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DP-Norm: Differential Privacy Primal-Dual
Algorithm for Decentralized Federated Learning

Takumi Fukami , Tomoya Murata , Kenta Niwa , Senior Member, IEEE, and Iifan Tyou , Member, IEEE

Abstract— A novel algorithm is proposed for highly privacy-
preserving decentralized federated learning (FL). Several
studies have reported security risks in decentralized FL
by reconstructing data even from model update differences.
A common approach to overcome this issue is to use the
diffusion process following differential privacy (DP), i.e., message
passing between nodes is hidden by noise. However, this often
makes the learning process unstable, leading to degraded
results compared to without using DP diffusion process. In this
paper, we propose a primal-dual DP algorithm with denoising
normalization (DP-Norm) for less sensitivity to noise/interference,
such as DP diffusion and heterogeneous data allocation. For DP-
Norm, privacy analysis to determine minimal noise level and
convergence analysis are conducted. Through image classification
benchmark tests, we confirmed that DP-Norm performed close
to the single-node reference score, even when statistically
heterogeneous data was allocated on six nodes.

Index Terms— Federated learning, differential privacy, data
heterogeneity, primal-dual optimization.

I. INTRODUCTION

FEDERATED learning (FL) is an emerging distributed
learning for model training without data aggregation.

It is in high demand for privacy-preserving applications, such
as medical data analysis in hospitals, anomaly prediction in
factories, and speech mining in call centers [1], [2], [3].

Recent trends in FL include (a) decentralized flexible
network (NW) architectures (peer-to-peer nodes) instead of
centralized ones (clients and a server) e.g., [4], [5], [6],
and [7], (b) statistical data bias settings, i.e., each local
node holds heterogeneous (non-independent and identically
distributed: non-IID) data subsets, e.g., [6] and [8], and (c)
information privacy in FL message passing among local nodes.
Several studies [9], [10], [11], [12] have reported that updated
differences in model variables inherit the statistical properties
of data sets, i.e., the node’s confidential data itself can be
inferred under several assumptions. The goal of this work
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is to formulate a new FL algorithm that runs on (a) a
decentralized NW with (b) a non-IID data allocation and (c)
high information privacy, aiming to reach the performance
of a reference model trained on a single node by using all
aggregated data. Since several FL algorithms such as Edge
Consensus Learning (ECL) [8], [13] have already achieved
stable model learning on (a) a distributed NWs with (b)
non-IID data allocation, we aim for a high privacy new FL
algorithm based on the ECL algorithm.

Several studies have introduced differential privacy (DP) in
decentralized FL to overcome this privacy issue, i.e., scaled
Gaussian noise is added to message passing information to
reduce the risks of local samples being leaked. Hereafter, this
noise addition procedure is called a DP diffusion process.
In Differentially Private Stochastic Gradient Descent (DP-
SGD) [14], Gaussian noise with a particular variance is added
to a local model to hide it. Although DP-SGD is originally
used for privacy-preserving single-node model training, it can
be easily applied to decentralized FL. Similarly, a DP diffusion
process is introduced into the local model variables exchanged
between nodes in the update rule of the alternating direction
method of multipliers (ADMM) [15], which is referred to
as DP-ADMM [16]. However, introducing the DP diffusion
process will degrade learning results compared to without
using it. This learning issue is caused by noise/interference
due to the DP diffusion process and non-IID data allocation.

To overcome this problem, we propose a primal-dual DP
algorithm with denoising normalization, referred to as DP-
Norm. First, we introduce a DP diffusion process into ECL
as linear constraints regarding model variables that make it
robust to non-IID data allocation. Then, message passing will
be performed to exchange diffused dual variables to satisfy
constraints. In our pre-testing, the effect of noise/interference
due to the DP diffusion process and non-IID data allocation
was mitigated; however, the learning stagnation issue remained
due to an explosive norm increase through message passing
of dual variables among local nodes. To reduce this explosive
norm increase, denoising process is introduced in our problem
formulation. Note that even when a denoising process is
applied, privacy-preserving message passing following DP is
guaranteed since statistically independent diffusion noise is
added on each local node.

Our contributions are summarized as follows:

A. (C1) DP-Norm Algorithm Formulation (Sec. IV)

A cost function used in ECL is reformulated to introduce
(i) a diffusion process for diffused message passing following
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DP and (ii) a denoising process to reduce the explosive norm
increase in model variables due to DP diffusion. By applying
Peaceman-Rachford splitting [17], we formulate an algorithm
to alternatingly repeat (i) diffused message passing of dual
variables and (ii) local model update with denoising.

B. (C2) Theoretical Analyses of DP-Norm (Sec. V)

Two analyses associated with DP-Norm are conducted:
privacy analysis and convergence analysis. In the privacy
analysis for convex and non-convex cost functions, we derive
the minimum noise level for DP-Norm’s message passing
to exchange diffused dual variables given a privacy level.
Meanwhile, only the convergence analysis is performed by
restricting the cost functions that are convex. Then, our
method is proven to achieve the best-known utility bound
of decentralized primal-dual algorithms obtained by [16] and
that primal model and even dual variables reach their optimal
solutions without any of the boundedness assumptions used
in e.g., DP-ADMM [16], [18]. This indicates that the norm
increase issue regarding both primal model and dual variables
is resolved by our DP-Norm including the denoising process.

C. (C3) Experimental Validations (Sec. VI)

We experimentally evaluated our DP-Norm in image
classification benchmark tests. The explosive norm increase in
message passing dual variables was observed to be reduced.
Due to this, resulting scores with DP-Norm approached those
of single-node reference under realistic noisy/interference
situations (high privacy level, non-IID data allocation),
whereas previous DP-SGD and DP-ADMM degraded in their
learning processes.

II. PRELIMINARY

A. Problem Settings

Symbols and notations used throughout this paper are briefly
summarized in Table I. Decentralized NW is drawn by a
graph G(N , E), where N := |N | nodes and E := |E |
edges exist and the i-th node is connected to neighboring
of Ei := |Ei | nodes. Assuming that the computing power of
N nodes is approximately identical, each local node updates
the local model variable wi for K inner-loop iterations in
an outer-loop round r ∈ {0, . . . , R − 1}. Message passing
with neighboring nodes is possibly asynchronously performed
once per outer-loop round at random timing. Each node
is allowed to access different data subsets xi consisting of
di data samples (non-IID data allocation is assumed). For
simple notation, N node stacked models and data subsets
are denoted by w := {wi }i∈N and x := {xi }i∈N . Our
goal is to search for a set of model variables such that
minimizes f (w, x) = 1

N
∑

i∈N fi (wi , xi ) while satisfying
w1 =, . . . ,= wN (consensus model). Although fi is assumed
to be non-convex cost functions (e.g., DNN), only convergence
analysis in Subsec. V-C is performed by restricting fi to be
convex.1 In model updating, we compute stochastic gradient

1Experimental results for the convex cost functions and those for the non-
convex cost functions are summarized in Sec. VI and the supplementary
material, respectively.

