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Abstract— The development of large-scale identification sys-
tems that ensure the privacy protection of enrolled subjects
represents a major challenge. Biometric deployments that
provide interoperability and usability by including efficient multi-
biometric solutions are a recent requirement. In the context
of privacy protection, several template protection schemes have
been proposed in the past. However, these schemes seem
inadequate for indexing (workload reduction) in biometric
identification systems. More specifically, they have been used in
identification systems that perform exhaustive searches, leading
to a degradation of computational efficiency. To overcome these
limitations, we present an efficient privacy-preserving multi-
biometric identification system that retrieves protected deep
cancelable templates and is agnostic with respect to biometric
characteristics and biometric template protection schemes.
To this end, a multi-biometric binning scheme is designed to
exploit the low intra-class variation properties contained in
the frequent binary patterns extracted from different types
of biometric characteristics. Experimental results reported on
publicly available databases using state-of-the-art Deep Neural
Network (DNN)-based embedding extractors show that the
protected multi-biometric identification system can reduce the
computational workload to approximately 57% (indexing up to
three types of biometric characteristics) and 53% (indexing up
to two types of biometric characteristics), while simultaneously
improving the biometric performance of the baseline biometric
system at the high-security thresholds. Code is available at
https://github.com/dosorior/FBP-Multi-biometric-Indexing.

Index Terms— Multi-biometric indexing, workload reduction,
biometric identification, cancelable template protection, fusion,
face, iris, fingerprint.

I. INTRODUCTION

IOMETRIC technologies are rapidly gaining popularity
due to their wide applicability. Biometric recognition
of individuals based on distinctive biometric characteristics
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(BCs), e.g. face or iris, is successfully deployed in many
personal, commercial, and governmental identity management
systems around the world, e.g. border control, and national
ID systems. A report on the global biometric market concerns
the annual growth rate in biometric technologies by estimating
4596 billion dollars in 2024 [1]. In addition, biometrics
vendors demand interoperability and deployment assuring
maximum usability by including multimodal biometric
solutions, e.g. fight against fraud in banks [2] and border
and immigration [3] processes. These requirements (i.e.
interoperability and usability) motivate the development of
BC-agnostic systems, in particular solutions that achieve high
biometric performance and at the same time can be extended
to multiple BCs.

According to ISO-IEC-2382-37:2022 [4], biometric systems
can typically operate in two modes verification and identifi-
cation. Biometric verification is “the process of confirming a
biometric claim through a one-to-one biometric comparison”.
In contrast, biometric identification refers to the “process of
searching against an enrolment database to find and return
the biometric reference identifier(s) attributable to a single
individual”. That is, biometric identification does not require
any biometric claim, e.g. name or ID, which yields certain
benefits and enables different use-cases:

o Usability: Biometric identification offers a high level of
user-friendliness. Since no biometric claim has to be
additionally presented, the user can be authenticated by
solely presenting his/her biometric characteristic(s).

e De-duplication: In case new subjects are enrolled into a
biometric database, it is checked whether this subject has
already been registered beforehand. To this end, biometric
identification is used to detect potential duplicates.’

o Forensics: In forensic investigations, biometric infor-
mation can be employed to determine the identity
of a subject. This is done by performing biomet-
ric identification transactions on databases of known
identities.

The above-listed scenarios cannot be realised in biometric
verification systems that utilize biometric claims, e.g. unique
subject IDs used as indexes pointing to biometric records in a
relational database, based on which a user is verified efficiently
in a single comparison. However, biometric identification is
more challenging from a practical point of view, especially
in large-scale systems. On the one hand, the probability of

]De—duplication checks based on non-biometric data provided by the user
are not considered reliable.
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running into false positives increases with the number of
enrolled subjects; large-scale biometric systems usually make
use of multiple BCs to minimise error rates (e.g. [5]). On the
other hand, a biometric identification transaction requires an
exhaustive search (i.e. comparing a biometric probe against all
the enrolled subjects) to reach a decision and, consequentially,
computational bottlenecks occur in large-scale biometric
systems where millions of subjects are enrolled (e.g. [6]).
As hardware-based accelerations only provide an expensive
short-term solution to this issue, scalable algorithmic solutions
are necessary, which effectively reduce the number of
comparisons required for biometric identification and hence
lower the overall computational workload.

In response to the above-mentioned issue, significant
research efforts have been devoted to investigating workload
reduction (WR) methods [7], often referred to as biometric
indexing schemes. To process large amounts of biometric data
with reasonable transaction times, some of these methods
are designed to extract indexes directly from biometric data.
Thus, the search can be reduced to subspaces of a database
pointed to by the extracted index. This means, that during
enrolment, the biometric database can be organised according
to obtained indexes (similar to relational databases), while
no identity claims are required at the time of authenti-
cation. Note that WR methods proposed in the scientific
literature are commonly designed for systems based on a
single BC.

In addition to the emerging topic of accelerating searches
within large-scale biometric databases, data privacy is of
utmost importance in the aforementioned use cases. Note
that biometric data is considered sensitive information by
privacy regulations, e.g. the European Union (EU) General
Data Protection Regulation 2016/679 (GDPR) [8]. That is,
unprotected storage of biometric references could lead to
different privacy threats such as identity theft, linking across
databases, or limited renewability [9]. However, the privacy
protection of biometric data is highly non-trivial due to
its natural intra-class variance. Conventional cryptographic
methods would require the decryption of protected biometric
data prior to the comparison step in order to prevent the effect
of biometric variance in the encrypted domain. This is not
the case with biometric template protection schemes [10],
[11] which enable a comparison of biometric data in the
transformed domain (encrypted) and hence a permanent
protection of biometric data. They are usually distinguished
in the literature as cancelable biometrics and biometric
cryptosystems. Generally, the latter category is not suggested
in identification scenarios, as they require complex comparison
methods (e.g. [12], [13]), in contrast to cancelable schemes
(e.g. [14]). Moreover, it is well-known that a single BC, e.g.
a single fingerprint or face, contains an insufficient amount
of effective entropy to achieve high recognition accuracy
in large-scale identification systems and to resist against
attacks. Therefore, several researchers have proposed multi-
biometric template protection systems [15]. However, so far
no privacy-preserving multi-biometric indexing scheme has
been proposed in the scientific literature (to the best of the
authors’ knowledge), which is necessary to enable efficient,
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accurate and privacy-preserving identification transactions in
large-scale biometric systems.

Recently, Osorio-Roig et al. [16] introduced the proof-
of-concept of frequent binary patterns for indexing deep
cancelable face templates. This privacy-preserving solution
allowed working on different cancelable protection schemes
(e.g. so-called BioHashing [17] and variants of Index-
of-Maximum Hashing [18]) ensuring a trade-off between
computational workload and biometric performance for
protected biometric identification systems. Motivated by our
previous study (see [16]), we present in this work the
first privacy-preserving multi-biometric indexing system based
on the search of frequent binary patterns over cancelable
biometric templates. The main contributions of the article are:

o An overview that delves into the area of computational
WR for the indexing of protected biometric templates in
identification systems based on a single BC. Tab. I shows
a general overview of the different types of BCs, i.e. face,
iris, finger-vein, and fingerprint.

o The successful application of the proof-of-concept of
frequent binary patterns on individual BCs, i.e. face, iris,
and fingerprint. In previous work presented by Osorio-
Roig et al. [16], the proof-of-concept was applied to the
face only.

o An efficient privacy-preserving multi-biometric system
that is agnostic across cancelable biometric template
protection schemes (with binary representation) and BCs.
This solution is able to operate on the most secure
processing step (i.e. feature level) in a biometric system
by enabling fusion strategies on the concept of frequent
binary patterns at two steps: The representation- and
feature-based step. The fusion in the representation-
step retrieval and indexing shows that the WR and the
biometric performance are irrespective of the ranking (i.e.
order of priority) of the BCs. This contrasts with the
fusion in the feature-step retrieval and indexing. It is
worth noting that privacy-preserving systems have mostly
been designed and applied only to a single BC, e.g. the
face in Osorio-Roig et al. [16], see Tab. L.

o A thorough theoretical and empirical analysis of the
trade-off between computational WR and biometric
performance of the proposed identification system on
multi-modal large-scale datasets with state-of-the-art
biometric recognition systems. Experimental evaluations
compliant with the metrics defined in the ISO-IEC-
2382-37:2022 [4] show that a protected multi-biometric
identification system can reduce the computational
workload to approximately 57% (indexing up to three
types of BCs) and 53% (indexing up to two types of BCs).
This can be achieved while simultaneously improving the
biometric performance at the high-security thresholds of
a baseline biometric system.

