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Abstract—Federated learning (FL) allows clients at the edge
to learn a shared global model without disclosing their private
data. However, FL is susceptible to poisoning attacks, wherein
an adversary injects tainted local models that ultimately corrupt
the global model. Despite various defensive mechanisms having
been developed to combat poisoning attacks, they all fall short
of securing practical FL scenarios with heterogeneous and un-
balanced data distribution. Moreover, the cutting-edge defenses
currently at our disposal demand access to a proprietary dataset
that closely mirrors the distribution of clients’ data, which runs
counter to the fundamental principle of privacy protection in FL.
It is still challenging to devise an effective defense approach that
applies to practical FL.

In this work, we strive to narrow the divide between FL defense
and its practical use. We first present a general framework
to comprehend the effect of poisoning attacks in FL when the
training data is not independent and identically distributed (non-
IID). We then present HeteroFL, a novel FL scheme that incor-
porates four complementary defensive strategies. These tactics
are implemented in succession to refine the aggregated model
toward approaching the global optimum. Ultimately, we devise
an adaptive attack specifically for HeteroFL, aimed at offering
a more thorough evaluation of its robustness. Our extensive
experiments over heterogeneous datasets and models show that
HeteroFL surpasses all state-of-the-art defenses in thwarting
various poisoning attacks, i.e., HeteroFL achieves global model
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accuracies comparable to the baseline, whereas other defenses
suffer a significant accuracy reduction ranging from 34% to 79%.
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I. INTRODUCTION

FEDERATED LEARNING (FL) [20] has gained consider-
able momentum as a distributed learning paradigm with

promising potential. It offers a viable solution for collaborative
learning among resource-constrained clients, e.g., IoT devices,
without compromising their privacy-sensitive data. In FL,
numerous clients engage in local model training over their
private datasets and upload local updates (or models) to a
central server such as Google or Apple. The central server
then employs aggregation strategies to publish an aggregated
global model, which incorporates the contributions from the
local models. So far, FL has gained widespread adoption in a
variety of real-world applications such as finance [4], medical
care [37], and smart city [15], etc.

FL is known to be vulnerable to poisoning attacks, wherein
the adversary (e.g., compromised clients) can taint the local
training data (referred to as data poisoning attack [1], [28],
[33]) or the local models (known as model poisoning attack [2],
[11], [17], [26], [27], [34]) to compromise the global model.
For instance, the adversary may manipulate the labels of data to
trigger erroneous predictions from the global model or generate
a random local model to conserve computing resources while
still benefiting from the global model.

To counteract poisoning attacks on FL, numerous research
endeavors have been dedicated to crafting defensive FL
schemes [3], [5], [21], [26], [30], [32], [35], [38]. These
schemes strive to devise a robust aggregation strategy on
the server-side, with the goal of minimizing the influence of
updates from potentially malicious clients on the global model.
However, existing FL defenses suffer from two key limitations:
1) As will be explicitly discussed in Section IV, existing
works have not taken full consideration of heterogeneous
data distribution, which is one of the most important and
basic characteristics of FL. Most existing defenses are only
valid when clients’ datasets are independent and identically
distributed (IID) [3], [21], [26], [32], [38]. While recently
proposed defenses claim to be Byzantine-robust in the non-
IID setting [5], [35], we have experimentally found that they
account for a very limited degree of heterogeneity, which is
merely a special case of the practical FL scenarios; 2) To
enhance the identification of harmful updates, certain defense
mechanisms rely on a validation dataset [5], [35], whose
distribution should be close or even identical to the distribution
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of data from clients. However, in FL scenarios where the
original intention is to safeguard the privacy of diverse clients,
this assumption seems to be overly restrictive and invalid. How
to protect FL against poisoning attacks while not breaching
privacy remains a challenging problem, particularly when
dealing with highly heterogeneous data.

Our contributions. In this study, we thoroughly examine
the failure of current approaches and then introduce HeteroFL,
an innovative defensive FL scheme. Importantly, we provide
an in-depth analysis of the impact of poisoning attacks on FL,
as well as effective defense strategies specifically tailored for
the non-IID setting.
A deep understanding of poisoning attacks on FL. We
begin by demonstrating that all existing FL methods are
inadequate when dealing with heterogeneous data. While re-
cent studies [5], [24], [29], [31], [35], [40] have assessed
their effectiveness on heterogeneous datasets, they have only
explored a much milder form of heterogeneity: clients possess
data samples with the same label types but only differing
quantities per label. To provide a precise characterization, we
put forward two metrics that gauge the extent of heterogeneity
in a given context: load diversity and label diversity. These two
metrics facilitate a meticulous assessment of the disparities in
the local training data among various clients. Following that,
we give a detailed analysis of prevalent defense schemes [3],
[5], [26], [35], [38] along with their failures. Drawing from our
observations, we present a general framework to illustrate how
the poisoned models injure the global model when operating
on non-IID data. Our findings suggest that the non-IID setting
substantially widens the legitimate direction space of local
gradients, which is the primary factor that makes it exceedingly
challenging to detect byzantine attacks.
A novel FL defense scheme. Our proposal is called HeteroFL,
a squeezing-then-rectifying FL defense scheme to thwart
data/model poisoning attacks. HeteroFL is the first scheme
capable of protecting against the most challenging model
poisoning attacks, Min-Max, and Min-Sum, outlined in [26],
in highly heterogeneous environments. Our approach revolves
around the idea of narrowing down the legitimate gradient
direction space as much as possible and applying corrective
aggregation to steer the aggregated global model toward the
the optimal state attained in the absence of attacks. To achieve
this goal, we suggest a four-stage procedure for progressively
compressing the expansive legitimate gradient direction space.
This will coerce attackers into crafting adversarial gradients
that closely resemble the benign ones, ultimately curbing the
effectiveness of the attacks. Specifically, we initially closely
monitor the proximate gradients in the legitimate direction
space, which prevents attackers from using sybil attacks to
increase the stealthiness and potency of their attacks. We then
employ a clustering-then-grouping strategy to identify strongly
poisoned gradients in the space. This approach makes the local
gradients less heterogeneous, allowing for the use of similar-
ity detection techniques to filter out the poisoned gradients.
Additionally, to further deprive the space available for the
attackers to generate stealthier poisoned gradients, we embed a
watermark into each local gradient using randomly generated
trigger samples. This watermark allows us to keenly detect

any minor adversarial manipulations on the local gradients. As
a consequence, attackers are confined to a narrow legitimate
direction space, which only permits the generation of weakly
poisoned gradients. Finally, our corrective aggregation further
mitigates the impact of these weakly poisoned gradients.
Defending against adaptive attacks. It is essential to as-
sess the efficacy of HeteroFL in countering adaptive attacks,
where the attacker is familiar with the defense mechanisms
and can customize their attacks accordingly. To accomplish
this, we leverage the state-of-the-art AGR-tailored attack [26]
framework as a foundation to design a formidable adaptive
attack specifically for HeteroFL. We explore the effectiveness-
detectability trade-off for the adaptive attack and observe that
the potent adaptive attack learns to circumvent each detection
step. Nevertheless, the poisoned updates are already weakened
by HeteroFL, rendering them useless.
Extensive evaluations. We conduct evaluations over four real-
world heterogeneous datasets from different fields, including
three image classification datasets and a Shakespeare dataset
for a next-character prediction task. We evaluate multiple poi-
soning attacks, including label-flipping attack (a data poisoning
attack), sign-flipping attack, adaptive attack, Min-Max attack,
and Min-Sum attack [26] (model poisoning attacks). In a vari-
ety of heterogeneous scenarios, the results show that HeteroFL
significantly outperforms state-of-the-art defense schemes. For
instance, for CIFAR-10 with Resnet20, Multi-Krum (MKrum),
Zeno, FLTrust, and DnC have 20%, 21%, 42%, and 62% re-
duction in global accuracy, respectively, while HeteroFL can
achieve similar global model accuracy to the baseline with no
attack. We also conduct ablation studies for the proposed four
steps in HeteroFL. The results show that each step plays an
indispensable role in detecting poisoned updates.

