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Abstract— Security in Internet-of-Things (IoT) environments
has become a major concern. This is partly due to a large
number of remotely exploitable IoT vulnerabilities in service
authentication and access control combined with the lack of
timely technical support. To reduce the threat surface of remote
vulnerability exploitation, we propose CMXsafe, a secure-by-
design application-agnostic proxy layer that can be updated
and managed independently of the IoT device application.
CMXsafe places IoT devices behind gateways operating as 4th
OSI transport layer relayers to offload security concerns of IoT
network communications into the proxy layer. Specifically, the
proxy layer produces secure communication paths between IoT
applications and platforms while enforcing mutual authentication
and access control to proxied services. We evaluate the perfor-
mance of our architecture on the MQTT protocol used in a
standard publisher-broker-subscriber configuration provided by
Eclipse Mosquitto. We compare the performance penalty on the
protocol when securing communications with TLS following a
monolithic implementation and with CMXsafe. The experimental
results suggest that CMXsafe outperforms integrated security by
providing at least a 25% latency reduction and a 22% bandwidth
improvement.

Index Terms— Internet-of-Things, secure communications,
socket proxy, secure proxy session, security context.

I. INTRODUCTION

MOBILE wireless technologies support different types
of Internet-of-Things (IoT) connectivity requirements,

including massive machine-type communication. As a result,
the number of IoT-connected low-cost devices is expected to
rise over the coming years and reach 30.2 billion by 2027
[1]. Indeed, the harsh time-to-market race, along with the
limited technical support, leaves the IoT devices and their
Internet-exposed services marred by a wide variety of logical
bugs (e.g., weak authentication and unauthorized access),
software vulnerabilities, and poor default configuration set-
tings [2], [3], [4], [5], [6]. As a matter of fact, over 60%
of the IoT device Common Vulnerabilities and Exposures
(CVE) documented during the last half of 2022 were remotely
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Fig. 1. IoT communications in traditional settings versus CMXsafe socket
proxy layer to defend against remote attacks.

exploitable [7]. The compromised devices are then weaponized
for lateral movement and for orchestrating Distributed Denial
of Service (DDoS) attacks [8].

Other IoT security challenges are related to the limited
support of secure communication protocols over the extended
devices’ lifespan, primarily because of their tight coupling
with the core applications. This makes the firmware update
a daunting and risky task [9], [10]. For instance, according to
a recent investigation, even critical vulnerabilities in OpenSSL
libraries have very long periods of patching delay (≈1454
days) in many IoT devices [11].

As illustrated in Fig. 1, most of the threats mentioned above
are related to the Internet-exposed management and core IoT
services (e.g., red arrows reflect the traditional communication
paths between the IoT devices and the IoT platforms) and to
the tight coupling of security protocols with the application
logic. These two common security issues allow the following
general types of remote attacks:

• Man-in-the-middle (MitM): These attacks can be moti-
vated by outdated or incorrectly configured security
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TABLE I
COMPARISON BETWEEN EXISTING TECHNOLOGIES FOR SECURING THE COMMUNICATIONS OF IOT DEVICES APPLICATIONS

communication protocols in IoT devices, such as outdated
or incorrectly validated server certificates.

• Device Impersonation: External attackers can leverage
deficiencies in univocal device identification schemes
that may allow attackers to use IoT devices with fake
identities to generate a DoS and ultimately gain control
over them.

• Authentication vulnerabilities: IoT device applications
may expose outdated services with known vulnerabilities
to the Internet, which can be detected remotely and
exploited.

• Lateral movement: IoT devices operating in local net-
works with reduced security can be a target of attacks to
gain access to other Information Technology (IT) systems
and deploy further attacks.

As reported in Table I, existing solutions in the literature
either address malicious network access (row one) or provide
support for simplified security updates (row two). However,
they fall short of addressing both concerns. For example, the
frameworks proposed in [12] and [15] manage the third-party
security libraries update or retrofitting security solutions into
the firmware [16]. However, they do not provide countermea-
sures against malicious network access and lateral movement.
On the contrary, in works like [6], [13], and [14], security gate-
ways endowed with middleboxes (e.g., firewalls and intrusion
detection systems) are proposed as a shim layer between IoT
devices and the edge network. Those works address, to some
extent, the network isolation and lateral movement issues,
but they do not provide support for updating the security
libraries. Hence, a fully-fledged application-agnostic solution
for enforcing secure communication and simplifying security
updates in communication protocols is still missing.

To address this gap, we propose in this work a Communi-
cation MatriX for an IoT safe (CMXsafe), a secure-by-design
communication architecture with three main goals. First,
we aim to limit the IoT device’s service exposure (e.g., device
authentication, service authentication, and authorization) by
proxying communications after mutual authentication and
applying access control to proxied services. Second, we set out
to minimize the risk of infected devices’ lateral movement by
providing secure communication paths. Finally, we simplify
the security protocols’ patching process by leveraging the
decoupling security concept in communication protocols [17].

To achieve these goals, CMXsafe offloads network commu-
nication security features from IoT devices and platforms into
a proxy layer. This layer is composed of a containerized set of
application-agnostic socket proxies, namely, CMX-GateWays
(CMX-GWs), located between the IoT devices and the IoT
platforms (Fig. 1). Those socket proxies are extended to IoT
devices and servers via agents, namely, CMX-agents. The
communications between the CMX-agents and the CMX-GWs

proceed through standalone security transport layer communi-
cation protocols (e.g., SSH) via Secure Proxy Sessions (SPSs).
CMX-agents and the CMX-GWs leverage built-in network
services included in the Operating System (OS) network
framework to derive Security Contexts (SCs). This virtually
segregates local traffic within the IoT devices, servers, and
CMX-GWs to produce secure, end-to-end, pre-established
communication paths. IoT services are then exposed within
the CMX-GWs solely through socket proxies without being
directly interfaced with the Internet, and the secure communi-
cation paths are articulated within the CMX-GWs according
to a set of predefined permissions.

This communication scheme takes advantage of the network
traffic predictability of IoT systems. Contrary to other IT
devices, many IoT systems perform specific functions that
generate a reduced set of possible communication patterns.
CMXsafe proposes blocking any direct communication with
the IoT devices and centralizing services’ authentication and
authorization with predefined permissions. At the same time,
the proxy layer allows a general standard procedure to offload
security features from IoT device applications and platforms.
We summarize the contributions of this work as follows:

• We present CMXsafe, a secure-by-design application-
agnostic communication scheme for IoT deployments
describing a novel proxy shim layer. We leverage the
socket proxy-based SPSs and the OS-driven SCs con-
cepts as generic local interfaces to devise end-to-end
secure communication paths for IoT applications. The
communication paths are articulated within the CMX-
GWs, featured as 4th OSI layer relayers.

• We provide a security analysis of common vulnerabilities
exploited by different attacks that can be averted or
mitigated with CMXsafe. We describe the operation of
each attack and the particular aspects of CMXsafe that
take a relevant role against it.

• We provide an implementation of CMXsafe for a generic
MQTT-based IoT deployment comprising 50 independent
publishers, a broker, and a subscriber, all based on a
standard Mosquitto MQTT embodiment.

• We assess the performance impact of securing the com-
munications in terms of overhead, bandwidth, and latency.
CMXsafe secured proxied communications are compared
to traditional integrated TLS-based security.

II. CMXSAFE ARCHITECTURE

In this section, we discuss the intricacies of our architecture.
First, we provide a high-level overview of CMXsafe with
its implementation constraints. Then, we summarize its con-
figuration and operation aspects, followed by the considered
threat model. Afterward, we discuss the security properties of
CMXsafe. Finally, we detail the communication model.
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A. Overview

Fig. 2 presents a high-level overview of CMXsafe. In this
architecture, all communications between the IoT devices and
the IoT servers transit solely through a socket proxy layer.