To summarize the main contributions of this work, this
novel privacy-preserving solution experimentally shows the
feasibility of the concept of frequent binary patterns to be
applied to protected biometric templates corresponding to
different types of BCs, in contrast to the approach proposed by
Osorio-Roig et al. [16]. Most importantly, a multi-biometric
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privacy-preserving system is proposed which introduces novel
fusion techniques based on frequent binary patterns that are
extracted and designed agnostically with respect to types of
BCs and template protection schemes. Extensive experimental
evaluations demonstrate that design-agnostic multi-biometric
systems based on frequent binary patterns preserve biometric
security and performance while allowing different BCs to
be searched efficiently in a single biometric identification
transaction.

The remainder of this work is organised as follows:
Related works summarising concepts related to information
fusion, workload reduction and biometric template protection
are revisited in Sect. II. In Sect. III, the proposed system
is described in detail. Sect. IV presents the experimental
evaluations and results are reported and discussed in Sect V.
Finally, conclusions are drawn in Sect. VI.

II. RELATED WORK

This section describes the background and related work
on reducing computational workload in protected biometric
identification systems. Whereas Sect. II-A introduces the
fusion strategies commonly used in biometrics, Sect. II-B
addresses the problem of WR on biometric systems. Finally,
key work related to the workload-reduction and biometric
identification systems areas on biometric template protection
is summarised in Sect. II-C.

A. Biometric Information Fusion

Biometric information fusion allows combining biometric
data at different levels of processing in a biometric system.
Those systems which enable biometric information fusion are
known in the literature as multi-biometric systems. Generally,
multi-biometric schemes combine or fuse multiple sources of
information to improve the overall discriminative power of a
single biometric recognition system [19]. The fusion strategies
can be categorised in the biometric context as multi-types,
multi-sensorial, multi-algorithms, multi-instances, and multi-
presentations [20], [21].

The system proposed in this work relates to the first
scenario, i.e. multi-type, which relies on the fusion of different
types of BCs (e.g. facial and iris images). Specifically, three
types of BCs are selected and subsequently utilised in a
binning and fusion scheme. Note that given the simplicity of
the proposed scheme, other fusion categories, such as multi-
sensorial, multi-instances and multi-presentations can be also
employed. In addition to the general categories above, several
levels of biometric processing can be distinguished at which
information fusion can take place [20], [21]: Sensor, feature,
score, rank, and decision.

In the scope of this article, the fusion of information from
multiple features and at the score level is of major interest,
as the proposed scheme in Sect. III is designed to operate at
those levels of the biometric processing pipeline. The feature-
level fusion has been also considered, as it is among the
most convenient techniques contributing to the highest privacy
protection and security level, respectively [10], [22].
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Information fusion in biometrics has been widely addressed
in the scientific literature. An interested reader is therefore
referred to, e.g. Ross et al. [20] for a general introduction to
this topic and Paul et al. [23] for score-level fusion specifically,
as well as Dinca and Hancke [24], Singh et al. [25], and
ISO/IEC TR 24722 [21] for more recent works relating to
the general topic of biometric information fusion.

B. Computational Workload Reduction

Biometric identification systems require fast response times,
as the typical exhaustive search-based retrieval method
demands high computational costs. Thus, the computational
complexity tends to grow linearly with the number of enrolled
data subjects [26]. As expected, the investment in expensive
hardware that contributes to the parallel processing/distribution
can be used to maintain a quick response time in a biometric
identification transaction. Whereas many companies spend
high monetary costs to achieve the desired times, one
possibility that is often overlooked is the optimisation of
the underlying software and/or algorithms. In this context,
a solution to said problems (i.e. high computational and
monetary costs) is the research field of computational
workload reduction which allows decreasing the dependence
on the investment of the physical infrastructure and focusing
more attention on the software and/or algorithms. WR-based
methods work directly on the optimisation of the number of
computations required for some specific tasks in the biometric
processing pipeline. For instance, for a biometric identification
transaction, the computational costs at the biometric template
comparison level typically dominate the computational effort
of the entire system. Thus, most of these methods have been
categorised in [7] as pre-selection approaches. These methods
seek to reduce the number of biometric template comparisons
(i.e. reducing the search space (see e.g. [27])), and feature
transformation, aimed at accelerating the computational cost
produced in a one-to-one comparison (see e.g. [28]). The
former is of interest in the context of this article. For
further information on such methods, the reader can be
referred to [7].

Naturally, those WR-based techniques (i.e. pre-selection
methods) have achieved decreasing the search spaces w.r.t. the
typical exhaustive searches. Conceptually, such approaches are
mostly custom-built for specific biometric systems, e.g. single
BCs or feature extractors introducing specific representations.
They are not expected to be applicable within other systems,
e.g. containing different types of BCs to be processed.
In addition, they are primarily designed to facilitate the
reduction of the computational workload associated with
biometric identification transactions in unprotected biometric
systems (i.e. unprotected template indexing), which are prone
to unauthorised attacks. The latter has motivated the scientific
literature to investigate new customised procedures capable
of performing the protected template indexing while reducing
the overall computational effort per biometric identification
transaction.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
MOST RELEVANT APPROACHES ON BIOMETRIC TEMPLATE PROTECTION FOR BIOMETRIC IDENTIFICATION SYSTEMS

BASED ON A SINGLE BC. RESULTS REPORTED FOR BEST CONFIGURATIONS AND SCENARIOS

WR BTP Biometric Biometric Efficient
Approach category category characteristics performance comparison
Wang et al. [29] Feaulljrree_tizelilescft(i?rrrl;ation Non-traditional BTP Face 95% H-R )
Murakami et al. [30] Feature transformation Cancelable biometrics Face 0.1% FRR, 0.022% FAR )
Dong et al. [14] Feature transformation Cancelable biometrics Face 99.75% R-1 )
Osorio-Roig et al. [16] Pre-selection Cancelable biometrics Face ~99.00% H-R v
Drozdowski et al. [31] Pre-selection Cancelable biometrics Iris 0.1% FPIR,93.21-97.50% FNIR v
Choudhary et al. [32] Feature transformation Cancelable biometrics Finger-Vein 99.70%R-1 W)
Sardar et al. [33] Feature transformation Cancelable biometrics Face 99.85% CRR-1 W)
Drozdowski et al. [34] Feature transformation Homomorphic encryption Face ~5% FNIR, 1% FPIR )
Engelsma et al. [35] Feature transformation Homomorphic encryption Face 81.4% R-1 )
Osorio-Roig et al. [36] Pre-selection Homomorphic encryption Face 1.0% FPIR, 2.5% FNIR v
Drozdowski et al. [37] Pre-selection Homomorphic encryption Face 0.1% FPIR, 0.42% FNIR v
Kolberg et al. [38] Feature transformation Homomorphic encryption Iris 98.08% R-1 )
Bauspiess et al. [39] Pre-selection Homomorphic encryption Face 0.1% FPIR, 1.2% FNIR v
Engelsma et al. [40] Featlll)rree_tiaellrlescft;:;;ation Homomorphic encryption Fingerprint 99.93% H-R v
Dong et al. [41] Feature transformation Fuzzy vault Face 99.86% R-1 )

H-R: Hit Rate, FRR: False Rejection Rate, FAR: False Acceptance Rate, R-1: Rank-1 Identification Rate, DIR: Detection and Identification Rate, CRR: Correct
Recognition Rate at Rank-1, FPIR:False Positive Identification Rates, FNIR: False Negative Identification Rates, v': Property fulfilled, (v'): Property partially

fulfilled.