∇ fi (wi , ξ i ) instead of full gradient ∇ fi (wi , xi ), where B
mini-batch samples are randomly chosen from a local data
subset as ξ i ∼ xi . An effective strategy to obtain a consensus
model is to impose linear constraints to model variables.
We denote the linear constraints following the ECL [8], [13] as
Ai | j wi+A j |i w j = 0, where {Ai | j , A j |i } = {I,−I}. For simple
notation, the constraint parameters in Table I are stacked
by a diagonal matrix as A = diag[A1, . . . , AN ]. To solve
a constrained cost minimization problem in Sec. IV, dual
variables are introduced as λi | j ( j ∈ Ei ) where it is lifted so
each local node can update it asynchronously. The lifted dual
variables in Table I can be stacked by λ = [λT

1 , . . . ,λT
N ]

T.

B. (ε, δ)-Differential Privacy (DP) [19]

There are potential risks of local samples being leaked from
the message passing information or local sample memberships
being inferred. DP is a concept that quantitatively evaluates
these risks, and the DP mechanism is commonly used to
guarantee privacy. For an algorithm M and two adjacent data
subsets {xi , x′i } where one data sample is different from the
other, (ε, δ)-DP can be guaranteed when M satisfies

Pr[M(xi )] ≤ eεPr[M(x′i )] + δ, (1)

where ε > 0 denotes the distinguishable bound of all outputs
on two adjacent data subsets and δ ∈ (0, 1) represents the
probability of information leakage. When the algorithm M
can choose a small value for (ε, δ), it is a highly-secured
algorithm with less risk of local data leakage. To guarantee a
given privacy level (ε, δ), variance-scaled Gaussian noise ni ∼

Norm(0, σ 2
i I) is generally added to an existing algorithm F as

M(xi ) := F(xi )+ni . We call this noise addition procedure DP
diffusion process. Note that the minimal noise level σ 2

i given
privacy level (ε, δ) is dependent for each algorithm M since
message passing information is different for each algorithm.
Hence, our problem setting includes both (i) a formulation
of a decentralized FL algorithm M including a DP diffusion
process (see Sec. IV) and (ii) analysis to estimate the minimal
noise level σ 2

i (See Subsec. V-B).

III. PRIOR WORKS

As for decentralized FL including the DP diffusion process,
DP-SGD (applied for decentralized FL) and DP-ADMM are
explained in Subsec. III-A. In Subsec. III-B, ECL, to which
DP has not applied before, is introduced as a preliminary step
for our proposed method formulation in Sec. IV.

A. Decentralized FL Algorithms With DP

Two methods using (ε, δ)-DP for decentralized FL are
explained. The first method, DP-SGD [14], was originally
proposed for privacy-preserving single-node model training.
Since it can be used for decentralized FL by combining a
DP diffusion process with DSGD [5], we call this simply
DP-SGD. The second method, DP-ADMM [16], applies a
DP diffusion process to the ADMM based decentralized
update rule. Although the update rules of these methods
are summarized in the supplemental materials, their privacy-
preserving message passing consists of diffused primal model
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TABLE I
SYMBOL DEFINITION OF LATENT VARIABLES AND PARAMETERS

variable transmission. In the local node update, a DP diffusion
process to add noise ni to wi is performed for each inner
iteration (K times per round), where noise level σi to guarantee
(ε, δ)-DP is summarized in Sec. V.

However, it was experimentally shown that these methods
result in degraded learning results in our assumed situations,
i.e., non-IID data allocation and high privacy level approaching
(ε, δ) to zero (experimental results are summarized in Sec. VI
and the supplementary material). This will be caused by
noise/interference due to a DP diffusion process and non-IID
data allocation.

B. ECL for Decentralized FL (without DP)

To reduce the negative impact of non-IID data allocation,
using ECL [8], [13] may be effective since robustness to it
has been experimentally shown. As a preliminary step for our
proposed method formulation in Sec. IV, we briefly explain
ECL to which (ε, δ)-DP has not been applied previously.

In ECL, we will search for a set of primal model variables
{w1, . . . , wN } that minimize the cost function fi (wi , xi ) while
linearly imposing consensus constraints to be w1 =, . . . ,=

wN as

inf
{w1,...,wN }

1
N

∑
i∈N

fi (wi , xi ),

s.t. Ai | j wi + A j |i w j = 0 (i ∈ N , j ∈ Ei ). (2)

To use primal-dual formalism for solving linearly constrained
minimization problems, fi is assumed to be convex in this
section. When fi is non-convex, it can be approximated by a
quadratic function around the current variable as fi (wi , xi ) ≈

fi (wr
i , xi ) +

〈
∇ fi (wr

i , xi ), wi − wr
i
〉
+

1
2µ
∥wi − wr

i ∥
2, where

µ(> 0) is assumed to be sufficiently small.
To solve (2), the Lagrange function is formulated. To make

an update rule work in a decentralized communication manner,
Lagrange multipliers (dual variables) are lifted as {λi | j |i ∈
V, j ∈ Ei } ∈ λ, as performed in primal-dual method of
multipliers (PDMM) [20], [21] and ECL. The cost function in
them can be reformulated by the sum of two functions, namely
the convex conjugate function f ⋆(ATλ, x) = supw ⟨λ, Aw⟩ −
f (w, x) and the indicator function ιker(I−PG )(λ), to make it
consistent with the original Lagrange function even when
using dual variables λ, as

inf
λ

f ⋆(ATλ, x)+ ιker(I−PG )(λ),

where ιker(I−PG )(λ) =

{
0 (λ = PGλ)
+∞ (otherwise),

(3)

and PG denotes the permutation matrix to exchange dual
variables over a graph G(N , E) as λi | j ⇌ λ j |i .

Summarizing this subsection, a constrained minimization
problem (2) is reformulated as a minimization problem (3)
using dual variables. Since consensus constraints are imposed
in (2), gradient drift due to non-IID data allocation is expected
to be reduced. Then, message passing consists of dual variable
exchange over a graph as λi | j ⇌ λ j |i . Message passing
using dual variables {λi | j } is much more confidentially safer
than using the primal model itself {wi }. However, the risk of
information leaking remains since the statistical nature of the
data subsets is reflected. In the next section, we will start by
introducing a DP diffusion process to ECL, which is expected
to be robust to non-IID data allocation.

IV. PROPOSED ALGORITHM

We propose DP-Norm for highly privacy-preserving FL with
less sensitivity to interference due to DP diffusion process
and non-IID data allocation. We start by introducing DP to
ECL in Subsec. IV-A. To make the proposed algorithm (DP-
Norm) robust to the DP diffusion process, a denoising process
is added. The update rule for DP-Norm is given in Subsec.
IV-B.

