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Abstract— With the rise of smart working and recent global
events, the risk of cyberattacks is increasing steadily. Sometimes
adversaries focus on stealing valuable data, such as intellectual
property (IP): they exfiltrate a large volume of IP documents
from a target company. They then identify those of their interest
by leveraging automated methods. This work proposes the DARD
(Deceptive Approaches for Robust Defense against IP theft)
system, a framework designed to deceive adversaries who rely on
automatic approaches to classify exfiltrated documents. Starting
from an original repository of documents, DARD automatically
generates a new deceptive repository that misleads popular
automatic approaches, resulting in clusters of documents that
are significantly different from the actual ones. By utilizing this
approach, DARD aims to hinder the accurate clustering and the
identification of the topic of documents by adversaries relying
on automated techniques. The paper presents four deceptive
operations (Basic Shuffle, Shuffle increment, Shuffle reduction,
and Change topic) that DARD leverages to create a deceptive
repository. We evaluate the efficacy of our approach by con-
sidering three different types of adversaries, each possessing
varying levels of knowledge and expertise. Through extensive
experiments, we show that the DARD system can deceive both
automatic topic modeling and document clustering techniques,
including widely-used commercial tools such as Amazon Compre-
hend. Hence, our solution provides a robust defense mechanism
against Intellectual Property (IP) theft.

Index Terms— Deceptive repository, clustering, topic modeling,
adversarial setting.

I. INTRODUCTION

ACCORDING to recent cybersecurity reports from sources
such as Deloitte [1] and Interpol [2], there is a noticeable

rise in businesses suffering cyber-attacks. This upward trend
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can be attributed to several factors, including the growing
number of employees working remotely, which has become
increasingly prevalent since the onset of the COVID-19 pan-
demic. Additionally, the outbreak of war in Ukraine has led to
increased threats of cyberattacks against Western businesses,
with reported attacks against European companies in par-
ticular [3]. In 2022, multiple exfiltration attacks occurred,
where unauthorized individuals extracted data from targeted
systems and publicly released it via platforms like TOR [4] or
Telegram [5].

The Cybersecurity and Infrastructure Security Agency
(CISA) registered an exfiltration attack within the Defense
Industrial Base organization [6]. The adversaries infiltrated the
organization’s information system, compromised its network,
and illicitly accessed and stole the organization’s sensitive
data. The press also reports significant thefts of Intellectual
Property (IP) almost daily. The U.S. based cloud solution
provider Blackbaud suffered a data breach that lasted from
February to mid-May 2020, during which cyber criminals
allegedly were able to exfiltrate a huge amount of data.
In October 2020, cyber-criminals stole about 1TB of employee
information and company documents from the German tech
firm Software AG [7]. The Australian Toll Group in 2020 was
hit by cyber criminals twice in three months, with an alleged
data loss of over 200GB of corporate data [8]. In some cases,
months might pass by before a successful compromise of an
enterprise network is discovered. According to the 2021 Ver-
izon’s report [9], 20% of data breaches that occurred in
2020 were discovered several months after the attack, such
as the SolarWinds cyber attack [10] that remained undetected
for 9 months. Adversaries interested in a company’s infor-
mation could exploit the interval after intrusion and before
detection to exfiltrate large amounts of IP documents from the
company.

Given the vast amount of exfiltrated data, adversaries often
employ a strategy of analyzing their contents to identify
specific documents related to their interests. Using human
domain experts is one option but it is a time-consuming
activity for adversaries. Consequently, as a first step, they
typically select documents related to certain topics of interest
through an automated approach to focus their in-depth analysis
only on a few documents. In the final phase, human domain
experts come into play to assess the value of the few selected
documents in terms of IP and the presence of innovative
content. Our adversary model encompasses a broad range
of adversaries, including Wikileaks users who possess the
capability to employ topic modeling and clustering techniques.
These techniques allow them to identify specific documents of
interest within the vast collection published by Wikileaks, such
as those containing highly sensitive information.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0002-2410-8174
https://orcid.org/0000-0001-7132-078X
https://orcid.org/0000-0003-3210-558X
https://orcid.org/0000-0003-4859-2191


5592 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

This paper aims to hinder the first phase of the attack
using deceptive strategies [11]. To achieve this, it proposes
the DARD (Deceptive Approaches for Robust Defense against
IP theft) system. This system is designed to ensure that
adversaries fail in their attempts to analyze a large repos-
itory of exfiltrated documents containing mainly text using
automated tools. While the exfiltrated documents may include
various data types beyond text, the DARD system exclusively
focuses on applying deceptive operations to the text portion.
The exploration of the feasibility of adapting the proposed
operations to different data types, such as databases and
images, is deferred to future research work.

By employing the DARD system, adversaries will be left
with the only expensive option of using human domain experts
to examine the entire repository thoroughly. Starting from
an original repository R of documents, DARD automatically
generates a deceptive repository R′. When an automatic clus-
tering technique analyzes R′, it produces a set of document
clusters that is far away, in terms of the number of clusters
and of individual documents grouped in each cluster, from
what is actually present in R. Specifically, to generate such
a deceptive repository, this work presents four deceptive
operations. A defender can use these deceptive operations
to implement a defense strategy against IP thefts, hindering
the use of both topic modeling and document clustering
techniques. Regarding topic modeling, defenders can build
a deceptive repository R′ that, when automatically parsed,
presents topics of no interest to adversaries. This contrasts
with the original repository, R, which may contain topics
of potential significance for the target organization. In this
case, the adversaries have the following options: (1) trust the
result found by the automated process; (2) attempt to reverse
the deceptive operations, obtaining poor results, as shown in
this paper; or (3) use human experts to identify documents
of interest within R′. In the case of document clustering,
deceptive operations can build a new deceptive repository R′

in such a way that clustering techniques return clusters in
which organization-relevant documents are distributed. Thus,
adversaries interested in retrieving these documents must con-
sider all clusters in their analysis. If they disregard specific
clusters in their subsequent analysis, they risk neglecting
pertinent documents within the excluded clusters. Retriev-
ing the organization-relevant documents from the remaining
clusters would still require human effort. A defender can
combine the two strategies to deceive topic modeling and
document clustering approaches, achieving higher levels of
defense against IP thefts and effectively slowing down the
adversaries and requiring increased effort on their part.

Legitimate users can transparently access deceptive repos-
itories using a secure enclave-based architecture. When a
legitimate user requests access, the secure enclave facilitates
the restoration of the original document through the mapping
of deceptive-original keywords. Due to the sensitive nature of
this keyword mapping, it cannot be stored in the main file
systems, as there is a potential risk of exfiltration along with
other documents. To address this concern, Sec. VI introduces
a Secure Enclave solution [12]. In this solution, the keyword
mapping is stored in the dedicated Secure Memory, and the
original document is restored using the Secure CPU, ensuring
complete isolation.

The contributions of this work include:
• Deceptive operations: We designed and implemented

four deceptive operations (Basic Shuffle, Shuffle

increment, Shuffle reduction, and Change topic) that
select and replace some keywords present in the
documents of the repository R with deceptive keywords.
These operations can be used to create a deceptive
repository R′ that, when automatically parsed, results
in a different number of clusters than those in the
repository R and produces new clusters containing
documents initially belonging to different topics of R.

• Extensive experimentation: The deceptive operations
have been applied to a repository made of real papers
collected through the Arxiv APIs. We evaluate the per-
formance of three kinds of adversaries on an experimental
repository and show that the adversaries cluster the doc-
uments as planned by the defender.

• Topic modeling and commercial tool evaluation: We
evaluate the possibility of deceiving the adversaries on
the actual topics covered within a deceptive repository.
We find that the first 10 keywords by relevance retrieved
by topic modeling algorithms in the deceptive reposi-
tory are all deceptive keywords. This finding indicates
that defenders can manipulate the topics retrieved by
adversaries, presenting them with believable yet fake
topics. Furthermore, we test the effectiveness of DARD
against adversaries using commercial tools like Amazon
Comprehend [13] and find that the adversaries were only
able to retrieve deceptive keywords. This result underlines
the effectiveness of the DARD system, even in the face
of adversaries using commercial tools.

II. ANALYSIS OF AN EXFILTRATED REPOSITORY

Assuming that adversaries have managed to exfiltrate a
company’s original repository, the purpose of this section is
to show an example of how such adversaries could auto-
matically infer the topics covered by each document in the
exfiltrated repository and then select only the documents
they are interested in. For simplicity, here we assume that
the victim company has not adopted deceptive techniques in
document production, and the adversaries are not aware of
any of the topics covered by the documents of the repository.
More powerful attack models will be defined in Sec. IV and
evaluated in the experiments in Sec. V. This section assumes
that the adversaries will follow the methodology defined in
Sec. II-B since it represents the classical approach for docu-
ment clustering and topic modeling tasks. Indeed, this pipeline
is also used as a benchmark by other important proposals
for new document clustering and topic modeling techniques
described in the literature [14], [15].