II. BACKGROUND

A. Federated Learning

We consider a federated learning (FL) system with a central
server and n clients. Each client i has a local training dataset
Di. Specifically, the FL system iteratively performs the fol-
lowing steps.
Step I: In the t-th iteration, the server sends the global model
wt to all the clients or a subset of them.
Step II: Each client i trains a new local model wt+1

i over Di

by solving the optimization problem:

argmin
wt+1

i

ℓ(Di,w
t+1
i ), (1)

where ℓ(Di,w
t+1
i ) is the loss with wt set as the initialization

of wt+1
i . In particular, the optimization problem is usually

solved by wt+1
i ← wt+1

i − αi
∂ℓ(Di,wt+1

i )

∂wt+1
i

, where αi is the
learning rate of client i. After Ei iterations, the local update
gt+1
i = wt+1

i −wt will be uploaded to the server.
Step III: The server aggregates all the updates (usually using
FedAvg [19]), and obtains a new global model update gt+1,
Finally, the server updates the global model as wt+1 = wt +
gt+1.
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B. Poisoning Attacks on Federated Learning
Poisoning attacks can break many machine learning systems,

for instance, retrieval systems [16] and face recognition [25].
FL is also threatened by poisoning attacks [1], [2], [11], [17],
[26], [28], [33], [34].
Data poisoning attacks. The adversary constructs poisoned
model updates by contaminating the local training data [1],
[28], [33]. Data poisoning attacks can be untargeted or tar-
geted. The goal of untargeted attacks is to make the aggre-
gated global model have low accuracy or converge slowly.
For example, the label flipping attack changes the labels of
training examples while keeping the features unchanged [28].
In targeted data poisoning attacks, the goal is to minimize the
accuracy of the global model on attacker-chosen samples while
keeping other non-target samples unaffected. For example,
the backdoor attack injects backdoor triggers into a part of
training samples, then the global model would falsely predict
the specific samples to the target label while predicting other
normal samples correctly [1], [33].
Model poisoning attacks. Unlike data poisoning attacks, in
model poisoning attacks the adversary can manipulate local
model updates directly [2], [11], [17], [26], [34]. Conventional
model poisoning attacks include sign-flipping attack [17], bit-
flip attack [34], Gaussian attack [34], etc. However, these
attacks result in significant differences between malicious and
benign updates, making malicious updates easy to be detected.
Baruch et al. [2] demonstrated that small but well-crafted
perturbation is enough to circumvent defenses for distributed
learning. To construct more powerful attacks, recently Fang
et al. [11] formulated the local model poisoning attack as
an optimization problem to find the optimal poisoned update.
Based on this, Shejwalkar et al. [26] presented three state-of-
the-art model poisoning attacks: AGR-tailored attack that aims
to maximize the noise added to a guiding normal update, Min-
Max and Min-Sum attacks that aim to minimize the maximum
distance or the sum of distances between malicious update and
benign updates.

III. PROBLEM FORMULATION

Adversary’s objective: We consider both data poisoning and
model poisoning attacks including extensive attack methods.
The adversary aims to reduce the accuracy of the final global
model or prevent it from converging. We consider such an
objective since most of the attacks will result in that FL
cannot provide any model service for the clients. We admit that
such an objective may not include backdoor attack, however,
in the literature, backdoor attack is generally investigated
independently of the other byzantine attacks, in which many
backdoor defenses are complementary to our method.
Adversary’s capability: Following existing works [3], [5],
[13], [17], [21], [24], [32], [38], we assume that there are less
than 50% attackers, i.e., f/n < 0.5; here f stands for the
number of attackers. The adversary can arbitrarily modify the
labels of the training samples or tamper with the local model
updates directly. We also let the adversary have full knowledge
of the FL system, including its own local training data, the
aggregation strategy, and the updates of benign clients.

Defender’s objectives: HeteroFL aims to achieve the follow-
ing goals:
• Accuracy of the global model. The method should

achieve similar accuracy to the global model with the
baseline where there is no attack.

• Robustness in non-IID settings. The method should
prevent malicious updates from degrading the accuracy
or the convergence rate of the global model in broad
non-IID settings.

• Efficiency for resource-constrained clients. The
method does not incur additional computation and
communication overheads for the resource-constrained
clients.

• Privacy protection of clients. The method should not
incur any privacy concerns for clients.

Defender’s knowledge and capability: We assume that
the central server can only observe the local model updates
received from clients in each iteration.

IV. A DEEP INVESTIGATION ON POISONING ATTACKS
AND EXISTING DEFENSES

A. Existing Defenses Fail in Heterogeneous Scenarios
Heterogeneous local training data among different clients is

one of the uppermost characteristic of FL. Although recently
proposed schemes have performed experiments to demonstrate
the effectiveness over heterogeneous datasets [5], [18], [35],
[39], their defense ability gets deteriorated rapidly when the
heterogeneous degree becomes fairly higher, as evidenced
through our extensive experiments shown in Section VII.

To give a precise illustration, we first propose two metrics
to quantify the degree of a heterogeneous setting as follows.
• Load diversity evaluates the difference of the size of

local training data set among clients. It is obtained by
computing the standard deviation of the number of the
training data samples for a given label as:

φ = σ(v{i∈[n]}), (2)

where vi is an L-dimensional statistical vector for
client i, each element of which denotes the amount
of training data with label l (l ∈ [L − 1]), i.e.,
vi = (|D0

i |, |D1
i |, |D2

i |, ..., |D
L−1
i |), and σ(·) denotes

the dimension-wise standard deviation of v, i.e., φ is
a vector.

• Label diversity evaluates the difference of training data
labels among clients. It is obtained by computing the
standard deviation of sign(vi) as:

ϕ = σ(sign(v{i∈[n]})), (3)

where ϕ is a vector, sign denotes element-wise sign
function of v, and we set sign(0) = 0.

In practical applications, it’s common to encounter clients’
training datasets that exhibit both high load diversity and high
label diversity, especially when the datasets are sourced from
different geographical regions. Nevertheless, the experiments
in existing works only consider load diversity while paying
much less attention to label diversity. Fig. 1 compares
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Fig. 1. Load diversity v.s. Label diversity.

the experiment settings of FLTrust [5] and our work with
standard IID distribution over the CIFAR-10 dataset in terms
of load diversity and label diversity. We can see that although
FLTrust has a much larger load diversity than the standard
IID distribution, they have the same label diversity for all the
labels. In other words, the label types of the data samples
between clients are the same, only the amount of samples
for each label is different. On the contrary, our experiments
for evaluating HeteroFL are set with high load and label
diversities. Note that an exception occurs with label 9 since
the samples with label 9 are used as the same trigger dataset
for all clients.

B. Detailed Analysis of Existing Defenses
To figure out the reason of the failure of existing defenses,

we provide a theoretical analysis w.r.t. the impact of load and
label diversities on local gradients.

Theorem 1. The difference of gradients between any two
clients i and j is bounded by a number that is a function of
data distributions and the local models of the previous round.
Formally, we have:

∥gt+1
i − gt+1

j ∥≤
L−1∑
l=0

τxi|yj=l

∥∥∥wt
i −wt

j

∥∥∥+
G

L−1∑
l=0

∣∣∣Xi[yi = l]−Xj [yj = l]
∣∣∣, (4)

where ∥·∥ denotes the ℓ2-norm; τ and G represent Lipschitz
constant and the upper bound of gradient respectively.

