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Abstract— This work investigates the design of sparse secret
sharing schemes that encode a sparse private matrix into sparse
shares. This investigation is motivated by distributed computing,
where the multiplication of sparse and private matrices is moved
from a computationally weak main node to untrusted worker
machines. Classical secret-sharing schemes produce dense shares.
However, sparsity can help speed up the computation. We show
that, for matrices with i.i.d. entries, sparsity in the shares comes
at a fundamental cost of weaker privacy. We derive a fundamen-
tal tradeoff between sparsity and privacy and construct optimal
sparse secret sharing schemes that produce shares that leak the
minimum amount of information for a desired sparsity of the
shares. We apply our schemes to distributed sparse and private
matrix multiplication schemes with no colluding workers while
tolerating stragglers. For the setting of two non-communicating
clusters of workers, we design a sparse one-time pad so that
no private information is leaked to a cluster of untrusted and
colluding workers, and the shares with bounded but non-zero
leakage are assigned to a cluster of partially trusted workers.
We conclude by discussing the necessity of using permutations
for matrices with correlated entries.

Index Terms— Sparse private matrix multiplication, straggler
tolerance, optimal leakage, information-theoretic privacy.

I. INTRODUCTION

DISTRIBUTED computing became a ubiquitous require-
ment with the emergence of machine learning applica-

tions where an enormous amount of data is processed and,
due to limitations of the computation power, forwarded to
computing nodes [4]. We consider a main node/worker setting,
where a central entity called main node owns a large amount
of private data and needs to run intensive computations on
it. The intensive computation is split into multiple tasks of
potentially smaller complexity that can be assigned to external
computation nodes called workers to be run in parallel.

Offloading computations to external nodes faces several
challenges, such as leaking private information from sensitive
data, which could be prohibited by data-protection laws [5],
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and increased overall latency due to straggler behavior, i.e.,
slow or unresponsive nodes [6].

We restrict our attention to distributed matrix multiplication
as being a computationally exhaustive part of several machine
learning algorithms, such as support vector machines, principal
component analysis, and gradient descent algorithms [7], [8].
A vast literature on the topic shows that coding-theoretic
techniques can be used to mitigate the effect of stragglers and
to ensure strong information-theoretic privacy of the data, e.g.,
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], and [29] and the
survey in [30].

However, those techniques require “mixing” the private data
with random matrices (for privacy) to generate the tasks sent
to the workers. Hence, all structure of the input matrices,
particularly sparsity, is lost. Sparse matrices, i.e., matrices with
a relatively large number of zero entries, appear naturally in
some machine learning tasks [31]. The structure of sparse
matrices is important and can be leveraged by deploying
efficient storage and computations strategies [32], [33].

In this work, we introduce the problem of encoding sparse
private matrices into matrices that are still sparse and, when
offloaded to workers, maintain information-theoretical pri-
vacy guarantees as will be formally defined in the sequel.
We explain next the closest related works and highlight our
contributions.

A. Related Work

Straggler mitigation in non-private distributed matrix mul-
tiplication is extensively studied in the literature, e.g., [9],
[10], [11], [12], [13], [14], [15], and [16]. The idea is to
encode the input matrices into new ones, called tasks, such
that stragglers can be mitigated when assigned to the workers.
Sparsity-preserving encoding techniques in distributed matrix
multiplication have recently received attention in the scientific
community. The authors of [34] propose encoding the input
matrices using an LT code [35] with a carefully tailored
Soliton distribution to generate sparse matrices (tasks). In [36],
the authors design encoding strategies for many settings,
including distributing the multiplication of a sparse matrix
with a dense vector. Fractional repetition codes are used
to preserve a plausible level of sparsity in the tasks and
mitigate stragglers. Moreover, an extra layer of non-sparse
coded matrices is added to increase the straggler mitigation
capability of the proposed codes. In [37], the same authors
improve their previous scheme [36] by introducing a sparser
encoding strategy of the last layer. In [38], the authors propose
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sparse encoding strategies that account for better numerical
stability properties (compared to other existing schemes) and
for heterogeneous task allocations (proportional to the workers
storage capabilities). In [39], the authors propose to use a
random Khatri-Rao product to construct a distributed (non-
private) matrix-matrix multiplication that is numerically stable.
The work [40] modifies the construction of [39] to obtain
sparse encoding strategies with similar numerical stability
when the input matrices are sparse. The works in [41] and
[42] consider the case where a dense input matrix is sparsified
to speed up the overall computation.

In terms of privacy, several encoding strategies that mitigate
stragglers and guarantee perfect information-theoretic privacy
have been proposed. The literature distinguishes between one-
sided privacy, where the main node wants to offload the multi-
plication of two matrices, one of which has to remain private,
e.g., [22], [26], [27], and [28], and double-sided-privacy where
both input matrices must remain private, e.g., [17], [19], [20],
[21], [24], [25], [29], [43], and [44]. However, none of the
works on private distributed matrix multiplication considered
encoding strategies that generate tasks that inherit the sparsity
of the input matrices. The reason is that, as we shall show
next, perfect information-theoretic privacy requires encoding
strategies that destroy the sparsity of the input matrices. Very
recently, [45] studied the tradeoff between privacy and storage
rate in distributed storage.

B. Contributions

We introduce the problem of constructing codes for private
distributed matrix multiplication that mitigate stragglers and
inherit sparsity from the private input matrices. We start by
showing that insisting on perfect information-theoretic privacy
does not allow leveraging the beneficial properties of sparse
matrices. Therefore, we open the door to allowing sparsity
and privacy to co-exist by relaxing the privacy guarantees.
We prove the existence of a fundamental trade-off between
sparsity and information-theoretic privacy. We optimize this
trade-off to design optimal codes for private distributed matrix
multiplication with sparsity guarantees.

C. Organization

We set the notations in Section II and formulate the gen-
eral problem in Section III. In Section IV, we describe the
considered system model and our main results. In Section V,
we construct a novel sparse one-time padding strategy and
optimize it for given requirements. Section VI generalizes into
a sparse secret-sharing scheme with an arbitrary number of
shares. In Section VII, we explain how to apply the introduced
schemes to sparse and private matrix multiplication with
stragglers. We discuss practical solutions for sparse matrices
with correlated entries in Section VIII and conclude the paper
in section IX.

II. NOTATION

We use uppercase and lowercase bold letters to denote
matrices and vectors, e.g., X and x, respectively. By X{i, j},

we denote the (i, j)-th entry of a matrix X. We use letters in
uppercase typewriter font for random variables, e.g., Y. The
random variables representing a matrix X and its (i, j)-th entry
X{i, j} are denoted by X and X{i, j}, respectively. A finite field
of cardinality q is denoted by Fq and we use F∗

q to define its
multiplicative group, i.e., F∗

q ≜ Fq \ {0}. Sets are denoted by
letters in calligraphic font, e.g., X . For a positive integer b,
we define the set [b] ≜ {1, 2, . . . , b}. Given b random variables
Y1, . . . ,Yb and a set I ⊆ [b], we denote by {Yi }i∈I the set
of random variables indexed by I, i.e., {Yi }i∈I ≜ {Yi |i ∈ I}.
For two random variables X and Y, we denote Pr(X = x)

and Pr(X = x |Y = y) by PrX(x) and PrX|Y(x |y), respectively.
The probability mass function (PMF) of a random variable
X ∈ Fq is denoted by PX =

[
p1, p2, . . . , pq

]
, i.e., PrX(i) = pi

for all i ∈ Fq . Throughout the paper, we will use Hq(X)

and Hq(
[

p1, p2, . . . , pq
]
) interchangeably to denote the q-ary

entropy of the random variable X ∈ Fq . The q-ary mutual
information between two random variables X and Y is denoted
by Iq(X;Y). We will use DKL (PX∥PY) to denote the Kullback-
Leibler (KL) divergence between the PMFs of X and Y.

III. PROBLEM FORMULATION

We introduce the problem of encoding private and sparse
matrices into sparse matrices such that observing a collection
of the output matrices reveals little to no information about the
input matrices. In other words, the problem can be understood
as constructing secret sharing schemes whose output is a
collection of sparse matrices.

Formally, let A1, . . . , Ak be k private matrices of the same
dimensions drawn from a finite alphabet A.

Definition 1 (Secret Sharing): An (n, t, z) secret sharing
(SecShare) scheme with t = k + z is a randomized encoding
SecShare : Ak

× Az
→ An that outputs n matrices, called

shares. Let A1, . . . ,Ak and Ã1, . . . , Ãn be random variables
whose realizations are the private matrices and the output
shares, respectively. A secret sharing scheme satisfies the
following conditions:

1) Reconstruction: any t shares suffice to reconstruct the
input matrices, i.e., Hq(A1, . . . ,Ak |̃Ai1 , . . . , Ãit ) = 0.

2) Perfect privacy: any z out of the n shares reveal
no information about the private matrices, i.e.,
Iq(A1, . . . ,Ak; Ãi1 , . . . , Ãiz ) = 0.