A. Cost Formulation for DP-Norm

To reduce information leakage from message passing
in ECL, a DP diffusion process is introduced. Motivated
by adding Gaussian noise n := {ni }i∈N where ni ∼

Norm(0, σ 2
i I) to message passing dual variable λi | j , a natural

cost formalism is to add an expectation term En[
〈
ATλ, n

〉
]

to (3) as

inf
λ

f ⋆(ATλ, x)+ En[
〈
ATλ, n

〉
] + ιker(I−PG )(λ). (4)

Although the stationary point in (4) will not be affected by
introducing a second diffusion term since En[n] = 0, we can
naturally formulate a DP primal-dual algorithm with respect
to both data sample and Gaussian noise (the update rule is
illustrated in Subsec. IV-B). However, in our pre-testing to
investigate the performance of the derived algorithm to include
Gaussian noise sampling, the learning stagnation issue was not
completely resolved. Although experimental results are shown
in Sec. VI, evaluation scores of learned models were then
obviously degraded from that without using a DP diffusion
process (σi = 0). This degradation can be attributed to the
explosive increase in the norm of the dual variables λ due to
recursive diffusion noise addition (see Sec. VI).
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Algorithm 1 DP-Norm for Decentralized FL. It Is Reduced
to Previous ECL When Setting α=0, σi=0.

1: ▷ Set w0,0
i = w0,0

j (∼ Norm), λ
0,0
i | j = z0

i | j = 0, µ, ηi =

1/(µEi K ), γi = 1+ αηi
2: ▷ Set privacy level (ε, δ)

3: ▷ Set noise level σi to follow Theorem 2.
4: for each r ∈ {0, . . . , R − 1} (Outer-loop round) do
5: for each i ∈ N do
6: ni ∼ Norm(0, σ 2

i I) (Noise sampling).
7: for each k ∈ {0, . . . , K − 1} (Inner-loop iteration)

do
8: ▷ Update local primal model and dual variables
9: ξ i ∼ xi (Mini-batch data sampling).

10: gi (wr,k
i )← ∇ fi (wr,k

i , ξ
r,k
i ).

11: wr,k+1
i ←

γi
γi+ηi µEi

(
wr,k

i − µgi (wr,k
i ) +

µηi
γi

∑
j∈Ei

AT
i | j z

r
i | j

)
.

12: for each j ∈ Ei do
13: λ

r,k+1
i | j ←

ηi
γi
{(zr

i | j − Ai | j (wr,k+1
i + ni )}.

14: yr,k+1
i | j ←

2
ηi

λ
r,k+1
i | j − zr

i | j .

15: ▷ Message passing with j-th node
16: for each j ∈ Ei (at random time) do
17: Transmit j→i (yr,k+1

j |i ).
18: zr

i | j ← yr,k+1
j |i .

19: wr+1,0
i ← wr,K

i , zr+1
i | j ← zr

i | j .

To reduce this issue, we introduce a denoising normalization
term ρ(λ) to (4). Then, the cost function formulation is given
by

[DP-Norm = ECL (3)+ DP diffusion process + Denoising process]
inf
λ

f ⋆(ATλ, x)+ ιker(I−PG )(λ)

ECL

+ En[
〈
ATλ, n

〉
]

DP diffussion process

+ ρ(λ)

Denoising process

, (5)

where ρ(λ) has a role in relaxing the explosive increase
in the norm of λ. To implement this normalization term,
we set ρ(λ) = α

2 ∥λ∥
2 with experimentally selected α (≥ 0).

By adding this normalization term, the stationary point in (5)
will be moved from the original problem (3). Even with
that disadvantage, the reduction of interference due to a
DP diffusion process by introducing a denoising process is
more beneficial, which will be illustrated through experiments
in Sec. VI.

B. Update Rule Derivation of DP-Norm

An update rule of DP-Norm is derived to solve (5), where
fi is approximated by a quadratic function as explained in
Sec. III-B. Since the cost function in (5) consists of the
sum of the first three differentiable/smooth convex terms
and the last non-differentiable/non-smooth indicator function.
As a preliminary for update rule derivation, we define two
operators, namely T1(λ) = A∇ f ⋆(ATλ, x)+En[An]+αλ and

T2(λ) = ∂ιker(I−PG )(λ), where ∇ and ∂ denote the differential
operator and the subdifferential operator for non-smooth
functions, respectively, and n in T1 is randomly sampled. The
stationary point of (5) satisfies 0 ∈ T1(λ) + T2(λ), where we
use the symbol ∈ instead of = because the subdifferential
of the non-smooth function will include the set of values at
discontinuous points.

When T1 and T2 are ill-matched, it is common to use
operator splitting (e.g., [22], [23]) to derive the variable update
rule. We use Peaceman-Rachford splitting [17]. Although
detailed derivations are noted in the supplementary material,
the update rule to solve (5) using the Peaceman-Rachford
Splitting is summarized by Alg. 1, which alternatingly repeats
(i) the local node procedure to update primal model variable
wi and associated dual variables {yi | j | j ∈ Ei } and (ii) the
privacy-preserving message passing of dual variables over a
graph (received dual variables are noted in {zi | j | j ∈ Ei }). The
denoising process is included in lines 9, 10, and 11 of Alg.
1. In addition, γi = 1 + αηi is used for simple notation and
ηi =

1
µEi K is selected to make wi -update to follow stochastic

variance reduction formalism [8].
Fig. 1 shows an illustration image of model update trajectory

differences with (a) DP-SGD for decentralized FL, (b) DP-
Norm without normalization (α = 0), and (c) DP-Norm
(α > 0). In all methods, stochastic gradient (orange dot
line) and diffusion noise (black line) are used in their update
rule. In (a) DP-SGD for decentralized FL, non-IID data and
DP diffusion at each node cause the update to face different
directions and fail to approach the stationary point. In (b) DP-
Norm without normalization (α = 0), gradient modification
is added that uses dual variables (red line) originating from
consensus constraints in (2). Then, gradient drift due to non-
IID data allocation is expected to be reduced. Furthermore,
with (c) DP-Norm (α > 0), denoising normalization (blue line)
is added to avoid an explosive norm increase. Although this
will move the stationary point from the original problem (3),
the effect of DP diffusion process can be reduced and
mitigated. It will result in making all node model variables
approach the stationary point.

In the next section, we perform two analyses for DP-
Norm: (i) privacy analysis to derive minimal noise level σi
to guarantee (ε, δ)-DP and (ii) convergence analysis.

V. ALGORITHM ANALYSES

In this section, we analyze DP-Norm in Alg. 1 under
several assumptions summarized in Subsec. V-A. Note
that our analyses for DP-Norm are rigorously performed
in synchronous communication settings (dual variables are
exchanged at the beginning of each round). First, in Subsec.
V-B, we specify the minimal noise level σi to guarantee (ε, δ)-
DP. Second, in Subsec. V-C, convergence analysis is conducted
to investigate the effect of DP diffusion/denoising processes.
All proofs are summarized in the supplementary material.
In Subsec. V-D, analysis results are briefly discussed.