Proof: see supplementary.
Remark 1. From Eq. (4), we know that the differences

between local model updates are mainly determined by two
parts: local data distributions Xi and Xj , and the previous
round local models wt

i and wt
j , which is consistent with [41].

In the centralized FL, all the clients will receive the same
global model at the beginning of round t+ 1, i.e., wt

i = wt
j ,

so local models (and the updates) of clients i and j are similar
to each other for the IID setting, i.e., Xi = Xj . When the load
diversity and label diversity increase, the difference between Xi

and Xj becomes larger, such that the gradients and local model
updates gradually differ from each other with the iterations.

Next, we will make use of this observation to analyze five
state-of-the-art defenses in the non-IID setting. Please refer
to the supplementary for more details of these defenses. In
addition, a detailed introduction for existing works are moved
to the supplementary.

Multi-Krum [3]: Multi-Krum does not work in the non-IID
setting since the difference between benign updates, evaluated
by Euclidean distance, may be larger than that of a malicious
update and benign updates, thus leading to the excluding of
benign updates.

Median [38]: In the non-IID setting, due to the large legiti-
mate direction space of local gradient caused by heterogeneous
data distribution, the median value in each dimension could be
significantly different from the result of FedAvg, resulting in
poor accuracy of the resultant global model.

Zeno [35]: Zeno fails to work in the non-IID setting for
two reasons. First, using an IID dataset to evaluate a local
gradient that is trained over a non-IID dataset will cause
a large estimated error, because there exist data samples in
the IID dataset that local models have not learned. Second,
the heterogeneity property in local hyper-parameters (e.g.,
the amount of batches) determines the magnitude of local
gradients. As a result, the magnitudes of benign gradients may
become much larger than that of malicious gradients.

FLTrust [5]: As suggested in Theorem 1, the non-IID
setting enlarges the legitimate direction space. Therefore it is
possible that the cosine similarity between the guiding gradient
and the benign local gradient is evaluated as negative, making
the scores assigned to benign gradients become zero after
clipping. As a result, they will be discarded while poisoned
ones get preserved.

DnC [26]: As the authors indicated, protecting FL from
adaptive attacks in non-IID settings is the shortcoming of
DnC. This limitation derives from the assumption that the
common features of poisoned and benign gradients should be
sufficiently separated, which apparently violates Theorem 1.

In summary, when dealing with heterogeneous data
distribution in FL, it is difficult to distinguish elaborately
crafted poisoned models from benign models by directly
using similarity detection over the raw local models, which
is the underpinning of most existing Byzantine-robust
aggregation algorithms.

C. A General Framework for Understanding Poisoning Attack
To design a well-working defense method in heterogeneous

settings, we must first figure out the fundamental mechanism
of how poisoned local gradients impact the global model.
Existing study [41] shows that the centralized training over
D ( D =

⋃n
i=1 Di) following a distribution X can achieve

higher accuracy than the aggregated global model from FL. For
drawing a general conclusion, we take the centralized training
as a baseline to analyze the model accuracy of FL under IID,
non-IID, and adversarial settings, respectively. We define the
model from the centralized training as the optimal one.

Suppose the centralized training performs T iterations with
B batches and a batch size of S, then we denote dt,l

b as the
optimal gradient w.r.t. data sample (x, l) in the b-th batch at
iteration t, where l ∈ [L− 1], b ∈ [B], t ∈ [T ]. For simplicity,
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we assume FL also performs T global iterations and all the
clients perform E local epochs over B batches with a batch
size of S. We denote gt,l

i,b,e as the local update (gradient)
w.r.t. data sample (xi, l) in the b-th batch at local epoch e
at iteration t, where l ∈ [L − 1], b ∈ [B], e ∈ [E], t ∈ [T ].
When considering the IID setting, we refer to the IID setting
where Di = D (i ∈ [n]) and all the clients perform training
totally in the same way with the training. Therefore, all the
local models are updated toward the optimal point via the
same updating path, i.e., gt,l

i,b,e = dt,l
b , (i ∈ [n]). When

considering the non-IID setting, since each client follows a
distribution Xi differing from X , the local gradient of client
i is thus different from the optimal gradient dt,l

b . Therefore,
there will be a deviation over dt,l

b , denoted as ∆t,l
i,b,e. Then

after one epoch of the local training in FL, the deviation of

client i is accumulated as
B∑

b=1

L−1∑
l=0

1
S∆

t,l
i,b,e. When considering

data poisoning attack, an attacker has two ways to poison the
dataset: changing the training data xi into x̃i or its label
l into l̃. Hence the attacker will get a malicious gradient
g̃t,l
i,b,e trained over poisoned data sample (x̃i, l̃). Compared

with the local gradient gt,l
i,b,e = dt,l

b + ∆t,l
i,b,e on the non-

IID setting, the data poisoning attack in fact only causes a
deviation ∆̃

t,l

i,b,e = g̃t,l
i,b,e − gt,l

i,b,e. Then in one epoch, the

deviation is accumulated as
B∑

b=1

L−1∑
l=0

1
S ∆̃

t,l

i,b,e. For the model

poisoning attack, the most simple and effective approach for
an attacker is replacing the benign gradient with an arbitrary
one, which leads to a deviation on the local gradient gt

i after
one round. We denote such deviation as ∆̃

t

i. Then, in the t-th
iteration, any client i would derive the gradient:

gt
i =

E∑
e=1

B∑
b=1

L−1∑
l=0

1

S
(dt,l

b +∆t,l
i,b,e + ∆̃

t,l

i,b,e) + ∆̃
t

i, (5)

and the deviations have the following properties:

∆t,l
i,b,e =

{
0, Di is IID,
∗, Di is non-IID,

∆̃
t,l

i,b,e =

{
0, client i is honest,
∗, client i conducts data poisoning,

∆̃
t

i =

{
0, client i is honest,
∗, client i conducts model poisoning,

where “∗” represents an arbitrary deviation direction. Let ∆t
def

denote the rectified gradient generated by any defense method,
then, after receiving all the updates, the server performs the
aggregation as:

gt =

n∑
i=1

1

n
gt
i +∆t

def

=

n∑
i=1

E∑
e=1

B∑
b=1

L−1∑
l=0

1

nS
dt,l
b︸ ︷︷ ︸

gt
iid

+

n∑
i=1

E∑
e=1

B∑
b=1

L−1∑
l=0

1

nS
∆t,l

i,b,e︸ ︷︷ ︸
∆t

niid

+

n∑
i=1

E∑
e=1

B∑
b=1

L−1∑
l=0

1

nS
∆̃

t,l

i,b,e︸ ︷︷ ︸
∆̃

t

dp

+

n∑
i=1

1

n
∆̃

t

i︸ ︷︷ ︸
∆̃

t

mp

+∆t
def

= gt
iid +∆t

niid + ∆̃
t

dp + ∆̃
t

mp +∆t
def ,

(6)
where gt

iid represents the optimal global gradient obtained
from the IID setting, ∆t

niid, ∆̃
t

dp and ∆̃
t

mp represent the
global gradient deviations generated by non-IID setting, data
poisoning attack and model poisoning attack, respectively.