Communications between IoT devices and IoT platforms are
facilitated through the 4th OSI layer relayers, namely, CMX-
GWs running on Commercial Off-The-Shef servers (COTS),
where they can be deployed in container clusters. This proxy
layer extends to the IoT devices and servers through the
CMX-agents, simplifying mutual authentication. This facili-
tates holistic management of proxied communication between
the IoT device applications and IoT platform services.

The CMX-GWs host a socket proxy server. This soft-
ware accepts requests for SPS establishment (Section II-E1)
from the CMX-agents and builds secure communication paths
between the IoT device applications and the IoT platforms
(Section II-E3). The CMX-agents run a socket proxy client
to initiate requests for SPS establishment with the CMX-
GWs. Both CMX-GWs and CMX-agents are configured by
the CMX orchestrator, which is in charge of translating the
service access permissions defined by the owner of the IoT
devices into proxy configurations and communication policy
rules. The CMX-GWs and CMX-agents enforce those policy
rules as SCs. This allows the isolation of local inter-process
communications (Section II-E2) and enforces access control.
CMXsafe architecture is devised to simplify its implementa-
tion by abiding by the following constraints:

• The architecture must not modify the source code of
the IoT device applications or the OS of IoT devices,
gateways, or servers. The required functionalities should
be standard, widely available, with active support, and
thoroughly tested.

• The architecture requires a secure communication proto-
col with socket proxy features, but it must not be modified
to guarantee compatibility and availability in IoT devices.

The following section describes the general procedures to
configure and operate CMXsafe in an IoT deployment.

B. CMXsafe Configuration and Operation

Here, we describe the configuration and operation actions
related to the setup of CMXsafe.

1) IoT Devices and Server Agent Bootstrapping: IoT device
owners must claim ownership of their devices through the
orchestrator of the IoT platforms. If the manufacturer of the
IoT devices and the IoT platforms are the same stakeholder,
the ownership claim process is straightforward through a
unique registration key the owner receives with each IoT
device. Otherwise, the IoT devices should be retrofitted with
the CMX-agent provided by the orchestrator and receive the
CMXsafe credentials through a provisioning protocol [18].
Likewise, the owner of the IoT platforms will allocate an
account in the IoT servers to deploy the CMXsafe agent [19].
The orchestrator location depends on the specifics of each
IoT deployment [20]. Business-critical environments can be
located on the local site, whereas in distributed IoT environ-
ments, the orchestrator can be deployed as a cloud service.

Fig. 2. High-level overview of CMXsafe architecture. CMXsafe proxy layer
is composed of containerizable gateways and software agents that provide
secure communication paths between IoT parties at the transport level.

Cloud IoT platforms are being progressively implemented
as microservices abstracted from the underlying hardware
(servers) [21]. In this case, CMXsafe implementation on the
IoT platform side is facilitated thanks to a direct mapping of
the microservice sidecar pattern [22], [23] with the CMX-safe
server agents’ operation. Likewise, as the CMX-GWs are state-
less containers, they can be deployed as microservices, and
the existing microservice mesh orchestrator can be extended
to play as well the role of the CMXsafe orchestrator.

2) Communication Permissions: Once the IoT devices have
been linked to their owners, they can configure the permis-
sions to the available services offered by other devices and
IoT platforms linked to the orchestrator. CMXsafe requires
explicit permission to allow communications in CMX-GWs,
e.g., permission of an IoT device to communicate with an
IoT platform service. For example, a particular brand of
IoT devices has permission to communicate with the service
provided by the manufacturer’s IoT platform. Thereafter, the
orchestrator evaluates this permission and, once validated,
translates it into SCs enforced at the CMX-GWs. This allows
selectively revoking SCs if a device is compromised.

3) CMXsafe Operation: After the initialization phase, IoT
devices and servers can establish communications through
the CMX-GWs without the intervention of the orchestrator.
This applies to most of the function-oriented IoT devices,
as the communication between IoT devices and platforms
relates to the function they provide, which usually remains
unchanged during the device’s lifetime. The CMX-agents from
the IoT devices or servers can connect and disconnect from
the CMX-GW without requiring further configurations, and the
CMX-GW operates statelessly and autonomously according to
the configuration provided.

Security updates deployed by the orchestrator that may
affect the CMX-agents and their configuration will leverage
the secure protocol proxying features. These updates include
orchestrator commands for modifying the configurations in the
event of access control permission changes or logical network
topology modifications (e.g., IoT devices joining and leaving
the architecture or ownership change). SC violation attempts
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can also be detected in runtime, and this information can be
leveraged for early detection of malfunction or attacks in IoT
device networks to take action [24]. In case of CMX-GW
failure, the situation can be automatically addressed, spawning
a new one or adequately scaling the setup leveraging inherent
resilience features available in cloud containerized clusters and
microservice meshes.

C. Threat Model

Our architecture considers IoT devices with predictable
network traffic. This is a common feature in IoT devices
designed to provide specific functionalities, e.g., smart IoT
meters recording energy consumption and communicating with
the power utility server platform, surveillance IoT webcams
communicating to the corresponding footage-storing server,
etc. [25]. Contrary to multipurpose IT systems, the manufac-
turers of these types of IoT devices are able to describe the
network services and protocols the IoT devices use to allow
network traffic predictability [26]. This will facilitate cyberse-
curity certifications required by emerging regulations [27].

We assume that manufacturers will integrate the CMX-agent
into their firmware. This action enables offloading secu-
rity features into the CMX-agent, facilitating homogeneous
and more inexpensive long-term security and communica-
tion management across different IoT devices. CMX-agent
implementation in the IoT servers is feasible as they can
be considered proxy middleware that does not modify the
application protocols. We assume that CMX-GWs are run on
trusted COTS. We also assume that the orchestrator is owned
by the same stakeholder that manages the IoT platforms. This
is reasonable when considering IoT platforms deployed in a
microservice mesh. As the stakeholder devises more services,
those can be managed as different IoT platforms through the
cloud microservice mesh orchestrator. Communication with
IoT platforms of different stakeholders/orchestrators is left out
of the scope of this paper.

To allow a trusted architecture initialization, the manu-
facturer of the IoT devices should provide them with the
CMX-agent. Otherwise, the IoT devices should be retrofitted
with the CMX agent and securely bootstrapped. For this,
the CMXsafe proxy layer relies on a trusted system, the
orchestrator, that is capable of securely bootstrapping the
CMX-agents of IoT devices and servers, providing them with
CMXsafe credentials, and configuring and deploying CMX-
GWs.

The way the CMXsafe orchestrator offloads the security
of IoT platforms can be implemented following a sidecar
pattern in microservice meshes, which is particularly useful
when IoT platforms are already operating as microservices.
In this case, the CMX-GWs and orchestrator can occur as other
microservices integrated into the existing microservice mesh
control plane. This facilitates CMXsafe deployment while
benefitting from microservice meshes’ flexibility, resilience,
and high availability. Nevertheless, the scope of this paper
comprises only the proxy layer, leaving the analysis of possible
orchestrator implementations for future works.

Similarly to [15], we consider network-based adversaries
trying to remotely compromise IoT devices by exploiting vul-

nerabilities in default services lurking in common third-party
libraries. We also assume that some compromised devices
in the IoT deployment might be trying to perform lateral
movement to weaponize other devices or trying to access
exposed services illicitly. We also consider attacks attempt-
ing to impersonate legitimate IoT devices through identity
spoofing and MiTM attacks exploiting the lack of mutual
authentication and certificate validation [2].

