
4316 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Privacy-Preserving and Trusted Keyword Search for
Multi-Tenancy Cloud

Xiaojie Zhu , Member, IEEE, Peisong Shen , Yueyue Dai , Member, IEEE, Lei Xu , Member, IEEE,
and Jiankun Hu , Senior Member, IEEE

Abstract— Cloud service models intrinsically cater to mul-
tiple tenants. In current multi-tenancy model, cloud service
providers isolate data within a single tenant boundary with no
or minimum cross-tenant interaction. With the booming of cloud
applications, allowing a user to search across tenants is crucial
to utilize stored data more effectively. However, conducting
such a search operation is inherently risky, primarily due to
privacy concerns. Moreover, existing schemes typically focus on
a single tenant and are not well suited to extend support to a
multi-tenancy cloud, where each tenant operates independently.
In this article, to address the above issue, we provide a privacy-
preserving, verifiable, accountable, and parallelizable solution for
“privacy-preserving keyword search problem” among multiple
independent data owners. We consider a scenario in which
each tenant is a data owner and a user’s goal is to efficiently
search for granted documents that contain the target keyword
among all the data owners. We first propose a verifiable yet
accountable keyword searchable encryption (VAKSE) scheme
through symmetric bilinear mapping. For verifiability, a message
authentication code (MAC) is computed for each associated piece
of data. To maintain a consistent size of MAC, the computed
MACs undergo an exclusive OR operation. For accountability, we
propose a keyword-based accountable token mechanism where
the client’s identity is seamlessly embedded without compro-
mising privacy. Furthermore, we introduce the parallel VAKSE
scheme, in which the inverted index is partitioned into small
segments and all of them can be processed synchronously. We also
conduct formal security analysis and comprehensive experiments
to demonstrate the data privacy preservation and efficiency of
the proposed schemes, respectively.

Index Terms— Symmetric searchable encryption, verification,
accountability, fine-grained access control, parallel search, multi-
tenancy.

Manuscript received 11 July 2023; revised 11 December 2023 and
22 February 2024; accepted 8 March 2024. Date of publication 13 March
2024; date of current version 6 May 2024. The associate editor coordi-
nating the review of this manuscript and approving it for publication was
Dr. Alptekin Küpçü. (Corresponding author: Xiaojie Zhu.)

Xiaojie Zhu is with the Computer, Electrical and Mathematical Sci-
ences and Engineering Division, King Abdullah University of Science and
Technology (KAUST), Thuwal 23955-6900, Saudi Arabia (e-mail: xiaojie.
zhu@kaust.edu.sa).

Peisong Shen is with the Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 100093, China (e-mail: shenpeisong@
iie.ac.cn).

Yueyue Dai is with the School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China (e-mail:
yueyuedai@ieee.org).

Lei Xu is with the School of Mathematics and Statistics, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail:
xuleicrypto@gmail.com).

Jiankun Hu is with the School of Engineering and Information Technology,
The University of New South Wales, Canberra, NSW 2600, Australia (e-mail:
j.hu@adfa.edu.au).

Digital Object Identifier 10.1109/TIFS.2024.3377549

I. INTRODUCTION

CLOUD computing has had a profound impact on data
management. It offers massive storage and computing

resources, payment-on-demand, and flexible scalability. Moti-
vated by these advantages, thousands of clients are opting
for cloud services. One typical application area is healthcare,
and some applications are Healthvana [1] and CDPHP [2];
both the platforms are the tenants of Amazon [3]. Healthvana
stores patient reports and CDPHP stores doctor information.
It is desirable for a patient to search both the datasets to
find the most suitable doctor by matching the patient data
with the doctor information. For example, HIV patients store
their reports in Healthvana and seek for suitable doctors from
CDPHP. However, such a search across tenancies is challeng-
ing. Each tenant is an independent data owner and must abide
the privacy laws, such as HIPAA [4], which are enforced to
protect individuals’ medical data privacy. In addition, for their
own interests, companies treat patient data as an asset and tend
to maintain complete control over it.

Data encryption is the best practice for maintaining data pri-
vacy. Each data owner encrypts their data before outsourcing it
to the cloud. This guarantees the confidentiality of the data but
greatly reduces their utility. A user must download an entire
dataset in order to retrieve one piece of data. Considering data
utility and privacy, Song et al. [5] introduced the primitives
of symmetric searchable encryption (SSE). SSE is a keyword
search technique that allows search over the ciphertext without
decryption. Goh et al. [6] proposed a secure index to improve
search efficiency. Subsequently, Curtmola et al. [7] formalized
the security definition of SSE and proposed two constructions
that corresponded to nonadaptive semantic security and adap-
tive semantic security.

In early research, most works on SSE focused on the honest-
but-curious cloud service provider (CSP). In such a model,
the search result is fully trusted and the CSP is assumed
to honestly follow the protocol specification. Search results
in practice may contain corrupted data due to underlying
hardware/software failures. In addition, for self-interest, the
CSP may deviate from the protocol specification. For example,
to reduce computational costs, CSP may randomly choose data
as a search result. To mitigate this problem, Chai and Gong [8]
proposed verifiable SSE, where the search result includes not
only retrieved documents but also proof of the correctness
and completeness of the search. The correctness of the search
means that the returned search result matches the query. The

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2954-7267
https://orcid.org/0000-0002-4507-3356
https://orcid.org/0000-0002-2163-987X
https://orcid.org/0000-0001-9178-6640
https://orcid.org/0000-0003-0230-1432

ZHU et al.: PRIVACY-PRESERVING AND TRUSTED KEYWORD SEARCH FOR MULTI-TENANCY CLOUD 4317

completeness of the search means that the retrieved data has
not been tampered with. In addition, Chen et al. [9] proposed
an authenticated Merkle hash tree to verify the search result.
Although significant progress has been made by the existing
constructions [8], [9], the verifiable property comes at the high
cost of extra storage and computation. There is still room for
solutions that are more practical.

Recently, with increasing demand for users (e.g., physi-
cians), previous SSE constructions, providing a client either
full access to the data or no access, expose their short
term. It is desirable to design a fine-grained access control
mechanism to enable data owners to selectively grant grant
clients access to their data. To achieve this goal, Han et al. [10]
proposed to apply attribute-based encryption [11] to solve this
problem and provided a general solution in the context of
public-key keyword search scenarios. With this design, only
a keyword search request that matches the predefined access
structure can retrieve the target document. The above search-
able encryption schemes rely on public key encryption, which
is inefficient compared with symmetric encryption. Moreover,
none of them are suitable for use with dynamic dynamic access
structures since the access structure is associated with either
a key or ciphertext. Any change in the access structure may
result in all of the ciphertext or keys being renewed.