C. Biometric Template Protection

Biometric template protection schemes allow protecting bio-
metric references (i.e. biometric templates) in an unprotected
storage environment of a biometric system. Once they are
protected, a set of properties are expected to be inherent to the
transformed or protected templates, constraining the flexibility
of the biometric processing pipeline compared to unprotected
templates. Comprehensive surveys on this field can be found
in [10], [11], and [42]. Generally, template protection methods
are categorised as cancelable biometrics and biometric
cryptosystems. The former employ transformations in the
signal or feature domain that allow biometric comparison
in the transformed (encrypted) domain [43]. The latter
(e.g. fuzzy vault schemes [13]) usually bind a key to a
biometric feature vector, resulting in a protected template.
Thus, the biometric comparison is then performed indirectly by
verifying the correctness of a retrieved key [44]. In particular,
homomorphic encryption-based template protection schemes
are distinguished as biometric cryptosystems whose specific
designs allow computing operations directly in the encrypted
domain with results comparable to those in the plaintext
domain (i.e. unprotected domain) [45]. The challenge of
unprotected templates being replaced by protected templates
leads to requirements or properties which must be fulfilled
according to ISO/IEC IS 24745 [42]:

Irreversibility: The infeasibility of reconstructing the original
biometric sample given a protected template. This type of
property guarantees the privacy of the users’ data (e.g.
avoiding dislocating the subject’s ethnic information)
and additionally, the security of the system is increased

against e.g. presentation attacks and face reconstruction
from deep templates.

Unlinkability: The infeasibility of determining if two or
more protected templates were derived from the same
biometric instance, e.g. face. By fulfilling this property,
cross-matching across different databases is prevented.

Renewability: The possibility of revoking old protected
templates and creating new ones from the same biometric
instance and/or sample, e.g. face image. With this
property fulfilled, it is possible to revoke and re-generate
new templates in case the database is compromised.

Performance preservation: The requirement of the biometric
performance not being significantly impaired by the
protection scheme.

Tab. I lists the most relevant scientific works on biometric
template protection for biometric identification systems based
on a single BC. The approaches have been analysed in
terms of efficient comparison (i.e. WR) and biometric
performance. Scientific works on biometric cryptosystems for
identification [34], [35], [38] have been commonly focused
on providing evidence of practical applicability. The majority
of them have contributed to reducing the effort at a one-
to-one comparison level by feature transformation while
other approaches [36], [39] worked on the reduction of
one-to-many comparisons. It is well-known that cancelable
schemes appeared to be more suitable in an identification
scenario [16], in contrast to biometric cryptosystems (e.g.
[41]). That is because the design of cancelable biometrics
does not require comparison strategies that usually enable
the non-flexibility of launching non-arithmetic operations [46]
or verifying the correctness of a retrieved key [44]. From
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a practical perspective, cancelable approaches have been
therefore successfully considered to be applied in identification
scenarios for different BCs (e.g. face, iris, and fingerprint).
As mentioned above, these schemes introduce non-invertible
transformations at the feature level, which typically allow
retaining efficient biometric comparators of the corresponding
unprotected systems. This way, the majority of published
cancelable schemes applied transformations in the feature
domain while maintaining acceptable biometric performance
and low computational workload. Over the past years,
some feature transformations (e.g. BioHashing [33]) covered
discriminative power-based gaps addressing the indexing
protected templates with an identification rate at the rank 1
(R-1). Also, the locality sensitive hashing (LSH) [47] nature
has recently been exploited and designed to obtain compact
non-invertible features (e.g. [14], [32]). Similarly, protected
templates are more likely to have the same hash collision
compared to dissimilar ones.

The described solutions applied WR through an acceleration
of a one-to-one comparison. In contrast, other researchers
(e.g. [16], [31]) have explored computational WR to decrease
the number of one-to-many comparisons, which dominates
the overall computational effort in biometric identification
transactions [37]. More precisely, Osorio-Roig et al. [16]
proposed recently the retrieval of cancelable deep face
templates based on their frequent binary patterns. The design
of this type of retrieval enabled the use of different cancelable
biometric template protection schemes. To sum up, all
published works on cancelable biometric template protection
for biometric identification worked on an exhaustive search
when only feature transformation was employed. Whereas
other works reduced the one-to-many search (i.e. pre-selection-
based approaches), such schemes are usually not flexible
or not designed to work on different BCs. In addition,
some generic multi-biometric indexing methods suitable to
work only on unprotected domains have been proposed
e.g. in [19], [48], and [49].

III. PROPOSED SYSTEM

Consider a biometric enrolment database containing refer-
ences protected by cancelable schemes” of N data subjects
for m different BCs or instances. A trivial search process
for a single biometric identification transaction would be to
conduct the comparisons exhaustively, i.e. the workload (W)
of a baseline system is estimated as Wpusetine = N - m
comparisons for all BCs. In fact, for an improvement of
the biometric performance or WR (see [19]), e.g. fusing the
scores using one of the traditional strategies (such as score
or rank level fusion) mentioned in Sect. II-A, the workload
would be dominated by comparisons done exhaustively. As an
alternative to the multi-biometric exhaustive search in the
protected domain, this work extends the proof-of-concept
of frequent binary patterns [16] to indexing multi-biometric
cancelable references by employing strategies of biometric
information fusion described in the Sect. II-A. In a nutshell,

2We assume these schemes yield features containing binary representations.
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the concept of frequent binary patterns is employed as a multi-
biometric efficient binning scheme. Each bin (i.e. a single
frequent binary pattern) is built by fusing m representations
from protected reference templates and allows for indexing
them in a single biometric identification transaction. Fig. 1
presents a conceptual overview of the proposed scheme. The
design of the multi-biometric binning scheme is template-
protection-scheme and BC-agnostic, which makes it easy to
work across different cancelable biometrics extracting binary
representations. Sect. III-A discusses representation types of
biometric feature vectors, Sect. III-B provides details on the
approach that computes frequent binary patterns, Sect. III-
C describes three strategies of information fusion that result
in stable frequent binary patterns for indexing, Sect. III-D
describes the retrieval process for each type of information
fusion. Sect. III-E discusses the obtained WR. Sect. III-F
elaborates on privacy and security aspects.

A. Biometric Feature Representation

Biometric feature vectors may be of different representa-
tions depending on the type of feature elements (real, integer,
or binary), their dimension and if they are fixed-length or
variable-length. Common feature representations have been
established for unprotected feature vectors of different BCs,
e.g. minutiae sets for fingerprints or binary codes for iris.
The use of DNN-based feature extractors usually results in
real-valued vectors of fixed dimension since DCNNs are
commonly trained using differentiable loss functions, e.g.
Euclidean distance.

In the proposed system, it is assumed that cancelable
schemes extract binary representations from DNN-based
feature vectors. This is a reasonable assumption, since many
cancelable biometric schemes are designed to obtain protected
binary representations, e.g. in [50]. However, other repre-
sentations can be easily transformed to binary vectors using
common procedures [51]. Real-valued feature representations
can be mapped to integers through quantisation. To obtain
a binary feature vector, integers can be mapped to binary
strings. In this context, different binary encoding methods have
been suggested in the scientific literature [51]. The employed
binarisation may result in a loss of biometric performance due
to information loss caused by coarse quantisation. However,
if parameters are chosen appropriately biometric performance
may be maintained, see [28]. Alternatively, compact binary
representations can also be extracted by deep learning
techniques. Deep hashing has been coined as an umbrella
term for methods which aim at extracting compact and stable
representations with deep learning techniques [52]. In the
recent past, deep hashes have been extracted from different
BCs in various ways, e.g. in [53] and [54].

