through
April 2010, he was a faculty member at the Graduate School of Mathematics
and Information Technology, University of Ballarat. Since April 2010, he
has been with the School of Information and Communication Technology,
Griffith University, Gold Coast, Australia. His research interests are in the
areas of coding theory, cryptology, information theory with applications to
bioinformatics, and other areas. He has authored or coauthored over 40 research
papers and one book in the above-mentioned areas.