Remark 2: From Eq. (5) and (6), we can draw the following
conclusions: 1) An effective poisoning attack will definitely
cause the direction deviation of the global model. Generally,
the attackers can tamper with either the magnitude or the
direction of the benign aggregated gradient gt

iid + ∆t
niid to

destroy the global model accuracy. In practice, however, it
cannot change the magnitude of gt

iid + ∆t
niid independently

without affecting its direction, since the attackers are not able
to obtain the aggregated direction gt

iid + ∆t
niid from benign

clients in the t-th iteration. 2) A larger legitimate direction
space is the key reason why non-IID settings make it
more difficult to detect poisoned updates. In IID settings,
the legitimate direction of benign gradients is limited to be
gt
iid, thus the attacker only has a quite small direction space

to manipulate the benign gradients, which makes it much
easier to be detected. But for the case of non-IID scenario,
the legitimate direction space of benign gradients ranges from
gt
iid to gt

iid +∆t
niid, it thus becomes much more difficult to

detect abnormality since the server cannot figure out whether
such dissimilarity comes from the attack deviation ∆̃

t

dp+∆̃
t

mp

or from the non-IID deviation ∆t
niid. 3) An effective defense

approach should eliminate malicious deviations as much
as possible. The primary approach for an effective defense
lies in rectifying global gradient direction by mitigating the
impact of ∆̃

t

dp+ ∆̃
t

mp, such that the aggregated global model
moves towards the optimal model that was trained under no
poisoning. Fig. 2 gives a brief illustration for this observation.
We can see that a defensive algorithm performs best iff
∆t

def = −(∆̃
t

dp + ∆̃
t

mp).

V. HETEROFL: OUR DEFENSIVE SCHEME

A. Intuition and Overview
The intuition behind HeteroFL is to squeeze the legitimate

direction space as much as possible, such that the available
direction space for the attacker to manipulate is quite small,
i.e., resulting in a small ||∆̃dp+∆̃mp||. Then, for the malicious
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Fig. 3. Illustration of our proposed four defensive steps. (a) The legitimate direction space with various poisoned updates. (b) Sybil direction removal. (c)
Similarity detection & watermark verification based direction removal. (d) Magnitude rectification.

updates from the squeezed space, we generate ∆def to further
rectify the deviation ∆̃dp + ∆̃mp. Specifically, we make use
of four complementary defensive steps to sequentially squeeze
the legitimate direction space and construct ∆def by corrective
aggregation. Fig. 3(a) shows the entire legitimate direction
space with different kinds of poisoned updates. We divide
the legitimate direction space into two parts: the strong effect
area where a single poisoned update can significantly damage
the global model accuracy, and the weak effect area where
poisoned updates can only slightly change the direction of
the global model after aggregation. As shown in Fig. 3(b),
HeteroFL first restricts the legitimate direction space by
discarding updates whose directions are excessively similar
with each other, in order to prevent attackers from constructing
multiple updates through reinforcing their similarity (e.g., sybil
attack [12]), which will finally make a significant impact on the
global model. We call this sybil direction removal. Based on
this, HeteroFL then aims to push the legitimate direction space
into the weak effect area through removing all the updates
that lie in the strong effect area. As shown in Fig. 3(c), in
order to mitigate the impact of poisoned updates as much as
possible, we will find a direction space (called detectable area)
that is larger than the strong effect area by using our proposed
similarity detection and watermark verification steps. Finally,
HeteroFL rectifies the magnitudes of all the remaining updates,
such that the malicious updates will be more similar to the
benign local updates in terms of the magnitude (Fig. 3(d)). For
the remaining negative impact from ∆̃dp + ∆̃mp, they will be
rectified with ∆def generated from our corrective aggregation

strategy.

B. A Complete Description of HeteroFL

Algorithm 1 shows the complete HeteroFL algorithm. After
preprocessing an trigger dataset Dtrg (Lines 1-3), T itera-
tions are conducted. In each iteration, HeteroFL sequentially
executes four steps, i.e., sybil direction removal (Lines 9-
10), similarity detection (Lines 11-12), watermark verification
(Lines 13-14), magnitude rectification (Lines 15). Finally, with
the help of magnitude rectification, corrective aggregation is
achieved (Line 17-18).

C. Details of Our Defense Steps

Sybil direction removal. It is indicated in our experiment
in supplementary that even in homogeneous data settings,
updates that are extremely close with each other (measured
by cosine similarity) have a higher possibility of being mali-
cious. Removing such sybil gradient directions is beneficial to
compelling attackers to construct poisoned updates with more
abnormality. To this end, HeteroFL adaptively discards updates
with high relative similarities beyond the clipping upper bound
2(š + ř) (Alg. 2). Since we assume f/n < 0.5, š + ř will
approach the half of the maximal similarity of the benign
updates. Hence, we can estimate a small upper bound of the
benign similarities by 2(š+ ř).

Similarity detection. Our intuition is that the gradients (in-
cluding the aggregated ones) that are trained over the datasets
following similar distribution can have a nearly consistent
objective if they all are obtained from the same initial model.
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Algorithm 1 Complete Description of HeteroFL
Input: A trigger dataset Dtrg; number of classification tasks L;
number of global iterations T ; number of clients n; number of
sampled clients m; filtering fraction β; loss reduction threshold
λ.
Output: Final global model: wT .

1: Label the samples in Dtrg with L.
2: The server sends Dtrg and a randomly initialized model

w0 with L+ 1 classifications to all the clients.
3: The clients append Dtrg to their training datasets.
4: for t = 0, 1, 2, · · · , T − 1 do
5: The server broadcasts wt to m sampled clients.
6: Each client i uploads update gt+1

i using Eq. (1).
7: The server receives the update set C =

{gt+1
1 , gt+1

2 , · · · , gt+1
m }.

8: Initialize empty sets C1, C2, C3, C4 and C̃1, C̃2, C̃2.
9: C̃1 =SybilDirectionRemoval(C)

10: C1 ← C − C̃1.
11: C̃2 =SimilarityDetection(C1, β).
12: C2 ← C1 − C̃2.
13: C̃3 =WatermarkVerification(C2, Dtrg,w

t, λ).
14: C3 ← C2 − C̃3.
15: C4 =MagnitudeRectification(C3).
16: //Corrective aggregation.
17: ḡ ← the average of all updates in C4.
18: wt+1 ← wt + ḡ.
19: end for
20: return wT .

Algorithm 2 SybilDirectionRemoval(C)
Output: A malicious updates set Cmal.

1: Initialize an empty set Cmal.
2: {s1, s2, · · · , s|C|} =RelativeCosineSimilarity(C,C)
3: š← the median of {s1, s2, · · · , s|C|}
4: ř ← the median of {|s1 − š|, |s2 − š|, · · · , |s|C| − š|}
5: Append all updates in C with si > 2(š+ ř) to Cmal

6: return Cmal.

Hence, any (aggregated) gradient whose training dataset is poi-
soned will make the update move towards a biased objective.
In view of this, HeteroFL adopts a clustering-then-grouping
strategy to construct many aggregated gradients with similar
objectives such that we can make use of similarity between
the aggregated gradients to filter out malicious gradients. As
shown in Alg. 4, HeteroFL first utilizes the popular mean shift
clustering method [10] that can adaptively decide the number
of the clusters to divide the update set (Lines 2-3) into several
clusters, each of which consists of similar gradients which are
trained over possibly similar data distributions. Then HeteroFL
randomly selects a gradient from each cluster to constitute
a new group (Lines 4-11) and computes the average as its
centroid (Lines 13-16). Each centroid can be regarded as a
gradient that is trained over a dataset that covers samples as
diverse as possible. Therefore all the centroids can be viewed
as “new” updates trained in an IID-like setting, namely, they

Algorithm 3 RelativeCosineSimilarity(C1, C2)

Output: Relative similarity set.
1: for i = 1, 2, · · · , |C2| do
2: //Compute a score si for each update in C2.
3: si =

∑
C1[j]∈Γ

i,
|C1|

2

⟨C1[j],C2[i]⟩
∥C1[j]∥·∥C1[i]∥ , where Γ

i,
|C1|

2

is the

set of the half of updates from C1 that have the highest
cosine similarity with C2[i].