Furthermore, all the mentioned works failed to allow a client
to search the data from multiple data owners, where each data
owner encrypts their data with a unique key. The existing SSE
schemes only support a client to search over a single data
owner [5], [12], [13]. However, in our scenario, a client needs
to search for data outsourced by multiple independent data
owners. For example, to identify a medical treatment for a
cancer patient, a physician may need to analyze medical data
from thousands of contributors (e.g., patients). An intuitive
solution for this scenario is to deploy existing schemes [5],
[12], [13] for each data owner, where each data owner manages
their outsourced data independently. For each service request,
the physician generates a specialized (authorized) request for
each owner’s data and sends it to the CSP. This results in a high
volume of requests for a single query. Another approach is to
adopt the recent Multi-Writer Encrypted Database [14], which
allows multiple data owners to store data and allows clients
to search across data owners. However, this scheme presumes
a fixed and predefined number of data owners who share a
master secret key and public key. This assumption does not
hold in our scenario, where data owners operate independently
and have the freedom to join or leave the system at any
time. This is a critical feature that allows a flexible number
of data owners in the system, who have complete control of
their own data, and allows a legitimate client to search across
parties.

Moreover, in the above works, no accountability and ver-
ifiability mechanisms are available. If a client abuses his/her
right (e.g., by sharing search tokens with unauthorized clients),
there is no way to identify the client. In addition, the search
result returned by the CSP may be incorrect due to deliberate
modifications or unpredicted data loss. For example, instead
of returning target documents, the CSP may send the client an
advertisement. Moreover, the hardware and software are not

stable, which may result in data loss due to hardware or soft-
ware failure. Additionally, packet loss during communication
is common.

To address the problem of user accountability, Li et al. [15]
proposed privacy-aware attribute-based encryption with user
accountability and applied it to the file storage system [16].
However, their scheme relied on attribute-based encryption,
which is different from SSE because SSE uses symmetric
encryption. To address the problem of the integrity of the
search result, Chai and Gong [8] constructed a verifiable data
structure based on the hash function and Soleimanian et al.
[17] proposed a scheme by delegating a third party to conduct
the verification. However, these approaches require either a
third party or a large amount of extra storage and computation
to ensure verifiability.

Finally, with the availability of GPUs and TPUs, the
requirement of parallelism is essential. Although efficient SSE
constructions are available [6], [9], existing solutions are still
highly sequential.

Herein, we propose a framework that is, to the best of our
knowledge, the first to to tackle all the above challenges. In the
proposed scheme, each data owner encrypts its own dataset
(with its unique key) and outsources the storage and processing
tasks for search operations to the CSP. For privacy, all the
data are encrypted using a standard symmetric encryption
algorithm and an index is established for privacy-preserving
search. The proposed indexing mechanism provides not only
privacy but also the ability to search over the datasets of
several data owners. Each data owner encrypts its own dataset
independently, and the searchability of ciphertext is enabled
across all the data owners through this indexing mechanism.

To support the search result verification, we propose a
novel construction of message authentication code (MAC),
in which all the associated data is required to compute MAC,
and then exclusive or (XOR) operation is conducted between
all the computed MACs. Finally, the result is encrypted
and embedded into the index. In addition, to enable fine-
grained access control and user accountability, we propose
a keyword-based accountable token mechanism. Each user
needs to obtain a token for a specific keyword before they
are able to launch a query. The token is utilized to transform
a user’s query to support ciphertext search. Moreover, with
the construction of a token, the identity of the client is
properly embedded into the token without privacy violation.
Because of the way the token is constructed, it can be used
to trace back to the client. Finally, to enhance the search
efficiency, we propose a parallelism mechanism, where the
inverted index is partitioned into segments and all of them
are executed in parallel. In summary, our paper makes the
following contributions:

1) To the best of our knowledge, we are the first to
tackle the privacy-preserving keyword search problem
in a multi-tenancy cloud where each tenant operates
independently. We propose a privacy-preserving data
outsourcing framework that enables efficient secure
retrieval of the outsourced data from the CSP with
dynamic updates, fine-grained access control, verifiable
search results, user accountability, and parallelism. For

4318 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

our proposed scheme, we design a privacy-preserving
framework that supports backward indexing with ver-
ifiable yet accountable keyword searchable encryption
(VAKSE). Moreover, due to the design of the index
and token generation mechanism, we ensure fine-grained
access control, the ability to search over several parties,
and user accountability. Furthermore, we propose a
novel approach to constructing MAC to realize search
result verification. Finally, to enhance the search effi-
ciency, we propose PVAKSE to parallelize VAKSE.

2) We formally analyze the security of the proposed
schemes and demonstrate that our proposed scheme can
attain our design goals. In addition, we conduct compre-
hensive experiments to evaluate the proposed scheme,
and our results show the effectiveness of VAKSE and
PVAKSE.

The remainder of this paper is organized as follows.
In Section II, we introduce related work. We then review the
preliminaries in Section III. After that, we present the system
model, threat model, and design goals in Section IV, which
is followed by the proposed scheme in Section V. Security
and performance analyses are presented in Section VI and
Section VII, respectively. In Section VIII, we discuss the
approach to mitigating the storage requirement of data owners,
detection of denial of query service, and real-world use cases
and deployment scenarios. Finally, we draw conclusions in
Section IX.

II. RELATED WORK

Due to the boom in cloud computing and increasing privacy
concerns, keyword search over encrypted data has been a hot
topic over the past twenty years. In this section, we investigate
SSE and ABE to present relevant work and position our study.

A. Symmetric Searchable Encryption
Song et al. [5] came up with the problem of keyword search

for encrypted data and proposed the first symmetric searchable
encryption (SSE) scheme. In their scheme, each keyword is
encrypted in two layers. The first layer is implemented via
pseudo-random permutation and used to hide the keyword.
The second layer is realized by the pseudo-random function
and used to support encrypted keyword searches. To improve
search efficiency, Goh et al. [6] proposed a secure index
against adaptive chosen keyword attack (IND-CKA) based on
pseudo-random functions and bloom filters. Thereafter, Curt-
mola et al. [7] formalized the security definition of SSE and
proposed two constructions that corresponded to nonadaptive
semantic security and adaptive semantic security by assuming
the the existence of a pseudo-random permutation and an
encryption algorithm that provides security against chosen
plaintext attacks. Following these definitions, various SSE
schemes have been proposed to enrich queries and enhance
search efficiency, such as ranked keyword search [9], [18],
fuzzy keyword search [19], similarity search [20], semantic
search [21], and parallel search [22].