Constructions of (n, t, z) secret sharing schemes gener-
ate z random matrices R1, . . . , Rz drawn independently and
uniformly at random from A. The scheme then computes
the polynomial F(x) =

∑k−1
i=0 Ai+1x i

+
∑z−1

i=0 Ri+1xk+i . Let
α1, . . . , αn be distinct non-zero numbers. Each share Ãi is the
evaluation of F(x) at αi , i.e., Ãi = F(αi ).

The problem with secret sharing schemes is that the shares
are dense, i.e., have a relatively small number of zero entries,
irrespective of the structure of the input matrices. This is
due to drawing the matrices Ri independently and uniformly
at random from A, which is crucial for the perfect privacy
to hold. Let sAi be the sparsity1 of the input matrices Ai .

1The sparsity could be understood in several ways, e.g., the ratio of the
number of zero entries to the total number of entries, and will be defined
formally when we explain the system model.
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Secret sharing schemes output shares with sparsity equal 1/|A|

irrespective of the values of the sAi’s.
We first investigate the existence of sparse secret sharing

schemes (as defined next), which are of independent interest.
Definition 2 (Sparse Secret Sharing): A sparse secret shar-

ing scheme with parameters (n, t, z; ε, s1, . . . , sn) is a ran-
domized encoding SparseSecShare : Ak

×Az
→ An that takes

as input k = t − z private and sparse matrices with sparsity
sAi , i = 1, . . . , k, and outputs n sparse matrices called shares
that satisfy the reconstruction property and the following:

1) Privacy: any z out of the n shares leak a small amount
of information about the private matrices, i.e.,

Iq(A1, . . . ,Ak; Ãi1 , . . . , Ãiz ) ≤ ε.

2) Sparsity: Each share Ãi has a desired sparsity sÃi
= si .

The observant reader notices immediately that the pri-
vacy guarantee of sparse secret sharing schemes is relaxed
from the perfect information-theoretic privacy to weak
information-theoretic privacy that allows what we call an ε

leakage. We shall show that there exists a tension between ε

and sÃi
, i = 1, . . . , n, and that if ε = 0 is desired, then sÃi

≤

1/|A| which is satisfied by regular secret sharing schemes.
We focus on constructing sparse secret sharing schemes with
z = 1 and k = 1, i.e., schemes with shares of the form
Ãi = A + Rαi .

With sparse secret-sharing schemes, we define the problem
of constructing straggler-tolerant sparse and private matrix
multiplication schemes.

Definition 3 (Sparse and Private Matrix Multiplication):
A straggler-tolerant sparse and private matrix multiplication
scheme with parameters (N , σ, z, ε1, ε2, s1, s2) takes as input
two private and sparse matrices A and B and offloads
their multiplication to N available worker nodes. The matri-
ces are encoded each into m ≥ N shares, denoted by
Ã1, . . . , Ãm, B̃1. . . . , B̃m . The shares are grouped into pairs
called tasks and denoted by T(i, j) = (Ãi , B̃ j ), for i, j ∈ [m],
which are then assigned to the N workers. Denote by Wℓ

the set of all tasks assigned to worker ℓ, ℓ ∈ [N ], i.e.,
Wℓ ≜ {T(i, j) | T(i, j) assigned to worker ℓ}. Each worker
computes sequentially the multiplication of all (Ãi , B̃ j ) ∈ Wℓ

and sends them back to the main node until either it finishes
all its tasks or it is asked to stop computing. Let Cℓ be the
collection of multiplications sent by worker ℓ to the main node.
The scheme satisfies the following conditions:

1) Straggler tolerance: The matrix C = AB can be recov-
ered from the collection of any N − σ sets Cℓ, i.e., with
a slight abuse of notation2 we can write for any distinct
i1, . . . , iN−σ ∈ {1, . . . , N }

Hq(C | Ci1 , . . . , CiN−σ
) = 0.

2) Privacy: Any z workers can obtain a small amount of
information about the input matrices, i.e.,

Iq(A;Wi1 , . . . ,Wiz ) ≤ ε1, Iq(B;Wi1 , . . . ,Wiz ) ≤ ε2,

where 0 ≤ ε1 ≤ Hq(A) and 0 ≤ ε2 ≤ Hq(B).

2For clarity of presentation, the set Cℓ represents also a collection of random
variables.

3) Sparsity: The average sparsity of the tasks in Wℓ cor-
responding to matrices A and B are respectively equal
to s1 ≤ sA and s2 ≤ sB.

IV. SYSTEM MODEL AND MAIN RESULTS

A. Sparsity and Private Matrices

In this work, we restrict our attention to private matrices
whose entries are independent and identically distributed.

Definition 4 (Sparsity Level of a Matrix): The sparsity level
S(X) of a matrix X with entries independently and identically
distributed is equal to the probability of the (i, j)-th entry
X{i, j} of X being equal to 0, i.e.,

S(X) = Pr
X{i, j}

(0).

The private matrices of the main node are assumed to belong
to a finite field A ∈ Fm×n

q , B ∈ Fn×ℓ
q and have sparsity levels

S(A) = sA and S(B) = sB, where3 sA, sB > q−1. The PMF
of the entries of A (and B) can be expressed as follows

Pr
A{i, j}

(a) =


sA, a = 0

1 − sA

q − 1
, a ∈ F∗

q

. (1)

Though limiting, the assumption of the entries being i.i.d.
serves as a stepping stone toward understanding the trade-off
between privacy and sparsity. The goal is for the main node
to offload the computation C = AB to N workers.

B. Collusions and Stragglers

The workers are assumed to be honest-but-curious and will
follow the protocol dictated by the main node. We say that
up to z workers collude if any collection of up to z workers
collaborate to infer information about the private matrices from
the tasks they have obtained. For the particular case of z = 1,
we say that the workers do not collude.

Workers are assigned multiple computational tasks that
they compute and send their results sequentially to the main
node. A full straggler is a worker that does not return any
computation to the main node. A partial straggler is a worker
that returns some of its computations to the main node while
most of the other workers have finished all their computations.

C. Information Leakage

Let the random variables A and B represent the private
matrices A and B, respectively, and Wℓ, ℓ ∈ [N ], denote the
collection of random variables representing the tasks assigned
to worker ℓ. We say that the tasks assigned to worker ℓ leak
εA ≜ Iq(A;Wℓ) amount of information about the matrix A.
We define the relative leakage by ε̄A ≜ Iq(A;Wℓ)/Hq(A),
where 0 ≤ ε̄A ≤ 1. Perfect information-theoretic privacy
corresponds to εA = ε̄A = 0 and no privacy corresponds to
εA = Hq(A) or ε̄A = 1. The same can be defined for B.

Remark 1 (Operational Meaning): While the operational
meaning of perfect information-theoretic privacy is clear: an
eavesdropper with unbounded computational power cannot do
better than guessing; a non-zero leakage has more ambiguity

3For the special case sA, sB ≤ q−1, the shares of classical secret sharing
schemes have larger sparsity q−1 and are, thus, enough.



BITAR et al.: SPARSITY AND PRIVACY IN SECRET SHARING: A FUNDAMENTAL TRADE-OFF 5139

in its operational meaning. We are interested in understanding
the fundamental theoretical trade-off between information-
theoretic privacy and sparsity. In practice, a leakage of
ε > 0 means that any eavesdropper can learn some partial
information about the private data.

D. Main Results

We study sparse secret sharing schemes for z = 1 and matri-
ces with i.i.d entries. We start by showing in Lemma 1 that
a fundamental trade-off exists between sparsity and privacy.
Namely, given a private matrix A with sparsity sA ≥ q−1,
a sparse secret sharing satisfies sÃi

> q−1 if and only
if ε > 0.

Lemma 1: Let A represent a sparse matrix that has i.i.d
entries. For any secret sharing scheme with z = 1, perfect
information-theoretic privacy can be achieved if and only if
the padding matrix R is generated independently of A with its
entries being i.i.d. uniformly distributed.

Proof: The proof is shown in Appendix A. □
Therefore, to provide sparsity guarantees of the encoded

matrices, we have to deviate from perfect information-theoretic
privacy. We start by constructing a sparse one-time pad, cf.
Construction 1, that takes as input a private sparse matrix A
and outputs two sparse shares R and A+R each of which leaks
a pre-specified amount of information about A. We show the
existence of a fundamental tradeoff between the achievable
sparsity of the shares and the privacy guarantees. Further,
given a sparse matrix A and fixing the same desired sparsity of
the shares, Construction 1 provides shares with the provably
smallest leakage, cf. Lemma 2 and Theorem 1. We focus on
shares with the same sparsity levels since by Lemma 7 we
know that for a desired average sparsity, constructing shares
with the same sparsity levels minimizes leakage.

We remark in Lemma 3 the existence of sparse one-time
pads where one share leaks no information about A and
characterize the sparsity-privacy tradeoff in such a case. The
implication of the Lemma 3 is of particular importance in
the setting in which the workers can be grouped into two
non-communicating clusters. One cluster consists of fully
untrusted workers, while the workers of the other cluster
are partially trusted. We apply the result of Lemma 3 to
construct straggler-tolerant sparse and private matrix multi-
plication schemes that can tolerate collusions. In particular,
we guarantee perfect information-theoretic privacy against all
the untrusted workers and a desired leakage for any z partially
trusted workers, cf. Theorem 3.