A. The Repository
The exfiltrated repository presented in this subsection is

also used in the experiments in Sec. III, Sec. IV, and
Sec. V. This repository is a collection of 450 scientific
papers, evenly divided into three different topics of com-
puter science: Artificial Intelligence (AI), Database (DB),
and Cryptography and Security (CR). The repository contains
papers retrieved from ArXiv [16], an open-access archive for
scholarly articles. ArXiv provides APIs1 that allow users to
retrieve documents specifying the domain (Computer Science),
and a domain-related field (namely: Artificial Intelligence,
Database, and Cryptography and Security). The documents

1http://export.arxiv.org/api/query?search_query=query



MONGARDINI et al.: DARD: DECEPTIVE APPROACHES FOR ROBUST DEFENSE AGAINST IP THEFT 5593

in the repository are in Portable Document Format (PDF)
and contain an average of 7,826 words each. The smallest
document has 1,227 words, while the largest one 57,169. In the
following, we refer to this repository as Rd .

B. Clustering the Documents and Retrieving Topics
Since adversaries know neither the exact number of clusters

nor the topics covered by the repository, they want to discover
both automatically and then focus their in-depth analysis only
on documents related to topics of their interest. In the first
automatic phase, the adversaries can use document clustering
and topic modeling techniques. Document clustering and topic
modeling are two data mining techniques used to automatically
organize and retrieve information from unorganized collections
of text documents. The goal of document clustering [17] is
to organize a repository of documents into groups of similar
documents. Instead, topic modeling techniques [18], [19] aim
to build a latent semantic representation of the documents,
detecting keywords that describe the subject dealt with by the
documents. In particular, the latent semantic representation of
a set of documents is called Topic. In the following sections,
we describe the steps the adversaries should perform on the
exfiltrated repository to retrieve the documents of their interest.

1) Text Pre-Processing and Feature Extraction: Before
starting the analysis, the text has to be normalized and cleaned
of all the elements that do not provide information about the
topic (e.g., numbers). To this end, the pre-processing phase is a
key component of every text classification tool [20]. Hence, the
adversaries perform on the documents standard pre-processing
operations such as tokenization, stemming, normalization of
the upper and lowercase, and deletion of number and symbol
characters. Once the documents in Rd have been normalized,
the adversaries proceed with the feature extraction. In text
analysis, a document and its content are usually represented as
a vector, where each position of the vector represents a term
(i.e., one or more consecutive words in the document) with an
associated weight.

In the feature extraction step, the adversaries extract the
terms that occurred within the documents and assign them a
weight through TF-IDF. The TF-IDF (Term Frequency-Inverse
Document Frequency) [21] is a function that assigns a weight
to a term in relation to a document. The greater the weight,
the greater the importance of the term for the document.
The idea behind the TF-IDF is to give more importance to
terms that occurred within a document but are generally not
frequent within the document repository. Therefore, terms that
are characteristic only of a group of documents are considered
significant.

By calculating the TF-IDF for each term, the adversaries
obtain a TF-IDF matrix as the one in Fig. 1. Each column
represents a document with a Document Vector containing the
weights of the terms for that document. Instead, each row
indicates a term with a Word Vector containing the weights of
that term for each document in the repository.

2) Document Clustering: At this point, the adversaries
are ready to group the documents according to the features
extracted in the previous step. First, they need to estimate
the correct number of clusters in the repository, which is
one of the major challenges in cluster analysis [22]. The
most popular approach proposed in the literature is internal
clustering [23]. This method typically involves three steps:
(1) apply to the dataset several clustering algorithms using

Fig. 1. Matrix representation of documents: each column identifies a
document, while each row represents a term. A Document Vector is the
column associated with a document and contains the weights of the terms
for that document. A Word Vector is a row related to a term and contains its
weights for each document in the repository.

different combinations of parameters, (2) compute the corre-
sponding internal validation score for each obtained partition,
and (3) detect the optimal number of clusters by choosing the
partition with the best internal validation score. There are over
thirty typologies of internal clustering evaluation [23] that can
be used in steps 2 and 3 described above. The most commonly
used metrics for assessing the quality of document cluster-
ing are: Silhouette Coefficient [24], the Calinski-Harabasz
Index [25], and the Davies-Bouldin Index [26].

The Silhouette Coefficient is a measure that considers
both cohesion (how close the objects are within the same
cluster) and separation (how well-separated a cluster is from
the nearest cluster) in a given clustering. It utilizes a distance
metric (e.g., Manhattan distance, Euclidean Distance) to quan-
tify these aspects. The measure range from −1 to +1, where
a higher value indicates that the data belonging to the same
clusters are close to each other, and well separated from the
point of the other clusters.

The Calinski-Harabasz Index, also known as Variance
Ration Criteria (VARAC), is the ratio of the sum of the squared
distances of the centroids (between-clusters dispersion) to the
sum of the squared distances of the points from their centroid
(inter-cluster dispersion). For the Calinski-Harabasz index, the
higher the score, the more well-separated the clusters are.

The Davies-Bouldin Index provides a quantitative measure
of how well-separated and internally cohesive the clusters are
in a clustering solution. It is calculated by taking the average
similarity ratio of each cluster with its most similar cluster,
where similarity is defined as the ratio of intra-cluster and
inter-cluster distances. The intra-cluster distance is the sum of
the distances of the points belonging to that cluster from the
centroid of the cluster. Conversely, the inter-cluster distance is
the sum of the distances of the centroids. Differently from the
previous cases, here, a lower score indicates better separations
of clusters.
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Fig. 2. Projection of the clusters obtained through K-means from the original
repository composed of documents related to Artificial Intelligence (AI),
Database (DB), and Cryptography and Security (CR).

Since these metrics have been extensively adopted in the
literature, we assume adversaries rely only on these three
internal validation scores to infer the number of clusters K
in the repository.

Once detected the number of K clusters (three in this case),
the adversaries rely on the TF-IDF weighting scheme and
K-means to cluster the documents. K-means [27] is a popular
clustering algorithm that takes as input a number k of expected
clusters and finds a k-partition such that the squared error
between the empirical mean of a cluster (centroid) and the
points in the cluster is minimized.

Applying K-means on the document vectors of the TF-IDF
weights, the adversaries obtain clusters that correctly group the
exfiltrated documents according to their topics, as shown by
their projection in Fig. 2. To visualize the clusters obtained by
the adversaries in this section and the next ones, we performed
a dimensionality reduction on the TF-IDF weights by applying
the t-distributed stochastic neighbor embedding (t-SNE) [28],
an algorithm that allows visualizing high dimensional data in
a low dimensional space. The color of each item in the figure
represents the original topic of the document, whereas the
shape of the item represents the cluster the document belongs
to. As we can see, the clustering result is remarkably similar
to the real one. Therefore, the adversaries are able to correctly
distinguish documents belonging to the three different topics.

3) Topic Modeling: In the previous section, adversaries
cluster the documents according to the TF-IDF weights. Here,
they want to infer the topic covered by each of the K clusters
by retrieving the terms that describe each specific cluster.
To this end, adversaries leverage Latent Dirichlet Allocation
(LDA) [19], one of the most used topic modeling algorithms,
that provides as output for each cluster a list of terms ordered
by their relevance to the topic. We define as M keywords,
the first M terms of the output list representing the topic of
a given cluster. Tab. I shows the top 10 keywords extracted

TABLE I
TOP 10 KEYWORDS EXTRACTED FROM EACH CLUSTER USING LDA

from each cluster in the repository Rd by the adversaries. The
latter might infer from these keywords the three topics covered
in Rd , namely: Artificial Intelligence, Database systems, and
Cryptography and Security. After this step, adversaries focus
their analysis only on documents addressing specific topics
in which they are interested. The paper does not cover the
second phase since our techniques aim to deceive the first
phase, of which results also influence the second one. Due to
the proposed deceptive operations, the documents covering the
topic of interest for the adversaries will be scattered throughout
all clusters. As a result, adversaries can not focus on just one
cluster but on all of them.

III. OPERATIONS

A. Replacemets of Terms
This subsection describes the idea behind the deceptive

operations, or the term-replacement operations, illustrating the
relationship between the term-replacement operations and the
resulting changes in the TF-IDF matrix calculated on the sets
of documents in R. This paper refers to keyword k as the
term to be replaced and deceptive term dk as a new term, not
contained in R, that replaces one or more keywords k.

To explain the effect of a term-replacement operation,
we rely on the concepts of centroid and distance between
centroids. Let T be the set of terms contained in the documents
of R, S be a set of documents in R, and consider a sub-matrix
of the TF-IDF weights of R that contains only the columns
representing the documents in S. We define as the centroid
of S the vector that contains the element-by-element average
of the rows in this submatrix. Let S1 and S2 be two sets of
documents, the distance between S1 and S2, denoted d(S1, S2),
is the Euclidean distance between their centroids.

Given a repository of documents R, this paper considers the
following four strategies to replace keywords at the level of
the documents set, where all occurrences of a certain keyword
are replaced inside all the documents contained in a specific
set.

(i) 1-to-1 replacement: Consider a repository R partitioned
in n > 1 sets of documents, such that R = {S1 ∪· · ·∪ Sn}. Let
k be a keyword for the repository R, and dk a deceptive term.
The 1-to-1 replacement operation changes all the occurrences
of k in all the documents of the repository R, with the
deceptive term dk.