All the above works assume that the CSP is honest but curi-
ous. This means that the CSP honestly executes the intended
protocol. However, this assumption is not always valid in

real-world scenarios since cloud services are susceptible to
external attacks, internal misconfigurations, software glitches,
and even insider threats [23], [24]. All these elements can lead
a CSP to diverge from the intended protocol and to operate
outside the boundaries of the honest-but-curious model. In our
work, we address the potential risk that a compromised CSP
is not detected by users. Specifically, we consider the scenario
where the server continues to provide its service but deviates
from the intended protocol by operating beyond the boundaries
of the honest-but-curious model.

B. Verifiable Symmetric Searchable Encryption
To enhance security, stronger models against threats are

considered. To prevent the honest-but-curious cloud server
from returning partial search results, Chai and Gong [8]
proposed the first verifiable SSE scheme based on hash
functions and block ciphers, where the search result included
not only retrieved documents but also proof of the search
process. To formalize a stronger threat model for a mali-
cious cloud server, Kurosawa and Ohtaki [25] introduced
the definition of universally composable (UC) secure SSE
against non-adaptive adversaries and constructed a verifiable
SSE based on pseudo-random permutation and unforge-
able Message Authentication Code (MAC) to achieve UC
security. Although UC security offers higher security, its
construction requires a powerful client to conduct verification.
To remove the heavy verification load of clients, Soleimanian
and Khazaei [17] presented a public VSSE scheme based
on pseudo-random functions, one-way functions, digital sig-
natures and the DDH assumption, which delegated a third
party to accomplish the verification and achieved L-adaptive
security under the DDH assumption. To support multi-user
settings, Zhu et al. [26] proposed a generic VSSE scheme
based on Merkle Patricia Trie (MPT) and pseudo-random
functions, which decoupled the proof from SSE and achieved
L-adaptively-secure.

However, all the above approaches require either a third
party or a large amount of extra storage and computation
resources to ensure verifiability.

C. Accountable Attribute-Based Encryption
In the above schemes, the client is trusted. In reality,

dishonest users may attempt to access data without authoriza-
tion. Even worse, some users may give away some of their
original or transformed keys such that nobody can tell who has
distributed these keys. The first problem is called unauthorized
access. The second problem is called key abuse. The first
problem can be prevented by fine-grained access control, and
the second problem can be discouraged by user accountability.

The issue of fine-grained access control and user account-
ability has been widely discussed in the area of ABE [15], [16],
[27], [28]. Yu et al. [28] considered how to defend against the
key abuse problem in KP-ABE schemes. Hinek et al. [27]
introduced a trusted party to support decryption operations
to prevent the key abuse problem. Li et al. [15] embedded
user-specific information into the attribute private key issued
to that user to realize user accountability and applied the
construction into the file storage system [16].

ZHU et al.: PRIVACY-PRESERVING AND TRUSTED KEYWORD SEARCH FOR MULTI-TENANCY CLOUD 4319

Although fine-grained access control and user accountability
can be achieved using the above ABE schemes, they are
inefficient compared with symmetric encryption. Moreover,
these ABE schemes can not support ciphertext searchability,
which is provided by SSE.

D. Attribute-Based Keyword Search
To enable fine-grained access control and ciphertext search,

Zheng et al. [29] proposed the first attribute-based keyword
search (ABKS) scheme that combined public key encryption
with keyword search (PEKS) [30] with CPABE. Instead of
CPABE, Liang and Susilo [31] constructed an ABKS scheme
using KPABE. To enrich the query, Huang et al. [32] proposed
an ABKS scheme with ranked keyword search. Considering
the consistency of the secret key of ABKS, Ge et al. [33]
designed a flexible and secure keyword search scheme for
cloud-based data sharing.

The above ABKS schemes have the same shortcomings
as existing ABE-based schemes: they are less efficient than
SSE. Moreover, none of them are suitable for dynamic access
structures since the access structure is associated with either
a key or ciphertext. Any change in the access structure may
result in all the ciphertext or keys being renewed.

E. Technical Challenges of the Proposal
The proposed scheme initially necessitates the acceptance of

multiple data owners, each of whom possesses no prior shared
knowledge. The first technical challenge lies in querying
across data owners, each of whom independently establishes
their access policies. Verifying the retrieved data, regardless
of its source among the data owners, is the second technical
challenge. The third technical challenge is identifying users
who misuse or abuse their rights, regardless of the data owner
by whom those rights were granted. The fourth technical chal-
lenge involves designing a privacy-preserving keyword search
mechanism that incorporates parallelism while satisfying the
aforementioned requirements.

III. PRELIMINARIES

In this section, we briefly introduce the concepts of the
discrete logarithm (DL) problem and the symmetric bilinear
group. Both are a foundation for the proposed schemes.

A. Discrete Logarithm (DL) Problem
The discrete logarithm problem is defined as follows: Given

a group G, a generator g of the group, and an element h = gx

of G, the problem is to find the DL x to the base g of h in
the group G.

The problem is hard if the order of G is a prime number
p that equals 2q + 1, where q is a large prime number. This
guarantees that p − 1 = 2q has a large prime factor and the
Pohlig-Hellman algorithm [34] cannot solve the DL problem
easily.

B. Symmetric Bilinear Group
Let G be a multiplicative cyclic group of prime order p, and

let g be the generator of the group G. Let e: G×G ← GT be
a function that maps two elements from G to a target group

Fig. 1. System model. In the model, each data owner encrypts his/her data
independently and outsources it to the CSP. To access the data, a client must
register with the system and request permission from the data owner. After the
authorization is obtained, the client can raise a query to retrieve outsourced
data. Upon receiving the retrieved data, the client can verify the search result.
If the CSP detects abnormal queries, it can raise a user accountability request
to identify the client.

GT of prime order p. The tuple (G, GT , p, e) is a symmetric
bilinear group if the following properties hold:

1) group operations in G and GT are efficiently com-
putable.

2) mapping from G to GT is efficiently computable.
3) mapping e is nondegenerate: e(g, g) ̸= 1.
4) mapping e is bilinear: e(ga, gb) = e(g, g)ab.

IV. MODELS AND DESIGN GOALS

In this section, we first formalize our system model and
threat model and then identify our design goal.