A. Assumptions

Assumptions used throughout this section are summarized
as follows:
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Fig. 1. Illustration image of model update trajectory with (a) DP-SGD for decentralized FL, (b) DP-Norm without normalization (α = 0) and (c) DP-Norm
(α > 0).

TABLE II
SUMMARY OF PRIVACY AND CONVERGENCE ANALYSES. B : MINI-BATCH SIZE, di : DATA SUBSET SIZE, p: DIMENSION OF PRIMAL MODEL VARIABLE,

R: OUTER-LOOP ROUNDS, K : INNER-LOOP ITERATIONS, c AND JR,ε,δ ARE DEFINED IN THEOREM 1. ALL THE METHODS USE ASSUMPTIONS
(A1) AND (A2) FOR PRIVACY ANALYSIS. MEANWHILE, ASSUMPTIONS (A1)-(A3) ARE USED FOR CONVERGENCE RATE ANALYSIS FOR

CONVEX COST FUNCTIONS. SAMPLING WITHOUT REPLACEMENT MEANS THAT EACH LOCAL NODE DOES NOT USE A DATA
SAMPLE OF THE LOCAL SUBSET MORE THAN ONCE IN THE MINI-BATCH. RANDOM PERMUTATION MEANS THAT EACH

LOCAL NODE CYCLES THROUGH ITS OWN LOCAL DATA SUBSETS IN THE ORDER DEFINED BY A PERMUTATION
THAT IS RANDOMLY GENERATED AT THE BEGINNING OF EACH ROUND r . Õ IS USED TO ABBREVIATE THE

LOGARITHMIC FACTOR FOR SIMPLE PRESENTATION

(A1: G-Lipschitzness) fi (·, ξi ) is G-Lipschitz function, i.e.,
∥ fi (a, ξ i )− fi (b, ξ i )∥ ≤ G∥a− b∥ for any i , a, b and single
data sample ξ i ∼ xi .

(A2: L-smoothness) ∇ fi (·, ξ i ) is L-smooth, i.e.,
∥∇ fi (a, ξ i ) − ∇ fi (b, ξ i )∥ ≤ L∥a − b∥ for any i , a, b
and mini-batch data sample ξ i ∼ xi .

(A3: Stochastic gradient bound) The variance of mini-
batch stochastic gradient for each local node is bounded by
ς2

i , i.e., Eξ i∼xi [∥∇ fi (a, ξ i ) − ∇ fi (a, xi )∥
2
] ≤ ς2

i for any i
and a.

B. Privacy Analysis

The aim of this subsection is to derive the minimal
noise level σi that guarantees (ε, δ)-DP. In privacy analysis,

fi (·)(:= fi (·, xi )) is allowed for both convex and non-convex.
Let us denote that wi (xi ) is a function to generate primal
model variables wi from a local data subset xi through a
set of procedures in Alg. 1 without the DP diffusion process.
First, we investigate L2 sensitivity of primal model variables
wi (xi ), i.e., upper bound of changes in primal model variables
wi (xi ) for each adjacent data subset {xi , x′i } is investigated.
In the following lemma, mini-batch sampling is assumed to
be without replacement for simple analysis.

Lemma 1 (L2 sensitivity of DP-Norm’s message passing):
Suppose that assumptions (A1), (A2) and random permutation
hold, and µ ≤ 1/(ci K L), where c := 1 + 2(γ + 1) and we
set γ := γi = γ j for simplicity of notation. Conditioned on
the previous outputs of yi | j ( j ∈ Ei ), the randomness of the
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mini-batch sampling of node i and all the randomness of
the other nodes, L2 sensitivity of DP-Norm’s primal model
variables wr

i at round r for adjacent data subsets {xi , x′i } is
bounded by

12 := max{xi ,x′i }∥w
r
i (xi )−wr

i (x
′

i )∥ ≤ 2cµ
(

K
di
+

1
B

)
G.

Next, we investigate the minimal noise level σi that
guarantees (ε, δ)-DP for overall R rounds using the moments
account method [14], [24]. The result is summarized in the
following theorem:

Theorem 1 (Minimal noise level to guarantee (ε, δ)-DP):
Suppose that µ ≤ 1/(cK L), where c is defined in the
statement of Lemma 1. Under assumptions (A1), (A2), and
random permutation. For any privacy level (ε, δ), noise level
σi that guarantees (ε, δ)-DP in the DP-Norm is given by

σi ≥ max
{√

2h Rlog
(

e + ε
√

2hδ

)
ε

,

√
R
2ε

}
12 := JR,ε,δ12,

where, e denotes Napier’s constant, h := (1 +
√

1+ ε/ l(ε, δ))2/4 < (1+
√

1+ ε)2/4 and l(ε, δ) := log(e+
(
√

2ε)/((1+
√

1+ ε)δ)).
Proof sketch of Theorem 1
Although detailed proofs are shown in the supplementary

material, its proof sketch is shown here. In DP-Norm,
an auxiliary variable yi | j , which is injected with Gaussian
noise through a dual variable λi | j , is transmitted between
connected nodes for each communication round (see line 17 in
Alg. 1) to guarantee DP. In our algorithm formulation, we can
see that the requirement of (ε, δ)-DP with respect to client i
can be formulated as follows:

Pr(y1:R
i |Ei
∈ S|xi , I 1:R

i , Rand1:R
E\i )

−eεPr(y1:R
i |Ei
∈ S|x ′i , I 1:R

i , Rand1:R
E\i ) ≤ δ, (6)

for every S and adjacent datasets xi and x ′i , where I 1:r,1:K
i

denotes the mini-batch sampled data indices for k ∈ [K ]
and r ∈ [R], and Rand1:r−1

E\i denotes all the randomness
(of sampling indexes and noise) of nodes E\i := E \ {i} at
round r . We first give a DP guarantee for a single global
update of DP-Norm based on the L2 sensitivity analysis of
the message passing through the multiple local updates given
in Lemma 1. Then, to find the smallest possible DP noise
size σi satisfying (6), we adopt the tight analysis of the
advanced composition theorem given in [24]. Following the
proof strategy in Appendix B in [24], (6) can be reformulated
as

ε ≥ R12
2/(2σ 2

i )+

√
(2R12

2/σ
2
i )log(e + (1/δ)

√
R12

2/σ
2
i ),

(7)

where 12 is the L2 sensitivity of the message passing through
the multiple local updates given in Lemma 1.