After the 1-to-1 replacement, the deceptive term dk appears
in the same documents and with the same frequencies of k
(Fig. 4(a)). Thus, there is a new row in the TF-IDF matrix ofR
for dk, which has precisely the same weights as k. Moreover,
since the keyword k no longer appears in the documents of R,
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the row in the TF-IDF matrix associated with k disappears as
well. Hence, the 1-to-1 replacement does not alter the relative
position among the centroids of all the sets of documents Si .
In addition, since k was a keyword for R, also dk will be a
keyword for the deceptive repository R′.

(ii) 1-to-N replacement: Consider a repository R
partitioned in n > 1 sets of documents, such that
R = {S1 ∪ · · · ∪ Sn}. Let k be a keyword for R, and
{dk1, . . . , dkn} be a set of deceptive terms. The 1-to-N opera-
tion replaces all the occurrences of k with a different deceptive
term dki in each document of Si . Thus, for every i , after the
1-to-N replacement, the term dki appears in the documents of
Si instead of the keyword k and dki does not appear in the
documents of R \ Si ( Fig. 4(b)).

Note that after the 1-to-N replacement, the keyword k no
longer appears in the documents of R and, consequently, in its
TF-IDF matrix. At the same time, after the replacement, in the
TF-IDF matrix n new rows appear, one for each deceptive
keyword dki . Finally, since the deceptive term dki appears
only in the documents of the set Si , its weight will be greater
than zero in the documents that belong to Si and zero for
the others. Hence, the centroid of each set Si tends to move
away from the centroids of the sets Sl for each i, l with i, l ∈

{1, . . . , n} and i ̸= l. In particular, the higher the rank of
keyword k is, the more the centroids tend to move away from
each other.

(iii) N-to-1 replacement: Consider a repository R parti-
tioned in n > 1 sets of documents, such that R = {S1 ∪

· · · ∪ Sn}. Let the keywords {k1, . . . , kn} be a set of terms,
such that ki is a keyword for the set of documents Si , while
ki is not a keyword for Sl , with i, l ∈ {1, . . . , n} and i ̸= l.
The N-to-1 operation replaces in every set of documents Si all
the occurrences of the keyword ki with the deceptive keyword
dk. Thus, after the N-to-1 replacement, the deceptive term
dk appears in the documents of Si instead of ki , for every i
(Fig. 4(c)). In the N-to-1 replacement, the goal is to bring
closer the centroids of the set of documents Si , replacing
N different keywords with the same deceptive keyword dk.
Differently, the 1-to-N replacement aims to move away the
centroids of the set of documents Si , replacing a unique
keyword with N different deceptive keywords. Following the
N-to-1 replacement, the TF-IDF weights of all the keywords
ki drop to zero for the documents in Si , whereas a new row
associated to the deceptive keyword dk appears in the TF-IDF
matrix of R. The TF-IDF weight of dk is greater than zero for
all the documents in Si that previously contained the keyword
ki . Hence, the centroid of each set Si tends to get closer to
the centroid of Sl , for every i, l. In particular, the higher the
rank of the keywords ki is, the more the centroids tend to get
closer to each other.

(iv) N-to-N replacement: Consider a repository R par-
titioned in n > 1 sets of documents, such that R =

{S1∪· · ·∪Sn}. Let {k1, . . . , kn} be a set of keywords, such that
each ki is a keyword for one set of documents Si , while ki
is not a keyword for Sl , with i, l ∈ {1, . . . , n} and i ̸= l, and
dk1, . . . , dkn be a set of deceptive terms. The N-to-N operation
replaces in every set of documents Si all the occurrences of
the keyword ki with the deceptive keyword dki . Thus, after
the N-to-N replacement, the deceptive term dki appears in the
documents of Si instead of ki , for every i (Fig. 4(d)). The
N-to-N replacement is similar to a 1-to-1 replacement applied
to a single set of documents Si , instead of to all the repository
R. After an N-to-N replacement, the deceptive term dki will

have in the TF-IDF matrix of R, the same TF-IDF weights of
the keyword ki . Hence, since ki was a keyword for the set Si ,
also dki will be a keyword after the N-to-N replacement.

The previous paragraph describes the behavior of the
four different replacement operations when executed once.
However, applying the same operation several times on the
repository is possible. Thus, in the following, we will refer
to m-multiple replacement the use of the same operation m
times on the repository. Applying m times a 1-to-1 or a 1-to-N
replacement means that m different keywords will be replaced
with m or m × N deceptive keywords, respectively. Whereas
applying m times the N-to-1 or N-to-N replacement means
that m × N different keywords will be replaced with m or
m × N deceptive keywords, respectively.

B. Shuffle Clusters Operations
Starting from a repository R where each cluster is made of

documents that belong to a single topic, the Shuffle operation
builds a deceptive repository R′ in which some or all the
clusters contain documents of different topics. Thus, the adver-
saries cannot precisely cluster the documents of R′ according
to the original topics of R. The Shuffle operation, given a
set L made of l different clusters, partitions each cluster in L
into p subsets of documents and mixes these subsets among
themselves, building a new set of clusters L ′. In particular,
each new cluster in L ′ is made of l subsets of documents each
of which belongs to a different original cluster of the set L .
Since each new cluster contains exactly one subset of each
original cluster, the relationship between p and l determines
the number of resulting new clusters in L ′.

Definition 1: Shuffle (R, C1,. . . ,Cl )⇒ R′.
Given a Repository R composed of n > 1 clusters, let
CR be the set of clusters in R. Consider the clusters L =

{C1, . . . , Cl} in CR, with 1 < l ≤ n. The Shuffle operation
partitions each cluster Ci of L into p subsets of documents,
with l − 1 ≤ p ≤ l + 1 and l − 1 ≥ 2 , such that
Ci = si,1 ∪ · · · ∪ si,p, where si, j represents the subset j of
the cluster Ci . The Shuffle operation replaces some keywords
in L in such a way as to form p new clusters C ′

i . Each new
cluster C ′

j is composed of l subsets of documents si, j in such a
way that C ′

j = s1, j ∪· · ·∪sl, j with j ∈ {1, . . . , p}. Depending
on the relationship between p and l, the effect of the Shuffle
operation on the repository R′ is different. In particular, there
are three possible variants: The Basic Shuffle in which the
number of partitions p is equal to l and thus the number
of clusters in the repository R′ is n, the Shuffle Increment
where the number of partition p is equal to l + 1; in this
case R′ contains n + 1 clusters, and the Shuffle Reduction
in which the number of partitions p is equal to l − 1, and the
repository R′ contains n − 1 clusters. After one of the three
Shuffle operations, the adversaries that search for n − l + p
clusters in the repository R′ will find the following set of
clusters: CR′

= (CR \ L) ∪ L ′, where L ′
= {C ′

1, . . . , C ′
p}.

In our implementation, the Shuffle operations first compute
the keywords of all the clusters Ci in L . Then, it partitions
the documents of each Ci into p subsets of documents such
that Ci = si,1 ∪ · · · ∪ si,p, with si, j that represents the subset
j th of the cluster Ci . The Shuffle operations select subsets of
documents to compose the new clusters {C ′

1, . . . , C ′
p}, such

that each new cluster C ′

h , with h ∈ {1, . . . , p}, is made of l
subsets of documents, one subset from each Ci . For the sake
of simplicity, we assume that the Shuffle operations select the
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Fig. 3. Fig. 3(a) shows the projection of the repository (composed by AI, DB, and CR) modified by the Basic Shuffle operation. Fig. 3(b) and Fig. 3(c)
show, respectively, the projections of the repository obtained by applying Shuffle reduction and Shuffle increment.

subsets of documents that compose the new cluster C ′

h picking
from each cluster Ci the hth subset, thus C ′

h = s1,h ∪· · ·∪sl,h .
Finally, for each cluster C ′

h , the Shuffle operations perform
an l-to-1 replacement, which overall sums up to p times a
l-to-1 replacement operations. An l-to-1 operation replaces
l different keywords, each one computed on each Ci , i ∈

{1, . . . , l} with the deceptive term dkh (see Sec. III-D for
details about the keywords selection). In particular, let ki
be a keyword of Ci . The l-to-1 operation replaces all the
occurrences of ki in the subset si,h with the deceptive term
dkh , with h ∈ {1, . . . , p} for every i ∈ {1, . . . , l}. Note that
each of the h execution of the l-to-1 operation uses a different
deceptive term dkh .

A single l-to-1 replacement could not be enough to bring
the centroids of all the subset {s1,h, . . . , sl,h} sufficiently
closer to form the new cluster C ′

h , for every h ∈ 1, . . . , p.
Therefore, the Shuffle operation has to perform m-multiple
l-to-1 replacements such that the following equation is
satisfied:

d(si,h, (C ′

h \ si,h)) < d(si,h, (Ci \ si,h))

∀i ∈ {1, . . . , l} ∧ ∀h ∈ {1, . . . , p} (1)

The formula verifies that after each iteration of l-to-1
replacement, the centroid of si,h is closer to the centroid of
C ′

h \ si,h (left term of the formula) than to the one of Ci \ si,h
(right term). In this way, each pair (C ′

h \ si,h , si,h ) is close
enough to build the new cluster C ′

h , and the subsets of Ci will
not cluster together.