Considering the presented conditions, we elaborate in the
next part on the security properties that CMXsafe will pursue
and how they can be attained through the CMXsafe Secure
Communication Model used to implement the proxy layer.

D. Security Properties

The design choices of CMXsafe aim to provide three
security properties to significantly reduce the network-related
threat surface: mutual authentication, centralized fine-grained
access control management, and secure communication paths
pre-establishment. This section discusses these security prop-
erties, how the decoupling of security in communication is
preserved, and the implications of our design choices.

1) Mutual Authentication (P1): To provide full mutual
authentication, the IoT server and IoT device must authenticate
each other. However, this is frequently disregarded despite
being essential to avoid device impersonation attacks [28],
[29], [30]. Different solutions have been proposed to address
device authentication. In [31], the authors propose a sim-
plified key-sharing protocol for IoT device communications
that generates different keys per device. In [32], blockchain
technology is suggested to leverage hash chains for secure
key management.

These technologies rely on algorithms that generate secure
session keys for communication between devices or require
intermediate nodes that act as information brokers to reduce
the number of required keys. In CMXsafe, communications
between peers occur within the CMX-GW. This requires IoT
devices and servers to mutually authenticate only with the
CMX-GW, significantly reducing the key exposure without
requiring specific information brokers.

2) Centralized Service Authentication and Authorization
(P2): Authentication vulnerabilities in Internet-facing services
constitute a large threat surface that may result in full control
of victims’ IoT devices with IoT malware, such as Mirai [8].
This is particularly relevant in those without active techni-
cal support and disclosed vulnerabilities that can be located
through IoT device scanners [33].

In CMXsafe, the IoT device and platform services are not
exposed to the Internet, preventing undocumented and unau-
thenticated/poorly authenticated default services from being
directly accessed. In fact, only services that are meant to be
exposed can have their connection proxied to the CMX-GW
according to pre-established permissions defined by the IoT
device owner at the orchestrator level. These permissions are
then translated into secure communication paths enforced with
SPSs and SCs.

3) Secure Communication Path Establishment (P3): The
vulnerabilities in IoT device services can lead to lateral move-
ment attacks to compromise other IoT devices through remote
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attacks. Some of those attacks might be stealthy and can
go undetected when their generated traffic fits into accepted
categories [34], [35]. To address those attacks, in CMXsafe,
the services forwarded to the CMX-GW are only accessible
by devices and platforms that are previously authenticated
and have enabling SCs for communications, limiting the risk
of anonymous fuzzy/injection attacks [36]. Lateral movement
within the CMX-GW is unfeasible without compromising
it because the access control to proxied services enforced
with SCs prevents an authenticated device from connecting
to those it has not been authorized. SCs also allow immediate
detection of unauthorized communication attempts, enabling
early identification of compromised devices and mitigation
actions [24]. The entire CMX-GW can be statelessly container-
ized and managed in the cloud, difficulting compromising
attacks thanks to available cloud technologies applicable at
the orchestrator level. This contributes to reducing the surface
attack compared to the one usually present in edge gateways
and also increases scalability, availability, and resiliency [37].

E. Secure Communication Model

In CMXsafe, we propose to handle all IoT device com-
munications through a proxy layer composed of a set
of CMX-GWs. More specifically, communications between
IoT devices and IoT servers transit solely through pre-
established secure communication paths defined by two types
of segments: a) SPSs (Section II-E1) for remote communica-
tions between the CMX-agents of IoT devices and servers with
the CMX-GWs. b) SCs (Section II-E2) for local inter-process
communication within the IoT devices, servers and the CMX-
GWs.

This communication scheme leverages privilege separation
features provided through OS UAs to provide IoT deployments
with the security properties presented earlier. As illustrated in
Fig. 3, we identify the following types of UAs:

• The IoT device UA and the server UA are meant to
host/run the IoT applications and platforms. They serve
as a differentiating feature for SCs to determine which
local sockets are accessible from processes run under
these UAs.

• CMX-UAs inside the IoT devices/servers trigger the
establishment of SPSs with the CMX-GWs using public
key authentication.

• The IoT device/server UAs in CMX-GWs serve as anchor
points to propagate the identity of IoT devices/servers
inside the CMX-GWs when they authenticate into the
CMX-GWs.

A secure communication path is established when traffic from
one UA within the CMX-GW is allowed to access a service
proxied within another UA in the CMX-GW. In Fig. 3, the
secure communication path allows the IoT device application
to reach the Service’s socket of the IoT platform. The follow-
ing two sections detail the mechanisms underlying SPSs and
the SCs that allow the composition of secure communication
paths.

1) Secure Proxy Sessions: SPSs are established between
the CMX-GWs, IoT devices, and servers before any network

traffic is exchanged. To this end, the CMX-GW runs a Server
Socket Proxy, while the CMX-agents within the IoT devices
and IoT servers run Client Socket Proxies (CSP) to initiate
the SPS establishment. The CMX-agents use their CMXsafe
credentials, which consist of a public/private key pair, for
authentication and secure session negotiation. Each IoT device
has a unique CMX-UA wherein the CMX-agent is running,
whereas the IoT server has a CMX-UA for each CMX-GW
it is connected to with a dedicated CMX-agent. The CMX-
GW authenticates the CSPs within the IoT devices/servers’
respective UAs when they use their public authentication keys.
This facilitates identifying later each SPS to the corresponding
IoT device or server and allows propagating this differentiation
to the generated proxies and traffic within the CMX-GW.

We identify two scenarios for secure communication path
establishment depending on which party exposes the services
whose connection needs to be forwarded through the SPS:

a) IoT platform/server accessing a service exposed by an
IoT device’s application. In this case, the IoT device runs
the server application process(es), and the b) IoT device
accessing a service exposed by an IoT platform, running as
a server application process. In both cases, we identify the
following types of protected sockets to enable the service’s
communications to be end-to-end securely forwarded through
the proxy layer:

• Service/destination socket (Ser-sock): It is defined at the
server application process to listen to clients’ requests.

• Reverse Socket Proxies (RSP): It is generated at the
CMX-GW and refers to the exposed service at the server
application side. In other terms, the RSP brings the
service exposed either by the IoT device or the IoT
server to the CMX-GW level as a listening socket to
the corresponding requests, as if it were a copy of the
service/destination socket.

• Direct Socket Proxy (DSP): It is established by the CSP
running on the side of the client application process to
forward local traffic to the RSP to access the remote
service. In other terms, the DSP brings a remote service
exposed inside the CMX-GW as a listening socket to the
corresponding local requests.

• Ephemeral sockets (Cli-sock): In a communication
between sockets, the one source of the communication
request is defined as the ephemeral socket, which is ter-
minated once the communication ends. The port number
of the ephemeral socket is usually randomly assigned by
the kernel.

CMXsafe assigns identities accounting for IPv6 local
addresses for each device/server by combining one of its
own MAC addresses with another one of the CMX-GW
(i.e., [#MAC-GW|#MAC-DEV], where # is a known prefix).
Contrary to traditional IoT implementations where device
ID secrecy is required [38], in CMXsafe, the combination
of these addresses with mutual authentication avoids device
impersonation. To preserve the identity of devices in proxied
communications, CMXsafe leverages the capacity of proxy
mechanisms (i.e., SSH). This allows specifying the features
of locally used IP addresses and ports, which are validated by
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Fig. 3. Secure communication path established from the IoT device application to the IoT platform through CMXsafe.

the local SCs on runtime [24]. CMXsafe also determines the
ephemeral sockets used in proxied communications:

• Identity socket (ID-sock): It replaces the ephemeral socket
used as the source of requests to a proxied service. It is
created by the SPS to preserve the identity of the service
requester (the source) at the CMX-GW level. The identity
is mapped into the source address of the proxied requests.