Furthermore, for obtaining a tighter bound for σi than [24],
we introduce a parameter h ∈ (0, (1 +

√
1+ ε)2/4) and

describe σ 2
i as a function of h:

σ 2
i := (2h R12

2/ε
2)log(e + ε/(

√
2hδ)). (8)

Finally, we optimize h to minimize σi satisfying the
constraint (7) and obtain the expression of h and σi described
in Theorem 2.

C. Convergence Rate Analysis

For only convergence rate analysis, the cost function is
assumed to be restricted to be convex.3 Our analysis strategy
basically follows [25]. To measure the difference between
current primal model variables wr

i and its stationary point w∗i ,
Bregman divergence is defined as D fi (wr

i , w∗i ) := fi (wr
i ) −

fi (w∗i ) − ⟨∇ fi (w∗i ), wr
i − w∗i ⟩, where fi (·) := fi (·, xi ).

When fi is strongly convex, D fi = 0 when only wr
i =

w∗i . In this subsection, Ei = E j is assumed for simple
presentation. The following theorem shows that the primal
model and dual variables reach their stationary point (w∗i , λ

∗

i | j )

of (5) by investigating addition of
∑

i∈N D fi (wr
i , w∗i ) and∑

i∈N
∑

j∈Ei
∥λr

i | j − λ∗i | j∥
2 with scaling. Õ is used to

abbreviate the logarithmic factor for simple presentation.
Theorem 2 (Convergence rate): Suppose that assumptions

(A1)-(A3) in addition to fi being convex hold. Let λ0
i | j = 0 and

assume ∥w0
i − w∗i ∥

2, ∥λ0
i | j − λ∗i | j∥

2, G and L be O(1) and
ς2

i = O(1/B), and
√

ε = O(ε). Then, when α ≤ O(E/(N L)),
with an appropriate choice of µ and ηi := 1/(µEi K ), it holds
that

1
N

∑
i∈N

E[D fi (w
out
i , w∗i )]+

α

N

∑
i∈N

∑
j∈Ei

E∥λout
i | j − λ∗i | j∥

2

≤ Õ(
1

K R
+

E
N R
+

1
√

BK R
+

√
p

dminε
+

√
p

K Bε
). (9)

where p represents the dimension of wi , wout
i :=

1
RK

∑R−1
r=0

∑K−1
k=0 wr,k

i , λout
i | j :=

1
RK

∑R−1
r=0

∑K
k=1 λ

r,k
i | j and

dmin := mini∈N di
4.

D. Discussion

Table II summarizes the minimal noise levels for (ε, δ)−DP
guarantee and the convergence rates for three methods (DP-
SGD, DP-ADMM, and DP-Norm).

Associated with Theorem 1, we found that DP-Norm can
guarantee DP with less noise in total since the DP diffusion
process to add noise on a dual variable is performed once
an outer round as in Alg. 1, while DP-SGD and DP-ADMM
perform it for every inner iteration (K times for a round).
If (ε, δ)−DP can be guaranteed even with a relatively low
noise level, that is an advantage of our formulation starting
from ECL. In that situation, the denoising process in DP-Norm
will work well to further reduce the number of iterations of
the DP diffusion process.

2Since outer-loop updates are not considered in the original DP-SGD since
it is proposed for single-node model training, we changed its update rules
to include outer-loop updates for use in decentralized FL, as shown in the
supplementary material. Then, the noise level shown in [14] is changed from
K to K × R, and it results in the minimal noise level shown in Table II.

3Although the theoretical convergence analysis for non-convex functions
is a future work, experimental verification to confirm convergence curves are
shown in the supplemental material.

4Factor 1/dmin can be improved to ((1/N )
∑

i∈N 1/d2
i )1/2, but we do not

discuss this point here due to the space limitation. Details are noted in the
supplementary material.
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In Theorem 2, no boundedness assumptions for primal and
dual variables are assumed. This is a critical difference from
DP-ADMM [16] where the researchers essentially used the
boundedness to derive the convergence rate. As mentioned
in Subsec. IV-A and empirically observed in Subsec. VI-
B, diffusion noise addition generally causes the explosive
increase in the norm of the dual variables and the boundedness
assumption does not hold. Our proposed method enjoys the
standard utility Õ(

√
p/(dminε)) (for K B ≥ dmin) without

assuming the boundedness and guarantees the convergence
of both primal model and even dual variables (only when
α > 0) thanks to DP-Norm formulation including a denoising
normalization term.

Note that the stationary points by using DP-Norm are
generally different from other methods (DP-SGD, DP-
ADMM) since a denoising normalization term is added as
in (5). Hence, the generalization ability of the optimized
models should also be considered. Empirically, we found that
the generalization ability of the optimized model of DP-Norm
is always better than the one of DP-ADMM and DP-Norm
(α = 0). This point is experimentally investigated in Sec. VI.

VI. NUMERICAL EXPERIMENTS

Numerical experiments to compare our DP-Norm and prior
works (DP-SGD, DP-ADMM) by using image classification
benchmark tests with the convex logistic regression model.

A. Experimental Setup

1) Dataset and Accessibility/Model: We used Fashion
MNIST [26] (28 × 28 pixels, 10 classes) as an image
classification benchmark test. Then, each node has access to
a non-IID data subset. In our implementation, each subset
consists of di = 4, 000 data with 6 classes randomly selected
from 10 classes. Each data sample is normalized so that its L2
norm is equal to 1. We prepared the convex logistic regression
with squared L2 regularizer with empirical weight and the
non-convex ResNet-10 model [27]. For the convex model,
(G, L) = (1, 0.5) is theoretically selected following [28].
Also, (G, L) = (1, 0.5) is empirically selected for the non-
convex model. Since it is theoretically difficult to select (G, L)

for a neural network model such as non-convex ResNet-10,
which is commonly used in prior experiments with convex
logistic regression model, we considered the most important
point to use a common (G, L) among competing learning
methods.

2) Network Graph/Communication: A ring topology net-
work with N = 6 nodes is used (Ei = 2). Assuming that
the computational and communication performances of all
nodes are approximately equal, we allowed each node to
asynchronously communicate with connected nodes once per
outer-loop round at random timing. The pair of the number
of outer and inner loops is empirically set for each model,
i.e., (R, K ) = (2000, 10) is used for the convex model and
(R, K ) = (1000, 10) is used for the non-convex model.

3) Comparing Methods: We evaluated five methods:
(M1) DP-SGD, (M2) DP-ADMM, (M3) DP-Norm without
normalization (α = 0), i.e., ECL with DP diffusion process,

(M4) DP-Norm (α > 0), and (M5) single-node reference. The
goal of decentralized algorithms (M1)-(M4) is to obtain primal
model variables that lead to an accuracy approaching that of
(M5) trained with all datasets and vanilla SGD without DP
diffusion process. Our proposed method consists of (M3) and
(M4). The learning rate µ is selected for each model such
that it satisfies µ < 1

cK L as defined in Lemma 1, namely
µ = 0.03 for the convex model and µ = 0.001 for the
non-convex model. In addition, α in (M4) is experimentally
selected as α = 0.2 for the convex model and α = 0.001 for
the non-convex model.