Fig. 3(a) 3(b) 3(c) show the deceptive repository R′
d after

we applied on the repository Rd the Basic Shuffle (Fig. 3(a)),
the Shuffle Increment (Fig. 3(b)) and the Shuffle Reduction
(Fig. 3(c)). To perform the three operations, we insert into the
set L all the clusters of the repository Rd and set the value of
p as 2, 3, 4 respectively for the Shuffle Reduction, the Basic
Shuffle, and the Shuffle Increment. After the operations, each
cluster (denoted in the figures by the circle, square, diamond,
and triangle markers) is made of a mixture of topics (green,
blue, and yellow markers).

C. Change Topic Operation
The Change Topic operation aims to change the original

topic of a cluster of documents Ct in R′. The Change Topic

Fig. 4. Representation of the 1-to-1 replacement (a), 1-to-N replacement
(b), N-to-1 replacement (c), and N-N replacement (d).

operation builds a repository R′ replacing several keywords
of Ct with a set of deceptive terms {dk1, . . . , dkl}, in such
a way that topic modeling performed on R′ returns a topic
that depends on the deceptive terms, and such a topic can be
different from the original one.

Definition 2: Change Topic(R,Ct ,{dk1, . . . , dkl})⇒ R′.
Given a repository R that contains n > 1 clusters, a target
cluster Ct in R and a set of l deceptive terms {dk1, . . . , dkl},
the Change Topic operation replaces l keywords with l decep-
tive terms, using one different deceptive term for each different
keyword. At the end of the operation, the adversaries that
perform topic modeling on the repository R′ will find for the
cluster Ct the following keywords {dk1, . . . , dkl}.

In our implementation, the Change Topic operation com-
putes the keywords of Ct and ranks them by their TF-IDF
weight. Let {k1, . . . , kl} be the first l keywords of Ct in the
rank. The Change Topic operation performs a 1-to-1 replace-
ment on the documents of Ct , replacing all the occurrences
of the keyword ki with the deceptive term dki , for every
i ∈ {1, . . . , l}. Overall, the Change Topic operation performs
l times a 1-to-1 replacement on each document of Ct .

After the operation, the deceptive term dki is a keyword
for the cluster Ct in R′. Indeed, dki has the same TF-IDF
weight in R′ as ki has in R. Thus, since ki is a keyword for
Ct in R, dki is a keyword for Ct in R′ as well. Moreover,
since ki and dki have the same weight in the TF-IDF of R
and R′, respectively, the centroid of Ct is the same both in R
and in R′.
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TABLE II
NUMBER OF TERMS TO INVOLVE FOR DECEPTIVE OPERATIONS

SELECTING SUBSETS OF DOCUMENTS RANDOMLY OR BY
GROUPING SIMILAR ONES AND REPLACING

RANDOM TERMS

D. Observations on the Keywords and the Selection of the
Documents

This section describes some of the possible approaches
to partition a cluster C of documents of R into subsets
suitable to be used by the deceptive operations described in the
previous sections. In addition, we present the criteria we used
to select the keywords to be replaced with the deceptive terms.
When partitioning a cluster C to apply one of the deceptive
operations, there are two main aspects to face: the number of
documents each partition should contain and which documents
of C should be grouped in the same partition.

The number of documents each partition is made is a crucial
parameter to decrease the purity [29] of the resulting repository
R′. Purity is an external evaluation metric that assesses the
quality of given clusters by indicating the percentage of the
total number of correctly classified objects (documents). For
instance, in the Shuffle operation, creating partitions with
roughly equal numbers of documents leads to creating new
clusters in R′ with a purity roughly equal to zero, which
guarantees the greatest possible deception. In the following
experiments, all the clusters in our test repository Rt have the
same number of documents. Hence, given the observations
above, the best strategy in our case is to create the partitions
used in each deceptive operation with the same number of
documents. The second aspect to face is which documents of C
should be placed in the same partitions. A trivial approach is to
partition the documents of a cluster C in subsets of documents
{s1, . . . , sl} through a random selection of the documents in
C . This approach likely leads to group into the same subset
documents uniformly spread among the cluster C , with the
centroid of each subset si near the centroid of C and thus
close to each other. However, the closer the centroids of
the subsets are to each other, the more keywords the cluster
operations need to replace in order to push the centroids away
among them (See Tab. II). A better choice is to partition the
documents so that the centroids of the subsets si result far
away among them. An approach to generate such subsets si
is to leverage a clustering algorithm, such as K-means. Since
standard K-means may generate partitions with an unbalanced
number of documents (e.g., a partition with most of the
documents and others with very few documents), we used the
constrained version of K-means [30]. The constrained version
of K-means extends the classic clustering algorithm by adding
constraints on data point assignments. These constraints avoid
local solutions with empty clusters or clusters having very few
points. Moreover, they ensure that each partition has a roughly
equal number of documents.

Concerning the selection of the keywords to be replaced
with the deceptive terms, we select the keywords by their
TF-IDF weights in descending order. This approach minimizes
the number of deceptive keywords to be replaced to accom-

plish any of the cluster operations. Indeed, the effectiveness
of the 1-to-N replacement and the N-to-1 replacement in
pushing away or bringing close among them the centroids of
partitions {s1, . . . , sl} is proportional to the TF-IDF weight of
the replaced keywords (as discussed in Sec. III-A).

To better understand how the documents and the keywords
selection affect the number of keywords needed to perform a
deceptive operation, we evaluated the deceptive operations in
the following three settings: partitions created with a random
selection of the documents and keywords selected by TF-IDF
weight; partitions created leveraging the constrained K-means
and keywords selected by TF-IDF weight; and partitions
created leveraging the constrained K-means and keywords
selected randomly. For each of the above settings (except
the constrained k-means version), we repeat the experiment
10 times and compute the average number of keywords
needed to perform the cluster operations. Tab. II shows the
results of this experiment. The best combination to minimize
the number of keywords replaced is the one based on the
constrained k-means and the keyword selected by TF-IDF
weight (constrained k-means in the table). This is in line with
our previous observations in this section. Randomly selecting
the keywords increases the number of keywords drastically to
be replaced. For example, in the case of the Shuffle Increment
operation, the number of keyword replacements increases from
about 10 to more than 80. Building the partitions by randomly
selecting the documents requires a few more replacements than
partitioning the documents via k-means.

E. Deceiving the Number of Topics

An accurate clustering result requires the right estimation of
the number of clusters in a repository of documents. By our
assumption, the adversaries that exfiltrated the repository R′

do not know the number of clusters that the repository
contains. Thus, they have to estimate the number of clusters
in the repository R′ through internal cluster indices (see
Section II-B.2). This section aims to illustrate our proposed
technique to deceive adversaries in such estimation, making
them believe that the repository R′ contains a given numerical
value Kd for the number of clusters which is deceptive.

In the literature, there are several internal cluster indices that
the adversaries can leverage to estimate the number of clusters
of R′. The main idea behind these indices is to evaluate the
compactness (how close are the items of the same cluster),
the separation (how distant are the clusters from each other),
or a combination of them. Every index evaluates these criteria
accordingly with the different evaluation methodologies they
use (e.g., average distance, minimum distance, the sum of
square error).

However, it is not possible to know in advance the vali-
dation indices the adversaries will use. Therefore to deceive
adversaries, the clusters in R′ have to be enough compact and
separated so that for all the indices, or at least most of them,
the resulting number of clusters is Kd . In terms of our cluster
operations, we propose to redefine the stopping criteria for the
number of term-replacement to be performed (recall that both
the 1-to-N and the N-to-1 operation contribute to pushing away
or bringing close clusters among them) so that their number
is greater than or equal to those defined in Eq. 1.

To evaluate the minimum number of term-replacement to
deceive adversaries on the estimation of the number of clusters
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in the repository R′, we introduce the following function:

f (R, Op, Kd , Kmax , Tmax ,Sivi ) (2)

The function f , given a repository R, a cluster operation
Op, and a Set of internal validation indices Sivi , computes
the minimum number of term-replacement operations such
that all the indices in Sivi evaluate Kd as the estimated
number of clusters. Since it is impractical to evaluate all the
possible numbers of clusters, we reduce the search space of the
number of clusters from 2 up to Kmax . Finally, Tmax represents
the maximum number of term-replacement operations we
are willing to perform. It is important to set Tmax because
internal validation indices, depending on how they evaluate
the compactness and the separation, could cause an unlim-
ited number of term-replacement operations when evaluating
particular data distribution (e.g., presence of outliers, skewed
distribution) [31].