In Construction 2, we construct sparse secret sharing
schemes with t = 2, z = 1 and n ≥ 2. We observe that
the sparsity-privacy tradeoff extends to include the number of
shares, i.e., for a fixed desired sparsity level, increasing the
number of shares decreases the achievable privacy guarantees.
Theorem 2 shows that for the same desirable sparsity of the
shares, Construction 2 provides the provably smallest leakage
possible.

We provide a discussion on the effect of correlation between
the entries of the matrix A (and B) on the constructed
schemes and show how to break the correlation with random
permutations, cf. Section VIII.

V. SPARSE ONE-TIME PAD

To build intuition, in this section, we construct a sparse
one-time pad, i.e., a secret sharing scheme with parameters
n = 2, t = 2, z = 1, and we require q−1 < s1, s2 ≤ s
(cf. Definition 2). The goal is to understand how a sparse
secret sharing scheme can be constructed and to quantify the
optimal leakage ε that can be obtained for fixed sparsity levels
s1, s2.

A one-time pad [46] takes as input the matrix A ∈ Fm×n
q ,

generates a matrix R ∈ Fm×n
q whose entries are generated i.i.d

uniformly at random from Fq and outputs R and A + R as
shares. The key ingredient to obtaining a sparse one-time pad
is to generate the entries of R dependently on A. We consider
generating R by using a conditional PMF as in Construction 1.

Construction 1 (Generation of the Padding Matrix R): To
construct a sparse one-time pad, the entries of the padding
matrix R are generated dependently on the entries of A as4

Pr
R{i, j}|A{i, j}

(r |0)=

{
p1, r = 0
pinv

1 , r ̸= 0,
, (2)

Pr
R{i, j}|A{i, j}

(r |a)=


p2, r = 0
p3, r = −a
pinv

2,3, r ̸∈ {0,−a},

, (3)

where pinv
1 ≜ 1−p1

q−1 and pinv
2,3 ≜ 1−p2−p3

q−2 .
The motivation behind this choice of PMF stems from the

entries of A being i.i.d with uniform distribution over the
non-zero values of Fq . Hence, the entries of R are also
chosen i.i.d. with a high probability for the zero values and
a uniform distribution over the non-zero values, as explained
next. Intuitively, the PMFs presented in Eqs. (2) and (3) ensure
sparsity and privacy as follows. The event occurring with
probability p1 ensures that a zero entry in the matrix A is
inherited in both A + R and R. The events with probabilities
p2 and p3 create a zero entry in R and A + R, respectively,
where there was a non-zero entry in A. The events with
probabilities pinv

1 and pinv
2,3 create non-zero entries in both R

and A + R irrespective of the value of the corresponding
entry of A. We do not distinguish cases between different
values of the non-zero entries of A since we assume they are
uniformly distributed over Fq \ {0}. We numerically validate
our construction by observing that a sparse one-time pad with
desired sparsity levels attains the minimum leakage possible
when considering matrices R as in Eqs. (2) and (3).

A. Analysis of Sparsity and Leakage

Proposition 1 shows the effect of p1, p2 and p3 on the
sparsity of R and A + R. The increase of p1 increases both
sparsity levels sR and sA+R. On the other hand, the increase
of p2 and p3 increases only sR and sA+R, respectively.

Proposition 1: Given an input matrix A with sparsity level
sA whose entries are i.i.d, and if a padding matrix R is
constructed using the conditional PMFs as in Eqs. (2) and (3),
then the sparsity levels sR and sA+R are

sR = p1sA + p2(1 − sA)≤ 1, (4)

4Similarly, one can define a PMF that generates a padding matrix S
depending on B.
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sA+R = p1sA + p3(1 − sA)≤ 1. (5)

Proof: The proof follows by calculating the PMF of R
and A+ R and applying the definition of sparsity. □

Note that from Construction 1 and Proposition 1, we have
that sR + sA+R ≤ 1 + sA. At first glance, it may seem that
increasing p1, p2, and p3 is beneficial. However, increasing
those parameters will also increase the leakage of R and A+R.
Observe that choosing p1 = p2 = 1 and p3 = 0 results
in the highest sparsity possible of R equal to one and allow
A + R to have the same sparsity level of A. However, R is
the all-zero matrix. Despite R leaking no information about A,
observing A+R = A reveals all the entries of A. To understand
this tension between privacy and sparsity, we quantify the
minimum leakage that can be obtained from both R and A+R
for fixed sR and sA+R.

Define LR ≜ Iq(R;A) and LA+R ≜ Iq(A + R;A) to be
the leakage of R and A + R, respectively. Minimizing the
leakage amounts to minimizing those quantities. Since the
entries of A are assumed to be i.i.d. and the entries of R are
also i.i.d, we can write LR = mnL1 ≜ mnIq(R{i, j};A{i, j}) and
LA+R = mnL2 ≜ mnIq(A{i, j} + R{i, j};A{i, j}). It then suffices
to minimize L1 and L2. Our goal is to minimize the total
leakage of a sparse one-time pad defined as Ltot ≜ L1 + L2.
Minimizing the leakage is done over all possible choices of
conditional PMFs PR{i, j}|A{i, j} , i.e., over the set of all possible
values of P ≜ {pr |a : r, a ∈ Fq}. Therefore, minimizing the
leakage is equivalent to the following minimization problem5

Lopt = min
P

Ltot = min
P

L1 + L2

= min
P

Iq(R{i, j};A{i, j}) + Iq(A{i, j} + R{i, j};A{i, j})

= min
P

DKL
(
PA,R∥PAPR

)
+ DKL

(
PA,A+R∥PAPA+R

)
= min

P

∑
a,b∈Fq

PA(a)

×

(
pb−a|a log

pb−a|a

PA+R(b)
+ pb|a log

pb|a

PR(b)

)
.

This is a constrained optimization problem whose constraints
follow from the requirement of having a valid PMF and the
desired sparsities sR and sA+R, and can be written as

∀a ∈ Fq : p0|a +

∑
r∈F⋆

q

pr |a − 1 = 0,

p0|0 · sA +

∑
a∈F⋆

q

p0|a · PA(a) − sR = 0,

p0|0 · sA +

∑
a∈F⋆

q

p−a|a · PA(a) − sA+R = 0.

Optimizing over P means that the optimization problem
should be performed over q2 variables. From numerical
simulations, we observed that when the entries of A are
distributed as in in Eq. (1), then the optimization boils down
to optimize only over the three variables p1, p2 and p3 shown
in Construction 1, i.e., the probabilities that do not contribute

5For ease of presentation, we omit the subscripts {i, j} in the second to
last equality.

into the sparsity levels sR, sA+R can be uniformly distributed.
Then, the optimization problem becomes as shown next.

Lemma 2: If the entries of the private matrix A are
distributed as in Eq. (1) and the desired sparsity levels
sR, sA+R, of the padding and padded matrices, are fixed, then
the optimal element-wise total leakage is given by optimizing

min
p1,p2,p3

L(p1, pinv
1 , p2, p3, pinv

2,3), where

L(p1, pinv
1 , p2, p3, pinv

2,3)

= s
[

p1

(
log

p1

sA+R
+ log

p1

sR

)
+ (q − 1)pinv

1

(
log

pinv
1

sinv
A+R

+ log
pinv

1

sinv
R

)]
+ (1 − s)

·

[
p2

(
log

p2

sinv
A+R

+ log
p2

sR

)
+ p3

(
log

p3

sA+R
+ log

p3

sinv
R

)
+ (q − 2)pinv

2,3

(
log

pinv
2,3

sinv
A+R

+ log
pinv

2,3

sinv
R

)]
,

for sinv
R ≜ (1 − sR)/(q − 1), sinv

A+R ≜ (1 − sA+R)/(q − 1) with
the following constraints

c1(p1, pinv
1 ) ≜ p1 + (q − 1)pinv

1 − 1 = 0, (6)

c2(p2, p3, pinv
2,3) ≜ p2 + p3 + (q − 2)pinv

2,3 − 1 = 0, (7)

c3(p1, p2) ≜ p1s + p2(1 − s) − sR = 0, (8)

c4(p1, p3) ≜ p1s + p3(1 − s) − sA+R = 0. (9)

Proof: The proof follows by using the definition of
KL-divergence and is omitted for brevity. □

For analytical tractability, we further simplify the problem
by fixing a desired average sparsity level savg ≜ sR+sA+R

2
instead of fixing the values of sR and sA+R separately.
We show in Lemma 7 (Appendix C) that for a fixed savg, the
minimum total leakage is obtained for sR = sA+R. Therefore,
in the sequel, we will consider minimizing the total leakage
for a desired average sparsity savg, where the sparsity levels
of the matrices are sR = sA+R = savg.