4) Privacy Level/Noise Level: Three privacy levels are
prepared: non-private ε = ∞ and two privacy levels ε =

{1, 0.5}, δ = 0.001. Following Table II, the smallest noise level
is selected.

5) Mini-Batch Size: In DP-SGD, DP-ADMM, and DP-
Norm, stochastic fluctuation due to both stochastic gradient
using mini-batch selection and DP diffusion process are
included. Stochastic fluctuation that is too large will not
reach an optimal solution due to unstable learning process.
An implementation technique to relax this issue is to increase
mini-batch size B, which will reduce the ς2

i -stochastic
gradient bound assumption in Subsec. V-A. We experimentally
selected B = 2, 000 for the convex model and B = 500 for
the non-convex model.

B. Experimental Results

Fig. 2 shows node-averaged learning curves using test
accuracy for the convex logistic regression with L2 regularizer
model and the non-convex ResNet-10 model given three
privacy levels (ε = {∞, 1, 0.5}, δ = 0.001). Our (M4) DP-
Norm (α > 0) performed closest to the single-node reference
scores in all settings. Although it could not reach single-node
reference scores when ε = {1.0, 0.5}. When increasing the
privacy level as ε → 0, noise level σi is increased; thus,
applying a denoising process with appropriate weight selection
was effective, even when the stationary point was moved from
the original problem. As discussed in Subsec. V-D, DP-Norm
can guarantee (ε, δ)-DP with less noise σi in total than that
in other methods (DP-SGD and DP-ADMM). In addition to
this, applying the denoising process is effective in reducing
DP diffusion noise.

Meanwhile, DP-SGD and DP-ADMM resulted in a
degraded learning process when ε = {1.0, 0.5}. Although
DP-ADMM and DP-Norm can be derived from a common
primal-dual formalism, DP-ADMM resulted in degraded
learning results compared to DP-Norm. This would be because
DP-ADMM requires adding a diffusion process to the primal
model variable K times, whereas DP-Norm requires adding
a diffusion process to the dual variable only once, and the
convergence of DP-ADMM depends on the norm of message
passing variables, i.e., main and dual variables, as summarized
in Table II. Although additional experimental results are
shown in the supplementary material, the norm of message
passing variables explosively increased. Due to non-IID data
allocation, a part of the scores cannot reach those with DP-
Norm even in non-private settings (ε = ∞).



5790 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. The upper figure shows the learning curve for the convex logistic regression with L2norm model, and the lower figure shows the learning curve for
the non-convex ResNet-10 model, both using test accuracy given three privacy level ε = {∞, 1, 0.5}, δ = 0.001.

Fig. 3. Experiments to select hyperparameters in DP-Norm, normalization weight α and mini-batch size B, using (upper) the convex logistic regression
with L2 norm model and (lower) using the non-convex ResNet-10 model. (a) Relationship between α and averaged norm of dual variables, (b) relationship
between α and test accuracy, and (c) relationship between B and test accuracy when ε = 1.

As shown in Fig. 3 (a), we experimentally investigated the
relationship between α and the node-averaged norm of dual

variables ∥λi | j∥. When increasing α, an explosive increase
in the norm of dual variables was mitigated; however, too
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large α degraded the test accuracy, as shown in Fig. 3
(b). This would be because information to make consensus
among nodes is missing in the transmitted dual variable
due to denoising normalization that is too large. In addition
to this, we also investigated the relationship between mini-
batch size B and the test accuracy. From experimental results
in Fig. 3 (c), we selected B = 2, 000 to make algo-
rithms insensitive to the mini-batch data selection. Through
experimental hyperparameter selection, results in Fig. 2 are
summarized.

VII. CONCLUSION

We proposed a DP-Norm algorithm for privacy-preserving
decentralized federated learning (FL) to guarantee (ε, δ)-DP.
In DP-Norm, an alternating update rule consists of (i) diffused
message passing and (ii) local model update using denoising
normalization. Through theoretical analyses for the DP-Norm
method, we derived the minimal noise level given the privacy
level and convergence rate. (For only convergence analysis,
the cost function is assumed to be convex.) Through numerical
experiments using image classification benchmark tests, DP-
Norm stably approaches single-node reference scores under
non-independent and identically (non-IID) data allocation.

APPENDIX A
ADDITIONAL EXPERIMENTAL RESULTS

The code execution environment is noted in Subsec. A-
A. In Subsec. A-B, the relationship between the norm of
primal/dual variables and learning rounds is investigated.
In Subsec. A-C-A-D, additional experiments associated
with prior works, namely DP-SGD and DP-ADMM, are
summarized. In Subsec.A-E, additional experiments with IID
data allocation. In Subsec.A-F, additional experiments to
investigate the effect of the number of nodes.

A. Code Execution Environment

1) Hardware Setting: Our experiments are performed on six
servers (CPU: Intel Xeon Gold 5218 2.10GHz, GPU: NVIDIA
GeForce 3080), which are connected with 100 Gb Ethernet.

2) Software Setting: We used PyTorch v1.6.0 + CUDA
v10.1 and Gloo5 for communication. For decentralized FL
algorithm coding, we started from ECL’s source code.6

B. Relationship Between the Norm of Primal/Dual Variables
and Learning Rounds

Fig. 4 shows the node-averaged norm of the primal model
variables ∥wi∥ in the upper row (M1a)-(M4a), that of the dual
variables ∥λi | j∥ in the middle row (M2b)-(M4b). In addition
in the bottom row figures (M2c)-(M4c), the node-averaged
normalized norm of dual variable, which is a linear conversion
of middle row figures (M2b)-(M4b) to clearly show the norm
increase compared with the case without DP diffusion process.
For computing the normalized node-averaged norm of dual
variable, the norm of the dual variables in the middle row

5https://pytorch.org/docs/stable/distributed.html
6https://github.com/nttcslab/ecl-isvr

(M2b)-(M4b) was normalized by the final learning round value
without using DP diffusion process for each method to clearly
show the norm increase compared with the case without DP
diffusion process.

From Fig. 4, we experimentally found that the norm of
both primal model variables and dual variables explosively
increased by increasing privacy level (ε → 0) for three
methods, namely (M1) DP-SGD, (M2) DP-ADMM, and
(M3) DP-Norm without normalization (α = 0). In contrast,
as shown in Fig. 4(M4a)-(M4b) for DP-Norm (α > 0), the
denoising process in the DP-Norm mitigated explosive norm
increase compared with DP-Norm without normalization.
It was observed that the normalized norm of the dual
variables in DP-Norm was the smallest among these methods.
This indicates that DP-Norm resolves the explosive norm
increase issue observed in DP-SGD, DP-ADMM, and DP-
Norm without normalization (α = 0) due to DP diffusion
process and validates the effectiveness of our denoising
normalization process.