Computing f on the repository Rd for the Basic Shuffle,
the Shuffle Increment, and the Shuffle Reduction operations,
we find that to deceive adversaries about the number of clusters
contained in R′

d , for the Basic Shuffle operation, we have to
perform 41 term-replacement instead of 8, 38 replacements for
the Shuffle Increment instead of 10, while 18 for the Shuffle
Reduction. For the above-mentioned results, we compute the
function f evaluating the following indices: the Silhouette
Coefficient (SIL), the Calinsky-Harabasz index (CH), and the
Davies-Bouldin Index (DB), and we set as 100 the maximum
number of replacement operation Tmax . For the Shuffle oper-
ation, we set Kmax as 9 since we divided the repository into
9 partitions, whereas Kd as 3 because we aim to make the
adversaries believe thatR′

d contains 3 clusters. For the Shuffle
Increment operation, we set Kmax as 12, and Kd as 4. Finally,
for the Shuffle Reduction operation, we set for Kd and Kmax
respectively 2 and 6.

Tab. III shows the scores of the internal validation indices
computed on R′

d varying the number of clusters that the
adversaries are looking for. As we can see, the number of clus-
ters estimated by the adversaries after each operation coincides
with the predetermined deceptive number of clusters Kd .

IV. POSSIBLE ADVERSARIES

A. The Attack Model
This subsection defines three models, each representing an

adversary with different knowledge of both the content of the
repository R′ and the deception techniques adopted.

• Black Box adversaries: They are the weakest kind of
adversaries we consider in this work. They are not aware
of the proposed deceptive techniques and believe that the
exfiltrated repository R′ is the original one.

• Gray Box adversaries: These adversaries suspect that
some deceptive operations may have been executed on
the repository R′. Nonetheless, even though they know
the deceptive operations presented in this paper, Gray Box
adversaries neither know how many and which specific
deception operations were performed, nor how many and
which deceptive keywords have been used to perform
each operation.

• Enhanced Gray Box adversaries: They have the same
knowledge as the Gray Box adversaries. However, these
adversaries also leverage the Oracle Function to obtain
an ordered list of terms in R′ that may have been replaced
by the deceptive operations (details in Sec. IV-A.1). The

TABLE III
SCORES OF THE DAVIES-BOULDIN INDEX (DB), CALINSKI-HARABASZ

INDEX (CH), AND SILHOUETTE COEFFICIENT (SIL) BASED ON
THE NUMBER OF CLUSTERS SEARCHED FOR

ability to invoke the Oracle Function makes Enhanced
Gray Box adversaries the strongest. These adversaries
represent the most challenging scenarios for evaluating
the effectiveness of the proposed deceptive operations.
It is crucial to emphasize that the Enhanced Gray Box
adversaries include those with the ability to foresee poten-
tial deceptive keywords within the documents. Moreover,
as there is no real Oracle Function available, these
adversaries serve as the worst-case scenario, highlighting
the strength of our deceptive operations when faced with
adversaries capable of predicting some potential deceptive
keywords.

We assume that Gray Box and Enhanced Gray Box adver-
saries can remove deceptive keywords from the repository
R′, as discussed in Sec. IV-B. In addition, we assume that
all the adversaries described in this section: cannot access
the mapping of the keywords replacements, use K-means as
the clustering algorithm and the Silhouette Coefficient, the
Calinski-Harabasz Index, and the Davies-Bouldin Index to
estimate the number of clusters contained in the exfiltrated
repository. It is important to note that none of the three
adversaries can self-estimate metrics such as the Purity or the
ARI on their clustering since they do not know the ground
truth of the repository R.

1) The Oracle Function: Knowing which are the deceptive
keywords in the repository R′ may be a great advantage for
the adversaries. Indeed, leveraging this information, they can
eliminate those terms to subvert the operations.

In this section, we define the Oracle Function to emulate
adversaries that somehow gained access to the list of terms
and thus are able to select the deceptive terms we used to
build the deceptive repository.

Definition 3: Oracle (R′)⇒ Lk .
Consider the repository R′ made of M keywords, such that
D keywords are all and only the deceptive keywords used
to generate the repository R′, and the remaining M − D
terms are the original keywords that are both in R and R′.
The Oracle Function takes as input a deceptive repository
R′ and returns as output an ordered list of M keywords
Lk = {dk1, . . . , dkD, kD+1, . . . , kM }, where the first D items
of the list are deceptive keywords, while the remaining M − D
items are unchanged keywords. In particular, the deceptive
keyword dki , with i ∈ {1, . . . , D}, represents the i th deceptive
keyword used to generate the repository R′. The remain-
ing M − D keywords are ordered as they were the next
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terms to be replaced by the operation used to generate the
repository R′.

Although Enhanced Gray Box adversaries, through the
Oracle Function, can access in an ordered way all the deceptive
keywords, they still do not know the number D of deceptive
keywords contained in the repository. Thus, Enhanced Gray
Box adversaries cannot be sure if the j th keyword, with j ∈

{1, . . . , M}, provided by the Oracle Function, is a deceptive
keyword or not.

B. Countering the Operations

The Gray Box adversaries are aware of the deceptive
operations described in this work. In this section, we explore
a possible approach that this kind of adversary could carry on
to counter the deceptive operations and build a new repository
Rr that is more significant than R′.

The adversaries, to smooth the effect of the deceptive
operations, have to solve the following two problems: (1) esti-
mate the right number of clusters contained in the repository,
and (2) estimate how many and which deceptive keywords are
in the repository R′. Recall that if the adversaries evaluate the
number of clusters in R′ leveraging standard techniques such
as the Silhouette score or other internal validation measures as
explained in Sec. II-B.2, they find out the deceptive clusters
accordingly with Sec. III-E. Therefore, adversaries have to
counter the deceptive operations to obtain meaningful infor-
mation from the exfiltrated repository.

The adversaries know that, whatever the adopted policy
to replace keywords with deceptive keywords, the subsets of
documents that form the clusters in R′ are held together,
or separated, among them by the keywords with higher
TF-IDF weight. Thus, a possible approach to reduce the effect
of the deceptive operations and restore the original clustering
of documents is to remove those keywords that are likely
deceptive keywords from the repository R′.

The Gray Box adversaries do not know how many keywords
they have to remove from R′. To estimate the number of
keywords to remove and the real number of clusters in R′,
they may perform the following iterative approach: using an
internal validation index (e.g., Silhouette Coefficient), they
infer the optimal number of clusters Kini t for the repository
R′. For each cluster C ′

i in R′, with i ∈ {1, . . . , Kini t },
they rank the keywords by TF-IDF weight and build the
ordered list of keywords L Ki for C ′

i . Let T be the maximum
number of keywords the adversaries are willing to remove
from each document. The choice of T is a trade-off for the
adversaries: the more keywords the adversaries delete from
the documents, the higher the probability of discarding both
deceptive and original keywords. The adversaries perform T
times the following procedure. For each cluster C ′

i in R′,
they select the keyword k from L Ki with the highest TF-
IDF weight. Then, the adversaries delete all occurrences of k
from the documents in R′, and remove k from the list L Ki .
Let Kestim be the maximum number of clusters the adversaries
suppose to be in R. At the end of each step, the adversaries
assess on the repository the internal validation score for K
different number of clusters, with K ∈ {2, . . . , Kestim}. At the
end of the T *Kdeceptive steps, the adversaries evaluate all
the internal validation scores they computed and select the
configuration that achieved the best score accordingly with
the internal validation index they used. If Rr is the repository
that achieves the best internal validation score, the adversaries

Fig. 5. Values of the Silhouette Coefficient obtained on the modified
repository removing up to 300 terms from each identified cluster. The red
dot indicates the number of terms to remove in order to achieve the best
Silhouette score.

assume as Rr the restored repository of R. Therefore, the
adversaries consider the keywords deleted from R′ to achieve
Rr as the deceptive keywords of R′ and the number of clusters
of Rr as the number of topics covered by R.

Enhanced Gray Box adversaries follow the same approach
as Gray Box, but they have a significant advantage in determin-
ing the deceptive keywords since they can rely on the Oracle
Function. Indeed, Enhanced Gray Box adversaries leverage the
Oracle Function to build lists of potential deceptive keywords
to remove.

For instance, assume that Enhanced Gray Box adversaries
exfiltrate the repository R′

d , that has been generated starting
from Rd using the Basic Shuffle operation and 60 deceptive
terms for each document (see Fig 3(a)). The adversaries apply
the procedure outlined in this section to obtain a repositoryRr .
Enhanced Gray Box adversaries set T and Kmax respectively
to 300 terms and 6 clusters. Fig. 5 shows the Silhouette scores
obtained by Enhanced Gray Box adversaries removing the
terms from the repositoryR′

d . Each colored line represents the
Silhouette score for a different number of clusters. At the end
of the assessment, the adversaries find out that the Silhouette
score is maximized when removing 130 terms from R′

d
and searching for 5 clusters (red dot in the figure). Thus,
the adversaries build the repository Rr accordingly with the
configuration found.