B. Optimal Sparse One-Time Pad

We show in Theorem 1 that the optimization problem
in Lemma 2 is a convex optimization problem that admits
only one solution. Hence, the result is twofold: (i) given a
desired savg, the minimum leakage possible is characterized;
and (ii) by constructing the matrix R as in Construction 1
with parameters p⋆

1, p⋆
2 and p⋆

3 as in Theorem 1, the desired
sparsity and the minimum leakage possible are attained.

Theorem 1: Given a desired sparsity level savg, the optimal
PMF of the form given in Eqs. (2) and (3) that minimizes
the leakage is obtained by picking p1 = p⋆

1 as the root
of a polynomial c3 p3

1 + c2 p2
1 + c1 p1 + c0 that satisfies

max{2savg −1+s, 0} ≤ 2p1s ≤ 2 min{s, savg}. The coefficients
of the polynomial are

c3 ≜ s2(4 + q̄),

c2 ≜ 4s(1 − s − 2savg) − q̄s(2savg + s),

c1 ≜ (1 − s − 2savg)
2
+ q̄(2ssavg + s2

avg),
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c0 ≜ −q̄s2
avg,

where q̄ ≜ (q − 2)2/(q − 1). The parameters pinv
1 , p⋆

2, p⋆
3 can

be obtained by using p⋆
1 in Eqs. (6) to (9).

Proof: The proof is shown in Appendix B. □
Note that a unique solution exists for p⋆

1, p⋆
2, p⋆

3 since we
minimize a convex function over a convex feasibility set [47].

C. Semi-Perfect One-Time Pad

Lemma 1 closes the door on obtaining a perfectly secure
(with zero leakage) one-time pad with sparse shares. More
precisely, given a sparse matrix A, if R is generated as
in Construction 1, then L1 + L2 = 0 occurs if and only if
sR = sA+R = q−1. If the field size q is very large, then the
shares cannot be considered sparse. However, Lemma 1 does
not rule out the case where L1 + L2 > 0 and L1 · L2 = 0,
i.e., one of the shares achieves a zero leakage. However,
constructing a semi-perfect one-time pad scheme can be useful
in distributed matrix multiplications where part of the workers
are fully untrusted. In contrast, the other part can be partially
trusted, cf. Section VII-B. We show that it is possible to
construct shares R and A+R where the latter achieves perfect
privacy, allowing for a sparse semi-perfect one-time pad. This
can be achieved using Construction 1 with p1 = p3 = p and
p2 =

1−p
q−1 , for any 0 < p < 1 as shown in Lemma 3.

Lemma 3: Given a private sparse matrix A with sparsity
level sA = s > q−1 and if a padding matrix R is generated
dependently on A as in Construction 1 for p1 = p3 = p and
p2 =

1−p
q−1 for 0 < p < 1, then the sparsity levels of the

padding and the padded matrix sR and sA+R and the leakage
L1 increase with p, while no private information about A is
leaked through the padded matrix, i.e., L2 = 0.

Proof: The sparsity levels of the shares are computed by
plugging p1 = p3 = p and p2 =

1−p
q−1 into Eqs. (2) and (3) to

obtain

sR = p
(sq − 1)

q − 1
+

(1 − s)
q − 1

, and sA+R = p.

Clearly, sA+R increases with p and sR increases with p for
the case where s > q−1.

From [48, Theorem 2.7.4], we conclude that the leakage
L1 = Iq(R{i, j};A{i, j}) is a convex function in p since the
PMF of the input matrix is fixed and the conditional PMF
of R{i, j}|A{i, j} can be written as a convex mixture of two
conditional distributions as follows

Pr
R{i, j}|A{i, j}

(r |a) = p1r=−a + (1 − p)
1

q − 1
1r ̸=−a,

∀r, q ∈ Fq , where 1condition is the indicator function that
returns 1 if the condition is true and 0 otherwise (in this case
the indicator functions are conditional distributions).

The leakage L2 = Iq(A{i, j} + R{i, j};A{i, j}) is shown to
be equal to zero by writing down the definition of mutual
information and noting that the entropy is independent of the
alphabet and only depends on the PMF. □

Lemma 3 introduces a trade-off between the sparsity levels
of the shares sA, sA+R and the leakage L1, which we will opti-
mize in the context of sparse and private matrix multiplication
schemes that can tolerate stragglers (Section VII-B).

VI. SPARSE SECRET SHARING

In this section, we construct sparse secret sharing schemes
for parameters n ≥ 3, t = 2 and z = t − 1 = 1, i.e.,
a generalization of the well-known Shamir secret sharing
schemes [49] for t = 2. Given an input matrix A, the challenge
is to design a random matrix R such that n evaluations of the
encoding polynomial

f (x) = A + xR,

give n shares that satisfy the desired sparsity and privacy
guarantees. Our approach is to design the matrix R based on
the entries of A and the evaluation points α1, . . . , αn used to
generate the shares as shown next.

Construction 2 (Conditional Distribution of the Random
Matrix for Sparse Polynomial Encoding): Given a set of n
distinct non-zero evaluation points αi for i ∈ [n], the entries of
the matrix R are drawn according to the following conditional
distribution.

Pr
R{i, j}|A{i, j}

(r |0)=

 p1, r = 0
1 − p1

q − 1
, r ̸= 0,

(10)

Pr
R{i, j}|A{i, j}

(r |a)=


ps, r ∈

{
−

a
αi

}
i∈[n]

1 − nps

q − n
, r ̸∈

{
−

a
αi

}
i∈[n]

,

(11)

where r ∈ Fq , a ∈ F∗
q , n is the number of shares and 1

αi
is

the multiplicative inverse of αi in Fq .
Similarly to Construction 1, the intuition behind

Construction 2, is to pick probabilities that contribute
to having zero-valued entries in the shares while reducing the
dependence between the shares and A to reduce the leakage.
The parameter ps tailors the probability of artificially having
zero-valued entries in a single share, while p1 controls the
probability of inheriting a 0 in every share. Construction 2, is
restricted to generating n shares that have the same sparsity
levels. The motivation of this restriction is that for n = 2,
the total leakage is minimized when all shares have the same
sparsity, cf.Lemma 7. Therefore, we conjecture that this holds
for n ≥ 3, i.e., if more than 2 shares are generated per input,
then the optimal leakage is obtained when all shares have the
same sparsity levels.

Lemma 4 quantifies the sparsity level of shares constructed
as in Construction 2, Lemma 5 presents the optimization
problem and Theorem 2 provides the values of p1 and ps
that minimize the total leakage.

Lemma 4: Following Construction 2, the shares have the
following level of sparsity:

sd = p1sA + ps(1 − sA)≤
1 + nsA − sA

n
.

Proof: The proof follows by calculating the PMF of the
shares and applying the definition of sparsity. The bound is
because (10) and (11) must form a valid PMF, and hence,
ps ≤

1
n .

We define z(x, y) ≜ x log( x
y ) for ease of notation in the

remainder of the paper.
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Lemma 5: Let the entries of the private matrix A be
distributed as in Eq. (1). When considering shares of the
form given in Construction 2 with fixed desired sparsity
level sd , the optimal element-wise total leakage is given by
min
p1,ps

L(p1, pinv
1 , ps, pinv

s ), where

L(p1, pinv
1 , ps, pinv

s )

= s
[
z(p1, sd) + (q − 1)z(pinv

1 , sinv
d )
]
+(1 − s)

×
[
z(ps, sd)+(n − 1)z(ps, sinv

d )+(q − n)z(pinv
s , sinv

d )
]
.

(12)

Thereby, sinv
d =

1−sd
q−1 is the likelihood of a share’s entry being

non-zero. The constraints of the optimization problem are

c1(p1, pinv
1 ) ≜ p1 + (q − 1)pinv

1 − 1 = 0, (13)

c2(ps, pinv
s ) ≜ nps + (q − n)pinv

s − 1 = 0, (14)

c3(p1, ps) ≜ p1s + ps(1 − s) − sd = 0. (15)

Further, p1, pinv
1 , ps and pinv

s ≜ (1−nps )/(q−n) are bounded
between zero and 1.

Proof: For each share’s fixed desired sparsity level sd ,
minimizing the total leakage for any sparse secret shar-
ing scheme amounts to solving the following optimization
problem.

Lopt = min
P

∑
i∈[n]

Iq
(
A{i, j} + αiR{i, j};A{i, j}

)
= min

P

∑
i∈[n]

∑
a,y∈Fq

PA(a)

(
p(y−a)αi −1|a log

p(y−a)αi −1|a

PA+αiR(y)

)
.

(16)

Again, this is a constrained optimization problem with the
following constraints

∀b ∈ Fq : p0|b +

∑
x∈F⋆

q

px |b − 1 = 0,

∀i ∈ [n] : p0|0 · PA(0) +

∑
b∈F⋆

q

p
−bα−1

j |b · PA(b) − sd = 0.

When restricting our attention to shares of the form given in
Construction 2, the optimization problem transforms into the
one given in the statement of the Lemma.

The solution to the optimization problem in Lemma 5 is
given in the following Theorem 2.