B. Frequent Binary Pattern Extraction

Frequent binary patterns can be defined in a general
concept for the enrolment and retrieval processes, respectively.
Formally, the frequent binary patterns can be extracted from a
binary representation as follows: Let f € {0, 1}"* be a bit-string
of size n and k < n a given frequent pattern length. A set of
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Fig. 1. Conceptual overview of the proposed multi-biometric scheme. Firstly, the system receives different BCs or instances which are processed by

state-of-the-art DNN-based embedding extractors. Subsequently, feature vectors of equal size are protected and encoded in a binary representation by
well-established cancelable schemes. Techniques of information fusion are then applied to the protected features along with the concept of frequent binary
patterns for the indexing and retrieval steps. Finally, a protected candidate list can be returned taking into account the statistics of their frequent patterns.

unique binary patterns P = {py, ..., pr}, each of length &
can be computed over f by sampling in a sliding window
the consecutive k bits starting from positions [0, ..., n — k]
with stride 1. In addition, let O = {0y, ..., 01} be the set of
occurrences of each p; € P. There is a direct relation between
O and P: For each p; € P there exists an 0; € O which denotes
the number of occurrences of p; in f. Therefore, for a general
retrieval process, consider a function FP(-) that extracts the set
P ordered descending according to O.

C. Indexing Multi-Biometric Frequent Binary Patterns

Conceptually, as mentioned above, frequent binary patterns
can be extracted only from binary representations. Therefore,
deciding which type of information to fuse from the protected
references before or after extracting the patterns could impact
the efficacy of the proposed binning scheme. Introducing
known and simple fusion strategies (e.g. concatenation) in
intelligent and convenient steps increases the stability and
the discriminative power of the procedure of frequent binary
pattern extraction. Thus, the overall results of the proposed
system in terms of biometric performance and computational
workload are improved.

Formally, let R; = {rl.l, AU rim} be the set of data of the

subject i € {1,..., N} in the enrolment database, where each
rl:’ denotes a protected binary reference associated with the
BC j € {1,...,m}. Given a fixed frequent binary pattern

length of k bits, the goal is to build a multi-biometric and
efficient binning scheme over the base of stable frequent
binary patterns successfully extracted on R;. For enrolment,
this work considered the fusion strategies at two levels
based on the concept of frequent binary patterns: Feature
and representation level. The former pipeline introduces the
concatenation of protected binary references corresponding to
different m BCs. Here, the concatenation acts as doubling the
feature dimension by keeping all the elements from the input
features. The latter shows the fusion across the maximum

binary patterns successfully mapped from individual protected
binary references corresponding to m BCs.
J

Feature-level Indexing each r; € R; of size d is
concatenated with the remaining elements in R; yieldin
a protected feature of size d-m bits. Let B; = ril I...Ir"
be the concatenation of m protected binary references o
the i-th subject. B; can be then mapped to an individual
bin b; which is computed by max(FP(B;)) — b; given
a fixed k, as explained in Sect. III-B. That is, the set of
data subjects is indexed with at most 2¥ bins.
Representation-level Indexing each rl.j € R; can be
independently mapped by the function FP(rl.j ) — P{ ,
resulting in at most 2k patterns. In this context, two fusion
approaches are considered:

1) Ranked-codes: max(PiJ ) — b; a single binary
pattern resulting in the most ranked frequent binary
pattern extracted from the set {P{ }’;1:1 is considered

as a stable bin for indexing.

2) XOR-codes: The bin b; is constructed from the
bitwise XOR operation between the binary patterns
with the maximum occurrence in each P{ with

I < j < m,ie XOR(max(P))) — b

D. Multi-Biometric Retrieval by Fusion Strategy

As explained in Sect. III-B, for a general retrieval process,
frequent binary patterns are extracted preserving their order
of occurrence. It is expected that the pattern with the highest
occurrence provides a better chance to find the correct
candidate subject than patterns leading with low occurrence,
as showcased in [16]. In a retrieval step, this parameter (i.e.
pattern with the highest occurrence) would be estimated on
an incremental search for those p patterns with the highest
occurrence. For a concrete example, consider 23 patterns:
P = {p1, p2, ..., pg}, extracted by the function FP(-) given
k = 3. A threshold ¢ with 1 <t < 2% is determined on P and
represents the maximum number of bins that can be visited
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for a biometric probe. Note that this parameter (¢) can easily
be controlled by the binning scheme and is independent of the
retrieval strategy employed. Also, extracted patterns can only
take advantage of their orderings, which can be influenced by
the retrieval strategy employed (e.g. type of fusion). In this
regard, all proposed retrieval strategies employ a score-level
fusion in a multi-biometric identification transaction once a
corresponding bin is determined. In particular, a sum-rule
fusion is applied among normalised similarity scores computed
from each BC. This type of fusion has been utilised in
multi-biometric indexing schemes (e.g. [19]) and has also
contributed to very good biometric performance in general
(see [55] and ISO/IEC TR 24722 [21]).

In this work, three retrieval strategies, one for each type
of information fusion, are proposed. Firstly, we consider the
fact that a binning scheme can be created using one of the
strategies described in Sect. III-C. In a retrieval scenario,
let Z = {z1,...,zn} be the set of protected biometric
templates for a probe subject, where each z; denotes a
binary representation for each of the m BCs. The key idea
is that the proposed retrieval schemes offer different orderings
and representations of the extracted frequent binary patterns.
Subsequently, a parameter ¢ can be empirically computed
in a multi-biometric identification transaction (see Sect. V-
B), thereby reducing the system workload while preserving
a trade-off between biometric performance, efficiency, and
privacy.

Feature-level Retrieval we follow a similar idea to that of
feature-level indexing, as explained above in Sect. III-C.
Let B =[Z1 I|... |l zm | be the concatenation of all z; € Z
and a fixed k, the retrieval strategy searches the database
for bins belonging to the ordered set P <— FP(B). The
final candidate list is therefore composed of the identities
associated with the retrieved bins in P.

Representation-level Retrieval in contrast to the feature-
level based retrieval, this retrieval pipeline allows
searching a ¢ by handling the binary patterns extracted
per BC. Said patterns are computed as follows:

1) Ranked-codes: The database is searched for
the highest ranked binary patterns of each
P; <« FP(z;) and the identities associated with
those existing patterns make up the final candidate
list.

2) XOR-codes: The database is searched for those
binary patterns resulting from the bitwise XOR
operation among all possible pairs of binary patterns
that belong to different P;. Note that the bitwise
XOR operations are computed over at most m - 2X
number of pattern pairings that can be constructed
from {Pj};'.’zl.

E. Computational Workload Reduction

Our design, which is agnostic with respect to the type of
BCs and cancelable schemes, allows searching different BCs
in a single biometric transaction. Therefore, the number of
bins visited as well as the number of protected templates
stored at each bin is expected to be the same per BC. To that
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end, as mentioned in Sect. III-D, a threshold r may be
defined across m types of BCs used. Although this parameter
is easily managed by the multi-biometric binning scheme,
a computational workload cost may be noticed depending on
the BCs involved (e.g. face and iris, or face and fingerprint),
the workload of the individual BCs, and the strategy of fusion
used for retrieval and indexing, respectively.

The computational workload W ,opeseq Of an identification
transaction (measured in terms of the number of necessary
template comparisons) in the proposed scheme, can be
expressed as follows:

t

Wproposed = Z |bi| - m, e

i=1

where 1 < ¢t < 2% denotes a threshold for the maximum
number of bins or frequent binary patterns visited in a retrieval
step for a fixed k and |b;| the number of protected templates
associated with the m BCs involved. Note that k implicitly is
included in the Eq. 1 describing a fixed length in the search
for frequent binary patterns (Sect. III-B), and is expected to
affect the computational workload along with the biometric
performance (see Sect. V). This trend is shown theoretically
in Fig. 2. According to Fig. 2, it should be observed that
larger k appears to provide a discriminating effect on the built
bins, reducing the number of protected templates stored within
a bin and thus the overall computational workload. However,
some deterioration in biometric performance is observed while
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maintaining a low workload. Additionally, Eq. 1 shows the
relation between the computation of the overall computational
workload and the types of BCs involved in the multi-
biometric binning scheme. Fig. 3 theoretically visualizes said
relation for e.g. two BCs involved (BC; and B(C»>) in a
range of computed individual workloads. Note that individual
workloads can be computed on the proposed scheme using
a single BC (i.e. uni-modal biometric system). As observed,
the overall computational workload appears to be directly
proportional to the individual workloads corresponding to each
BC: Wproposea increases with the workloads of the types
of BCs involved. Also, this trend allows some BCs to take
advantage of the unbalanced workloads among individual BCs,
e.g. BCy over BC; in this case. However, an improvement
in overall biometric performance is expected to be achieved,
albeit with a slight increase in the overall computational
workload.