4: end for
5: return {s1, s2, · · · , s|C2|}.

Algorithm 4 SimilarityDetection(C, β)
Output: A set of malicious updates Cmal.

1: //Divide the update set C into c clusters by mean shift
clustering that can dynamically determine the clusters.

2: {s1, s2, · · · , s|C|} =RelativeCosineSimilarity(C,C)
3: Cluster{i∈[c]} = MeanShiftClustering({s1, s2, · · · , s|C|})

4: //Rearrange clusters into r groups such that each group
contains the most diverse updates.

5: r ← the size of the cluster that has the maximum number
of updates.

6: for i = 1, 2, · · · , r do
7: Initialize an empty set Groupi.
8: for j = 1, 2, · · · , c do
9: Groupi[j]← Clusterj [i] if Clusterj [i]! = ∅.

10: end for
11: end for
12: //Identify the groups that contain malicious updates.
13: Initialize three empty sets C1, C2, Cmal.
14: for i = 1, 2, · · · , r do
15: C1[i]← the average of all updates in Groupi.
16: end for
17: {s1, s2, · · · , s|C1|} =RelativeCosineSimilarity(C1, C1)
18: Cluster ← the cluster with the maximum number of

updates by MeanShiftClustering({s1, s2, · · · , s|C1|})
19: Append updates in C1 but not in Cluster to Cmal.
20: //Select malicious updates from identified groups.
21: C2 ← set of updates of Group{i∈[r]} whose average lies

in Cmal.
22: {s1, s2, · · · , s|C2|} =RelativeCosineSimilarity(C,C2)
23: Cmal ← ∅
24: Append β · |C2| updates from C2 with the lowest si to

Cmal.
25: return Cmal.

have a more consistent objective than before. Since FL is
used for large-scale distributed learning and usually includes
a massive number of clients (e.g., millions of users), we can
construct sufficient groups that have similar centroids. Thus
if any group contains malicious updates, the corresponding
centroid will be far from the benign ones. In light of this, sim-
ilarity can be used to identify malicious centroids/groups and
the malicious updates in those groups (Lines 17-24). Note that
existing schemes like APFed [8] simply remove the outliers in
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Fig. 4. Ablation study on similarity detection and magnitude rectification
over MNIST. We set n = 100 and f = 20. We define removal success rate
as the ratio of malicious updates in the removed updates to the total number of
attackers. (a) The impact of our clustering-then-grouping strategy on similarity
detection under label flipping attack. (b) The impact of our clipping strategy
on FedAvg when ||∆̃dp + ∆̃mp|| is increased.

the clusters, while our similarity detection step designs a brand
new grouping strategy to put gradients from different clusters
into the same group. Furthermore, SmartFL [36] adjusts the
aggregated weights, while FedEqual [7] adjusts the model
weights of each layer. These aspects represent orthogonal
designs that can be seamlessly integrated into our scheme.

In Fig. 4(a), we perform an ablation study to intuitively
show the usefulness of the clustering-then-grouping strategy.
We can see that our similarity detection with the clustering-
then-grouping strategy can remove much high percentages of
the attackers while directly conducting similarity detection on
the raw local updates barely spots the attackers. This indicates
that our strategy can significantly improve the similarity of the
benign updates such that the malicious ones are more easily
detected by the similarity detection. We further prove this in
supplementary.

Watermark verification. To prevent the adversary from
compromising the model performance, the server can embed
a watermark into each local model and then verify its ef-
fectiveness to detect poisoned models. To do this, our core
idea is to send a watermark trigger dataset (Dtrg), which is
entirely different from the clients’ datasets, to all clients for
local training. The server can then verify the loss trend of
each local model to identify whether the watermark has been
broken. To this end, the server first extends the classification
task number of the global model from L to L + 1 and
randomly generates samples with the new label L to serve
as the watermark trigger dataset. By extending the model,
the server can ensure that the watermark trigger dataset is
entirely different from the clients’ datasets. Then, the server
will issue the trigger dataset and the extended global model
to the clients, who will append Dtrg to the local training
dataset and initiate the local model with the extended global
model (Lines 1-3 in Alg. 1). After receiving local updates
trained over such a mixed dataset, the server will conduct
watermark verification with Dtrg (Line 13 in Alg. 1). The local
updates whose loss reductions are smaller than a threshold λ
are regarded as malicious and will be removed (Lines 4-7 in
Alg. 5). Note that Zeno [35] also uses loss reduction to estimate
the updates, however, it needs the dataset to follow the same
distribution as that of clients, which infringes privacy. We make
a comprehensive comparison between HeteroFL and Zeno (see
the supplementary).

Algorithm 5 WatermarkVerification(C,Dtrg,w
t, λ)

Output: a set of malicious updates
Cmal.

1: Initialize an empty set Cmal.
2: for i = 1, 2, · · · , |C| do
3: //Evaluate the loss with an estimated model ŵt+1

i .
4: ŵt+1

i = wt + C[i].
5: loss reductioni = ℓ(Dtrg,w

t)− ℓ(Dtrg, ŵ
t+1).

6: if loss reductioni ≤ λ then
7: Append C[i] to Cmal.
8: end if
9: end for

10: return Cmal.

Magnitude rectification. For constructing an effective
∆def , we assume f/n < 0.5. As shown in Alg. 6, Het-
eroFL adaptively removes the updates with too large or small
magnitudes (Lines 10-17) and rescales updates to have the
same magnitude that equals to the average of the remaining
updates (Lines 18-20). In this way, ∆def will be generated
spontaneously when aggregating. Note that since m̌ + š ap-
proaches half of the maximal normalized magnitude of the
benign updates. Hence, we can empirically estimate a bigger
upper bound of the benign normalized magnitudes by 8(m̌+š).
Although clipping updates are considered in many previous
defenses, none of them take all the updates into consideration
to have the same magnitude for aggregation, which provides
critical corrective aggregation, i.e., generating ∆def (theoreti-
cal analysis in supplementary). Fig. 4b shows that FedAvg with
magnitude rectification can effectively eliminate the impact of
attacks with a small ||∆̃dp+∆̃mp||, while only clipping updates
suffers from significant drops in accuracy, which means ∆def

can be obtained by clipping the updates to have the same
magnitude.

VI. ADAPTIVE ATTACKS ON HETEROFL
A recently proposed adaptive attack [11], [26] is a new kind

of attacks where the attacker knows the defensive method in
advance and then adapts his attack strategy to circumvent the
defense. In particular, AGR-tailored attack proposed in [26] is
a state-of-the-art framework for constructing a strong adaptive
attack. In this section, we first briefly introduce the AGR-
tailored attack framework and then show the design of adaptive
attack on HeteroFL based on the framework.

A. Adaptive Attack Framework
To ease the expression, we assume the first f updates are

poisoned. In order to construct poisoned local updates, the
adversary with AGR-tailored attack performs the following
optimization problem:

argmax
γ
∥g −A (g̃{i∈[f ]} ∪ g{i∈[f+1,n]})∥

g̃{i∈[f ]} = g + γ∆̃; g = FedAvg(g{i∈[n]}),
(7)

where A is the known defense method, g{i∈[n]} are the benign
updates that the adversary knows, g is a reference benign
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Algorithm 6 MagnitudeRectification(C)
Output: The final set of selected updates: C.
1: median← the median of ℓ2 norms of updates in C.
2: Initialize empty set D.
3: for i = 1, 2, · · · , |C| do
4: if ∥C[i]∥< median then
5: Append median

∥C[i]∥ to D.
6: else
7: Append ∥C[i]∥

median to D.
8: end if
9: end for

10: //Remove updates with too small/large magnitudes by an
adaptive clipping bound 8(m̌+ š).