• Mirror socket (Mir-sock): In a similar way to the ID-
sock, the Mir-sock is created by the CSP on the server
application side to preserve the identity of the service
requester. It is an identical copy of the ID-sock assigned
at the CMX-GW.

In the next part, we discuss how SCs leverage identity
preservation to enforce access control to sockets and how they
isolate inter-process network traffic.

2) Security Contexts: SCs are OS-driven artifacts that rely
on the concepts of network framework (e.g., Netfilter) and
protected sockets [24]. They allow traffic from a specific UA to
a particular local socket isolated from other local traffic within
the IoT devices and servers. SCs are also applied in the internal
CMX-GW communications between the SPSs of different
UAs. SCs consider standard traffic features, i.e., source and
destination IP addresses and destination ports. However, SCs
can also classify the traffic according to the local UA running
the process source of the traffic. This allows for enforcing
access control to proxied services.

CMXsafe uses SCs to map a Connection ID (ConnID) to
<UA, S>, where UA contains the process that constitutes the
source of the traffic communication request, and S refers to a
protected destination socket (SC : U A × S → ConnI D). The
ConnID is the source local IP address and uniquely defines the
UA source of the communication thanks to the IPv6 mapping
used by ID-sock and Mir-sock.

CMXsafe local IPv6 addresses are isolated by default and
cannot be used to send or receive information unless an SC
allows it. The isolation and the SCs are composed of marking
and filtering traffic rules. These comprise three general rules
for the entire device that isolate the communication sockets
and one specific rule for each SC that allows fine-grain access
control to each service, either local or remotely proxied [24].

3) Secure Communication Path: The combination of SPS
and SCs allows the establishment of secure communication
paths between the IoT device application and the IoT platform
at the server. These secure communication paths preserve the
identity of the source IoT device, allowing an authentication

procedure at the server based on the device ID. To accomplish
this, the source IP address of the incoming communication
request is linked univocally to the source IoT device by the
CMX-GW and preserved through the CSP in the server, which
allows the IoT platform to reliably verify the source of each
proxied packet received.

Furthermore, the secure communication paths prevent local
impersonations thanks to the SCs, and any remote attack
attempt would have first to bypass the security features pro-
vided by the proxy protocol (e.g., SSH). The combination of
SPS with SCs enables the establishment of a secure commu-
nication path through which application communications are
subsequently forwarded, secured, and isolated. Note that the
same description applies when a service is exposed by an IoT
device, except that the DSP is defined on the IoT server side.

The architectural constraints of the model to satisfy the
security properties of CMXsafe can be verified with modeling
languages and verification tools such as Alloy [39].

III. SECURITY ANALYSIS

CMXsafe pursues improving network isolation, securing
communications at a transport protocol level, and preserving
the network traffic’s device identity (device ID). We have
summarized this in Table II, including a brief description of
the attack related to each vulnerability, its potential effects,
and CMXsafe capabilities for prevention and mitigation.

1) Lack of (Reliable) Mutual Authentication: Deploying
this type of authentication in IoT environments is challenging
because clients must present unique credentials that are trusted
in the API request [40], but using a single certificate for all
IoT devices can be problematic [41]. Here are some attacks
related to inadequate authentication/certificate validation:

IoT Device Impersonation: An attacker replaces the victim’s
IoT device with a fake device, i.e., a software entity that
resembles a real IoT device to the IoT platform. This fake
device uses the ID of the real device to impersonate. The root
cause for this vulnerability is that the IoT platform cannot
differentiate a legitimate device ID from a counterfeit ID. This
vulnerability allows the attacker to remotely hijack the victim’s
IoT device [29], [30].

In CMXsafe devices, a single secure communication path
provided by proxies is linked to the device ID. It allows
communication between the IoT device application and IoT
platform service through the CMX-GW. An attacker would
require gaining the public/private keys of the victim’s IoT
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TABLE II
SUMMARY OF COMMON VULNERABILITIES ADDRESSED BY CMXSAFE

device to successfully render this attack, which makes it
challenging as it would require first physical access or tamper-
ing with the victim’s IoT device. CMXsafe architecture also
facilitates the application protocol layer to perform cross-layer
identity verification (Section IV). As an example, this allows
an IoT platform using MQTT to detect any attempt of device
ID impersonation by an IoT platform user [2] because of the
mismatch between the claimed IoT device ID at the MQTT
protocol and the one imprinted in the source address of each
received proxied packet through the secure communication
path.

Man In the Middle Attacks (MiTM): Many IoT devices
trust IoT platform certificates without validating their signature
with a Certificate Authority, which allows MiTM attacks [2].
In CMXsafe, the CMX-GW is authenticated by the fingerprint
of its public key by the CMX agent. This allows the IoT
devices to validate the identity of the CMX-GW before estab-
lishing the SPS with the CMX-GW. Thus, independently of
the destination, any following proxied communication through
the SPS does not require certificate validation because all other
SPS established to the CMX-GW have also been authenticated
likewise.

2) Lack of Service Isolation/Effective Access Control:
IoT devices are usually remotely managed through the IoT
platform. However, some devices also allow services for direct
access through the network, which may be used as an entry
point for remote attacks:

Device Authentication Bypass/Service Vulnerability
Exploitation: These attacks affect IoT devices with a mini
Web server or a customized application server with a listening
port that allows users to access and control the device directly.
Weak credentials or vulnerabilities in the service allow remote
exploitation [42], [43].

Lateral Movement: The compromised device leverages the
reduced security in DMZs where the IoT device operates to
deploy lateral movement attacks to compromise other IoT
devices or IT systems. Although this type of attack can
be successfully identified and mitigated in many scenarios,
stealthy attacks can go undetected when they fit into accepted
traffic categories [34], [35].

CMXsafe limits these threats, reducing the attack surface by
only proxying the required services into the CMX-GWs. The
rest remain unreachable even in the local network. Further-
more, proxied services at the CMX-GW are only accessible
by other devices or platforms authorized for that through SCs,

further limiting the attack surface and preventing anonymous
fuzzy/injection attacks (Section II). Lateral movement within
the CMX-GW requires compromising the CMX-GW because
the SCs prevent an authenticated device from connecting to
unauthorized proxied services.

3) Outdated Security in Communication Protocols: IoT
device application protocols are prone to operate outdated
or inadequate configurations for TLS eventually [46]. This
enables different attacks related to outdated/vulnerable cipher
suites configurations [47], or discovered vulnerable keys in
certificates [45].

Whole Key Recovery Attack. As a result, the traffic from
IoT devices using outdated security implementations for com-
munications is subject to efficient key recovery attacks [44],
[45]. The difficulty of upgrading the firmware, together with
the extended lifespan of the devices, motivates this situation.

CMXsafe decouples security communication protocols from
IoT device applications, facilitating their reconfiguration or
updating as source code independence is preserved.

A. Potential Security Issues

In this part, we describe potential security issues on the
servers, CMX-GWs, and orchestrator and assess their impact.

1) IoT Server: IoT platforms hosted in IoT servers comprise
the front end of IoT deployments interacting with end-users
and external IT systems. This causes the attack surface in IoT
servers to be larger than in the CMX-GWs or the orchestrator,
increasing the possibility of successful intrusions [48], [49].
If an IoT server becomes compromised, the data provided by
the IoT platforms can be altered, and the services depending
on it may become affected. Nevertheless, the key credentials
of IoT devices are not compromised as secure communication
paths are established in the IoT back-end of the deployment
within CMX-GWs.