A. System Model

In our system model, which is shown in Fig. 1, we consider
a typical outsourcing model, that consists of three entities: data
owner, Cloud Service Provider (CSP), and client. The data
owner has a document dataset D. Each document consists of
document identity id and words. Since the size of the dataset
may be large, a data owner may not be able to store it or
compute with it. The data owner tends to outsource the dataset
to the CSP. Meanwhile, to ensure data privacy, the data owner
may encrypt the data before outsourcing it to the CSP. The
CSP supplies resources for storage and powerful computing.
It receives the outsourced dataset from the data owner and
processes queries from the client. Before a client is allowed
to use the system, the client needs to register with the data
owner and obtain permission to be enrolled in the system.
After the client obtains approval, the client is able to raise
queries and receive the result returned from the CSP.

We emphasize that our system supports multiple data own-
ers, unlike an existing work that focuses on only one data
owner [9]. Thus, our system supports various clients. For
example, client 1 may be granted access to the data from
data owners 1 and 2, while client 2 may be granted access
to the data from data owners 1 and 3. Moreover, our system
supports search result verification. Our system is capable of
detecting the return of an incorrect search result. Furthermore,
it enables user accountability and allows the identification of
any legitimate client that abuses his/her rights.

4320 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

B. Threat Model

In our threat model, the data owner is considered to be fully
trusted because the data owner owns the dataset. However, the
CSP is considered malicious, which indicates that the CSP
may not follow the proposed scheme honestly, and may behave
arbitrarily.

Herein, we mainly consider the following three threats from
a malicious CSP:

1) Since the CSP stores the encrypted data, the CSP has the
opportunity to extract information and infer the content
of the encrypted data.

2) Due to self-interest, the CSP may select random docu-
ments as the search result or may return documents that
do not match the query as the search result.

3) Due to unexpected errors, the CSP may execute the
search operation incorrectly.

We assume that all legitimate clients strictly follow the
protocol, although they may share the assigned token with
illegitimate clients. Herein, we only cover user accountability.
For the user misbehavior detection, readers can refer to [35]
and [36].

C. Design Goal

In this work, our goal is to present a privacy-preserving
keyword search scheme that has multiple independent data
owners. In particular, we aim to fulfill the following objectives.

Privacy Preservation: Our proposed scheme aims to protect
the privacy of outsourced data and achieve adaptive semantic
security (which is formally defined in Section VI), in which
an adversary cannot learn any additional information about
the plaintext other than what is already revealed by the
ciphertext.

Search Over Several Data Owners: The proposed scheme is
supposed to support multiple data owners that independently
outsource data to the CSP. Meanwhile, a client can perform
data search over several data owners.

Fine-Grained Access Control: In the proposed scheme, the
granularity of the access control should be the keyword. For
each keyword, a client is required to obtain permission before
they are able to generate a query to retrieve documents that
contain the target keyword.

Verifiable Search Result: The proposed scheme needs to
offer a mechanism to verify the correctness and completeness
of the search result. Correctness guarantees that the retrieved
result corresponds to the target keyword, and completeness
ensures that no adversary has tampered with the retrieved
data.

User Accountability: If a legitimate client abuses the
assigned token, the proposed scheme is supposed to identify
that client. Thus, user accountability acts as a targeted deter-
rent against token abuse.

V. PROPOSED SCHEME

In this section, we first construct a VAKSE scheme. Then,
we present the PVAKSE scheme, which is based on VAKSE.

Before we present the details of different constructions,
we present frequently used notation in Table I.

TABLE I
NOTATIONS

Fig. 2. Overview of the VAKSE scheme.

A. Construction of the VAKSE Scheme

In this section, we first present the overview of each compo-
nent of the VAKSE scheme and then explain each component
in detail.

1) Overview: As shown in Fig. 2, the proposed VAKSE
scheme consists of ten modules: data preprocessing, system
initialization, key generation, data encryption, token gen-
eration, query generation, search, decryption, verification,
and detection. The function of each module is detailed
below.

Data Preprocessing: In this module, as shown in Fig. 3,
all the keywords are first extracted from documents and then
form an inverted index, where each entry of the inverted index
consists of a keyword and a list of document identifiers.

System Initialization: This is the initial procedure of the sys-
tem. This module accepts the input of system parameters and
produces the required parameters for the following procedures.
For brief and clear presentation, the key generation module
is incorporated into this component, which outputs required
keys.

Data Encryption: To ensure data privacy, the data owner
must encrypt the data before outsourcing the data to the CSP.
This module implements all the encryption algorithms that are
required to perform data encryption.

ZHU et al.: PRIVACY-PRESERVING AND TRUSTED KEYWORD SEARCH FOR MULTI-TENANCY CLOUD 4321

Fig. 3. Data preprocessing.

Token Generation: Before a client launches a query to
search target documents, the client needs to get a token first
from the data owner. This module implements the algorithms
to deal with the token request from the client and generate
tokens for the client.

Query Generation: Before a client raises a query to search
target documents, the client must obtain a token from the data
owner. This module implements the algorithms that execute
the token request from the client and generate tokens for the
client.

Search: When provided with the encrypted data, token,
and query, the CSP conducts a search operation to find the
documents that match the requirement and return them to the
client. The search module is implemented to conduct a privacy-
preserving search.

Decryption: Upon receiving the retrieved ciphertext, the
client uses the decryption algorithm to decrypt the ciphertext.
This module is designed to decrypt either the identities of the
encrypted document or the documents themselves.

Verification: When provided with a search result, the client
is capable of raising a verification operation. The objective
is to check the correctness and completeness of the returned
result. The verification module implements the mechanism to
verify the search result.

Detection: When provided with the abused token and assis-
tant information, the data owner owner can learn the identity
of the client who misuses the allocated token. The detection
module prevents token abuse and realizes user accountability.

2) Components of VAKSE: In this section, we present the
details of each component.

Data Preprocessing: The i-th data owner collects all the
documents Di , extracts all the keywords from those doc-
uments, and uses them to create a dictionary. Thereafter,
as shown in Fig. 3, the data owner creates an inverted index
Ii to store the (key, value) pairs. The key is used to store
the keyword and the value is utilized to store the identities of
documents that contain the keyword. To prevent the adversary
from learning the size of the document identities, we pad zeros
to the shortlist so that all the keywords correspond to an equal
number of document identities. As shown in Fig. 3, there are
three key-value pairs: {Hello, (1,2)}, {World, (1, padding)},
{Tomorrow, (2, padding)}.