Theorem 2: Given a desired sparsity level sd , the value p⋆
s

that minimizes the leakage of the shares as in Construction 2
is the real root of the polynomial

∑n+1
j=0 b j p j

s with coefficients

bn+1 = −1 − (−n)n q̃

bn =
(
s̃(−n)n

− n(−n)n−1)q̃ − s̄

bk =

(
s̃
(

n
k

)
(−n)k

−

(
n

k − 1

)
(−n)k−1

)
q̃, ∀k ∈ [n − 1]

b0 = q̃ s̃,

where s̃ = sd/(1−s), s̄ = (s−sd )/(1−s) and q̃ = (q−1)/(q−n)n . The
root p⋆

s must satisfy 0 ≤ p⋆
s (1 − s) ≤ min

{
sd , 1

n

}
and p⋆

1 can
be computed as

p⋆
1 =

sd − p⋆
s (1 − s)
s

.

Fig. 1. The relative leakage of gi (α j ) versus its desired sparsity for different
number of shares n, s = 0.95 and q ∈ {89, 5081}.

As for Theorem 1, a unique solution exists for p⋆
1, p⋆

s due
to the convex properties of the optimization.

Proof: The proof is provided in Appendix D. □
Fig. 1 depicts the relative leakage ε̄ per share as a function

of sd and the number of shares n. We consider the finite field
Fq for q = 89 and q = 5081. As n grows,6 each share
leaks more about the private input matrix for a fixed sd . For
large values of q , the loss of privacy incurred by increasing
n becomes negligible. In addition, for fixed n and fixed sd ,
increasing q decreases the relative leakage per share ε̄. For
example, for q = 89 and sd = 0.9, ε̄ is equal to 0.234 for
n = 2 and increases to 0.284 when increasing n to 5. However,
for q = 5081 and sd = 0.9, ε̄ increases from 0.199 to
0.207 when increasing n from 2 to 5. Notice that for fixed
n and sd , increasing q decreases ε̄, cf. Fig. 1.

We show next how to apply the designed sparse secret
sharing schemes to distributed matrix multiplication.

VII. SPARSE AND PRIVATE MATRIX MULTIPLICATION
SCHEMES

In this section, we focus on designing straggler tolerant
sparse and private matrix multiplication schemes.

We construct schemes with parameters (N , σ = N −

3, ε⋆
1, ε

⋆
2, sd1 , sd2), see Definition 3, where ε⋆

1 and ε⋆
2 are the

optimal leakages obtained for the desired sparsity levels sd1

and sd2 . We then tackle the setting in which the matrix B
is public and the workers can be grouped into two clusters:
fully non-trusted workers to whom no information about A
should be leaked; and partly trusted workers to whom a small
positive leakage about A can be tolerated. In this setting,
we construct a scheme that satisfies the perfect privacy of
A for one cluster and minimizes the leakage for the other.
The constructed scheme tolerates a desired number of full and
partial stragglers.

A. General Setting

The scheme follows from an immediate application of the
scheme constructed in Section VI. The input matrices are
encoded into shares using our sparse polynomial encoding
introduced in Construction 2 with the parameters derived in

6This statement holds for n ≪ q . If n approaches q, the constraints imposed
by the optimization problem in Eq. (16) lead to non-sparse secret sharing.
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Fig. 2. The two non-communicating clusters, namely the untrusted and partly trusted, are illustrated on the left and right-hand side, respectively. The workers
of the untrusted cluster wu

1, wu
2, . . . , wu

n1
get each ϱ1 tasks (created as in Section VII-B2)) that leak nothing about the input matrix. On the other hand,

each worker of the partly trusted cluster wt
1, wt

2, . . . , wt
n2

gets ϱ2 tasks that leak some information about the input matrix. Every worker has to multiply the
designated matrices with the public matrix B and then send each computation back to the main node.

Theorem 2. Namely, the main node picks a set of distinct
non-zero evaluation points {α j }

N
j=1 and creates a polynomial

pair f (x), g(x) as

f (x) = A + xR and g(x) = B + xS, (17)

where R and S are generated depending on A and B, respec-
tively. Each worker j is then assigned f (α j) and g(α j) and its
task is to return the multiplication f (α j ) · g(α j ) to the main
node. Define the degree-2 polynomial h(x) as

h(x) = f (x) · g(x) = AB + x(RB + AS) + x2RS. (18)

Then, the main node obtains the desired computation C =

AB = h(0) from the responses of any three workers. This
task assignment strategy allows for full straggler tolerance, i.e.,
C j = ∅ if worker j is a straggler or C j = {h(α j )}, otherwise.

a) Reduction of computation load per worker: Each
worker gets assigned a computation as large as the multipli-
cation AB. To reduce the computation load in a system of
N workers and simultaneously tolerate at least σ stragglers,
the input matrices A and B can be divided into m parts each
such that σ < m, m|N and N

m = 3 + σ . The division of
the matrices is column-wise for A and row-wise for B so
that the multiplication C = AB is the sum of Ai Bi for
i = 1, . . . , m. The main node creates m polynomial pairs
( fi (x), gi (x)) to encode the Ai , Bi ’s and assigns σ +3 distinct
evaluations of each polynomial pair i ∈ [m] to a group of
σ + 3 workers indexed by Zi , i ∈ [m], where |Zi | = σ + 3.
That is, worker j gets m(σ+3)/N pairs of sparse sub-matrices
{( fi (α j ), gi (α j ))}i∈m: j∈Zi . Consequently, each worker com-
putes a (σ + 3)/N -fraction of the entire multiplication. The
groups Zi , i ∈ [m] can, for example, be created by a cyclic
repetition scheme similar to [36], [50], [51], which ensures
that 3 evaluations of each polynomial hi (x) are guaranteed to
be returned despite having any σ full stragglers. In the best
case, σm stragglers can be tolerated, i.e., σ workers from each
group. The leakage is smaller as the padding matrices used
for each encoding are independent and each worker observes
a smaller matrix.

b) Computation cost: Our sparse and private scheme
introduced above sacrifices efficient polynomial design for
matrix multiplication as considered, e.g., in [15], [52] and their
privacy-preserving extensions [17], [53]. We compare the com-
putation cost of our scheme to secure MatDot codes [53] for
different numbers of workers and varying straggler tolerance

depending on the sparsity sd of the shares. Therefore, assume
that A is split into m blocks A1, . . . Am , each of size Fm×

n
m

q ,

and B split into B1, . . . , Bm ∈ F
n
m ×ℓ
q .

Lemma 6: With N workers and at most σ stragglers, our
scheme outperforms secure MatDot codes [15] with z = 1 for
a sparsity value sd of the shares fulfilling

sd ≥ 1 −

√
2N

(σ + 3)(N − σ − 1)
.

Proof: Using a secure MatDot code with z = 1,
we require at least 2m + 1 evaluations to interpolate the
multiplication of the two polynomials. Given a straggler tol-
erance of σ , we require that N − σ ≥ 2m + 1, and hence
m ≤ (N − σ − 1)/2. Consequently, each worker computes at
least m ×

2n
N−σ−1 × ℓ multiplications. Using our scheme with

a straggler tolerance of σ , the task can be divided into at most
m ≤

N
σ+3 polynomials to reduce the compute complexity per

worker. Considering a probabilistic output sparsity guarantee
sd of the shares, then each worker computes on average at
least m(1 − sd)2

×
n(σ+3)

N × ℓ. Neglecting the requirements
that m|n and σ + 3|N , we can find that for sparsity levels
given in the statement of the lemma our sparsity-preserving
strategy is more computationally efficient.

We plot the break-even points for different values of N
and σ in Fig. 3. To gain over the naive construction ignoring
sparsity, the most sparsity is required for cases in which
the number of tolerated stragglers is roughly in the middle
between 0 and N . When σ is small, the negative impact of
providing straggler tolerance by repetition through our scheme
is limited. When σ is large, even polynomial constructions like
MatDot cannot split the matrices into small chunks. Hence,
the overhead of our scheme is limited, thereby facilitating the
positive effect of preserving the sparsity. In secure polynomial
codes [17], the matrices are split into outer products, i.e., A is
split into m blocks A1, . . . Am , each of size F

m
m ×n
q , and B split

into B1, . . . , Bm ∈ Fn×
ℓ
m

q , which represents the other extreme
compared to MatDot codes [15]. The break-even point for
sparsity is sd ≥ 1 −

√
N

(σ+3)(
√

N−σ−1)2 , hence slightly worse
than for MatDot codes. PolyDot codes, also proposed in [15],
interpolate between those results.
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Fig. 3. Sparsity values above which our scheme is beneficial over polynomial
codes in terms of compute complexity for different values of N and σ .

B. Setting of Clustered Workers

In this setting, we assume that the workers can be grouped
into two non-communicating clusters with the properties
explained next. We introduce a one-sided private and sparse
matrix multiplication scheme, where the matrix B is publicly
available. The main advantage of such schemes is tolerating
collusions, i.e., allowing z > 1.