2) CMX-GWs: The CMX-GWs are less exposed to attacks
than IoT servers due to the limited types of traffic they
process and the software they run, substantially reducing the
attack surface compared to IoT servers. Nevertheless, we can
assume that a CMX-GW has been compromised. In this case,
the communications that the CMX-GW handles are exposed,
and confidentiality and integrity are lost. This means that the
CMX-GW could also impersonate any IoT devices it manages
but not those from other CMX-GWs. The CMX-agent in the
server would reject the communications because there is no SC



5774 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

to allow them from the CPS of the compromised CMX-GW.
It is worth noticing that the CMXsafe proxy layer structure
would also facilitate the outlier detection of the compromised
CMX-GW at a network level after any lateral movement
attempts out of secure communication paths.

3) Orchestrator: If the orchestrator is compromised,
an attacker could leverage it to deploy arbitrary software
with the CMX-agents. After restoring the orchestrator to an
uncompromised state, IoT devices should be reset to factory
defaults, and all CMX-agents should be replaced and provided
with fresh credentials. The integrity of the server is preserved
as long as the privilege separation of the UAs withstands
any potential code execution by the attacker. Without privi-
lege escalation, lateral movement from the assigned UAs to
CMXsafe in the server is impossible. Orchestrator vulnera-
bilities can be caused by default configurations that foster
compatibility and interoperability at the expense of security
or design flaws in the microservice mesh [50]. Thus, the
CMXsafe proxy layer contributes to mitigating limitations on
microservice meshes’ security mechanisms, providing secu-
rity properties that reduce the attack surface. Furthermore,
CMXsafe deployments can leverage a runtime verification of
security policies thanks to the use of SCs [24], an uncovered
gap that can significantly contribute to limiting the impact of
attacks and accelerate mitigation actions [51].

IV. IMPLEMENTATION AND EVALUATION

CMXsafe pursues the security properties described in
Section II-D (P1, P2, P3) while abiding by the implementation
constraints described in Section II-A Thus, the proposed
implementation, according to Fig. 3 is as follows:

• The SCs can be deployed using existing functionalities of
a generic network framework able to classify traffic according
to the OS UA source of it.

• The proxy protocol required by CMXsafe uses features
present in SSH, a thoroughly tested protocol with multiple
embodiments and active support. The server socket proxy and
CSP can be provided as an SSH server and client configured
to allow only socket proxy functionalities as the DSP and
RSP are features available in the SSH protocol. The SSH
client used as CSP in the IoT devices can be any of the
available as long as it supports key-based authentication and
port forwarding. In fact, proxy capabilities can be achieved
with other client/server proxies supporting port forwarding
based on different security protocols, such as TLS or DTLS.
Nevertheless, the motivation to evaluate SSH is its wide
implementation in production servers and gateways and its
increasing availability on constrained IoT devices and RTOS.
This allows a considerable maturity level thanks to active
development due to its constant exposure to threats. TLS
and DTLS are also widely used and mature but as integrated
security solutions on applications, not as stand-alone proxies.
Socket proxy capabilities are functionalities present in SSH
specification [52] but not in TLS/DTLS.

• CMX-agents implementations in IoT devices comprise
a proxy protocol portable client (SSH portable client) as the
CSP, its configuration, and scripts for initializing and updating.
The footprint of the proxy client varies according to the

embodiment chosen. For example, the WolfSSH client has
minimum requirements between 1.4KB and 2KB of RAM
and 33KB of ROM and provides active support for different
chipmakers and RTOS [53]. The integration of the CMX-agent
is straightforward in Linux-like systems with POSIX features
and an Application Binary Interface (ABI), which also applies
to different legacy Linux devices [16]. This can be done
by customizing the initramfs, which runs the CMX-agent
during the initial booting stages. Constrained IoT devices
running RTOS like Microsoft Azure ThreadX [54] can also
include CMX-agents as tasks dynamically loaded as external
precompiled modules. Using other RTOS is also feasible if
source code independence with the main application/thread is
preserved. Nevertheless, in this case, the entire firmware must
be linked again after the agent update.

• Device ID management for proxied communications
is based on MAC and IPv6 addresses. Real traffic between
IoT devices, gateways, and servers is independent of this
virtual addressing for proxied communications. This allows a
decentralized assignation of virtual addresses while minimiz-
ing the risk of collision in case different IoT CMXsafe-based
deployments decide to merge.

• The CMX-GW can be implemented as a stateless
containerized service, simplifying its management, deploy-
ment, and remote attestation. This implementation can take
advantage of SSH proxy protocol, its existing OpenSSH
embodiment, and standard OS and socket API features:

(a) OpenSSH leverages OS privilege separation features to
manage each SPS in different UAs based on the credentials
and keys used.

(b) The Linux UAs of the IoT devices and servers inside the
CMX-GW are assigned a unique virtual IPv6 address within
the CMX-GW. The length of a fully extended IPv6 address is
32 characters (once the colons are removed). As the default
maximum Linux UA name length is usually 32 characters,
the IPv6 address mapping to UAs can be made by setting the
virtual IPv6 address as the UA name. Then, the SPS (Fig. 3)
can retrieve the assigned IPv6 address by looking into the
UA it has been deployed. This speeds up proxied connections
managed by the CMX-GW, as no database requests or domain
resolutions are required.

• The ID-sock is created by the SPS when forwarding
a communication request of the IoT device to an available
proxied service within the CMX-GW. The ID-sock imprints
the device’s assigned virtual IPv6 address into the traffic
to the proxied service. This is done by populating that info
in the sockaddr_in6 structure before the bind() and connect()
operations to communicate to the proxied service.

• The Mir-sock is generated in the IoT server by the CSP.
It uses the source IP address of the proxied communication
for the ID-sock imprinted in the CMX-GW. This information
is available in the proxy channels and can be passed to the
sockaddr_in6 structure before bind() and connect() operations.

A. Benchmarks Configuration

In this section, we present a test series on a testbed
considering different scenarios to assess the performance of
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Fig. 4. Testbed layout to compare the performance of different configurations in securing MQTT communications.

CMXsafe securing IoT traffic when compared to default
integrated TLS-based securing techniques. Fig. 4 depicts a
testbed where IoT devices publish messages into a particular
topic of an MQTT broker in an IoT server. The information
is then delegated to another subscriber (not included in the
figure). We analyze the MQTT protocol as it is widely used in
industrial IoT environments [55] but also frequently insecurely
deployed [33]. The testbed implements the major elements of
the CMXsafe proxy layer as follows:

• OpenSSH standalone 9.2p1 clients for the IoT devices
supporting port forwarding and key authentication [56].

• A customized embodiment of the OpenSSH server and
client implementing the ID and mirror sockets on the
CMX-GW and server without modifying the SSH proto-
col.

• A direct mapping between IPv6 addresses and CMX-GW
UAs used by devices and the server.

• MQTT Mosquitto V2.0.15 publisher-broker-
subscriber [57].

• MQTT authentication by IP leveraging a Mosquitto plu-
gin and CMXsafe features.

The testbed configuration considers 50 different IoT devices
publishing sequential messages to the broker. Each device
is represented by a publisher whose traffic is shaped by
capacity and scenarios relevant to constrained IoT devices,
such as low-powered wireless devices using 6LoWPAN [58].
To accomplish this, a Hierarchical Token Bucket (HTB) queue
of 250 kbps is added to each publisher, followed by a Netem
filter to add delay, jitter, and packet loss ratio according to
each scenario. Different payload sizes are tested, comprising
random text. The following scenarios are analyzed:

a) Ideal channel: 5 ms. delay, no jitter, no packet loss.
b) Real channel: 25 ms. delay, no jitter, no packet loss.
c) Lossy channel: 125 ms. delay, 5ms. jitter, 1% packet loss.
The following configurations are compared:

• [mqtt]: Plain MQTT with an anonymous identification.
• [mqtt-tls]: MQTT with TLS with anonymous identifica-

tion.
• [mqtt-ssh-direct]: MQTT proxied through SSH directly

to the server with anonymous identification.
• [mqtt-ssh]: MQTT proxied through SSH and the

CMX-GW with device authentication.