In summary, the key idea behind Eq. 1 is to reduce
the computational workload dominated by the cost of
comparisons carried out exhaustively. Hence, it is expected
that Wy,oposed K Whaseline, Teducing the penetration rate in
the search. An upper bound of W, oposeq in Eq. 1 is reached,
when the system retrieves all bins, resulting in an exhaustive
search. In contrast, the best case is when the biometric probe
is in the first bin retrieved (i.e. t = 1) and this contains the
fewest number of protected multi-biometric templates.

F. Privacy and Security Aspects

The privacy protection and security provided by the
proposed system are evaluated according to international
standards that define metrics and attack models for the
evaluation of biometric (template protection) schemes.

According to ISO/IEC 24754 [42], the privacy protection
requirements of irreversibility, unlinkability and renewability
have to be fulfilled. Irreversibility prevents from the attack
where an adversary tries to reconstruct the original biometric
data from the protected biometric template. Unlinkability
prevents from the attack in which an adversary tries to
determine whether two protected biometric templates stem
from the same subject. If unlinkability is achieved, the
requirement of renewability is met, too. To properly evaluate
these requirements for a distinct template protection scheme,
established metrics need to be applied, as defined in ISO/IEC
30136 [56]. In experiments, those established metrics will be
applied to measure the privacy protection properties of the
proposed system.

Further, different attack models for describing scenarios
and assumptions of attacks on biometric template protection
schemes are standardised in ISO/IEC 30136 [56]. The most
restrictive model is referred to as the naive model, in which
an attacker has neither information of the template protection
scheme, nor owns a large biometric database. However, it is
common practise to analyse template protection schemes under
Kerckhoffs’ principle, which is referred to as the general
model. In this model, an adversary is assumed to possess full
knowledge of the template protection algorithm. In addition,
the adversary may have access to one or more protected
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TABLE I

SUMMARY OF THE DATASETS USED IN
IDENTIFICATION EXPERIMENTS

Biometric characteristic Dataset #Instances  #Samples
Face LFW [60] 1,120 4,126
Fingerprint MCYT [61] 1,120 13,440
Iris CASIA-'Iris-Thousand [62] 916 3,369
BioSecure [63] 204 757

templates from one or more databases. However, the attacker
is not in possession of the employed key. This attack model
is considered in the privacy protection evaluation. Further,
application-specific keys are applied, since subject-specific
keys have been found to counterfeit the privacy protection
capabilities in biometric template protection schemes [57].

Note that the proposed multi-biometric indexing scheme
is largely agnostic with respect to the cancelable scheme
employed for privacy protection. In other words, the privacy
protection capabilities of the used cancelable scheme are
transferred to the proposed multi-biometric indexing scheme.
This means the privacy protection capability of the used
cancelable biometric system is retained, which is a major
advantage of the presented indexing method.

Further, it is important to note that the proposed scheme
does not introduce any additional helper data that may
cause information leakage. In the proposed system, indexing
is performed on protected biometric templates. Obtaining
indexes from these cancelable binary templates offers the
advantage that the privacy protection of the underlying
cancelable scheme is not impaired by the indexing scheme.
Recently, it has been shown that indexing methods can leak
sensitive information, in particular, if additional indexing
data is extracted from unprotected biometric templates [58].
In contrast, the proposed scheme extracts the indexing data
from the protected templates. The frequent binary patterns
extracted from the protected templates do not comprise any
additional sensitive information that could be leveraged by an
attacker. In case an attacker estimates frequent binary patterns
from a protected template, he/she could only learn the bin
in which such a template would be stored. However, bins
are expected to contain protected templates of more than one
subject and, therefore, do not provide any useful information
to the attacker.

As for any biometric (template protection) system, the
security is directly related to the probability of false positives.
More precisely, in an identification system the False Positive
Identification Rate (FPIR) as defined in ISO/IEC 19795-1 [59]
(see Sect. IV-E) reflects this probability. A low FPIR prevents
from false accept attacks, in which the adversary iteratively
simulates non-mated authentication trails until a false match
is reached. It is generally known that biometric systems based
on multiple BCs can operate at lower FPIRs [7] since false
positives occur with lower probability if more biometric data
is compared. This is also the case in the scheme proposed in
this work. However, this also depends on other factors, i.e.
the number of enrolled subjects in the database, used feature
extraction techniques, or biometric sample quality.
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Fig. 4. Example images from the selected databases.

IV. EXPERIMENTAL SETUP

This section describes a detailed setup of the experiments
conducted on privacy-preserving multi-biometric indexing.
Sect IV-A describes the datasets together with the different
BCs employed in this investigation, Sect. [V-B provides details
of the extraction process of deep templates, Sect. IV-C details
the cancelable template protection schemes, while Sect. IV-E
provides the metrics for the evaluation of the proposed system.

A. Databases

For biometric identification experiments where WR across
indexing schemes is analysed, large-scale databases should be
considered. Since large-scale databases are not available to
researchers, we created a composite database using selected
BCs. This type of database allows operational systems to work
independently of the BCs and their feature representations.
A similar concept was utilised in [19]. Tab. II shows an
overview of the databases used in terms of the number of
instances and samples. Note that we selected the three most
common types of BCs, i.e. face, fingerprint, and iris for our
research. Details of the selected BCs and their databases are
described as follows:

Face: LFW [60] database is focusing on the large-scale
unconstrained face recognition problem. It comprises
13,233 face images captured in the wild from 5,749
subjects collected from the web, where 1,680 subjects are
represented with two or more images and 4,069 subjects
are represented with a single sample. In our experiments,
we used only 1,170 identities from the group containing
more than one face sample. CR-FIQA(L)? as a quality
measure has been utilised as a filtering step for selecting
the subset of identities with their corresponding samples.

Fingerprint: MCYT [61] database containing only fingerprint
images captured with an optical capture device is used.
This dataset contains all 10 fingers from 330 subjects
and 12 samples for each finger, for a total of 39,600
samples. For the experimental protocol, each fingerprint is
considered a different biometric instance and is therefore

3 https://github.com/fdbtrs/CR-FIQA
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treated as a separate subject. In particular, 1,170 identities
are filtered out by using the quality factor NFIQ 2.0.*

Iris: A mixed iris database was designed to achieve
a balanced number of identities with respect to the
other BCs. CASIA-Iris-Thousand [62] database and
BioSecure [63] database, both containing images captured
in the near-infrared light spectrum, were used. The former
contains 1,000 subjects with 2,000 instances, each one
represented with 10 samples from each right and left eye.
The latter comprises 210 subjects with 420 instances,
each one containing 4 samples from each right and
left eye. Similar to fingerprints, each iris instance
was considered a separate identity. In our experiments,
a mixed subset was constructed up to a total of 1,170
identities. Iris samples and instances were discarded
taking into account different criteria: Segmentation errors
that led to a bad normalisation step, samples containing
glasses, critical images where the visible iris area did
not represent more than 70% of the usable iris area, and
other quality measures with less critical behaviour such as
the iris-sclera, iris-pupil contrast, and the iris-pupil ratio.
Note that all quality measures analysed were evaluated
and interpreted according to ISO/IEC 29794-6 [64]. For
the quality assessment of iris samples, an open-source
software® BIQT-Iris was utilised, which reports all the
quality measures described in ISO/IEC 29794-6.

Note that 50 identities of 1,170 per database are selected
for the score normalisation process and the remaining 1,120
are selected for biometric identification experiments. It is
worth noting that biometric identification scenarios are more
challenging than verification scenarios, as the chance of
a false positive can easily increase with the number of
comparisons [26]. Thus, for the selection of identities per
BC, the correlation between those biometric samples that
produce worse similarity scores (highest chances of false
positive in a critical operational point) and the different
quality measures were also analysed. It should be noted that
quality metrics were evaluated in order to keep only those
samples with the best quality. To sum up, it is reasonable
that biometric identification systems in real applications
may operate with samples that provide acceptable quality
in accordance with evaluation standards. Even more when
biometric template protection and indexing schemes are
employed. For the evaluations of the proposed multi-biometric
systems, a database merged with the identities selected
independently for each BC (i.e. , face, fingerprint, and iris)
is constructed. Fig. 4 shows some example images from the
databases selected per BC.