1) The Clustering Model: The N workers, where N = n1+

n2, are divided into two clusters of workers with the following
properties:

• Untrusted cluster: The cluster consists of n1 workers,
wu

i , for i = 1, . . . , n1, which are fully untrusted and can
all collude. No information leakage about A should be
tolerated, i.e., perfect privacy is required.

• Partly trusted cluster: This cluster is composed of n2
workers wt

i , for i = 1, . . . , n2, that are partly trusted by
the main node. A small amount of information about A
can be leaked to any z, 1 ≤ z < n2, colluding workers.

The grouping of workers into two non-communicating clusters
is practically relevant since the untrusted cluster can represent
an externally hired computational node pool offered by a single
provider. In contrast, the partly trusted cluster might represent
a locally available computing pool, that can be partly trusted.
We combine the sparse one-time pad of Lemma 3 with the
cyclic shift task assignment [36], [51] to obtain the desired
privacy, sparsity, and straggler tolerance.

2) Task Distribution and Straggler Mitigation: Given the
matrix A ∈ Fm×n

q , the main node generates a padding matrix
R ∈ Fm×n

q following Construction 1 and setting p1 = p3 ≜ p
and p2 =

1−p
q−1 . The main node splits the padded matrix A+R

row-wise into n1 sub-matrices and splits the padding matrix
R into n2 sub-matrices as follows

A + R =


(A + R)1
(A + R)2

...

(A + R)n1

 and R =


R1
R2
...

Rn2

 ,

where (A + R)i ∈ F
m
n1

×n
q for i ∈ [n1] and Ri ∈ F

n
n2

×ℓ

q for
i ∈ [n2]. Then, the main node sends to every worker wu

i of

the untrusted cluster a sub-matrix Tu
i,1 ≜ (A + R)i for i ∈

[n1] and to every worker wt
a of the partly trusted cluster the

sub-matrices Tt
a,1 ≜ Ra for a ∈ [n2]. The collection of the

matrices Tu
i,1 and Tt

a,1 is called the first layer of computation
tasks. The workers compute Ti,1B and return the result to the
main node.

Assigning one layer only is not resilient to stragglers.
To tolerate ϱ1 − 1 stragglers in the untrusted cluster and
ϱ2 − 1 in the partly cluster, the main node assigns more
computation layers to the workers following a cyclic shifting
strategy:

Tu
(i mod n1)+1, j = Tu

i, j−1, i ∈ [n1], j ∈ [ϱ1] \ {1},

Tt
(a mod n2)+1,b = Tt

a,b−1, a ∈ [n2], b ∈ [ϱ2] \ {1}.

The system is illustrated in Fig. 2. Every worker of the
untrusted cluster wu

i , i ∈ [n1], sequentially multiplies and
sends Tu

i, j B to the main node for j = 1, . . . , ϱ1. The same
applies to the workers of the partly trusted cluster.

The privacy, sparsity, and straggler tolerance guarantees of
this task assignment strategy are stated in Theorem 3.

Theorem 3: The cyclic shift assignment strategy explained
above provides the following guarantees:

• Privacy guarantees: In the untrusted cluster, perfect pri-
vacy of A is guaranteed even if all the workers collude,
i.e., Iq({T u

i, j }i∈[n1], j∈[ϱ1];A) = 0. In the partly trusted
cluster, if up to z workers collude, then with L1 =

Iq(R{i, j};A{i, j}), the leakage about A is given by

Iq({T t
i, j }i∈Z, j∈[ϱ2];A) = min

{
ϱ2z
n2

, 1
}

· m · n · L1.

(19)

• Sparsity: For a desired maximum leakage ε, i.e.,
Iq({T t

i, j }i∈Z, j∈[ϱ2];A) ≤ ε, the maximum sparsity levels
allowed for the matrices A + R and R are given by

sA+R = p⋆, and sR = p⋆ sq − 1
q − 1

+
1 − s
q − 1

,

where

p⋆
= max

Iq ({T t
i, j }i∈Z, j∈[ϱ2];A)≤ε

p. (20)

• Straggler tolerance: The main node is able to recon-
struct the desired computation after receiving any K u ≜
−ϱ2

1+ϱ1(2n1−1)

2 + 1 and any K t ≜
−ϱ2

2+ϱ2(2n2−1)

2 +

1 responses from the workers of the untrusted and partly
trusted clusters, respectively. In other words, partial
stragglers and up to ϱ1 − 1 and ϱ2 − 1 stragglers can be
tolerated from the respective clusters.
Proof: The proof by construction is omitted for brevity.

We plot in Fig. 4 the value of p∗, representing the sparsity
of the shares, versus z, the number of colluding workers of
the partly trusted cluster for a varying choice of maximum
relative leakage ε̄. As reflected from the theory, decreasing ε̄

decreases p∗, meaning that the sparsity levels sR, sA+R should
have lower values to guarantee higher privacy constraints.
In addition, for a fixed relative leakage ε̄, as z increases,
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Fig. 4. The value of p⋆ as a function of z, the number of colluding workers of
the partly trusted cluster, for different privacy constraints reflected by choice
of ε̄. We take n2 = 100, ϱ2 = 1, sA = 0.93 and consider the extension finite
field F256. The value of p⋆ controls the sparsity of the shares, i.e., sA+R = p⋆

and sR ≈ 0.93p∗, as in Eq. (20). The case ε̄ = 0 corresponds to perfect
privacy. It requires p⋆

= q−1 for all z ∈ [n2], whereas ε̄ = 1 corresponds for
the non-private case, hence allowing the choice p⋆

= 1 for all z ∈ [n2]. For
0 < ε̄ < 1, the increase of z and/or the decrease of ε̄ reduces the achievable
sA+R and sR.

p⋆ (and the allowed sparsity sR, sA+R) decreases since more
workers collude and can have access to a bigger portion of
resemblance to the private matrix A, which should be made
more private.

VIII. MATRICES WITH CORRELATED ENTRIES

In this section, we discuss the use of shuffling to break the
potential correlation between the entries of sparse matrices and
mention further research directions.

In certain applications, e.g., the matrix entries might be
correlated when the sparse matrices represent a face [54].
However, our theory and the proposed schemes assume the
entries of A (and B) to be independent (see Definition 4).
Sparsity-preserving pre-processing techniques can be applied
to break the correlation between the entries of sparse matrices.
In this section, we discuss the effect of applying random
permutations to entries of A and B. We will focus on cases
where A and B must remain private. The ideas generalize to
cases in which B is public.

Shuffling a matrix is equivalent to multiplying it with
permutation matrices from the left and the right. Those permu-
tation matrices are private to the main node and are unknown
to the workers. Considering input matrices A ∈ Fm×n

q and
B ∈ Fn×ℓ

q , the main node picks three permutation matrices
P1 ∈ Fm×m

2 , P2 ∈ Fn×n
2 and P3 ∈ Fℓ×ℓ

2 . Each column of
Pi is generated by sampling a random unit vector without
replacement from the respective field. The main node then
conducts the following pre-processing operations

A′
= P1 · A · P2 and B′

= PT
2 · B · P3.

Note that permutation matrices are orthogonal, i.e., the inverse
equals their transpose. The matrices A′, B′ can then be
encoded as in Section VII-A.

The random permutation breaks most correlations between
the entries of the input matrices. The colluding workers will

Fig. 5. A depiction of the impact of random permutations on the correlated
entries of A. The matrix with correlated entries is shown in Fig. 5a. Naively
applying our sparse secret sharing scheme randomizes the values of the entries
of A but does not break the correlation between the entries of the shares, cf.
Fig. 5b. The effect of applying the random permutation is shown in Figs. 5c
and 5d where the correlation between the entries is graphically broken.

need to revert the permutation to leverage the statistical cor-
relation between the entries of the private matrices. However,
information-theoretic privacy guarantees cannot be given since
the entries of A′ and B′ might still have some correlation.

In Fig. 5, we depict a random permutation of an input
matrix Ai ∈ F816×816

89 with sparsity sA ≈ 0.94 that follows
a distribution similar to the one in Eq. (1), but with correlated
entries. After pre-processing is applied, the correlations are
graphically broken (see Fig. 5a and Fig. 5c). The process
from Fig. 5a to Fig. 5b represents the encoding phase as
in Eq. (17) without shuffling. The correlation between the
entries of the shares is shown graphically and can be leveraged
by the colluding workers after the input matrix is shuffled and
encoded (Fig. 5c and Fig. 5d), then graphically, the correlation
between the entries is broken.

This discussion shows that additional care must be taken
when encoding matrices with correlated entries. Future
research can be conducted to construct sparse secret-sharing
schemes that break the correlation between the entries.
Alternatively, privacy guarantees of sparsity-preserving pre-
processing techniques can be analyzed.