SSH configurations are also considered with SSH compression
features enabled (mqtt-ssh-c and mqtt-ssh-direct-c). These
tests are set with the standard configuration options
for MQTT publishers and brokers provided by the
Mosquitto embodiment. In particular, QoS is set to
2 under MQTT V3. TLS configuration is set up using
one of the cipher suites recommended [47] for TLS 1.2:
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.
SSH’s current version does not include the exact algorithms
used by the MQTT publishers. Thus, the options chosen
for SSH are aes256-ctr as a cipher, hmac-sha2-512 as a
MAC function, and sntrup761 × 25519-sha512 as an NTRU
lattice-based key exchange algorithm.

The setup comprises three virtual machines powered by i7-
1185g7 logical cores at 3GHz, each one running UBUNTU
18.4.06 LTS with a Linux Kernel v4.15:

• VM1 includes 50 MQTT publishers as IoT devices and
the networking environment. Each MQTT client has its
SC and CMX-agent to connect to the CMX-GW. VM1
runs with 3 logical cores and 3 GB of RAM.

• VM2 features the CMX-GW. There, each IoT device
and the server have a UA and IP address according to
CMXsafe architecture. VM2 uses 1 logical core and 3 GB
of RAM.

• VM3 includes the MQTT broker and CMX-agent to con-
nect to the CMX-GW and uses 2 logical cores and 3 GB
of RAM.

The communications of the 50 publishers are set simultane-
ously in parallel, and the time required for each IoT device to
perform each communication (Treq) is measured individually
from within the MQTT publisher. We consider a general case
where a total of 300 different publication messages are sent
by each publisher sequentially (one publication operation after
another), and the Treq is averaged. A particular corner case
is also analyzed in which the 300 messages are sent at once
in a single publish operation. This allows for assessing TLS
performance when a single TLS session is used in differ-
ent message transmissions. This is considered a corner case
because it would require TLS session resumption, a feature
not implemented in the MQTT mosquitto publisher.
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B. Results

The outcome of the test series is presented in Fig. 5.
The Treq used per publish operation is displayed for each
case, together with the provided bandwidth ratio (BW) when
compared to plain MQTT publish operation. Different pay-
loads are analyzed, but we focus on lower ones, as many
MQTT communications in low-powered IoT environments are
frequently short text-based messages.

1) Treq Analysis Between mqtt-tls and mqtt-ssh: The first
scenario outcome is depicted in Fig. 5a. The mqtt-ssh con-
figuration for 64 bytes of payload requires a Treq 36% lower
than mqtt-tls. The Treq difference fluctuates between 25% and
56% with different payloads and channel conditions, as in
scenarios (b) and (c). In all these tests, the better performance
of mqtt-ssh over mqtt-tls can be explained because TLS
requires establishing a different secure session per publish
operation. This involves opening TCP connections between the
IoT devices and server, validating certificates, key exchange
negotiations, etc. On the contrary, the mqtt-ssh configuration
only requires proxying the plain MQTT publish requests
through the local proxies.

2) Overhead and BW Analysis Between mqtt-tls and mqtt-
ssh: When considering the overhead of different security
configurations (Fig. 6), we have analyzed the absolute over-
head as the ratio between “bytes sent” through the network
interface and the mqtt payload (message sent). According
to this definition, there is overhead when the ratio exceeds
1. This metric includes the SSH proxy protocol overhead
related to each SSH communication channel establishment
upon each proxy communication request [59]. The overhead
measured also takes into consideration the related overhead
of the involved protocols of other OSI layers simultaneously.
The reason for not comparing the proxy’s overhead with TLS
independently is the correlation between all involved protocols
when communications require packet/datagram fragmentation
or retransmission handling and the impact of this on the
absolute overhead.

Implementing security in communications consumes part
of the maximum available BW, which is only attainable by
plain mqtt and is considered a reference. The required BW by
mqtt-tls to provide security in scenario (a), at low payloads
(64 bytes), is 52% of the total BW available, whereas mqtt-ssh
only requires 24%. This equals a 28% reduction in the required
BW to secure the communications. These results are congruent
with an overhead analysis. The overhead required by mqtt-tls
to deploy security is 4.68 times more than mqtt-ssh at reduced
payloads (64 bytes). As the payload increases, the bandwidth
figures related to mqtt-tls improve as the extra overhead
required during the TLS session negotiation has less weight on
the complete publish operation. The reduction in the required
BW is between 22% and 46%, depending on the payload and
scenario considered.

3) Overhead and Fragmentation: Fig. 6 shows that mqtt-tls
has a higher overhead ratio at low payload values. This is
caused by the TLS session establishment not being experi-
enced in CMXsafe-based communications due to its ability to
leverage established secure communication paths. However,
as payload increases (particularly between 1KB and 2KB),

plain mqtt and non-compressed mqtt-ssh configurations have
their overhead ratio progressively closer to mqtt-tls. In the
testbed analyzed HTB filters contribute to the overhead by
inducing the action of TCP congestion control mechanisms.
Another source of overhead that applies generally is related
to the required fragmentation of the increasing payload into
multiple Ethernet frames due to the Maximum Transmission
Unit limit of the physical layer frames (1.5 KB in Ethernet).

As the mqtt payload continues increasing (above 2KB), the
overhead of non-TLS configurations grows even closer to the
overhead produced in mqtt-tls. This has an asymptotic behav-
ior at much larger payloads (payload≫>4KBytes) towards an
overhead ratio slightly above 1. This is expected, as com-
munication protocols in stationary communication channels
will incur a quasi-proportional overhead to large payloads
once the session establishment overhead is no longer relevant.
Compressed communications do not behave following this
pattern on the analyzed tests as they are able to achieve
overhead ratios below one because of the high compressibility
of text-based payloads used.

4) Analysis of mqtt-ssh and mqtt-ssh-direct: The mqtt-ssh-
direct configuration is considered to allow quantifying the
penalty introduced by the CMX-GW operation. For 64 bytes
of payload, the mqtt-ssh Treq is 23% greater in scenario
(a). This penalty is reduced in higher payloads or when the
channel properties worsen. In scenario (c), it is reduced to 7%.
When compression features are enabled, this produces a slight
overhead increase at low payloads that is greatly compensated
when payloads increase (Fig. 6).

5) TCP Three-Way Handshake in Proxied Communications:
Mqtt-ssh-direct has a slightly lower Treq than mqtt in scenario
(c). This effect is due to the three-way handshake used in
TCP when establishing a connection. While mqtt requires
that handshake from the device to the server, mqtt-ssh-direct
allows the mqtt publisher to do it locally in the VM1, as the
proxied connection to the server is already established by SSH.
This also occurs in the server, but the resulting Treq is still
sufficiently small to compensate for the delay in encryption.