System Initialization: Table II shows all the parameters
generated during the initialization phase. For initialization,
the system first selects a symmetric encryption mechanism
(e.g., AES), which consists of encryption algorithm SEnc and
decryption algorithm SDec. The application of a symmetric

TABLE II
PARAMETERS USED IN INITIALIZATION

Algorithm 1 Data Encryption (Enc)
Input: (ski , ki , Ii , Di)
Output: EI i , EDi

1: for all (w, L) ∈ Ii do
2: r ← Z∗p
3: c0 ← gr

4: αw ← H(w)

5: c1 ← g−r/(ski−αw)

6: cw ← (c0, c1)

7: ki,w ← F(ki , w)

8: cids ← SEnc(ki,w, L)

9: EI i [cw] ← cids

10: for all (id, d)← Di do
11: EDi [id] ← SEnc(ki , d)

12: return EI i , EDi

encryption algorithm results in greater efficiency than the
public-key encryption algorithms that were deployed in [10]
and [29]. Moreover, it outputs a bilinear mapping e : G×G →
GT , where the order of the groups is p and the group generator
of G is g, along with the hash function H : {0, 1}∗→ Zp. Next,
the system generates a pair with the private key and public
key for each data owner and client. For the i-th data owner,
the system first selects the private key ski ← Z∗p and then
computes public key pki ← gski . For each client, the system
similarly generates skc and pkc. Additionally, it generates
a secret key for each data owner, which is used to encrypt
documents. For example, ki ← {0, 1}λ is generated for i-th
data owner.

Data Encryption: The data encryption step can be divided
into two parts. The first step is the inverted index encryption
and the second step is the document encryption. As shown
in Algorithm 1, index encryption encrypts all the entries of
Ii . Each entry is a pair (w, L), where w is the keyword and
L is a list of document identities, e.g., 1 and 2 in Fig 3.
For each keyword w, the data owner computes c0 ← gr as
the first component of the encrypted keyword cw, where r is
randomly selected from Z∗p. The data owner then computes
c1 ← g−r/(ski−αw) as the second component of the encrypted
keyword cw, where αw is the hash result of keyword w.
For the encryption of document identities, the data owner
executes the symmetric encryption algorithm SEnc to encrypt
the list L of document identities, where the secret key ki,w is
generated by calling a pseudorandom function F with inputs
w and ki , where ki is the secret key of the data owner
that is generated during the initialization. Here, the goal of
using the pseudorandom function F is to bind the keyword
w and ki . After the index encryption, all the documents
Di are encrypted using the symmetric encryption algorithm

4322 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE III
SYSTEM CORE APIS

Algorithm 2 Token Generation (T okenGen)
Input: (pki , pkc, ski , w, ki)
Output: rc,w, tki,w, Dc

Client
1: αw ← H(w)

2: rc,w ← Zp
3: send rc,w, αw and pkc to the data owner
4: return rc,w

Data Owner
5: tki,w ←

pki
pkc

−rc,w
ski−αw

6: send tki,w and ki to the client
7: Dc[αw] ← rc,w
8: return Dc

SEnc with the secret key ki . Finally, the module outputs the
encrypted inverted index EI i and dataset EDi .

Token Generation: To search a document with specific
keywords, a client must obtain tokens for these keywords from
the data owner. First, the client selects the target keyword
w, and computes the hash result αw of the keyword. Next,
a random number rc,w ← Z∗p is selected. Finally, the client
sends rc,w, αw, and its public key pkc to the data owner to
obtain the authorization of keyword search. Upon receiving
the request, the data owner decides whether to approve the
request. If the data owner approves the request, the data

owner computes the value of tki,w ←
pki
pkc

−rc,w/(ski−αw)
. After

the computation, the data owner sends tki,w and ki to the
client. In addition, rc,w is stored into the local dictionary
Dc[αw]. In Section VIII, we discuss the requirement of the
dictionary Dc and propose an approach for mitigating the
storage requirements.

Query Generation: To generate the query, as shown in
Algorithm 3, the client first invokes the hash function with
the selected keyword w as input and outputs αw. Next, the
client computes grc,w as the first component of the query qc,w
and g−rc,wαw pkrc,w

c as the second component of the query qc,w.
Note that both the keyword w and random number rc,w should
be consistent with token generation for documents containing
the target keyword to be retrieved.

Search: The search operation is conducted by the CSP.
Given the encrypted index EI i , token tki,w, and query qc,w,

Algorithm 3 Query Generation (QueryGen)
Input: (w, pkc, rc,w)
Output: qc,w

1: αw ← H(w)

2: compute grc,w and g−rc,wαw pkrc,w
c

3: qc,w ← (grc,w , g−rc,wαw pkrc,w
c)

4: return qc,w

Algorithm 4 Keyword Search (Search)
Input: (EI i , tki,w, qc,w)
Output: 8

1: 8← φ

2: for all (cw, cids) ∈ EI i do
3: for all (c0, c1) ∈ cw do
4: (grc,w , g−rc,wαw pkrc,w

c)← qc,w
5: (q0, q1)← (grc,w , g−rc,wαw pkrc,w

c)

6: if e(c0, q0)e(c0, tki,w)e(c1, q1) = 1 then
7: 8← 8 ∪ cids

8: return 8

as shown in Algorithm 4, the CSP needs to check whether
the query matches the entry of the encrypted inverted index.
Specifically, for each pair (cw, cids) ∈ EI i , the CSP computes
e(c0, q0)e(c0, tki,w)e(c1, q1) to check whether the result is
equal to 1, where c0 and c1 are the two components of cw

and q0 and q1 are the two components of query qc,w. If the
computed result is 1, it means that the query matches the index.
The ciphertext cids of the corresponding document identities
is thene stored in the set 8. Finally, the set 8 is sent to the
client.

Decrypt: After the retrieved result 8 is received, as shown
in Algorithm 5, the client invokes the symmetric decryp-
tion algorithm SDec to decrypt the ciphertext and obtain
the plaintext Sids of the matching document identities. The
client sends the document identities to the CSP to retrieve
all corresponding encrypted documents 9. The client uses
Algorithm 6 to decrypt the encrypted documents when they
are received and to obtain the plaintext Sds of the documents.

Detection: To support user accountability, as shown in
Algorithm 7, the data owner maintains a dictionary Dc,
in which the hash result of keyword w is associated with the

ZHU et al.: PRIVACY-PRESERVING AND TRUSTED KEYWORD SEARCH FOR MULTI-TENANCY CLOUD 4323

Algorithm 5 Decrypt Document Identities (DecryptDI)
Input: (8, ki , w)
Output: Sids

1: ki,w ← F(ki , w)

2: Sids ← φ

3: for all cids ∈ 8 do
4: L ← SDec(ki,w, cids)

5: Sids ← Sids ∪ L
6: return Sids

Algorithm 6 Decrypt Documents (Decrypt)
Input: (9, ki)
Output: Sds

1: Sds ← φ

2: for all (id, ed) ∈ 9 do
3: d ← SDec(ki , ed)

4: Sds ← Sds ∪ (id, d)

5: return Sds

Algorithm 7 User Accountability (Detection)
Input: (Dc, tki,w, w)
Output: pkc

1: αw ← H(w)

2: rc,w ← Dc[αw]

3: pkc ← pki · tk
ski−αw

rc,w
i,w

4: return pkc

value rc,w sent from the client. If token abuse occurs, i.e.,
if tokens are illegally shared between clients, the data owner

computes pki · tk
ski−αw

rc,w
i,w to identify client pkc.