IX. CONCLUSION

In this work, we opened the door to the coexistence of
sparsity and privacy in secret sharing and distributed comput-
ing. We focused on the no-collusion regime, i.e., z = 1, and
assumed that the entries of the private matrices are independent
and identically distributed. We showed a fundamental tradeoff
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between privacy and sparsity in the shares. Hence, insisting
on perfect information-theoretic privacy does not allow for
sparsity in the shares. We constructed sparse and private secret
sharing schemes that take as input the desired sparsity and
output shares with the provably lowest leakage possible. Using
that, we constructed sparse and private matrix multiplication
schemes for different settings of interest, some of which also
include collusions. We discussed the correlation effect between
the entries on the introduced methods. Generalizing our results
for z > 1 remains an interesting open problem. Similarly, it is
interesting to analyze the effect of lifting the assumption of
independent entries and to construct schemes tailored for this
setting.

APPENDIX

A. Proof of Lemma 1

Proof: We focus only on the element-wise leakage since
A has i.i.d. entries. The following analysis holds for any entry
A{i, j} and R{i, j} of A and R. Hence, we abuse notation and
drop the i, j index, i.e., we use A for A{i, j} and R for R{i, j}.
We do the analysis first for secret sharing schemes with z =

t = 1 and generalize to secret sharing schemes with z = 1 and
k ≥ 1 afterwards. For z = t = 1, let Si ≜ A + αiR be the
corresponding entry of share i ∈ [N ]. It holds that

Pr
Si

(s) =

q−1∑
a=0

Pr
A

(a) Pr
R|A

(α−1
i (s − a)|a), ∀s ∈ Fq . (21)

Then the entropy Hq(Si ) can be written as 7

Hq(Si )
(a)
= −

∑
s j ∈Fq

Pr
Si

(s j ) logq

(
Pr
Si

(s j )

)

(b)
= −

∑
s j ∈Fq

∑
a∈Fq

Pr
A

(a) Pr
R|A

(α−1
i (s j − a)|a)


× logq

(∑
a∈Fq

PrA(a) PrR|A(α
−1
i (s j − a)|a)∑

a∈Fq
PrA(a)

)
(c)
≥ −

∑
s j ∈Fq

∑
a∈Fq

Pr
A

(a) Pr
R|A

(α−1
i (s j − a)|a)

× logq

(
Pr
R|A

(α−1
i (s j − a)|a)

)
(d)
=

∑
a∈Fq

Pr
A

(a)Hq(R|A = a)

= Hq(R|A),

where (a) is the definition of q−ary entropy, (b) is obtained
by using Eq. (21) and dividing the argument of the logarithm
function by

∑
t∈Fq

PrA(t) = 1, (c) follows from the log-sum
inequality and (d) is obtained by grouping the summation
terms in (c).

The log-sum inequality implies that (c) is satisfied with
equality if and only if PrR|A(α

−1
i (s j − a)|a) is constant for

every a ∈ Fq , which has to hold for all s j ∈ Fq . That is, there

7We consider that 0 log(0) = 0 for ease of notation.

exist q disjoint sets (one for each s j ∈ Fq )
{

PrR|A(α
−1
i (s j −

a)|a)
}

a∈Fq
whose entries must take the same value.

Given two shares S1 and S2 with distinct evaluation points
α1 and α2, we have two of such sets. For a fixed s1 ∈ Fq (in
the equation for S1) and for every s2 ∈ Fq , there exists a tuple
(s1, s2, ā) with ā ∈ Fq such that α−1

1 (s1 − ā) = α−1
2 (s2 − ā).

In particular, the value of ā can be calculated as

α−1
1 (s1 − ā) = α−1

2 (s2 − ā)

α−1
1 α2︸ ︷︷ ︸

≜c ̸=0

s1 + ā(1 − α−1
1 α2) = s2

ā = (s2−cs1)/(1 − c).

This particular choice ā shows that{
Pr
R|A

(α−1
1 (s1 − a)|a)

}
a∈Fq

∩
{

Pr
R|A

(α−1
2 (s2 − a)|a)

}
a∈Fq

̸= ∅.

Hence the elements of both sets must be equal, i.e.,

Pr
R|A

(α−1
1 (s1 − a)|a) = Pr

R|A
(α−1

2 (s2 − a)|a) ∀a ∈ Fq ,

to fulfill (c) with equality. Moving forward, by fixing s1 one
can find such intersections for all s2 ∈ Fq . Since the sum over
s2 in (c) covers constraints on the whole space of possible
probability values PrR|A(r |a), we can link the constraints of the
q disjoint sets

{
PrR|A(α

−1
2 (s2 − a)|a)

}
a∈Fq

for all s2 through

the set
{

PrR|A(α
−1
1 (s1 − a)|a)

}
a∈Fq

for any fixed s1. Conse-

quently, all entries in the set
{

PrR|A(α
−1
1 (s − a)|a)

}
a,s∈Fq

={
PrR|A(r |a)

}
a,r∈Fq

have to be equal to fulfill (c) with equality.
The same steps can be repeated for more than two shares.
We can further write the leakage as

Iq(A; Si ) = Hq(A+ αiR) − Hq(A+ αiR|A)

= Hq(Si ) − Hq(R|A) ≥ 0,

where equality is only given if (c) is fulfilled with equality,
and hence R is independent of A, i.e., PrR|A(r |a) = PrR(r),
and is uniform.

The proof above can be generalized to schemes with z =

1 and k ≥ 1, i.e., shares of the form Si ≜ A1 + αiA2 +

α2
i A3 + · · · + αk−1

i Ak + αk
i R, where Ai denotes the random

variable describing the i-th split of matrix A. Let Mi be the
random variable representing the linear combination of secrets
of share i , i.e., Mi ≜ A1 + αiA2 + α2

i A3 + · · · + αk−1
i Ak ,

and mi its realization. By replacing, in (21), A with Mi , a
by mi , and α−1

i by α−k
i , we obtain for the entropy of each

share the lower bound Hq(Si ) ≥ Hq(R|Mi ). The subsequent
arguments proving that the inequality (c) only holds when R
is uniformly distributed are still valid. Hence, it remains to
prove that Iq({Ai }i∈k; Si ) = 0 if and only if R is uniform and
hence independent of {Ai }i∈k . We have

Iq({Ai }i∈k; Si ) = Hq(Si ) − Hq(Si |{Ai }i∈k)

(a)
= Hq(Si ) − Hq(R|{Ai }i∈k,Mi )

(b)
≥ Hq(R|Mi ) − Hq(R|{Ai }i∈k,Mi )

(c)
≥ Hq(R|Mi ) − Hq(R|Mi ) = 0,
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where (a) holds since Mi is a deterministic function of {Ai }i∈k ,
(b) holds because Hq(Si ) ≥ Hq(R|Mi ), and (c) holds since con-
ditioning does not increase entropy. Due to the non-negativity
of mutual information, equality is given if and only if the
log-sum inequality is fulfilled with equality, and hence when
R is uniform and independent of {Ai }i∈k .

B. Proof of Theorem 1

Proof: We will use the method of Lagrange multipliers
to combine the total leakage as quantified in Lemma 2 with
the constraints in Eqs. (6) to (9). The combination, called as
the objective function that has to be minimized is quantified
as

L ≜ L(p1, pinv
1 , p2, p3, pinv

2,3, λ1, λ2, λ3, λ4)

= L(p1, pinv
1 , p2, p3, pinv

2,3) + λ1c1(p1, pinv
1 )+

+ λ2c2(p2, p3, pinv
2,3) + λ3c3(p1, p2) + λ4c4(p1, p3).

This objective can be minimized by setting the gradient
to zero, i.e., ∇p1,pinv

1 ,p3,p2,pinv
2,3,λ1,λ2,λ3,λ4

L = 0, which is
equivalent to solving a system of nine equations with nine
unknowns. Simplifying ∇p1,pinv

1 ,p2,p3,pinv
2,3
L = 0 yields

p1(pinv
2,3)

2
= pinv

1 p2 p3. (22)

Using the constraints Eqs. (6) to (9), one can express
pinv

1 , p2, p3, pinv
2,3 as polynomials of degree one in p1, and

plugging them into Eq. (31) transfers the problem into finding
the root of a polynomial of degree 3 in p1 such that it
satisfies the constraints sA+R − 1 + s ≤ p1s ≤ sA+R
and sR − 1 + s ≤ p1s ≤ sR. Let q̄ ≜ (q−2)2

q−1 , then the
polynomial denotes as αp3

1 + βp2
1 + γ p1 + δ = 0, where

α = s2(4+ q̄), β = 4s(1−s −sA+R −sR)− q̄s(sR +sA+R +s),
γ = (1 − s − sA+R − sR)2

+ q̄(ssA+R + ssR + sA+RsR)

and δ = −q̄sA+RsR. Having p1, the remaining unknowns
pinv

1 , p2, p3 and pinv
2,3 follow directly from (6)-(9). By the mean

value theorem and the continuity of x log x
y on 0 ≤ x < ∞, for

some y > 0, one can show that the global minimum implies
p1, pinv

1 , p2, p3, pinv
2,3 ̸= 0. Hence, the solution is not at any

boundary of the optimization problem and is thus captured
by the Lagrange multipliers. Since the problem is convex, the
solution is a global minima.

C. Sparsity of Two Shares Minimizing the Leakage

Lemma 7: Given a desired average sparsity level savg, then
the minimum total leakage is obtained for sR = sA+R = savg.