11: m̌, š ← the mean and standard deviation of the first |D|
2

smallest values in D.
12: for i = 1, 2, · · · , |D| do
13: if D[i] > 8(m̌+ š) then
14: Remove C[i] from C.
15: end if
16: end for
17: mean← the mean of ℓ2 norms of updates in C.
18: for i = 1, 2, · · · , |C| do
19: C[i]← C[i]

∥C[i]∥ ·mean.
20: end for
21: return C.

aggregation obtained by FedAvg [19] that averages all the
benign updates. ∆̃ is a malicious perturbation and γ is a
scaling coefficient. In [26], three types of ∆̃ are given as
follows:
• Inverse unit vector: ∆̃uv = − g

∥g∥ .

• Inverse standard deviation: ∆̃std = −σ(g{i∈[n]}).
• Inverse sign: ∆̃sgn = − sign(g).

B. Instantiating Adaptive Attacks

We utilize the state-of-the-art framework to design and solve
the optimization objective.
Optimization objective: Recall that HeteroFL performs four
defensive steps to construct a benign selection set C4 and
calculates an average of the updates in C4 as its aggregate.
Thus, following [26], the adversary should maximize the
number of poisoned updates in C4 to the optimal value f , while
maximizing the perturbation γ∆̃ added to the reference benign
update g to boost the attack impact on the final aggregate.
Formally, we have the following optimization objective to
attack HeteroFL:

argmax
γ

f = |{d ∈ g̃{i∈[f ]}|d ∈ C4}|

g̃{i∈[f ]} = g + γ∆̃{i∈[f ]}; g = FedAvg(g{i∈[n]}),
(8)

where all g̃{i∈[f ]} do not loss performance on Dtrg; ∆̃1 is one
of the three types of perturbation defined in Section VI-A; ∆̃i

(2 ≤ i ≤ f ) are generated by randomly flipping the signs of

Algorithm 7 Optimization algorithm of scale factor γ
Input: γinit, g{i∈[n]}, γsucc, τ

1: step← γinit/2, γ ← γinit
2: while |γsucc − γ|> τ do
3: if |{d ∈ g̃{i∈[f ]}|d ∈ C4}|= f then
4: γsucc ← γ
5: γ ← (γ + step/2)
6: else
7: γ ← (γ − step/2)
8: end if
9: step = step/2

10: end while
11: return γsucc

⌈µ · r⌉ elements in ∆̃1 to the opposite; here µ and r are the
percentage of flips and the number of parameters in an update,
respectively.
Solving the optimization objective: We strictly follow [26] to
find the most efficient scale factor γ by Alg. 7. Given malicious
directions ∆̃{i∈[f ]} and the reference update g, Alg. 7 begins
with a large initial γ to construct the poisoned updates.

VII. EXPERIMENTS

We use FedML [14], a popular research library and bench-
mark for FL, to evaluate the effectiveness of HeteroFL against
poisoning attacks, and compare with the baseline (i.e., Fe-
dAvg [19] under no attack), FedAvg [19] under attacks (abbre-
viated as FedAvg-A), and the state-of-the-art defenses, includ-
ing Multi-Krum (abbreviated as MKrum) [3], Median [38],
Zeno [35], FLTrust [5], and DnC [26]. In addition, we notice
some recent related works [6], [9], [22]. As [9] requires linear
regression analysis for the local model parameters of each
dimension, which incurs significant computing overhead and
exceeds our memory upper bound, we had to exclude it from
our analysis. FedRecover [6] and FRL [22] are orthogonal to
HeteroFL and potentially can be combined with ours. For a
detailed analysis, please refer to the supplementary.

A. Experimental Setup
1) Datasets and models: Please refer to supplementary.
2) Data partition method: Following FedML [14], we use

the popular Latent Dirichlet Allocation (denoted as Dirn(q),
q is the concentration parameter ) to partition the CIFAR-10
dataset. Specifically, we simulate a heterogeneous partition for
n clients by sampling pl ∼ Dirn(q) and allocating a pl,i
proportion of the training instances of class l to local client i,
where pl is a n-dimensional vector and pl,i is the i-th value
in pl. Therefore, a smaller q leads to a higher heterogeneous
degree. In our experiments we set q = 0.2.

3) Evaluated poisoning attacks: We evaluate both data
poisoning attacks and model poisoning attacks.
Label flipping (LF) attack: LF is a data poisoning attack.
Specifically, for each training example (xi, yi) ∈ Di, the data
poisoning attackers flip its label yi to L− yi − 1.
Sign flipping (SF) attack: SF is a local model poisoning
attack. An attacker would flip the direction of the local update
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TABLE I. A COMPARISON WITH STATE-OF-THE-ART DEFENSE METHODS OVER HETEROGENEOUS DATASETS IN TERMS OF THE GLOBAL MODEL
ACCURACY

Dataset
(Model) Defense Without attack Adaptive attack Min-Max attack Min-Sum attack LF attack SF attack

CIFAR-10
(ResNet20)

MKrum
Median
Zeno

FLTrust
DnC

HeteroFL

0.7323
0.6864
0.7322
0.5847
0.7306
0.7239

0.5331
0.5070
0.5163
0.1642
0.1111
0.7123

0.6125
0.5466
0.6872
0.6073
0.2318
0.7201

0.5789
0.5017
0.6309
0.5907
0.2240
0.7133

0.7093
0.6521
0.7299
0.5618
0.7164
0.7180

0.7017
0.6506
0.7119
0.5912
0.7109
0.7120

EMNIST
(CNN)

MKrum
Median
Zeno

FLTrust
DnC

HeteroFL

0.8021
0.7216
0.8014
0.7986
0.8031
0.8024

0.0513
0.5345
0.0557
0.0513
0.0524
0.7914

0.0557
0.6021
0.0557
0.0513
0.0524
0.8001

0.0519
0.5802
0.0557
0.0513
0.0524
0.7928

0.6983
0.6490
0.7910
0.7909
0.7899
0.7908

0.7871
0.6914
0.7952
0.7812
0.0031
0.7965

MNIST
(LR)

MKrum
Median
Zeno

FLTrust
DnC

HeteroFL

0.8201
0.8007
0.8211
0.8203
0.8210
0.8216

0.2215
0.7106
0.6052
0.8109
0.7823
0.8110

0.4501
0.7328
0.6344
0.8105
0.7967
0.8169

0.4769
0.7521
0.6590
0.8183
0.7934
0.8132

0.6851
0.4982
0.7570
0.8145
0.5957
0.8143

0.8200
0.7296
0.8193
0.8192
0.0221
0.8200

Shakespeare
(RNN)

MKrum
Median
Zeno

FLTrust
DnC

HeteroFL

0.5234
0.5124
0.5235
0.5214
0.5229
0.5218

0.2345
0.4931
0.2115
0.5108
0.5118
0.5128

0.2175
0.4899
0.1705
0.5191
0.5156
0.5114

0.2009
0.4787
0.2516
0.5162
0.5177
0.5186

0.5019
0.5144
0.5231
0.4690
0.5186
0.5151

0.5187
0.4897
0.5199
0.4365
0.5011
0.5200

gi to −zgi; here z is a scale factor.
Min-Max attack: Min-Max attack [26] is an optimization-
based approach to make the poisoned updates lie close to
the clique of the benign updates by minimizing the maximum
distance between malicious gradient and other gradients.
Min-Sum attack: Min-Sum attack [26] aims to minimize the
sum of distances between malicious gradient and all the benign
gradients.
Adaptive attack: We evaluate the adaptive attack proposed in
Section VI-B, which is the strongest attack on HeteroFL.