V. RESULTS

A. The Deceptive Repositories

To evaluate the adversaries’ performances, we built 6 dif-
ferent deceptive repositories starting from the repository Rd
described in Sec. II-A. To build the 6 repositories, the follow-
ing deceptive operation has been applied on Rd : Basic Shuffle,
Shuffle Increment, and Shuffle Reduction. Each deceptive
operation has been executed twice, once partitioning the
documents through random selection and once through the
constrained version of K-means. With both approaches, all
the subsets have been made approximately of the same
number of documents. The keywords have been replaced in
descending order by their TF-IDF weight. Finally, for the
sake of comparison, all the operations performed the same
number of m-terms-replacements. We set the number of m-
terms-replacements to 60, since, according to our experiments,
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TABLE IV

ADJUSTED RAND INDEX (ARI) VALUES ACHIEVED BY THE ADVERSARIES ON THE REPOSITORY R′
d AGAINST BASIC SHUFFLE, SHUFFLE

INCREMENTATION (SHUFFLE INCR.), AND SHUFFLE REDUCTION (SHUFFLE RED.) APPLIED TO SUBSETS OF DOCUMENTS SELECTED
RANDOMLY (RANDOM) AND BY GROUPING SIMILAR ONES (SIMILAR). NOTE THAT THE ARI SCORE

OBTAINED BY THE ADVERSARIES ON THE ORIGINAL REPOSITORY R IS 0.94

it is the minimum number of replacements such that the
Silhouette Coefficient, the Calinski-Harabasz Index, and the
Davies-Bouldin Index return the deceptive number of clus-
ters for the repositories. For example, Fig. 3(a), 3(b), 3(c),
respectively, show the deceptive repositories built with the
Basic Shuffle, the Shuffle Reduction, and Shuffle Increment
operations, using the constrained version of K-means to build
the subset of documents.

B. Attacking the Deceptive Repositories
To evaluate the adversaries’ performance, we use the

Adjusted Rand Index (ARI) [32]. Given a predicted clustering
(the one obtained by the adversaries, in our case) and the
clustering given by the true labels of the documents, the ARI
measures the similarity between these two clusterings. The
value of the ARI varies between −1 and 1, where a value
of 1 indicates a perfect match between the two clusterings,
a value close to 0 a random labeling of the predicted clustering,
and a negative value a labeling worst than a random one.

The Black Box adversaries believe they have exfiltrated
the unmodified repository. Therefore, Black Box adversaries
analyze the exfiltrated repository as described in Sec. II. At the
end of the analysis, Black Box adversaries will discover just
the deceptive clusters. Since our operations build each decep-
tive cluster by grouping together with a uniform distribution of
documents of different topics, such clustering of the Black Box
adversaries achieves an ARI approximately equal to 0, which
corresponds to the same result that the adversary would have
by grouping the documents randomly.

Enhanced Gray Box and Gray Box adversaries are aware
that the exfiltrated repositories could be deceitful. However,
they can not be sure of that. They have two options. They
can consider the repositories not deceitful and analyze the
repositories as the Black Box adversaries obtaining the same
results. Alternatively, they can try to get rid of the deceptive
keywords, for example, applying the algorithm described in
Sec. IV-B, and building for each exfiltrated repository a
recovered version Rr . We assume that the adversaries analyze
the deceptive repositories by searching for 2 up to 6 possible
clusters, attempting to remove up to 150 keywords, and
evaluating the repositories using the Silhouette Coefficient,
the Calinski-Harabasz Index, and the Davies-Bouldin Index.
At the end of the analysis, the adversaries find out that
the best configurations for each repository Rr are the ones
reported in Table IV. The table reports only the results with
higher ARI obtained by the Enhanced Gray Box and Black
Box adversaries. All the reported results have been achieved

by leveraging the Silhouette Coefficient. Indeed, it was the
internal evaluation index that allowed attackers to reach the
best ARI scores in all the experiments. Enhanced Gray Box
adversaries are those that achieve the highest ARI, between
0.51 and 0.56, while the Gray Box obtains an ARI between
0.20 and 0.33. The highest performances of the Enhanced Gray
Box adversaries are due to the Oracle Function. Although
the Enhanced Gray Box adversaries remove several original
keywords from the documents, on average 60 original key-
words from each document (over a total of 2,433 terms), they
can completely clean up the document from the deceptive
keywords. Conversely, the Gray Box adversaries remove a
few original keywords from the documents (about 10 original
keywords). However, in the Gray Box scenario, each document
still contains more than 10 deceptive keywords on average that
are sufficient to keep the document in the deceptive clusters
created with the deceptive operations described in this work.
It is worth noting that the repositories built using the con-
strained version of K-means (similar in Tab. IV and Tab. VII)
are those that lead both White-box and Gray-box adversaries
to obtain the worst results (i.e., incorrectly clustering the
documents). Hence, the similar approach appears to be the
most robust against the counter operation. Enhanced Gray Box
adversaries are able to achieve notable results. Indeed, an ARI
of 56% can intuitively be interpreted as the 56% of documents
are correctly clustered. However, some considerations have
to be taken into account. Even assuming the Enhanced Gray
Box adversaries can self-estimate the ARI achieved by the
repositories, they still can not infer which documents are
correctly labeled and which are not (i.e., the adversaries do
not know the original topics of the documents). An ARI of
56% means that if the adversaries pick one document in a
cluster C ′, there is roughly 50% probability that C ′ contains
the majority of documents with the same original topic.

C. Increasing the Number of True Topics

In this subsection, we explore how deceptive operations
perform by scaling up the number of true topics in the
original repository. For this analysis, we built 6 different
deceptive repositories, each of them containing a different
number of true topics, from 2 up to 7. All the repositories
have been built leveraging the Basic Shuffle operation (see
Sec. III-B) and partitioning the documents randomly. In par-
ticular, the 7 true topics we used to build the repositories are
the three described in Sec. II ( Artificial Intelligence (AI),
Database (DB), Cryptography and Security (CR)), and four
new topics (Robotics (RO), Computers and Society (CS),
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TABLE V
SCORES OF ARI ACHIEVED BY THE ADVERSARIES IN THE ORIGINAL

REPOSITORY AND AFTER THE BASIC SHUFFLE OPERATION
WHEN INCREASING THE NUMBER OF TOPICS

Logic in Computer Science (LO), Computational Complexity
(CC)) that we collected in the same fashion always from
ArXiv. To assess the performance of the Shuffle Operation,
we compute for each repository the ARI before applying the
deceptive operation (i.e., the ARI the adversaries would have
gotten exfiltrating the plain repository) and the ARI obtained
by the three kinds of adversaries after the operation has been
applied.

Table V sums up the results of these experiments. As for the
previous experiments, the Black Box adversaries achieve an
ARI of about 0 for all the configurations. This result is straight-
forward since the Black Box adversaries attempt to cluster the
deceptive repositories without applying any countermeasures.
Instead, in the other cases (Original repository, Enhanced
Gray Box, and Gray Box adversaries), the ARI drops as we
increase the number of topics into the repository. However,
while analyzing the original repositories, the ARI falls of few
points (−0.11), from 0.96 on the repository containing 2 topics
to 0.85 on the repository containing 7 topics, for the Gray Box
and the Enhanced Gray Box the ARI fall down drastically. The
Gray Box adversaries achieve an ARI of 0.51 in the case of a
deceptive repository made of 2 topics, while an ARI of 0.12 for
the deceptive repository made of 7 topics. The Enhanced Gray
Box adversaries go from 0.68 to 0.28. These results show that
the deceptive operations become much more effective as the
number of clusters in the deceptive repository increases.

D. CORD-19 Dataset
This section assesses the effectiveness of our deceptive

operations when attackers exfiltrate a repository made of a
large amount of documents protected with DARD. To this
end, we employ the CORD-19 dataset [33]. This dataset
consists of over 140,000 scientific articles on viruses related
to the coronavirus family. To create a representative sample,
we select 10,000 documents from the CORD-19 dataset using
the same methodology outlined by Eren et al. [34]. Sub-
sequently, we preprocess the sampled documents using the
method described in Section II-B.1.

To determine the optimal number of clusters of the repos-
itory based on the CORD-19 dataset, we use the approach
detailed in Section II-B.2. In particular, we evaluate the Sil-
houette Coefficient on the repository for a number of clusters
ranging from 10 up to 50. At the end of the process, we find
that the Silhouette Coefficient achieves its maximum value
with 20 clusters, which aligns with the results obtained in [34].
Since the CORD-19 dataset is not labeled, we consider the
outcome of the clustering process as the ground truth for the
subsequent experiments. Similar to the approach described
in Section V-A, we build six new deceptive repositories of
10,000 documents each, as described below. We apply each

deceptive operation twice: once by partitioning the documents
through random selection and once by using the constrained
version of K-means. Starting from the original repository using
the Basic Shuffle, we generate a new deceptive repository
of 20 clusters. Starting from the original repository made of
20 clusters, we generate a new deceptive repository made of
25 clusters employing the Shuffle Increment. Finally, with the
Shuffle Reduction, we reduce the number of clusters in the
original repository, producing a deceptive repository consisting
of 15 clusters. We set the number of m-terms-replacement to
70, such that the three internal-validation indexes return the
deceptive numbers of clusters for all the repositories. Also,
in this scenario, we simulated attackers willing to remove up to
150 keywords and search for 2 up to 50 clusters by evaluating
the repositories through the Silhouette Coefficient. Table VI
reports the ARI values achieved by the different typologies
of attackers on the six different deceptive repositories. In this
scenario, our operation also completely deceives the Black
Box adversaries. Similar to previous experiments, the Gray
Box and the Enhanced Gray Box tend to overestimate the
number of clusters in the original repository. Additionally,
a significant decrease is observed when comparing the ARI
scores for both Gray Box and Enhanced Gray Box adversaries
with the experiment in Sec. V-A. Specifically, the scores
decrease from the range 33-20% to 25-16% for the Gray
Box and from 56-51% to 30%, for the Enhanced Gray Box
adversaries. This appears to be evidence that the quality of
clustering achieved by these adversaries deteriorates as the
size of the repository increases.