B. Deep Templates and Pre-Processing

For the experimental analysis, embeddings extracted by
the current state-of-the-art DNN-based recognition systems
per BC are considered. All embeddings utilised consist of
512 floating-point values. Note that the features extracted per
BC are balanced in terms of the number of dimensions, which

4https:// github.com/usnistgov/NFIQ2/
5 https://github.com/mitre/biqt-iris
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allows the indexing scheme to produce the same chances of
binary pattern search when they are fused at e.g. the feature
level. Details of the extraction process and pre-processing per
BC are described as follows:

Face: ElasticFace represents a state-of-the-art face recogni-
tion system. Features are extracted from the pre-trained
model ElasticFace made available by the authors.®

Fingerprint: Deep fingerprint fixed-length representations
are extracted from the open-source software introduced
in [65]. Note that fingerprint embeddings are extracted
by using the training on the texture branch.

Iris: A deep iris representation extractor presented in [66]
was used to extract iris embeddings. To that end, the
approach proposed by [66] was trained on subsets of the
CASIA-Iris-Thousand [62] and BioSecure [63] databases,
respectively, from scratch. Note that those instances
selected for training were not included in the set of
instances for testing that contributed to the biometric
identification experiments in this paper. Specifically, for
the set of training, 200 instances’ and 818 instances®
from BioSecure [63] and CASIA-Iris-Thousand [62],
respectively, were selected randomly. Iris images were
pre-processed with the traditional approaches. Iris
segmentation was applied by using the Viterbi algorithm
available in the open-source OSIRIS [67], iris textures
were normalised according to the rubbersheet model,
and subsequently, enhanced by applying Contrast Limited
Adaptive Histogram Equalization (CLAHE).

To sum up, it is important to note that any specific pre-
processing like alignment, or type of input to the DNN
was considered as described in their corresponding articles
of reference. Furthermore, original embeddings extracted
per BC are converted to 512 binary-values feature vectors
(i.e. unprotected baseline system) by using a simple sign
function with threshold 0. This trivial binarisation method
was found to be the most effective since it did not
cause any significant performance drops in the employed
baseline systems. However, in case a performance degradation
is observed, the use of a more sophisticated binarisation
technique is recommended. Suitable approaches have been
mentioned in Sect. III-A. The resulting binary representation
is compatible with the proposed scheme and enables a one-
to-one comparison via Hamming distance.

C. Cancelable Schemes

Biometric template protection approaches representing
the current state-of-the-art for cancelable schemes have
been used in these experiments. In particular, the so-
called BioHashing [50] and a single instance of the
Locality Sensitive Hashing [18] based on Index-of-Maximum
Hashing with Gaussian Random Projection (IoM-GRP). The
former yields output representations containing 512 binary-
point values, while the latter comprises 512 integer-point
values. To facilitate the design agnostic w.r.t. the output

6https://github.com/fdbtrs/ElasticFace
TThose instances containing more than 3 samples.
8Those instances containing more than 5 samples.
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of the cancelable scheme (binary representation) before
the application of the proposed indexing scheme, output
representations of the loM-GRP approach were binarised prior
to the frequent binary pattern extraction process. To that end,
each integer value is encoded in n bits which are computed
on a one-hot encoding by using the maximum number of
Gaussian Random Projection vectors (g) for all the ToM-GRP
integer representations. Finally, a binary representation with
length n - m bits, where m represents the number of Gaussian
Random Matrices or length of the integer representation, can
be obtained. In these experiments, we used ¢ = 16 and
m = 512 to obtain a binary vector of size 2,048 bits. Note that
for the computation of the similarity score function for a single
biometric identification transaction, this scheme employs its
own comparator based on the number of collisions through
integers. In particular, BioHashing [50] employs hamming
distance. Overall, all protected templates have been used on
stolen-token scenarios where non-mated comparisons have
access to the genuine users’ secret key and use this key with
the impostors’ deep features.

D. Proposed System Configurations

Biometric identification experiments including the exhaus-
tive search, i.e. baseline workload (Wpyseiine), and the pro-
posed indexing scheme (i.e. at the feature- and representation-
level) were conducted using 10-fold cross-validation for
closed-set and open-set scenarios, respectively. For each fold,
two samples per instance are randomly selected, one for
enrolment and the other for search. It should be noted that the
same samples (same randomness) selected for enrolment and
search for each fold are maintained across the configurations
of the proposed indexing schemes. Note also that the proposed
multi-biometric approach applies to all possible combinations
of two types of BCs and to all three types of BCs together.
Moreover, for the step of score normalisation, the Z-score
method is utilised as done in [19], which uses the arithmetic
mean and standard deviation of the score’s data.

E. Evaluation Metrics

The experimental evaluation is conducted according to two
key aspects which are considered using methods and metrics
standardised from the ISO/IEC 19795-1 [59] and supported by

others which are commonly reported in the scientific literature:
« Biometric performance: For the closed-set scenario,

the hit-rate (H-R), the proportion of subjects for which
the corresponding subject identifier is in the subset of
candidates retrieved by the proposed indexing scheme;
for the open-set scenario, the detection error trade-off
(DET) curves between the false negative identification
rate (FNIR) and false positive identification rate (FPIR).

« Computational workload reduction: Average propor-
tion of the total number of references that are retrieved
per identification transaction (denoted W) compared to a
baseline workload (i.e. an exhaustive search). It is worth
noting that W is theoretically defined in Sect. III-E.

o Unlinkability: To evaluate unlinkability of cancelable
schemes, mated and non-mated comparisons are per-
formed with sample-specific keys, and the general
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unlinkability measure introduced in [9] is estimated. The
linkability of two templates is measured in terms of the
difference of conditional probabilities of two hypotheses
of being mated, H,,, and non-mated, H,,, for a given
comparison score s between two given templates:

Do(s) = p(Huls) — p(Humls). 2

Then, by finding conditional expectation of this local
measure D, (s) over all comparison scores, results in a
global measure, D2, which is considered as the system
unlinkability measure:

Diis = /p(sle)De(s)ds- 3)

The value of D is in the interval [0,1], with lower values
indicating smaller possibilities to link templates of the
same subject.

o Irreversibility: Irreversibility is measured in terms of
mutual information (MI). It quantifies the amount of
information related to the set of original (unprotected)
biometric templates X that can be obtained from the
set of protected biometric templates Y. The set Y is
obtained with the application of cancelable schemes to
the set of unprotected templates X. The calculation of M1
requires as input the two sets of unprotected and protected
templates and provides as output a non-negative score.
The smaller this score, the better for irreversibility, with
a value equal to zero when the two sets are independent.
The computation of M relies on the estimation of
entropy. To simplify the computation of entropy and MI,
Principal Component Analysis (PCA) is applied to the
sets X and Y, which are matrices with initial dimensions
s x u and s x p respectively, with s being the number
of samples, u the number of features in unprotected
templates, and p the number of features in protected
templates. From the application of PCA to the matrices
X and Y, the reduced matrices X, = PCA(X) and
Y, = PCA(Y) are obtained, with dimensions s x r, where
r is the number of reduced features. While decreasing
the number of features, PCA retains the most significant
information of biometric templates. PCA is applied to
the matrices of unprotected templates X and protected
templates Y; resulting from different cancelable schemes
i, always considering a fixed number of features r =
100 for the reduced matrices. Then, we approximate to
multivariate Gaussian the distribution of features of the
reduced matrices. For each matrix Y,;, the M between
X, and Y,; can be computed as follows:

MI(X,.Y;) = HX,) + H(Y,;) — HX;. Yp), (4

where H (-) is the measure of entropy, quantified with the
Shannon’s entropy formula.