B. Search Result Verification

The verification of the search result includes the correct-
ness and completeness of the search result, as shown in
Algorithm 8.

The correctness of the search result requires the correctness
of the keyword search process and document retrieval process.
The correctness of the keyword search process is verified
through the decryption process because generating the secret
key for decrypting the retrieved document identities requires
the target keyword. If an incorrect keyword is used, the
generated secret key cannot be used to decrypt the encrypted
document identities. The correctness of the retrieved doc-
uments is evaluated by comparing the retrieved document
identities with the document identities held by the client.

The completeness of the search result also includes two
parts. The first part is the completeness of the retrieved
document identities and the second part is the completeness
of the retrieved documents. The data encryption algorithm is
modified to guarantee the completeness of both parts, as shown
in Algorithm 9. The algorithm first generates the MAC of the
document identity list. Then, for each document that belongs to
the document list, it also generates theMACd and conducts an
XOR operation, which is denoted by ⊕, with the MAC of the

Algorithm 8 Search Result Verification (Veri f y)
Input: (8, w, ki , 9)
Output: True/False

Correctness
1: Sids ← DecryptDI(8, ki , w)

2: (L ,MAC)← Sids
3: Sds ← Decrypt (9, ki)

4: if the identities of Sds are same with L then
5: return True
6: return False

Completeness
7: ki,w ← F(ki , w)

8: MAC∗← HMAC(ki,w, L)

9: for all (id, d) ∈ Sds do
10: MAC∗d ← HMAC(ki,w, d)

11: MAC∗←MAC∗ ⊕MAC∗d
12: if MAC∗ =MAC then
13: return True
14: return False

Algorithm 9 Data Encryption With MAC (Enc)
Input: (ski , ki , Ii , Di)
Output: EI i , EDi

1: for all (w, L) ∈ Ii do
2: cw ← ASMT .Enc(ski , w)

3: ki,w ← F(ki , w)

4: MAC ← HMAC(ki,w, L)

5: for all id ∈ L do
6: MACd ← HMAC(ki,w, Di (id))

7: MAC ←MAC ⊕MACd

8: cids ← SE(ki,w, L||MAC)

9: EI i [cw] ← cids

10: for all d ← Di do
11: EDi ← SEnc(ki , d)

12: return EI i , EDi

document identity list. The XOR result is stored in the MAC.
Finally, MAC is concatenated with the document identity list
and encrypted by the symmetric encryption algorithm. During
the verification phase, the client verifies the completeness of
the document identity list and all the retrieved documents
based on the retrieved MAC value. In particular, the client
first calls the pseudo-random function F with the secret key
ki and keyword w as input and generates the key ki,w. Then,
the secret key ki,w and list L of the document identities are
used to generate MAC∗. Next, for each retrieved document
d , the client computes MAC∗d and runs the XOR operation
using MAC∗. If the MAC∗ is equal to the retrieved MAC
value, the retrieved documents and document identity list are
complete.

C. PVAKSE: VAKSE Based on Inverted Index Partition
We observe that the search efficiency can be enhanced in

two ways based on the construction of VAKSE. The first way

4324 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

is to parallelize the index processing of each data owner. Since
each data owner outsources its data independently, the query
can be processed in parallel. The another way is to reduce
the time consumption of searching over the inverted index
of each data owner. Inside the inverted index, the entries are
independent and can also be dealt with in parallel. Considering
both the ways to enhance efficiency, the goal is to parallelize
the inverted index.

One way to fulfill the above goal is to divide the inverted
index into entries. Parallelizing the search of the entries
requires the same number of threads as the total number
of entries in the inverted index. For example, the Enron
dataset [37] has more than half a million entries. How-
ever, Amazon AWS, which is the most prevalent cloud
service, provides an instance with a maximum of 64 CPU
cores [38], which means that it needs approximately 10,000
most advanced instances. This example shows that it is imprac-
tical to divide the inverted index into entries. To reduce the
demand for instances from the CSP and satisfy the constraint
on the maximum number of concurrent requests from a client,
we divide the inverted index into the same number of partitions
with the maximum number of concurrently supported requests.
This results in a balance between resource requirements and
efficiency.

VI. VAKSE SECURITY ANALYSIS

According to our design goal for privacy preservation,
we demonstrate that the proposed schemes protect the privacy
of outsourced data and queries. Because PVAKSE uses the
same security mechanism as VAKSE, we conduct a security
analysis of only VAKSE. Before we present the detailed
security analysis, we first introduce four auxiliary notations
following [39].

Definition 1 (History): Let 1 be a dictionary and D be
a document collection containing terms from 1. A q-query
history over D is the tuple H = (D, 1) that includes the
collection of documents D, and a vector of q-set of keywords
1 = (w1, · · · , wq), where w j (1 ≤ j ≤ q) is the keyword
used in j-th query.

Definition 2 (Search Path Pattern): Let 1 be a dictionary;
let D be a document collection set over 1; and let I be
the inverted index of D. The search path pattern induced
by the q-query history H = (D, 1) is the tuple σ(H) =

(I (w1), · · · , I (wq)).
Definition 3 (Access Pattern): Let 1 be a dictionary; let

D be a document collection set over 1. The access pattern
induced by the q-query history H = (D, 1) is the tuple
β(H) = (D(w1), · · · , D(wq)).

Definition 4 (Trace): Let 1 be a dictionary and
D be a document collection set over 1. The trace
induced by the q-query history H is the sequence
γ (H) = (|D1|, · · · , |Dn|, |I1|, · · · , |Il |, σ (H), β(H)),
where |D j | (1 ≤ j ≤ n) represents the length of the j-th
document in D, and |I j | (1 ≤ j ≤ n) represents the length of
the j-th entry in I .

We now present our simulation-based definition that the
view of an adversary generated from an adaptively chosen
history can be simulated given only the trace, which is

explained in Definition 5. Based on the definition, Theorem 1
is proposed and followed by its proof.