6) Corner Case Analysis: A major advantage of CMXsafe
operation when compared to TLS is the availability of a
secure communication path, which speeds up the publishing
operations at the application protocol layer. TLS can provide
session resumption, but as a general case, it is not considered.
This feature is indeed available in TLS 1.2 “at the potential
cost of certain security properties” [47], and in TLS 1.3,
it is upgraded with the 0-RTT feature to resume sessions
more securely and faster. Nevertheless, its implementation
should be avoided “unless an explicit specification exists
for the application protocol in question to clarify when 0-
RTT is appropriate and secure” [47]. Neither the MQTT
publisher nor the subscriber provided by Mosquitto support
TLS session resumption, which made us consider it a corner
case. We analyze this in Fig. 7 applying scenario (c). In this
case, each publisher sends 300 messages in a single publish
operation, and then Treq is averaged. This allows mqtt-tls
to use the same session across different messages. At lower
payloads (64 bytes), we can appreciate that the difference
between mqtt-tls and mqtt-ssh with plain mqtt Treq is less
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Fig. 5. Treq per published message and BW ratio provided by each configuration operating under three different scenarios (general case). The horizontal
axes are in log scale.

Fig. 6. Overhead analysis of security configurations on a 5ms delay channel
(general case). Both axes are in log scale.

than 1.1%. As payloads increase, the mqtt-ssh Treq difference
with mqtt increases to 4.5%, while the mqtt-tls Treq difference
with mqtt is only 2.6%. This is due to the extra overhead
mqtt-ssh requires to handle the proxy channels, which reduces
the available bandwidth and translates into increasing the
Treq when payloads increase. Nevertheless, this effect is
easily mitigated when built-in compression features of SSH
protocol are enabled, as depicted in Fig. 7 with the mqtt-ssh-c
configuration.

V. DISCUSSION

The results obtained in the test series are aligned with the
results of other works that have evaluated the performance of
SSH embodiments as proxies in real IoT devices (raspberries).
Those tests considered real 802.15.4 interfaces and differ-
ent types of traffic (HTTP, HTTP/2 CoAP) [17], [60]. The
computation requirements and overall performance improved
in proxied communications. However, the RAM and ROM

footprint requirements are limiting factors and depend on the
chosen proxy embodiment. For instance, the DropBear SSH
client can compile to a 110 KB statically linked binary with
uClibc [61]. Optimized SSH embodiments such as WolfSSH
for constrained IoT devices can reduce ROM footprint to 35kb
of ROM [53]. RAM consumption also depends heavily on the
SSH embodiments, ranging between 2 and 7 MB for standard
client versions (compiled with all default features) [17]. Nev-
ertheless, optimized SSH clients only require between 1.4 KB
and 2 KB of RAM plus the configurable receive buffer [53].
This facilitates the implementation of CMXsafe in constrained
IoT devices comprising 50 KB of RAM and 250 KB of ROM
(Class 2 devices), or 10 KB of RAM and 100 KB of ROM
(Class 1 devices) [62]. Class 0 devices are considered highly
constrained and unsuitable for directly interfacing with the
Internet (as they are furnished with less than 10 KB of RAM
and 100 KB of ROM). CMXsafe can provide a progressive
implementation, and in this case, its support would focus on
Internet-exposed systems only, i.e., the IoT gateways used in
those types of deployments. These devices are usually catego-
rized above Class 2 and frequently operate under Linux-based
OS systems [55], which can implement the CMXsafe-agents
straightforwardly, as SSH clients are already available on many
of those gateways. CMXsafe-agents can leverage existing
SSH clients and easily update them with portable stand-alone
versions. In cases where the Linux implementation is reduced
to a Busybox-based system [63] (a single Linux binary),
it is still feasible to include the CMX-safe agent through the
initramfs at the booting stages.

The applicability of CMXsafe in IoT deployments is
preferred in those with IoT devices or edge devices with
Linux-based systems or RTOS with POSIX support. Accord-
ing to a recent survey [55], 51% of edge IoT devices and
43% of constrained IoT devices already use Linux. Never-
theless, constrained IoT devices may struggle to include the
CMX-safe agent. However, in these IoT systems (probably
running RTOS), implementing the CMX-safe agent requires
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Fig. 7. Treq per transmitted message of each configuration on the lossy
channel (125ms delay, 5ms jitter, 1% packet loss) for the corner case. The
horizontal axis is in log scale.

only a proxy client (such as SSH) and static traffic rules to
provide isolation. Fortunately, the SSH protocol is increas-
ingly being included in these devices, and highly optimized,
frequently maintained implementations exist. For instance,
WolfSSH [53] is available for multiple constrained hardware
(e.g., STM32F2/F4, PIC32, NXP/Freescale), and operating
environments (e.g., ThreadX, FreeRTOS, ZephyrOS [64]).

We expect developers and manufacturers to find the
CMXsafe proxy layer appealing due to new incoming
regulations in some markets. In the United States, the Fed-
eral Communication Commission, in line with the National
Cybersecurity Strategic Objectives, has proposed a Volun-
tary Cybersecurity Labeling Program to ensure that the “IoT
devices and products comply with the Commission’s program
requirements” [65], [66]. The European Union has gone a
step further with the Cyber Resilience Act [67], as some
security aspects of IoT devices must be certified (in some
cases by independent third parties) and have to be re-certified
with every update. To alleviate this, CMXsafe can facilitate
the incorporation of composite certification schemes (certify a
device by certifying each of its elements and the composition
procedure) as described by SESIP, a recently approved EU
certification standard [68]. This should reduce compliance
efforts, as CMXsafe updates can be reused in other IoT
devices. This accelerates the patching process, reducing certi-
fication costs and preserving the intellectual property of core
IoT applications if the procedure is delegated to specialized
third parties. It also simplifies the design of core IoT device
applications after offloading the security concerns in indepen-
dent modules, preventing these applications from becoming
frequently outdated and increasing the effective lifespan of
the devices.

VI. RELATED WORK

The significantly extended threat landscape in IoT envi-
ronments [5], [8], [69], [70] has motivated the research
community to pursue their security concerns from various
perspectives. We summarize in the following the closely
related to our current focus.

A. SOCKS Protocol

SOCKS protocol [71] is a lightweight multipurpose proxy-
ing protocol operating at layer five. A general setup includes
the SOCKS protocol client embedded within the application
and a remote SOCKS proxy server acting in lieu of the
application to establish connections to other systems. Its
design, however, causes operational limitations that motivate
the CMXsafe proxy layer architecture. In particular, CMXsafe
operates at the 4th OSI level and does not require the client
application to incorporate another communication protocol
or any custom programming in the source code. SOCKS
servers, however, only provide proxy functionalities to pro-
grams designed in the first place to support the SOCKS
protocol, limiting the scope of a SOCKS-based solution.
Furthermore, SOCKS does not allow fine-grain the socket
allocation on the SOCKS server to limit potential attack
surface and lateral movement, as SOCKS provides dynamic
allocation ports upon application requests without restriction.
Finally, the SOCKS protocol is not devised to provide the
functionality of a reverse socket proxy easily. This would
require a custom implementation of SOCKS in clients to
expose IoT client application services in remote devices or a
combination with another protocol that allows reverse socket
proxying. Thus, without providing any further technical advan-
tage, this approach would encounter serious limitations in
providing the control and isolation level offered by secure
communication paths in CMXsafe.

B. VPN/IPsec

Traditionally, VPNs have been established to define secured
boundaries or DMZs to isolate unsecured communications
between trusted systems through the Internet. This commu-
nication scheme allows secure communications with reduced
configuration complexity but requires all elements of the
VPN to be trusted. VPNs can provide different communi-
cation schemes (Host-to-host, host-to-network, or network-to-
network) with a host at the lowest granularity level possible.
To achieve further granularity levels, other technologies must
be combined, increasing the complexity level [72].