E. Investigating the Runtime Execution of DARD

For assessing the execution time of DARD defense, we use a
desktop computer with an Intel Core i7-12700 CPU operating
at 2.10GHz and 32 GB of RAM running ManjaroLinux
22.1.0 as the operating system. The deceptive operation has
been coded in Python 3.10.10. The scalability of the pro-
posed deceptive operations, as the size of the dataset grows,
depends on the computation time of the Equations 2. More
specifically, this equation necessitates performing numerous
TF-IDF and document clustering operations. For instance,
on the Arxiv papers dataset comprising 450 documents, it took
approximately 13 seconds to compute the TF-IDF once and
0.83 seconds for a single clustering operation. However, the
computation time increased when applied to a larger dataset,
such as CORD-19, consisting of 10,000 documents. Calculat-
ing the TF-IDF and clustering one time on CORD-19 took
124 seconds and 29 seconds, respectively. In Equation 2,
we employ a binary search strategy to determine the minimum
number of keywords to be replaced. This binary search is
executed within the list of keywords that holds the maximum
number of keywords the defender intends to substitute, which,
in this experiment, is set at 150. Implementing the binary
search strategy results in almost a tenfold reduction in the
frequency of TF-IDF and clustering computations. In sum-
mary, to calculate Equation 2, DARD requires approximately
81 seconds on the Arxiv papers dataset (450 documents)
and 7,122 seconds on the larger CORD-19 dataset (10,000
documents). Results can be enhanced by implementing DARD
in a more efficient programming language. From the perspec-
tive of adversaries, it is worth noting that when analyzing
a deceptive repository, as outlined in the attacking strategy
detailed in Section V-B, we estimated that attackers need
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TABLE VI

ADJUSTED RAND INDEX (ARI) VALUES ACHIEVED BY THE ADVERSARIES ON THE REPOSITORY R′
d AGAINST BASIC SHUFFLE, SHUFFLE

INCREMENTATION (SHUFFLE INCR.), AND SHUFFLE REDUCTION (SHUFFLE RED.) APPLIED TO SUBSETS OF DOCUMENTS OF THE
CORD-19 DATASET SELECTED RANDOMLY (RANDOM) AND BY GROUPING SIMILAR ONES (SIMILAR).

THE NUMBER OF CLUSTERS IN THE ORIGINAL REPOSITORY IS 20

TABLE VII
PERCENTAGES OF DECEPTIVE KEYWORDS RETURNED BY LDA

ACCORDING TO THE NUMBER OF KEYWORDS RETRIEVED
FROM EACH TOPIC AND THE DECEPTIVE OPERATION

APPLIED ON THE REPOSITORY

much longer execution time. Approximately 360 seconds and
36,000 seconds on the Arxiv papers and CORD-19 datasets,
respectively. This high cost is because the attackers must
compute the TF-IDF and the clustering operation for each
deceptive keyword they suspect. In our experiment, we assume
that the adversary aims to remove 150 keywords, which is
consistent with the number employed in the aforementioned
experiment conducted by DARD.

F. Topic Modeling
The previous subsections analyzed the effect of decep-

tive operations on document clustering. In particular, this
subsection shows how deceptive operations affect topic mod-
eling. We consider adversaries that try to infer the underlying
topics of the exfiltrated repository leveraging LDA, one of the
most popular topic modeling algorithms. Given a repository of
documents and a number of topics T , LDA computes for each
term in the documents the probability that the term belongs to
one of the T topics. The set of n terms that have the highest
probability according to the LDA algorithm is defined as the
topic keywords of each topic. Note that the most used number
of topic keywords is 10 [19].

Assume that a Black Box adversary wants to infer the topic
of each cluster of documents into the exfiltrated repository
Rd . Thus, the number of topics T that such adversaries seek
is equal to the number of deceptive clusters.

To assess if our deceptive operations are able to deceive
the Black Box adversaries in inferring the topics, we use
the same deceptive repositories described in Sec. V-A, and
the LDA version of Scikit-learn library [35]. In particular,
we measure the presence of deceptive keywords that the
adversaries retrieve with LDA for each topic with n varying
from 10 to 50.

Analyzing the topic keywords computed by LDA on the
repositories, we make the following observations:

(i) With n = 10, for each topic, all the keywords retrieved
by LDA are deceptive keywords. Instead, with n = 50, the
percentage of deceptive keywords varies between 74% and
95%, depending on the deceptive operations used to build
the repository. Thus, even considering a significant amount
of topic keywords (n = 50), very few real topic keywords are
retrieved using LDA. Moreover, as we can see from Tab. VII,
the real topic keywords are mainly at the lower position of
the rank, which means they have a low probability of being
significant for the specific topic. Indeed, looking at the real
topic keywords returned by LDA, we find that they are generic
keywords of computer science, such as: lemma, root, induct,
resource, program, rate, label.

(ii) Each topic retrieved by LDA describes with its top ten
keywords a different deceptive cluster within the deceptive
repository. Consequently, adversaries relying on LDA will
infer the deceptive topics designed by the defenders.

(iii) Each deceptive cluster of the deceptive repository has
one topic associated with it.

Combining these observations, we have that LDA finds
as topic keywords for a certain deceptive cluster, the same
deceptive keywords used to build the deceptive cluster itself.
Thus, the defender has the ability to manipulate the topic
that the adversaries will infer, choosing wisely the deceptive
keywords to use with the deceptive operations. The defender
has multiple strategies to pick the deceptive keywords in order
to show a specific deceptive topic to the adversaries. Suppose
the defender selects deceptive keywords that fit both the
deceptive context of the sentence and the part of speech of the
terms to be replaced. In that case, it will be more challenging
also for a domain expert to recognize the documents modified
by our operations. To automatically perform this task, the
defender can leverage language modeling techniques such
as [36] and [37]. This paper does not discuss the possible
strategies of this extension, as it affects the second phase of
the attack, while we focus on the first (see Sec. I).

Note also the following interesting consequence of the
observations depicted above. Adversaries that first leverage
LDA to feed a clustering algorithm at the end of the computa-
tion will group the documents of Rd in a way very close to the
deceptive clusters constructed by the defender. Indeed, on our
6 deceptive repositories, the Black Box adversaries group on
average the 97% of the documents in Rd accordingly to the
deceptive clusters built by the deceptive operations.

As a further experiment, to assess the robustness of
the deceptive operations against LDA, we also leverage a
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commercial topic modeling tool, the Amazon Comprehend-
Topic Modeling [13]. It is a topic modeling tool developed
by Amazon Inc. that leverages the Amazon SageMaker Latent
Dirichlet Allocation (LDA) algorithm, a custom version of
LDA developed by Amazon Inc.. Given a repository of docu-
ments, Amazon’s tool provides as output two CSV files. The
first file reports for each document of the repository the topic
number that the document is assigned to, and the proportion
of the document concerned with that specific topic. Instead,
the second file contains the top 10 topic keywords for each
topic.

As for the results obtained with SKlearn’s implantation of
LDA, at the end of the experiments on the deceptive reposito-
ries Rd , all the topic keywords returned by Amazon’s tool are
deceptive keywords. All the topic keywords retrieved belong
to a single deceptive cluster, and each deceptive cluster has a
topic associated with it. The result of the experimentation with
Amazon’s tool shows that our proposed deceptive operations
are robust also if adversaries employ an implementation of
LDA not known to the defender, and with optimized parameter
and data processing pipeline.

Note that leveraging the Amazon Comprehend tool makes
sense only for the Black Box adversaries. Indeed, the
Enhanced Gray Box and Gray Box adversaries are aware of the
presence of deceptive keywords in the exfiltrated repository.
Thus, they do not perform topic modeling but attempt to get rid
of the deceptive keywords and cluster the documents achieving
the poor results shown in the previous sections.