C. Additional Experiments to Search Learning Rate in
DP-SGD Using Convex Model

Although we used a common learning rate among
comparing methods in Subsec. VI-B, we performed additional
experiments to investigate an appropriate learning rate for
DP-SGD. Since the minimum noise level σi in DP-SGD
depends on the learning rate µ as summarized in Table II,
the relationship between µ and test accuracy needs to be
investigated for each privacy level ε = {1, 0.5} for the convex
logistic regression with L2 weight decay regularization model
in DP-SGD.

Experimental results are summarized in Fig. 5. Fig. 2
compares the test accuracy of DP-SGD when µ = 0.03 and
other methods for ε = {∞, 1, 0.5}, whereas DP-SGD has the
highest test accuracy score when µ = 0.1 for any privacy
levels. However, the test accuracy of our DP-Norm in Fig. 2
exceeds 72% for any privacy levels, and the test accuracy of
DP-SGD is lower than that of DP-Norm in all cases.

D. Additional Experiments to Search Hyperparameters in
DP-ADMM Using Convex Model

We investigated the relationship between hyperparameters
(ρ, µ) in DP-ADMM and test accuracy for the convex logistic
regression with L2 weight decay regularization model. Note
that the minimal noise level σi in DP-ADMM depends on ρ

and the learning rate µ as noted in Table II. Although we used
a common learning rate among comparing methods in Subsec.
VI-B, we performed additional experiments to investigate
appropriate hyperparameters (ρ, µ) for DP-ADMM.

Fig. 6 shows the relationship between (ρ, µ) and the test
accuracy in DP-ADMM for each privacy level ε = 1, 0.5.
In Fig. 6 (a1) and (b1), ρ is varied by fixing (ε, µ) =

(1, 0.01) in (a1) and (ε, µ) = (0.5, 0.01) in (b1), respectively.
Meanwhile, µ is varied by fixing (ε, ρ) = (1, 0.0001) in (a2)
and (ε, ρ) = (0.5, 0.00005) in (b2), respectively. To compare
the learning curves of DP-ADMM and our DP-Norm, the
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Fig. 4. The relationship between ε and norm of primal model/dual variables for the convex logistic regression with L2 weight decay normalization model
in (M1) DP-SGD, (M2) DP-ADMM, (M3) DP-Norm without normalization (α = 0), and (M4) DP-Norm (α > 0). The upper row figures (M1a)-(M4a)
and middle row figures (M2b)-(M4b) compare the norm of the primal variables and the norm of the dual variables. In addition in the bottom row figures
(M2c)-(M4c), the normalized norm of dual variable, which is a conversion of middle row figures (M2b)-(M4b) to clearly show the norm increase compared
with the case without DP diffusion process. Then, the norm of the dual variables in the middle row was normalized by the final learning round value without
using a DP diffusion process for each method.

Fig. 5. The relationship between µ and test accuracy when (a) ε = 1 and (b) ε = 0.5 for the convex logistic regression with L2 weight decay regularization
model in DP-SGD.

learning curves of DP-Norm are shown in Fig. 2 also add
to Fig. 6.

In Fig. 2, we compare the test accuracy of DP-ADMM
when (ρ, µ) = (0.0001, 0.03) and other methods for ε =

{∞, 1, 0.5}, whereas DP-ADMM has the highest test accuracy
score when (ρ, µ) = (0.0001, 0.01) for ε = 1 and (ρ, µ) =

(0.00005, 0.01) for ε = 0.5. However, the test accuracy of
DP-ADMM is lower than that of DP-Norm in all cases.

E. Additional Experiments With IID Data Allocation

We experimentally evaluated the performance of each
method when each node has access to an IID data subset.
In our implementation, each subset consists of di =

4, 000 data, with each node having 10 classes of data
uniformly. Fig. 7 shows node-averaged learning curves
using test accuracy for the convex logistic regression with
L2 regularizer model and the non-convex ResNet-10 model
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Fig. 6. (a) The relationship between ρ and test accuracy, and (b) the relationship between µ and test accuracy when (1) ε = 1 and (2) ε = 0.5 for the
convex logistic regression with L2 weight decay regularization norm model in DP-ADMM.

Fig. 7. The upper figure shows the learning curve for the convex logistic regression with L2norm model, and the lower figure shows the learning curve for
the non-convex ResNet-10 model, both using test accuracy given three privacy level ε = {∞, 1, 0.5}, δ = 0.001 with IID data allocation.

given three privacy levels (ε = ∞, 1, 0.5, δ = 0.001).
As with the non-IID data allocation noted in Subsec. VI-B,
the performance of the proposed DP-Norm was closest to that
of the reference with the IID data allocation. Compared with

the non-IID allocation, the performance of the methods besides
the DP-Norm was closer to that of the reference. On the other
hand, the DP-SGD performed well only with the IID data
allocation. This would be a natural result since the DP-SGD
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Fig. 8. The upper figure shows the learning curve for the convex logistic regression with L2norm model, and the lower figure shows the learning curve for
the non-convex ResNet-10 model, both using the test accuracy given the number of nodes N = {4, 6, 8} and the privacy level (ε, δ) = (1, 0.001) on the ring
topology network.

does not have a term to modify gradient drift due to non-IID
data allocations.

F. Additional Experiments to Investigate the Effect of the
Number of Nodes

We experimentally investigated the effect of the number of
nodes N . Firstly, we performed experiments in Sec. VI by
changing the number of nodes was changed as N = {4, 6, 8}
over the ring topology while fixing the privacy level as (ε, δ) =

(1, 0.001) and using the convex logistic regression with L2
norm model and the non-convex ResNet-10 model. Fig. 8
shows the learning curves for five methods used in Sec. VI.
When using (M4) DP-SGD (α > 0), smoother learning curves
were obtained by increasing the number of nodes, while
the learning curves with other methods did not significantly
change depending on the number of nodes for both convex and
non-convex models. Our (M4) DP-Norm (α > 0) performed
closest to the single node reference score for N = {4, 6, 8}.

Secondly, we investigated the differences among learning
curves with (M4) DP-Norm (α > 0) for N = {3, 4, 6, 8} over
the ring topology. From Fig. 9, there was little difference in
the convergence curves when the number of nodes was greater
than 3 (N = {4, 6, 8}), but when N = 3, the convergence rate

was a bit slower than the other cases. This can be theoretically
explained from DP-Norm’s convergence analysis (at least for
the convex model). In fact, the second term of (9) in Theorem 2
is affected by E/N = (N+1)/N since we used ring topology.
Thus, the convergence speed would change depending on N
and is expected to be slow for small N (e.g., N = 3). The
empirical observations from Fig. 9 were consistent with this
fact.