Definition 5 (Adaptive Semantic Security): Let 5 =

(Setup, Enc, T okenGen, QueryGen, Search, Decrypt,
Veri f y, Detection) be the proposed scheme; let λ ∈ N
be the security parameter; let A = (A0, · · · ,Aq) be a
PPT adversary such that q ∈ N; and let S = (S0, · · · ,Sq)

be a PPT simulator. Consider the following probabilistic
experiments Real5,A(λ), and Sim5,A,S(λ).

Real5,A(λ)

(ski , pki , skc, pkc, e, p, ki)← Setup(λ)

(Ii , Di , stA)← A0(1λ)

(EI i , EDi)← Enc(ski , ki , Ii , Di)

(w1, stA)← A1(stA, EI i , EDi)

tki,w1 , rc,w1 ← T okenGen(pki , pkc, ski , skc, w1)

qc,w1 ← QueryGen(pkc, w1, rc,w1)

f or 2 ≤ j ≤ q

(w j , stA)← A j (stA, EI i , EDi , (tki,w1 , rc,w1 , qc,w1),

· · · , (tki,w j−1 , rc,w j−1 , qc,w j−1))

(tki,w j , rc,w j)← T okenGen(pki , pkc, ski , skc, w j)

qc,w j ← QueryGen(pkc, w j , rc,w j)

let T r pi = ((tki,w1 , qc,w1), · · · , (tki,wq , qc,wq))

output Vi = (EI i , EDi , T r pi) and stA
Sim5,A,S(λ)

(Ii , Di , stA)← A0(1λ)

(EI i , EDi , stS)← S0(γ (Di))

(w1, stA)← A1(stA, EI i , EDi)

(tki,w1 , rc,w1 , stS)← S1(stS , γ (Di , w1))

(qc,w1 , stS)← S1(stS , γ (Di , w1))

f or 2 ≤ j ≤ q

(w j , stA)← A j (stA, EI i , EDi , (tki,w1 , rc,w1 , qc,w1), · · · ,

(tki,w j−1 , rc,w j−1 , qc,w j−1))

(tki,w j , rc,w j , stS)← S j (stS , γ (D, w1, · · · , w j))

(qc,w j , stS)← S j (stS , γ (D, w1, · · · , w j))

let T r pi = ((tki,w1 , qc,w1), · · · , (tki,wq , qc,wq))

output Vi = (EI i , EDi , T r pi) and stS

We say that VAKSE is adaptively and semantically secure if,
for all polynomial-size adversaries A = (A0, · · · ,Aq) such
that q = poly(λ), there exists a nonuniform polynomial-size
simulator S = (S0, · · · ,Sq) such that for all polynomial-size
distinguishers D, it has a negligible advantage in distinguish-
ing the output of Real5,A from Sim5,A,S .

Theorem 1: If the DL problem is hard and the adopted
symmetric encryption is semantically secure, the proposed
VAKSE scheme is adaptively secure.

Proof: We attempt to construct a polynomial-sized
simulator S = (S0, · · · ,Sq) such that for all polynomial-
sized adversaries A = (A0, · · · ,Aq), the outputs
of Real5,A(λ) and Sim5,A,S(λ) are computationally
indistinguishable. The simulator S = (S0, · · · ,Sq)

ZHU et al.: PRIVACY-PRESERVING AND TRUSTED KEYWORD SEARCH FOR MULTI-TENANCY CLOUD 4325

adaptively generates a string V ∗i = (EI∗i , ED
∗

i , T r p∗i) =

(EI∗i , ED
∗

i , (tk
∗

i,w1
, q∗c,w1

), · · · , (tk∗i,wq
, q∗c,wq

)) as follows.
S0(γ (Di)): Using the trace of γ (Di), the simulator first

calculates the total number nd of documents. It randomly
selects the same number of bytes as the size of each encrypted
document to simulate the encrypted document. It thereby
obtains an encrypted document set ED∗i . To simulate the
encrypted inverted index EI i , it simulates each entry one by
one. The encrypted keyword cw is simulated by randomly
selecting two numbers from the group G. The corresponding
encrypted document identities cids are then simulated by
randomly selecting bytes with the same size as the original
ciphertext. Then it forms an encrypted index EI∗i with the
simulated entries.

Since, with all but negligible probability, stA does not
include ski and ki , EI∗i is indistinguishable from a real
inverted index. Otherwise, one is able to distinguish either
EI∗i from EI i or ED∗i from EDi . With the assumption
that the adopted symmetric encryption is semantically secure,
it has a negligible advantage in distinguishing ED∗i from
EDi . Similarly, the advantage in distinguishing the encrypted
document identities c∗ids from cids is negligible. Distinguishing
the encrypted keyword c∗w from cw requires analyzing the com-
ponents of the ciphertext. Since the first component of both c∗w
from cw is randomly selected, it is indistinguishable from each
other. For the second component, with the assumption that the
DL problem is hard, the probability to solve the problem is
negligible.
S1(stS , γ (D, w1)): Since we know that D(w1) corresponds

to a set of document identities. The simulator needs to
guarantee that, given the token and query, the corresponding
identities should be retrieved. In order to achieve that, it first
select two random numbers ri,3 and ri,4 from Zp for the
w1. Then, it randomly chooses one encrypted keyword c∗w =
(gri,1 , gri,2) from EI∗i . The corresponding components of the

token and query are then constructed as g
(1+

ri,4ri,2
ri,1ri,3

)∗ri,3 and

(gri,4 , g
−ri,4+

ri,1(ri,3+ri,4)

ri,2) respectively. Based on the token and
query construction, the search result matches the require-
ment. Consequently, T r p∗i,1 = (tk∗i,w1

, q∗c,w1
) is the pair

(g
(1+

ri,4ri,2
ri,1ri,3

)∗ri,3 , (gri,4 , g
−ri,4+

ri,1(ri,3+ri,4)

ri,2)).
Since, with all but negligible probability, stA does not

include ski , tk∗i,w1
is indistinguishable from a real tki,w1 .

Otherwise, the DL problem can be solved in polynomial time.
Similarly, with the assumption of the DL problem, the query
q∗c,w1

is indistinguishable from a real query.
S j (stS , γ (D, w1, · · · , w j)) (2 ≤ j ≤ q): for each w j , S j

generates a token and query in the same way as S1 does. Sim-
ilarly, since stA includes the ski with negligible probability,
the generated token and query are indistinguishable from real
ones. □

VII. PERFORMANCE

In this section, we first evaluate the performance of the
VAKSE scheme and then that of the PVAKSE scheme,
focusing on the data encryption, token generation, query

generation, search, decryption, verification, and detection
phases.