4) Evaluation metrics: We define global model accuracy
as the proportion of correctly predicted testing samples to the
total testing samples. Besides, we define removal success rate
as the ratio of malicious updates in the removed updates to the
total number of attackers.

5) Parameter settings: Please refer to the supplementary.
B. Comprehensive Comparison with State-of-the-art Defenses

HeteroFL achieves the four defense goals: We aim to
design a defense method satisfying four goals presented in
Section III. Table I exhibits the experimental results using
diverse defenses under five attacks.
Accuracy: HeteroFL achieves nearly identical accuracy to the
baseline [19]. Nevertheless, some of the existing defenses yield
much lower accuracy even under no attacks. For example, on
the CIFAR-10 dataset, the global model accuracy of HeteroFL
is 72.39%, while that of FLTrust and Median are 58.47%
and 68.64%, respectively. Note that there are counter-intuitive
cases where the adaptive attack on HeteroFL is weaker than the
other attacks (at most 0.0014 worse) because it uses a coarse-
grained optimization way (solving for the most effective γ
via updated step sizes). The original paper [26] also shows
similar counterintuitive cases in its Table II (Purchase), e.g.,
in Purchase (Table II), adaptive attack on Bulyan (Iθ = 28.7)
is 1.6 weaker than Min-Sum attack (Iθ = 30.3).

Robustness: The accuracy of HeteroFL under all attacks is
comparable to that of baseline. However, the accuracy of the
existing defenses decreases significantly, especially under the
adaptive attack. For example, on the CIFAR-10 and EMNIST
datasets, the accuracy of the other defenses is considerably
reduced after performing the adaptive attack, while the accu-
racy of HeteroFL is barely reduced. This is because HeteroFL
can effectively remove most malicious updates. Then a few
malicious updates escaped from our detection only have little
impact on the global model and are further rectified by the
corrective aggregation strategy.

Efficiency: Our method involves simple computation oper-
ations that can be easily handled by a FL server typically
with powerful computational resources. Initially, the server
provides clients with a trigger dataset of 4 samples, incurring
minimal communication costs before FL training without over-
head during training. Next, the first step involves computing
pair similarities between updates. This operation is computa-
tionally efficient and widely accepted in the literature (e.g.,
Multi-Krum, FoolsGold, Bulyan). The second step utilizes a
clustering-then-grouping approach on scalar pair similarities.
Scalar computations are typically executed at a very high
speed, often measured in nanoseconds or even picoseconds.
The third step only requires computing the loss values for
the 4 samples. Calculating the loss for a few samples can
be completed in milliseconds or less. Finally, in the fourth
step, computing the norm of updates is a standard operation
in the literature and machine learning systems, and it is not
time-consuming. To gain an intuitive insight into the efficiency,
Fig. 5 compares the testing loss of the global model for Het-
eroFL over the CIFAR-10 dataset under attacks and no attacks,
HeteroFL can converge as fast as the baseline, which indicates
that HeteroFL does not incur heavy communication costs to
clients. Table II shows that our method does not impose heavy
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Fig. 5. The global model testing loss on CIFAR-10. (a) The global model
testing loss when HeteroFL is under all attacks. (b) The global model testing
loss of different defenses under no attacks.

TABLE II. COMPARISON OF TIME-TO-ACCURACY UNDER DIFFERENT
SETTINGS. WE REPORT THE TIME-TO-ACCURACY, WHICH IS THE TIME FOR

A SYSTEM TO TRAIN TO A TARGET ACCURACY (TA). WE MEASURE THE
TIME-TO-ACCURACY IN HOURS (H)

Method MNIST, LR CIFAR-10, ResNet20 Shakespeare, RNN FEMNIST, CNN
TA (80%) TA (70%) TA (50%) TA (70%)

FedAvg 0.0883h 55.0419h 7.6178h 0.3353h
Ours 0.1869h 71.1811h 17.8122h 0.8872h

Median 0.1422h 58.6653h 17.1472h 0.6100h
Zeno 0.1683h 68.8683h 17.5297h 0.6714h

FLTrust 0.2011h 98.2744h 19.7017h 0.9719h
DnC 0.2378h 75.4025h 19.2150h 0.9369h

Multi-krum 0.2422h 71.8450h 18.0239h 0.9044h

computational overhead compared to the baseline FedAvg and
achieves comparable computation time with existing methods.

Privacy: HeteroFL utilizes a randomly generated dataset to
construct the trigger dataset, which does not require any private
information about clients’ local training datasets. Hence, Het-
eroFL does not undermine the principle of privacy protection.

C. Trade-off Between Effectiveness and Detectability of Adap-
tive Attack

There exists a trade-off between attack effectiveness and
detectability given a defense method. The stealthier the poi-
soned models are, the less effective they will be. Hence, it
is necessary to demonstrate where the trade-off point is and
how it impacts the final global model. Next, we will show the
adaptive attack with the following three factors that mainly
affect the trade-off:
Impact of γinit on the trade-off: From Algorithm 7, it
is easy to know that the most effective γ should be in
the range [0.5γinit, 1.5γinit], where a large initial γ leads
to a large solution γ and makes the adaptive attack more
detectable. We use Fig. 6(a) to simply illustrate the situation
that different γinit can bring a different range of effectiveness
and detectability. The experimental results are shown in
Fig. 7, when the detectability decreases (the initial γ reduced
from 0.09 to 0.001), the adaptive attack can gradually break
through HeteroFL, and its trade-off points on HeteroFL occur
at γinit = 0.03. However, the best effectiveness only leads
to a negligible impact on HeteroFL. Besides, even if the
adversary changes the initial ∆̃ to be ∆̃uv or ∆̃sgn over four
heterogeneous datasets, HeteroFL can also not remove all the
poisoned updates. However, they are still insufficient to poison
our HeteroFL in the trade-off point. Note that we leave the
experimental results on all datasets to the supplementary.
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Fig. 6. The attack effectiveness-detectability continuum. A trade-off must be
made between the effectiveness of the attacks and how easy they are to detect.
(a) The impact of γinit on the trade-off. (b) The impact of heterogeneity and
poisoned ratio on the trade-off.
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Fig. 7. Adaptive attack using perturbation ∆̃std. The removal success rate is
the average of removal success rates in all rounds. (a) EMNIST. (b) CIFAR-
10.

Impact of data heterogeneity (including IID setting) on
the trade-off: As discussed in Remark 2, a larger legitimate
direction space resulting from the higher heterogeneous degree
could make the adaptive attack generate more threatening
poisoned models. Fig. 6(b) roughly depicts the trade-off sit-
uations under different heterogeneous degrees. It would be
interesting to show how much legitimate direction region
HeteroFL can restrict when it is enlarged by the heterogeneous
data distribution. We evaluate the impact of heterogeneous
degree on the CIFAR-10 dataset, considering 25% attackers
under adaptive attack with γinit = 0.03. The experimental
results in Fig. 8(a) show that when the heterogeneous degree
is increased (q decreases from 0.9 to 0.1), all the defenses
suffer from increasing drops in accuracy, which indicates
higher heterogeneity makes the attack more effective at the
trade-off point. HeteroFL has the smallest drop in accuracy,
being acceptable, which shows HeteroFL largely restricts the
legitimate direction space to a benign region. In addition,
HeteroFL works also well in the homogeneous setting when
facing various attacks, as shown in Fig. 8(b).