Proof: Given a desired average sparsity level savg =
sA+sA+R

2 , we define sδ such that sR = savg − sδ and sA+R =

savg + sδ and determine the optimal of sδ that minimizes the
leakage. We utilize the method of Lagrange multipliers to
combine the total leakage from Lemma 2, with the constraints
in Eqs. (6) to (9). Note that Eqs. (8) and (9) have to be slightly
updated by plugging in sR = savg − sδ and sA+R = savg + sδ .
Thus, the objective function to be minimized is a function of
sδ and can be expressed as

L ≜ L(p1, pinv
1 , p2, p3, pinv

2,3, sδ) + λ1c1(p1, pinv
1 )

+ λ2c2(p2, p3, pinv
2,3) + λ3c3(p1, p2) + λ4c4(p1, p3).

This objective is minimized by setting the gradient to zero,
i.e., ∇p1,pinv

1 ,p3,p2,pinv
2,3,λ1,λ2,λ3,λ4

L = 0, which is equivalent to
solving a system of eleven equations with eleven unknowns.

This is a convex optimization problem, since the objec-
tive function is a sum of convex functions and the
constraints are affine in the unknowns. The function
L(p1, pinv

1 , p2, p3, pinv
2,3, sδ) is convex in sδ as shown in the

composition theorem [47, Ch. 3.2.4] since − log(x) is convex
and g(x) = savg ± sδ is convex. Thus, − log(savg ± sδ) is
convex.

We now state the system of equations given by
∇p2,p3,sδL = 0:

∂L
∂sδ

= s
[

p1

(
−

1
sA+R

+
1
sR

)
+ (q − 1)pinv

1

(
1

1−sA+R
−

1
1−sR

)]
+ (1 − s)

[
p2

(
1

1−sA+R
+

1
sR

)
− p3

(
1

sA+R
+

1
1−sR

)
+ (q − 2)pinv

2,3

(
1

1−sA+R
−

1
1−sR

)]
+λ3−λ4 = 0

(23)
∂L
∂p2

= (1 − s)
(

2 log(p2) − log(sR) − log(sinv
A+R) + 2

)
+ λ2 + (1 − s)λ3 = 0 (24)

∂L
∂p3

= (1 − s)
(

2 log(p3) − log(sinv
R ) − log(sA+R) + 2

)
+ λ2 + (1 − s)λ4 = 0 (25)

We will first calculate λ3 − λ4 from (24) and (25) to be later
substituted in (23). By computing (24)−(25) and dividing the
result by (1 − s), we obtain

λ3 − λ4

= 2(log(p3) − log(p2)) + log

(
sinv

A+R
sA+R

)
+ log

(
sR

sinv
R

)
(26)

= 2 log
(

savg + sδ − sp1

1 − s

)
− 2 log

(
savg − sδ − sp1

1 − s

)
+ log

(
1 − savg − sδ

(q − 1)(savg + sδ)

)
+ log

(
(q − 1)(savg − sδ)

1 − savg + sδ

)
(27)

= 2 log
(

savg + sδ − sp1

savg − sδ − sp1

)
+log

(
(1 − savg − sδ)(savg − sδ)

(1 − savg + sδ)(savg + sδ)

)

(28)

where from (26) to (27) we used (8) and (9) to express p2 and
p3 in terms of p1, respectively. Simplifying (23) by use of
∇λ1λ2,λ3,λ4,λ5L = 0, i.e., the constraints in (6)-(9) yields

∂L
∂sδ

− (λ3 − λ4)

=
1
sR

(sp1 + (1 − s)p2) −
1

sA+R
(sp1 + (1 − s)p3)
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+
1

1 − sA+R
(s(q − 1)pinv

1 +(1−s)p2+(1 − s)(q − 2)pinv
2,3)︸ ︷︷ ︸

(a)

−
1

1−sR
((q − 1)pinv

1 +(1 − s)p3+(q−2)(1−s)pinv
2,3)︸ ︷︷ ︸

(b)

=
sR

sR
−

sA+R

sA+R
+

1 − sA+R

1 − sA+R
−

1 − sR

1 − sR
= 0, (29)

where we used that sR = sp1 + (1 − s)p2 from (8), sA+R =

sp1+(1−s)p3 from (9). Further, we obtain 1−sA+R = (a) by
solving (6) for p1, substituting p1 in (9) and solving for p3 and
finally inserting in (7), multiplying by (1 − s) and solving for
1 − sA+R. Lastly, we obtain 1 − sR = (b) by solving (6)
for p1, substituting p1 in (8) and solving for p2 and finally
inserting in (7), multiplying by (1− s) and solving for 1− sR.
Putting (28) and (29) together, we obtain

∂L
∂sδ

= 2 log
(

savg + sδ − sp1

savg − sδ − sp1

)
+ log

(
(1 − savg − sδ)(savg − sδ)

(1 − savg + sδ)(savg + sδ)

)
= 0.

Since the optimization is convex, it follows that sδ = 0 mini-
mizes the objective in Lemma 2.

D. Proof of Theorem 2

Proof: Being a convex optimization problem with affine
constraints, we utilize the method of Lagrange multipliers [55]
to combine the leakage in Eq. (12) with the constraints in
Eqs. (13) to (15). Then the objective function is

L ≜ L(p1, pinv
1 , ps, pinv

s ) + λ1c1(p1, pinv
1 )

+ λ2c2(ps, pinv
s ) + λ3c3(p1, ps), (30)

where L(p1, pinv
1 , ps, pinv

s ) is the leakage defined in the opti-
mization problem Lemma 5, which results from Construction
2 (similar to the Lemma 2). Then the minimization problem
of Lemma 5 can be solved by setting the gradient of the
objective in (30) to zero, i.e., ∇p1,pinv

1 ,ps ,pinv
s ,λ1,λ2,λ3

L = 0,
which amounts to solving a system of seven equations with
seven unknowns. We utilize a subset of those equations and
one can show that given the objective L, we obtain from
∇p1,pinv

1 ,ps ,pinv
s
L = 0 the relation

p1(pinv
s )n

= pinv
1 pn

s . (31)

To obtain this result, we use that
∂x log( x

y )

∂x = log(x)−log(y)+1.
Then, from (30) and the objective and constraints in Lemma 5,
we obtain the following non-linear system of equations for
∇p1,pinv

1 ,ps ,pinv
s
L = 0:

∂L
∂p1

= s (log(p1) − log(sd) + 1) + λ1 + sλ3 = 0,

∂L
∂pinv

1
=s(q − 1)

(
log(pinv

1 )−log(sinv
d ) + 1

)
+ (q − 1)λ1 =0,

∂L
∂ps

= (1 − s)
(

log(ps) − log(sd) + 1 + (n − 1)

· (log(ps) − log(sinv
d ) + 1)

)
+nλ2 + (1 − s)λ3 = 0,

∂L
∂pinv

s
= (1 − s)(q − n)

(
log(pinv

s ) − log(sinv
d ) + 1

)
+ (q − n)λ2 = 0.

By scaling, we simplify and reformulate this system of equa-
tions and obtain

0 = log(p1) − log(sd) + 1 + λ′

1 + λ′

3, (32)

0 = − log(pinv
1 ) + log(sinv

d ) − 1 − λ′

1, (33)
0 = −n log(ps) + log(sd) + (n − 1)

− n − nλ′

2 − λ3, (34)

0 = n log(pinv
s ) − n log(sinv

d ) + n + nλ′

2, (35)

where λ′

1 = λ1/s, λ′

2 = λ2/(1 − s) and λ′

3 = λ3/s.
Summing (32)-(35) leads to log

(
p1 pinv

s
n
)
− log

(
pinv

1 pn
s
)

= 0.
Exponentiating both sides yields the result stated in (31). The
condition on the root ps is a consequence of (14) and (15).

Then we use (31) and ∇λ1,λ2,λ3L = 0, where the latter
system of equations is linear and equivalent to (13)-(15).
We solve Eqs. (13) to (15) for p1, pinv

1 , pinv
s as a function

of ps to obtain

(q − 1)
sd − (1 − s)ps

s − sd + (1 − s)ps
=

(
(q − n)

ps

1 − nps

)n

. (36)

We reformulate (36) to get the following polynomial in ps
with degree n + 1:

−pn+1
s −s2 pn

s + cs1

n∑
k=1

(
n
k

)
(−nps)

k
− psc

n∑
k=0

(−nps)
k .

Sorting the coefficients by powers of ps results in the root
finding problem given in Theorem 2. The results for p1, pinv

1
and pinv

s can be obtained from ∇λ1,λ2,λ3L = 0, i.e., from
the constraints stated in Eqs. (13) to (15). The condition on
the root ps is a direct consequence of Eqs. (14) and (15).
As for Theorem 1, by the continuity of x log( x

y ), y > 0,

on 0 ≤ x < ∞ and the mean value theorem, it can be
shown that the global solution lies in the interior of the
convex feasibility set; and hence, is captured by the Lagrange
multipliers.
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