V. RESULTS AND DISCUSSION

In this section, the experimental results are described.
Firstly, in Sect. V-A, the proof-of-concept of frequent
binary patterns for indexing deep cancelable templates is
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empirically validated to work on a single-BC: Face, iris,
and fingerprint, against a baseline workload (i.e. exhaustive
search). Subsequently, Sect. V-B shows the results of indexing
by combining different BCs at different levels. Finally,
an analysis of the privacy protection is presented in Sect. V-
C. It is worth noting that all the figures (plots) utilise
nomenclatures to refer to the different types of BCs: FA (face),
FP (fingerprint), and IR (iris). Also, different nomenclatures
to refer to different statistical data computed in closed-set
scenarios have been employed; #Comp: Average number
of comparisons, Std_comp: Standard deviation across the
comparisons done per subject, #Visited-patterns: Average
number of binary patterns visited from the probe, Std_bins_v:
Standard deviation across the bins visited per subject.

A. Single-Biometric Characteristic

Tab. III shows the effect of the length of the frequent
pattern (k) in relation to the hit rate (H-R) and the system
workload (W) empirically computed for a set of identification
transactions over closed-set scenario. Note that k has been
only shown for the best configuration and for a final value
of k (i.e. k=8). In the context of the workload computation,
two WR values representing a lower bound (W;) and an
upper bound (W,) are estimated. The former considers the
lowest number of comparisons equitably distributed among
bins without considering their standard deviations, while the
latter considers an increased workload taking into account the
standard deviations. Note that for a realistic scenario (e.g.
open-set scenario), the overall workload would be limited to
the upper limit of computational workload (see W, on Tab. III)
that can be easily controlled by a fixed number of bins for a
biometric identification transaction. In addition to the closed-
set scenario evaluations, Tab. IV shows open-set results for
the best parameter configurations in Tab. III. Note that for this
scenario, a fixed number of bins representing the number of
bins visited (see #Visited-patterns + Std_bins_v in Tab. III) is
set for a set of biometric identification transactions. It should
be noted that an exhaustive search represents the baseline
workload (Wpgsetine = 100%).

Tab. III shows that the proof-of-concept of frequent binary
patterns for indexing deep cancelable templates outperforms
the exhaustive search in terms of WR across different BCs
for two well-known biometric template protection schemes:
BioHashing and IoM-GRP. In particular, the lowest values
observed for W, are 30.43% and 43.87% for BioHashing and
IoM-GRP, respectively, and are achieved by the fingerprint
while maintaining a high hit rate (99%<H-R<100%). Then,
a higher W value can be perceived for the face (i.e. W, >
72%) and iris (i.e. W, > 67%) on the same schemes.

Additionally, it can be observed that the workload is
inversely proportional to the length of the frequent pattern:
W decreases as k increases, while some H-R values are
compromised. A similar trend is theoretically shown in Fig. 2
(Sect.III-E). This observation is to be expected, as bins
constructed from longer lengths are more discriminative and
can reduce the number of candidates in a comparison step.
Therefore, this type of binning design makes the indexing
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TABLE III

CLOSED-SET SCENARIO OVER SINGLE-BC. THE BASELINE REPRESENTS THE UNPROTECTED SYSTEM. BOLD VALUES SHOW A TRADE-OFF
BETWEEN BIOMETRIC PERFORMANCE AND COMPUTATIONAL WR. THE DESCRIPTION OF THE NOMENCLATURE NAMED IN THE
COLUMNS Is DETAILED BELOW THE TABLE

BC Approach k  #Comb #Comp Std_comp W,(%) W;(%) #Visited-patterns Std_bins_v H-R
Baseline 5 32 451.1 282.18 72.75 44.75 13.48 9.72 100.0

: 8 256 378.25 199.97 57.36 37.53 92.97 55.03 64.53

Face BioHashing 5 32 473.97 292.14 76.00 47.02 14.68 9.82 100.0
loblashing ¢ 256 383.66 201.97 58.1 38.06 94.96 54.46 64.29

omGre 7 128 439.47 292.45 72.61 43.60 54.45 39.02 99.99

oM- 8 256 444.35 288.28 72.68 44.08 110.46 76.06 99.65

Baseli 6 64 228.09 217.60 44.22 22.63 12.15 14.12 99.95

aselme g 256 188.73 186.33 37.21 18.72 40.29 47.8 91.68

Fingerprint . o 7 128 137.03 169.66 30.43 13.59 11.58 17.53 99.99
g 3 256 117.58 155.03 27.05 11.67 17.91 29.69 98.66

oM.GRP 7 128 245.4 196.82 43.87 24.35 8.12 13.73 100.0

oM 8 256 164.38 169.29 33.1 16.31 14.16 26.11 98.99

Baseline 5 32 402.93 278.39 67.59 39.97 12.13 9.38 100.00

8 256 333.69 210.48 53.98 33.1 81.19 56.13 71.96

Tris BioHashing 6 64 410.67 290.29 69.54 40.74 25.35 19.31 99.46
orashmg ¢ 256 342.75 208.49 54.69 34.0 83.57 55.46 72.13

oMmGrp 7 128 395.23 288.21 67.80 39.21 47.88 38.1 100.0

8 256 390.27 289.37 67.42 38.72 95.7 76.1 98.60

k: Length of the frequent binary pattern, #Comb: Number of possible combinations to be generated given a k, #Comp: Average number of
comparisons, Std_comp: Standard deviation across the number of comparisons carried out per subject, W;: Lower bound of the computational
workload reduction estimated on the average number of comparisons computed per subject, W,: Upper bound of the computational workload
reduction, #Visited-patterns: Average number of binary patterns visited from the probe, Std_bins_v: Standard deviation across the bins visited

per subject, H-R: Hit-Rate.

TABLE IV
OPEN-SET RESULTS OVER SINGLE-BC

TABLE V

CLOSED SCENARIO RESULTS OF THE PROPOSED MULTI-BIOMETRIC
INDEXING SCHEMES ON BI0-HASHING FOR THE BEST PARAMETER K

BC Approach k& #Bins W(%) FPIR=0.01(%) FPIR=0.1(%)
Face Baseline - - 100.00 21.07 17.85 Method Combination k- Wu(%) Wi(%) H-R
(cxhaustive) ~ Diohashing - - 100.00 33.91 21.42 Face-Fingerprint 6  57.63 3179  100.00
IoM-GRP - - 100.00 15.44 14.09 Feature-concatenation Iris-Fingerprint 6 5204 2763 100.00
Face Baseline 5 23 69.99 35.00 34.00 Face-Iis 6 7135 43.04  100.00
(indexing) Biohashing 5 25 75.52 36.21 33.15 Face-Fingerprint-Iris 6 61.53 34.68 100.00
[oM-GRP 7 93 712 3761 32,10 Face-Fingerprint 6  55.60  31.03  99.72
. . Baseline - - 100.00 20.06 15.79 Iris-Fingerprint 6 5191 28.50 99.73
(Z;“hieurgrilv‘:) BioHashing - - 100.00 4443 36.80 Ranked-codes Face-Iris 6 7180 4344 998
) IoM-GRP - - 100.00 16.92 13.47 Face-Fingerprint-Iris 6 60.78 34.70 99.43
Fingerprint Baseline 6 26 4330 28.76 24.86 Face-Fingerprint 5 78.00 49.97 100.00
(indexing) ~ DioHashing 7. 29 32.23 39.57 31.21 ) Iris-Fingerprint 5 7855 48.64  100.00
®  IoM-GRP 7 22 3586 2247 19.85 XOR-codes Face-Iris 7 7819 4930  100.00
Tris Baseline _ _ 100.00 44.86 37.80 Face—Fingerprim—Iris 7 78.77 51.18 100.00
S BioHashing - - 100.00 44.60 32.52
(exhaustive) T VIGRP - - 100,00 36.75 32.69
s Baseline 5 22 67.06 70.59 49.70
(indexing) ~ BioHashing 6 45 69.04 74.42 49.42 o ) o
e IoM-GRP 7 86  66.63 53.77 47.03 B. Multi-Biometric Characteristics

scheme highly dependent on the intra-class and inter-class
variance of each BC.