APPENDIX B
DP-NORM UPDATE RULE DERIVATION

DP-Norm update rule summarized in Alg. 1 is derived. Let
us recall that the stationary point of (5) satisfies

0 ∈ T1(λ)+ T2(λ), (10)

where two operators are defined as{
T1(λ) = A∇ f ⋆(ATλ, x)+ En[An] + αλ,

T2(λ) = ∂ιker(I−PG )(λ).
(11)

Before reformulating (10) to be recurrent update rule,
several operators associated with {T1, T2} are introduced. The
resolvent operators {R1, R2} and the Cayley operators {C1, C2}
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Fig. 9. (M4) DP-Norm (α > 0)’s learning curve for (a) the convex logistic regression with L2 norm model and (b) the non-convex ResNet-10 model using
the test accuracy given the number of nodes N = {3, 4, 6, 8} and the privacy level (ε, δ) = (1, 0.001) on the ring topology network.

are defined by

R1 = (I d + ηT1)
−1,

R2 = (I d + ηT2)
−1,

C1 = (I d − ηT1)(I d + ηT1)
−1
= 2R1 − I d,

C2 = (I d − ηT2)(I d + ηT2)
−1
= 2R2 − I d,

where I d is the identity operator, −1 is the inverse operator
(e.g., [23]), and η is the step-size for dual variable update.

A reformulation of (10) results in

0 ∈ (Id + ηT2)(λ)− (Id − ηT1)(λ). (12)

Let an auxiliary variable z be associated with the lifted dual
variable λ through the relationship λ ∈ RT1(z). Then, (12) can
be written as

0 ∈ (Id + ηT2)R1(z)− C1(z),
0 ∈ R1(z)− R2C1(z),
0 ∈ 1

2 (C1 + Id)(z)− 1
2 (C2 + Id)C1(z),

which implies that the stationary point condition can be written
as

z ∈ C2C1(z), λ ∈ R1(z), (Peaceman-Rachford Splitting).
(13)

This indicates that the dual variables are recursively updated
through two different Cayley operators C1 and C2. (13) can
be decomposed into the following procedure sets:

λr+1
= R1(zr ) = (Id + ηT1)

−1(zr ), (14)

yr+1
= C1(zr ) = (2R1 − Id)(zr ) = 2λr+1

− zr , (15)

ζ r+1
= R2(yr+1) = (Id + ηT2)

−1(yr+1), (16)

zr+1
= C2(ζ

r+1) = (2R2 − Id)(yr+1)

= 2λr+1
− ζ r+1. (17)

First, (14) is specified. (14) can be reformulated as

(Id + ηT1)(λ) = z,
0 = ηA∇ f ⋆(ATλ, x)

+ η(En[An] + αλ)+ λ− z. (18)

Since ∇ f ⋆
= (∇ f )−1 when f is restricted by convex,

∇ f ⋆(ATλ, x) in (18) can be associated with primal model
variable w as

w = ∇ f ⋆(ATλ, x), (19)

∇ f (w, x) = ATλ. (20)

Substituting (19) into (18) results in

0 = ηAw+ η(En[An] + αλ)+ λ− z,
0 = ηAw+ (1+ αη)λ+ ηEn[An] − z,

λ =
z− ηA(w+ En[n])

1+ αη
. (21)

To simplify notation, we introduce the scaled dual variables
as ẑ = 1

η
z. Then, (21) is rewritten by

λ =
η(ẑ− A(w+ En[n]))

1+ αη
. (22)

By substituting (22) into (20) results in

0 = ∇ f (w, x)+
η

1+ αη
{ATA(w+ En[n])− ATẑ}. (23)

The integral of (23) results in w-update formula as

wr+1
= arg min

u

(
f (u, x)

+
η

2(1+ αη)
∥(A(u+ En[n])− ẑr )∥2

)
. (24)

This can be performed through (i) K inner loop iteration for
around (k = 0, . . . , K − 1) and (ii) mini-batch data sampling
ξ

r+1,k
i ∼ xi and noise sampling nr+1,k

i ∼ Norm(0, σ 2I) as

wr+1,k+1
= arg min

u

(
f (u, ξ r+1,k)

+
η

2(1+ αη)
∥(A(u+ nr+1,k)− ẑr )∥2

)
,

where wr+1,0
= wr,K and wr+1

= wr+1,K . Similar to this,
λ-update rule is given by

λr+1
=

η(ẑr
− A(wr+1

+ nr+1))

1+ αη
. (25)
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Combining (15) and (25) gives

ŷr+1
=

2
η
λr+1
− ẑr

=
1

1+ αη

(
(1− αη)ẑr

− 2A(wr+1
+ nr+1)

)
. (26)

We omit specification of (16)-(17) since it is identical to
PDMM [20], [21] and ECL [8], [13]. When the subdifferential
of the indicator function is used in T2 given in (11), (16)-(17)
is summarized by

ẑr+1
= PG ŷr+1,

where this indicates dual variables are exchanged/swapped
between connected nodes using permutation matrix PG .

Summarizing from here, the alternatingly recurrent update
rule using Peaceman-Rachford splitting (14)-(17) results
in (24), (26). To simplify the notation, we replaced symbols
as y← ŷ, z← ẑ. Then, the update rule is summarized by

wr+1,k+1
= arg min

u

(
f (u, ξ r+1,k)

+
η

2(1+ αη)
∥A(u+ nr+1,k)− zr

∥
2
)

, (27)

yr+1
=

1
1+ αη

(
(1− αη)zr

− 2A(wr+1
+ nr+1)

)
,

zr+1
= PGyr+1,

wr+1
= wr+1,K , (k = 0, . . . , K − 1).

Let us recall that, in Subsec. IV-A, the convex approximated
cost function f using the order Taylor expansion is introduced.

f (w, x) ≈ f (wr+1,k, xr+1,k)

+

〈
∇ f (wr+1,k

i , xr+1,k), w− wr+1,k
i

〉
+

1
2µ
∥w− wr+1,k

∥
2. (28)

Substituting (28) into (27) results in

0 = ∇ f (wr+1,k, ξ r+1,k)+
1
µ

(w− wr+1,k)

+
η

1+ αη
{ATA(w+ nr+1,k)− ATzr

}

0 = µ(1+ αη)∇ f (wr+1,k, ξ r+1,k)

+ (1+ αη)(w− wr+1,k)

+ µη{ATA(w+ nr+1,k)− ATzr
}

As defined in Subsec. IV-A, {Ai | j , A j |i } = {I,−I}. Then,
ATA = diag[E1I, . . . , EN I]. Then, (27) can be replaced by

wr+1,k+1
i

←
1

1+ αη + ηµEi

(
{1+ αη}wr+1,k

i

− µ{1+ αη}∇ fi (wr+1,k
i , ξ

r+1,k
i )

+ µη(
∑

AT
i | j z

r
i | j − Ei nr+1,k

i )

)
.
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