VI. RESTORING THE ORIGINAL DOCUMENTS

This section describes a possible architectural design
involved in restoring a deceptive document to provide the orig-
inal document to a legitimate user. This ensures that the DARD
deception remains completely transparent from the perspective
of legitimate users. The keywords mapping, the most sen-
sitive data of the DARD system, cannot be stored on the
main file system, risking being exfiltrated together with the
other repository documents. To address this concern, a secure
application must be developed for file restoration, utilizing a
Secure Enclave Solution [12]. By adopting this approach, the
mapping can be securely stored within the Secure Memory
of the Secure Enclave. Performing the restore operation on
the Secure CPU ensures that the keywords mapping remains
isolated and safeguarded. In Fig. 6, we report a possible
architecture to explain how the restore process can work.
In particular, there is a deceptive repository stored in a storage
server, and N authorized users can access it through their
workstations. The mapping of the deceptive keywords with
the relative original keywords is kept in the secure enclave of
the workstation. Moreover, the users’ document reader/editor
application has a plug-in installed that can interact with the
secure enclave. When a user requests access to a document,
if he has the privilege to read/write it, the storage server sends
the deceptive document to the user. At this point, the plug-in
interacts with the secure enclave to authenticate the user. If the
secure enclave recognizes the user as legitimate, the modified
document is restored and visualized to the end user. The
original document is always maintained in the workstation’s
RAM. When a user saves an update to a document, the plug-in
interacts with the secure enclave to replace the existing key-
words with the corresponding deceptive ones. After receiving
the updated deceptive document from the secure enclave, the
plug-in sends it to the storage server, where the revised version

Fig. 6. A possible architecture design to restore deceptive documents.

of the document is then stored. Note that the original document
is never stored on the workstation’s hard disk nor transmitted
over the network.

VII. RELATED WORK

A. Adversarial Setting
Several studies propose attacks to clustering algorithms

through the generation of adversarial settings [38], [39]. Gen-
erally, an adversary injects malicious examples into the data to
impact the clustering results. There are two main typologies of
these attacks: poisoning and obfuscation. The poisoning attack
aims to worsen the clustering results as much as possible by
corrupting the data. The strategy is to create new clusters or
bridges between clusters by adding samples within the dataset.
In the first case, the purpose is causing the misclassification
of a single cluster into more clusters. As for the bridge case,
the goal is to pretend that two different original clusters are
one. Instead, an obfuscation attack aims to hide a specific
data set. Typically, it consists in adding a set of samples to
join the target cluster to hide with another one. As a result,
clustering methods return a unique cluster that conceals the
target cluster with another one. As in the work of [38] and [39],
DARD can generate or reduce the number of clusters within
a repository. However, unlike previous approaches, DARD
does not require the introduction of new samples into the
repository to execute deceptive operations. Obfuscation allows
one to completely hide a cluster by merging it into another
cluster. Nevertheless, there’s no assurance that the newly
formed cluster will successfully conceal all the keywords
from the hidden cluster. Thus, while obfuscation effectively
misleads regarding the number of clusters, it doesn’t guarantee
the concealment of topics or deception about the underlying
topics within a repository. Similarly, poisoning worsens the
performance of clustering algorithms, increasing the number
of clusters within a repository. However, in this case, the topics
remain retrievable using machine learning techniques.

Unlike previous studies that focused on fooling image clas-
sifiers [38] and malware classifier [39], our research addresses
explicitly text document classifiers. Specifically, DARD intro-
duces a novel approach by utilizing adversarial settings not for
attacking models but as a defense mechanism against adver-
saries relying on automated techniques to classify exfiltrated
repositories. This paradigm shift also alters the threat model.
Previous studies assumed adversaries would carry out stealthy
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attacks and target a specific system, typically knowing its
parameters. However, in our work as defenders, we cannot
assume in advance the number of clusters the attackers will
seek or whether they will attempt to circumvent the DARD
system.

B. Adversarial Text
These techniques aim to reduce machine learning ability to

automatically analyze text without providing a deceptive layer.
For example, obfuscation techniques can hide the real author
of a document from automatic Authorship Attribution [40],
[41] by changing the writing style but keeping the content
of the document understandable to the reader. However, these
techniques are not able to cover the underlying topic of a
document nor obfuscate the number of topics present in a
repository. Indeed, these techniques are usually limited to
inserting minor typos or replacing a word with a synonymous,
attempting to not alter the meaning of the sentences contained
in the text.

C. Deceptive Repositories
Finally, there are solutions similar to ours that aim to create

deceptive repositories. Chakraborty et al. propose Forge [42].
This system leverages ontologies to generate new fake docu-
ments, credible to unauthorized readers, from a set of original
documents. The resulting deceptive repository will contain
fake and original documents that are indistinguishable to
human readers. Identifying the fake documents within the
repository requires extensive reading and, thus, a significant
investment of time to differentiate them from the original ones.
WE-Forge [43], an extension of Forge, goes beyond ontologies
and utilizes word embeddings to automatically generate fake
documents that closely resemble authentic ones, enhancing
the credibility of the forged documents. While Forge and
WE-Forge focus on building a deceptive repository to mislead
the human reader by creating fake new documents, we use
the same documents of the original repository to generate a
new deceptive repository to mislead automatic classification
systems. Moreover, Forge and WE-Forge mainly aim to hide
details of the original documents and not the underlying
topics. The DARD solution and Forge/WE-Forge solution are
orthogonal and can be jointly used to hinder both human
analysis and automatic systems. For example, Forge could
be applied to create a deceptive repository to resist a human
analyst, followed by DARD to make the repository deceptive
against automatic analysis.

VIII. DISCUSSION ON DARD’S APPROACH

This section compares DARD with traditional encryption
and current obfuscation practices, considering specific aspects
such as focus on deception and deceptive operations.

A. Focus on Deception
While encryption primarily focuses on data confidentiality

by securing information through cryptographic algorithms,
DARD emphasizes topic confidentiality and deceiving attack-
ers over data secrecy. Instead of merely encrypting data,
DARD creates a deceptive repository intentionally crafted to
attract attackers, giving them the impression that they have
discovered valuable and easily accessible information.

B. Deceptive Operations
DARD’s deception tactics go beyond encryption and obfus-

cating data. It involves carefully crafting the repository’s
structure, including the number of clusters and their topics,
to make attackers believe they have discovered valuable data.
This entices attackers to conduct further analysis, wasting
their time and resources on false content. This proactive
approach not only facilitates intrusion detection but also
actively engages attackers by leading them away from genuine
data.

C. Ease of Deployment and Usability
In terms of ease of deployment and end-user usabil-

ity, DARD is comparable to traditional encryption methods.
Both approaches require secure storage for keeping secrets
(e.g., encryption keys or keyword mappings) and keeping
plaintext confined to RAM during data processing. Therefore,
organizations can integrate DARD into their existing secu-
rity infrastructure without significant additional overhead or
complexity.

D. Response Efficiency
Unlike encrypted data, where attackers immediately rec-

ognize encrypted content upon discovery, DARD’s deceptive
repositories delay attackers’ realization that they have encoun-
tered engineered content. This delay provides security teams
valuable time to detect and respond to threats before attackers
move on to other servers or resources in search of unencrypted
data.

In addition, there are cases where the DARD system could
be used complementary to encryption to enhance data secu-
rity and privacy. By combining both approaches strategically,
organizations can achieve a more comprehensive and robust
security posture. Here are some scenarios where DARD can
complement encryption:

E. Data Decoy Strategy
In addition to encrypting sensitive data, organizations can

deploy DARD to create decoy repositories or honeypots con-
taining fabricated or low-value information. Attackers who
gain unauthorized access may be drawn to these decoy repos-
itories, allowing security teams to detect and respond to
intrusions more effectively. Meanwhile, genuine sensitive data
remains encrypted, providing an additional layer of protection.

F. Multi-Layered Defense
Implementing a multi-layered defense approach involves

using multiple security measures to protect data. Encryption
serves as one layer of defense to safeguard data in transit
and at rest. DARD can be deployed as another layer to detect
and disrupt malicious activities by deceiving attackers and
diverting their attention from genuine data assets. Together,
encryption and DARD create a more resilient defense against
sophisticated cyber threats.

In summary, the DARD methodology offers a unique
and effective approach to enhancing data security and pri-
vacy by prioritizing deception over traditional encryption.
While encryption and DARD serve different purposes in
data security, they can be effectively integrated to provide
complementary layers of protection.
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IX. CONCLUSION

This work proposes DARD, a framework of 4 deceptive
operations able to manipulate the resulting clusters generated
by a document repository. The goal is to deceive adversaries
who employ automatic classification approaches to categorize
exfiltrated documents. To this end, the deceptive operations
replace some of the original keywords in the documents
with deceptive keywords through term-replacement operations.
We outlined how to apply the term-replacement operations for
each deceptive operation and identified the minimum number
of terms that needed replacing. Then, we investigate different
criteria for selecting the terms to be replaced, highlighting
the pros and cons of the different approaches. We show
experimentally that our operations can achieve a high level
of deception. We conduct our experiments with three different
types of adversaries: the Black Box, an adversary who does
not know anything about deceptive operations; the Gray Box,
who knows how deceptive operations work; and the Enhanced
Gray Box, an adversary that can leverage the Oracle Function
to discover the potential deceptive keywords in the repository.
Our results show that deceptive operations completely deceive
adversaries without knowledge of this work (0% ARI). They
are very effective (average ARI of 25%) against those adver-
saries who know how the deceptive operations work (Gray
Box), achieving, in the worst-case scenario with the Enhanced
Gray Box adversaries, an average ARI of 53.5%. In addition,
we analyzed the impact of deceptive operations in the topic
modeling task.

We found that when the adversaries perform topic modeling
with LDA on the deceptive repositories, LDA only returns
deceptive keywords among those most descriptive of the topic.
Moreover, we show that our approach against topic modeling
successfully deceives also commercial tools such as Amazon
Comprehend.
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