CMXsafe operates processing only the specific allowed
traffic at a user account/socket level. Instead of being focused
on creating boundaries between hosts, CMXsafe allows the
establishment of secure communication paths at a socket level
(OSI 4). A higher level of granularity and the explicit requisite
of a secure communication path to allow communication
contribute to reducing the attack surface with enhanced levels
of communication isolation. In this regard, VPN isolation has
proved insufficient due to vulnerabilities allowing leaked VPN
information [73] and attacks leveraging lateral movement. For
example, a compromised device belonging to a VPN may be
able to access resources in the DMZ and spread the attack to
other devices belonging to that VPN [74], [75].

Implementing CMXsafe with VPN technology would result
in different challenges, as the target access-control granularity
is the socket level. CMXsafe leverages existing features in
the network framework to identify the user accounts where
proxy processes are run to differentiate traffic. However, VPN
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technology uses kernel-managed network interfaces, where no
user account source of the communication can be derived.
An option to overcome this would include tagging packets
before encapsulation at the origin in a similar fashion as
MPLS [76], but this would incur further overhead, complexity,
and a larger attack surface.

Furthermore, administrations and regulatory bodies are
pushing towards communication schemes that do not rely
on boundaries or DMZs, like the Zero Trust (ZT) archi-
tectures [77]. ZT is a cybersecurity paradigm focused on
resource protection and the premise that trust is never granted
implicitly and continuously evaluated [78]. The goal of ZT is
to “prevent unauthorized access to data and services coupled
with making the access control enforcement as granular as
possible” [79]. Although these objectives can be achieved
with VPNs in combination with other technologies [80], [81],
the granularity level required suggests a more reasonable
approach to this challenge from an upper OSI layer than
used by VPNs, as this would reduce complexity. In this
line, according to the OBM Memorandum M-22-09 [82], the
US government is implementing ZT Architectures detailing
specific actions for federal agencies to adopt in alignment with
the pillars outlined in the ZT Maturity Model by NIST [79].
Current ZT Reference Architecture promotes a VPN-Less
implementation of communication infrastructures as “In the
conventional approach. . . VPNs pose a threat to enterprise
security. After authentication, they create a path in the network
perimeter and provide access to network resources” [83].
In this regard, CMXsafe can contribute to these efforts while
also allowing the decoupling of security communications to
facilitate security updates.

C. Network-Level Security:

In [84], the authors assume the existence of industrial IoT
devices that cannot be updated and suggest customized com-
binations of countermeasures adapted to each deployment to
minimize the cybersecurity risks, including segmentation with
DMZs, VPNs, and IPS/IDS mechanisms. In [85], an SDN-
based cooperative approach for network attack detection is
proposed. In this solution, if an attack is detected by one
IoT device, it communicates the acquired knowledge to the
logically centralized SDN controller, which will report the
attack to the application logic. Then, the SDN controller issues
a message to OpenFlow switches to drop the spurious traffic.
This proposal aligns with the SDN-enabled logically central-
ized concept discussed in [86]. Similarly, in [87], the authors
proposed an SDN-based architecture where per IoT-device
middleboxes are deployed at the data plane level to monitor
the generated traffic according to a set of pre-installed security
policies reflecting the regular application-layer interactions.

Many efforts have proposed securing IoT environments with
gateways deployed at the edge level. In [6], the authors pre-
sented an edge security gateway-based architecture empowered
with SDN. Based on their adversarial model, the authors
defined a set of security properties that need to be satisfied by
the architecture to claim its trustworthiness. To guarantee these
properties, the authors combine the use of periodic remote

attestation to validate the logic and configurations’ integrity
and micro-hypervisor, critical code isolation, and access con-
trol mediation. Barrera et al. [13] leveraged the predictable
behavior of consumer IoT devices to derive allowlist network
security policies that can be enforced at different points, such
as the WAN gateway or the middleboxes sitting between the
access points and the gateway. In [14], the authors claim that
network security monitoring constitutes a fundamental element
to secure IoT environments. In this regard, they presented the
DeaBolt architecture, where both low-end and high-end IoT
devices are hidden behind access control points.

Those propositions provide dynamic security policy
enforcement mechanisms to defend against attack propagation
and minimize cybersecurity risks. On the contrary, CMXsafe
leverages the predictability of IoT devices’ communication to
build a secure-by-design communication architecture, where
policies are pre-established with fine-grained access control
based on predefined permissions. This extends the traffic
isolation within the devices without requiring modification of
the source code of the applications. All major technologies that
CMXsafe relies upon are standard and widely implemented
in IT/OT systems. This facilitates CMXsafe adoption and its
long-term support.

D. Security Decoupling

The risks related to the use of integrated TLS security
have been discussed in [11], [88], [89], and [5]. Those works
converge to the necessity of simplifying TLS for it to be
used securely by applications. To address this, O’Neil et al.
proposed a standalone design of TLS API by leveraging the
standard POSIX socket APIs of the OS [12].

In a context more specific to IoT environments, the authors
in [11] studied the security of TLS usage in IoT devices. They
concluded with a set of recommendations to improve the secu-
rity of IoT devices. In [15], OpenSSL library vendor patching
practices have been investigated by examining the library’s
version in the IoT firmware releases and the OpenSSL update
history based on vulnerability discoveries [90]. To address this
problem, the authors proposed an architecture supporting the
centralized management of third-party libraries.

CMXsafe guarantees full independence to the IoT applica-
tion source code and its operation. This paves the way for a
general patching procedure of security network features of IoT
devices thanks to the reusability of CMX-agents. CMXsafe
also allows a progressive implementation, as the operation of
the proxy layer is transparent to the IoT application and IoT
platform. Furthermore, communication between IoT device
applications and IoT platforms occurs within CMX-GWs,
reducing the attack surface and mutual authentication over-
head. Identification of the IoT devices is also included natively
in the source IP address of any proxied packet, facilitating the
means to IoT platforms for reliable identification of the source
of communications.

VII. CONCLUSION

This paper analyzes the challenges of addressing common
security communication problems affecting IoT deployments.
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We propose CMXsafe, an IoT secure-by-design commu-
nication architecture agnostic to the application protocols.
CMXsafe leverages the security decoupling from commu-
nications to provide security updates in the communication
protocols as well as access control and authentication of
communications with services proxied into the CMX-GWs.

To assess the performance of CMXsafe, we presented an
implementation based on existing technologies to facilitate
its maintenance and integration. We also devised a testbed
featuring an MQTT publisher-broker-subscriber paradigm
implementing CMXsafe to compare its performance with an
alternative integrated security solution based on TLS. The
results provided demonstrate a performance boost with dif-
ferent scenarios and message payloads.

In future works, we will explore proxy implementation
efforts with QUIC instead of TCP [91]. QUIC will allow
CMXsafe-supported deployments to benefit from new security
and functional features without the hurdles of the integration
of QUIC into each application. This analysis was left for
future work motivated by a recent publication of a draft of
the SSHv3 protocol [92], whose embodiment will incorporate
TLS and QUIC [93]. This implementation leverages QUIC-Go
and maps the QUIC streams to SSH channels, providing
a qualitative leap in technical features [94]. We consider
this contribution relevant as QUIC-Go [95] is being actively
developed with considerable community support, which has
also been involved in elaborating the documentation and
first versions of SSHv3 embodiments. As the changes are
substantial when compared to SSHv2, this analysis was left out
of the scope of this paper, noting that in any case, CMXsafe
implementations would allow replacing portable embodiments
of CMXsafe agents using old SSH embodiments with the new
ones seamlessly.

We will also investigate potential approaches for orches-
trating CMXsafe deployments as microservice meshes. Inte-
grating the proxy layer into Istio [22] or Linkerd [23] would
allow CMXsafe to leverage advanced management capabilities
offered by these well-established microservice mesh technolo-
gies.
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