Impact of the percentage of attackers on the trade-off: It is
obvious that using more poisoned updates, the adaptive attack
can construct poisoned updates that slightly deviate from the
benign ones, thus being less detectable. As shown in Fig. 6(b),
more poisoned updates move the trade-off point to a more
stealthy position. To evaluate this scenario, we set q = 0.2 and
use the most effective γinit for all datasets. Fig. 9 illustrates
the accuracy of the existing defenses against adaptive attack
when the percentage of attackers varies from 10% to 49%.
We can see that high-ratio attackers significantly improve the
attack effectiveness on all defenses, i.e., the trade-off points
roughly occur in 10% percentage for the other defenses, and
30% percentage for our HeteroFL.
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Fig. 8. Impact of homogeneous and heterogeneous setting on CIFAR-10.
(a) Impact of heterogeneous degree. A smaller q has a higher heterogeneous
degree. (b) The global model accuracy of HeteroFL in homogeneous setting
under all attacks.
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Fig. 9. Impact of the percentage of attackers on the accuracy of global model.
(a) EMNIST. (b) CIFAR-10.

D. Ablation Studies on HeteroFL
HeteroFL consists of four core defense steps: sybil direction

removal (step 1), similarity detection (step 2), watermark
verification (step 3), and magnitude rectification (step 4). We
will keep stacking each step onto FedAvg and evaluate the
resulting defense variants (i.e., step 1, steps 1-2, and steps 1-
3) against the same attacks.

Table III compares FedAvg, the three variants w.r.t. the
global model accuracy and the removal success rates under
different attacks. Firstly, step 1 is primarily effective in pre-
venting the adversary from utilizing similar poisoned updates
to enhance the attacks, but is not effective against dissimilar
poisoned updates. When FedAvg absorbs step 1, the Min-Max
and Min-Sum attacks require uploading dissimilar updates,
resulting in step 1 having higher ACC even under similar
ARSRs compared to FedAvg. Secondly, step 2 can easily
detect simple attacks (e.g., LF and SF attacks), but its ability
to mitigate more sophisticated attacks (e.g., adaptive attacks) is
moderate. Thirdly, step 3 can spot more sophisticated attacks
but is ineffective against the simple LF attack. Finally, step 4
can rectify the remaining weakly poisoned gradients from all
attacks. Steps 1-4 (i.e., HeteroFL) show no ARSR improve-
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Fig. 10. Impact of different parameters on HeteroFL under different attacks.
(a) Impact of the trigger dataset size |Dtrg | in watermark verification. (b)
Impact of the loss reduction threshold λ in watermark verification.

TABLE III. ABLATION STUDY OF HETEROFL OVER CIFAR-10
DATASET. NOTE THAT WE REPORT THE GLOBAL MODEL TESTING

ACCURACY (%), DENOTED AS ACC, AND THE AVERAGE REMOVAL
SUCCESS RATE ON ALL ROUNDS (%), DENOTED AS ARSR

Settings Adaptive attack Min-Max attack Min-Sum attack LF attack SF attack
ACC ARSR ACC ARSR ACC ARSR ACC ARSR ACC ARSR

FedAvg 0.00 0.00 17.75 0.00 19.30 0.00 67.27 0.00 0.00 0.00
Step 1 0.00 0.05 19.19 0.72 23.67 0.98 67.48 0.97 0.00 1.45
Steps 1-2 57.31 0.12 60.28 73.51 64.50 79.92 70.76 83.52 71.03 100.00
Steps 1-3 69.97 0.14 71.14 88.42 70.82 87.64 70.85 84.80 71.18 100.00
Steps 1-4 71.23 0.16 72.01 89.53 71.33 88.47 71.80 85.06 71.20 100.00
Baseline 72.75 - 72.75 - 72.75 - 72.75 - 72.75 -

ment over steps 1-3 while achieving similar ACC compared to
the Baseline.

Note that the current clustering-based defenses operate on
the assumption that non-outlier clusters are always consid-
ered safe. However, in situations where the data is non-IID,
benign updates can vary significantly. This implies that the
non-outliers could potentially be malicious updates as well,
such as those depicted in Fig. 3(a), where g̃1 progresses
to g̃10. In contrast, our first step allows for the adaptive
removal of similar non-outliers, thereby enabling attackers to
create malicious updates like g̃8, g̃9, g̃10 using a larger space,
consequently increasing the risk of detection. In the second
step, we establish groups of benign updates that resemble
IID cases, effectively eliminating additional non-outliers (e.g.,
g̃8, g̃9, g̃10) that deviate from the benign ones but still fall
within the legitimate space. The third step involves filtering
out non-outliers that closely match the benign ones (e.g.,
g̃5). Lastly, in the fourth step, we supplement the detection
of malicious updates by considering their magnitudes and
minimizing the impact of such updates through corrective
aggregation.

Overall, HeteroFL combines the strengths of the four com-
plementary steps and thus keeps the ACC high for all levels
of attack complexity. This shows the necessity and benefits
of integrating the four steps, as they effectively overcome the
limitation of one-step defense in existing methods like Multi-
Krum, Median, and FLTrust, which cannot fully monitor the
entire survival space for the adversaries to construct poisoned
gradients. In contrast, our four steps provide complementary
monitoring across the entire space, effectively addressing this
limitation and enhancing the overall defense mechanism.

E. Evaluating Key Parameters in HeteroFL

HeteroFL only contains two empirical parameters β and λ.
β can be set as a small value to select the minorities like
existing works did. Next, we will investigate how other key
parameters λ, and |Dtrg| impact each step in HeteroFL.
Impact of the trigger dataset size |Dtrg| : Our watermark
verification relies on an trigger dataset that is completely
irrelevant with client private datasets. Fig. 10(b) shows the
impact of size of trigger dataset on the global model accuracy
under five attacks on MNIST. We observe that our watermark
verification is sensitive to the model poisoning attacks. With
only 4 synthetic samples, our watermark verification can
achieve similar accuracy with the baseline. Using only 4
samples can achieve the high sensitivity against attacks since
the samples are directly learned by the local models.
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Impact of the loss reduction threshold λ: As shown in
Fig. 10(c), when λ decreases from −1 to −3, the LF attack
can result in a sharp reduction on the global model accuracy.
This is because the watermark verification is ineffective against
data poisoning attack such that a too large λ can remove many
benign updates, which increases the proportion of malicious
updates in an aggregation. We show that when λ = −5, the
watermark verification can achieve the similar accuracy with
the baseline.

VIII. LIMITATION

Defending poisoning attacks over ciphertext gradients.
Despite our substantial strides in mitigating poisoning attacks
in challenging highly non-IID scenarios, we acknowledge the
presence of more complex situations that require attention.
One such situation is defending against poisoning attacks
over ciphertext gradients. Currently, our approach primarily
centers around traditional research topics [2], [3], [5], [23],
[26] that address poisoning attacks over plaintext gradients,
which may not be inherently applicable to encrypted data.
Effectively adapting these techniques to handle encrypted
gradients would necessitate special design considerations. In
our ongoing research, we are dedicated to investigating and
developing techniques that can effectively and securely handle
encrypted gradients within highly non-IID scenarios.

IX. CONCLUSIONS

We analyzed the failure of existing methods and the effect of
poisoning attacks. We then proposed HeteroFL, a new defense
that is suitable for heterogeneous settings. Our evaluations on
four datasets demonstrated that HeteroFL outperforms state-of-
the-art defense methods and can defeat all poisoning attacks.
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