Focusing on the open-set results in Tab. IV, at a fixed
number of bins (see column #Bins in Tab. IV), it can be
observed that indexing schemes for individual BCs do not
achieve similar biometric performances with respect to their
corresponding exhaustive searches. However, their WR values
are remarkable with respect to the baseline workload. Also,
the proposed multi-biometric indexing scheme is expected
to outperform the biometric performance of the retrieved
individual BCs, while maintaining the overall workload of the
system.

While Sect. V-A validated the concept of frequent binary
patterns as a solution agnostic w.r.t. types of BCs (i.e.
face, iris, and fingerprint) and cancelable biometric template
protection schemes (with binary representation), this section
shows the evaluation of different fusion strategies presented in
Sect. III. Note that the proposed schemes allow the retrieval
of protected multi-biometric templates in a single biometric
transaction. Initially, the multi-biometric indexing results in
a closed-set scenario are depicted in Tab. V for the best k-
combinations across the proposed indexing approaches for the
BioHashing scheme. Similar to single-BC (Sect. V-A), the
closed-set scenario evaluation allows estimating a threshold in
terms of bins visited (see column #Bins in Tab. VI) which can
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then be set in further open-set scenario evaluations. Since the
order of the combinations between the BCs does not affect
the final workload of the system in the closed-set scenario,
a single combination for two and three BCs is shown.

As observed in Tab. V, the computational workload required
by the proposed multi-biometric techniques increases slightly
or greatly depending on the type of strategy and the level
at which the data are merged. The proposed multi-biometric
approaches based on the highest-ranked code and feature-
concatenation indexing improve the overall workload of some
independent BCs, while slightly increasing the individual
workload of others. More specifically, this trend is generally
observed when designing combinations of types of BCs
centred on the fingerprint. In other words, the Face-Fingerprint
combination results in an approximate average of W;=~31%,
which represents 16 percentage points lower than the workload
of the face as a single BC (i.e. W;=~47% in Tab. III) and
approximately 18 percentage points more than the workload
yielded individually by the fingerprint (i.e. W;=~13% in
Tab. III). Similar trends can be also observed for the
combinations with Iris, e.g. Face-Fingerprint and Face-Iris.
The above observations have also been modelled theoretically
in Fig. 3 and Sect. III-E. We believe that these gaps or
imbalances in terms of overall workloads across the BC
combinations are due to the fact that single-BCs (e.g. face
or fingerprint) may exhibit different biometric variances (intra-
and inter-class). Note that some variations are nearly inevitable
and specific for some BCs, e.g. for fingerprint, environmental
conditions during the sample acquisition process and for iris,
distance, and angle from the sensor.

Subsequently, the evaluation of the open-set scenario is
shown in Tab. VI across the proposed multi-biometric indexing
approaches for BioHashing. For convenience, the evaluation of
each of the individual BCs indexing systems is also presented.
In these experiments, all possible combinations of types of
BCs and orderings are analysed.

Note that, on the one hand, the overall computational
workload (i.e. , W) of the different multi-biometric approaches
proposed is not affected by the order of the BCs involved
in the combination, e.g. Face-Iris or Iris-Face. On the other
hand, W generally depends on the type of BCs used in the
combination process, similar to what was observed for the
closed-set scenario, e.g. Face-Iris results in a higher W than the
Fingerprint-Iris. Furthermore, the presented multi-biometric
schemes outperform single-BC indexing pipelines in terms
of biometric performance, while producing an approximate
average W of the individual BCs. Note the imbalances in
terms of W between multi-biometric and single-BC systems.
In particular, and depending on the multi-biometric strategy,
the FNIR produced by the single-BC approaches is reduced
down to 19.81% for high-security thresholds (i.e. FPIR =
0.01%). With regard to the above results, we also observe
that the best trade-off between W and biometric performance
is achieved by combining three BCs, e.g. the ranked-codes
approach results in an FNIR = 21.55% at an FPIR = 0.01%,
which is approximately up to 53 percentage points less than
the FNIR yielded e.g. for Iris at the same operating point
(FNIR = 74.42%). These performance trends are confirmed
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TABLE VI

OPEN-SET RESULTS OVER BIOHASHING ACROSS
DIFFERENT INDEXING-SCHEMES

BC k  #Bins W(%) FPIR=0.01(%) FPIR=0.1(%)
) Face(indexing) 5 25 75.52 36.21 33.15
2 Fingerprint(indexing) 7 29 32.23 39.57 31.21
2 Iris(indexing) 6 45 69.04 74.42 49.42
Face-Fingerprint 6 32 53.98 23.60 21.78
Fingerprint-Face 6 32 53.91 25.46 23.17
g Iris-Fingerprint 6 31 53.07 32.20 24.69
b= Fingerprint-Iris 6 31 53.11 29.92 26.81
5 Face-Iris 6 46 70.22 27.73 24.56
§ Iris-Face 6 46 70.27 26.82 23.70
S Face-Fingerprint-Iris 6 38 61.61 19.81 19.36
©  Face-Iris-Fingerprint 6 38 61.63 20.02 19.32
£ Fingerprint-Face-Iris 6 38 61.63 20.47 18.38
£  Fingerprint-Iris-Face 6 38 61.63 20.56 19.00
Iris-Face-Fingerprint 6 38 61.59 22.57 18.84
Iris-Fingerprint-Face 6 38 61.59 19.98 18.38
Face-Fingerprint 6 32 56.02 20.37 19.73
Fingerprint-Face 6 32 56.02 20.37 19.73
Iris-Fingerprint 6 30 53.40 32.14 25.36
@ Fingerprint-Iris 6 30 53.40 32.14 25.36
%; Face-Iris 6 46 72.92 26.16 23.49
? Iris-Face 6 46 72.92 26.16 23.49
E Face-Fingerprint-Iris 6 33 57.40 21.55 20.81
£  Face-Iris-Fingerprint 6 33 57.40 21.55 20.81
& Fingerprint-Face-Iris 6 33 57.40 21.55 20.81
Fingerprint-Iris-Face ~ 6 33 57.40 21.55 20.81
Iris-Face-Fingerprint 6 33 57.40 21.55 20.81
Iris-Fingerprint-Face 6 33 57.40 21.55 20.81
Face-Fingerprint 5 25 78.05 28.11 24.53
Fingerprint-Face 5 25 78.05 28.11 24.53
Iris-Fingerprint 5 25 78.03 35.25 29.36
Fingerprint-Iris 5 25 78.03 35.25 29.36
3 Face-Iris 7 100 7813 28.93 26.67
S Iris-Face 7 100 78.13 28.93 26.67
o  Face-Fingerprint-Iris 7 63 81.55 26.24 2238
g Face-Iris-Fingerprint 7 63 81.55 26.24 22.38
Fingerprint-Face-Iris 7 63 81.55 26.24 22.38
Fingerprint-Iris-Face 7 63 81.55 26.24 22.38
Iris-Face-Fingerprint 7 63 81.55 26.24 22.38
Iris-Fingerprint-Face 7 63 81.55 26.24 22.38

in Fig. 5: The blue DET curves, representing the multi-
biometric scheme merging three BCs, significantly outperform
the remaining curves associated with the individual BCs for
higher security thresholds.

C. Privacy Protection Analysis

As mentioned earlier, the privacy protection capabilities of
the underlying cancelable biometric schemes are retained in
the indexing schemes. Hence, the privacy protection in terms
of unlinkability and irreversibility (see Sect. IV-E) is estimated
for the BioHashing and IoM-GRP schemes for the different
employed BCs under the general attack model (as suggested
in [56]). Obtained results are presented in Tab. VII.

The measure used to evaluate the unlinkability of protected
templates analyses the overlap between the distribution of
scores of mated templates and the distribution of scores of
non-mated templates protected with different keys. Therefore,
if the distribution of scores of mated templates and the
distribution of scores of non-mated templates largely overlap,
based on the hypothesis test in this measure, it is hard to
link templates. Therefore, protected templates are considered
to be unlinkable and the global measure D2* will be close to
zero. Accordingly, all cancelable schemes obtain low values
for D', i.e. protected templates that are hardly linkable for
different BCs.
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Fig. 5. Best results over open-set scenario are reported on the BioHashing for different multi-biometric approaches w.r.t. their uni-modal approaches.
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