Experimental Setting: All the experiments are conducted
using the Java programming language. The JPBC library [40]
is used to implement the pairing operation. The symmetric
pairing is constructed on the curve y2

= x3
+ x and the

order of the group G is 160 bits. SHA-256 [41] is invoked
to implement the hash function. The symmetric encryption
algorithm is instantiated by using AES and implemented by
invoking Java Crypto library [42] with 128 bits of the secret
key. The experiments are executed on a laptop running on the
Windows 10 Enterprise operating system, Intel(R) Core(TM)
i7-7600U CPU, and 16GB RAM. To reduce the risk of system
error, all the reported results are the averaged runtimes for the
same operation over ten iterations.

Data Model: We use the publicly available and well-known
Enron Email Dataset [37] as the experimental dataset. In total,
we extract 517,400 valid emails and 133,321 keywords from
the dataset.

A. Performance of VAKSE Scheme
In this section, we present the results of performing VAKSE

for a case with one data owner and then demonstrate the results
of performing VAKSE for a case with multiple independent
data owners to vividly simulate the multitenant scenario.

1) Experiments With Single Data Owner: We evaluate the
performance of the VAKSE scheme with a single data owner,
especially considering data encryption, token generation, query
generation, search, decryption, and verification processes.

Evaluation of Data Encryption: In Section V-A,
Algorithm 1 shows the details of the data encryption
process. From this algorithm, we learn that the performance
of the encryption algorithm is affected by the size of the
index I and the total number of documents in D. As shown in
Fig. 4a, the encryption time increases linearly and significantly
with an increase in the number of documents and entries.

Evaluation of Token Generation: As shown in Algorithm 2,
for each keyword w, the token generation algorithm is invoked.
As shown in Fig. 4b, the time cost of token generation is
almost constant (0.01 seconds), regardless of the increase in
the number of entries and documents.

Evaluation of Query Generation: As shown in Algorithm 3,
the query generation algorithm is invoked by the client. Fig. 4b
shows that for each keyword w, the time cost of the query
generation algorithm is almost constant at 0.02 seconds.

Evaluation of Search Phase: As shown in Algorithm 4,
the search algorithm checks all the entries of the encrypted
inverted index using the query and token. As shown in Fig. 4a,
the time cost of the search algorithm increases linearly with
the increase in the entries of the inverted index.

Evaluation of Decryption: The decryption phase includes
two steps. The first step decrypts the encrypted document
identities and the second step decrypts the encrypted docu-
ments. As shown in Algorithm 5 and 6, the retrieved encrypted
document identities and documents are decrypted using the
symmetric decryption algorithm. From Fig. 4b, we can see
that with an increase in the number of documents and entries,
the decryption time slowly increases. After analyzing the data,

4326 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 4. Performance of VAKSE scheme. The graph shows the time cost of running various algorithms of VAKSE scheme over different datasets.

we learn that the size of the retrieved result tends to be larger
for a larger dataset, which results in a higher time cost of
decryption.

Evaluation of Verification: The verification algorithm is
used to verify if the retrieved documents are correct and
complete. From Algorithm 8, we observe that the verification
performance is slightly affected by the size of the retrieved
result. Due to the efficiency of SHA-256 [41], the time cost
of the verification algorithm is approximately 0.0001 seconds.

Evaluation of Detection Algorithm: The detection algorithm
is built to identify any client who misuses the allocated token.
The detection algorithm (Algorithm 7) reveals the identity
of such a client and has a fixed number of operations.
As presented in Fig. 4b, the time cost is 0.01 seconds.

2) Experiments With Multiple Data Owners: From
Section V-A, we learn that VAKSE supports multiple data
owners. In the above experiment, we evaluate the performance
of only the VAKSE scheme with one data owner. In a scenario
with multiple data owners, there is a major difference in
token generation and search processes. Note that the time
cost of query generation is the same for either one or mul-
tiple data owners. To search across data owners, the client
must obtain permission from the data owners. This results
in multiple tokens. With the tokens, a search operation can
be executed over access-granted data, instead of over all the
data. To evaluate the token generation and search algorithm,
we execute them over 2, 4, 8, 16, and 32 data owners who
allows a client to access their data. Each data owner holds
a dataset containing 3125 keywords and 412,477 documents.
The results of sequentially running VAKSE.T okenGen and
VAKSE.Search algorithms are shown in Fig. 5. From the
figure, we can observe that the time cost of both token
generation and search increases approximately linearly with
the increase in the number of data owners. However, the time
consumption of token generation is minor compared with the
time cost of search.

Fig. 5. Performance of the VAKSE.T okenGen and VAKSE.Search
algorithms. The graph shows the time cost of sequentially running the
VAKSE.T okenGen and VAKSE.Search algorithms over different number
of data owners.

B. Performance of PVAKSE

To evaluate the performance of PVAKSE, we execute
PVAKSE over a dataset containing 509,537 emails and
100,000 keywords. The inverted index built from the dataset
is partitioned into 2, 4, 8, 16, and 32 parts on which to run
different experiments. To simulate the parallel process in the
experiments, each partition is independently processed, and
the average time cost is reported. Since none of the modules,
except encryption and search, are affected by parallelism,
we focus on the time cost of data encryption and search.
We name the parallel encryption algorithm as PVAKSE.Enc
and parallel search algorithm as PVAKSE.Search. The per-
formance of invoking PVAKSE.Enc and PVAKSE.Search is
presented in Fig. 6. From this figure, we learn that with the
increasing number of partitions, the degree of parallel is also
improved. With a linear increase in the number of partitions,
the total time needed for encryption and search decreases

ZHU et al.: PRIVACY-PRESERVING AND TRUSTED KEYWORD SEARCH FOR MULTI-TENANCY CLOUD 4327

TABLE IV
CHARACTERISTIC COMPARISON WITH THE RELATED WORK.

√
DENOTES THAT THE CORRESPONDING FUNCTION IS SUPPORTED AND × INDICATES

THAT THE CORRESPONDING FUNCTION IS NOT CONSIDERED

Fig. 6. Performance of the PVAKSE.Enc and PVAKSE.Search algo-
rithms. The graph shows the time cost of executing PVAKSE.Enc and
PVAKSE.Search algorithms on different number of partitions.

TABLE V
EFFICIENCY COMPARISON WITH RELATED WORK. n IS THE TOTAL

NUMBER OF KEYWORDS, r IS THE NUMBER OF DOCUMENTS
CONTAINING A KEYWORD, ρ IS THE NUMBER OF USER

ATTRIBUTES,AND |S| REPRESENTS THE SIZE
OF THE SEARCH RESULT

significantly. In particular, when the number of partitions
increases from 1 to 8, the reduction in time cost is the most
significant.

C. Experimental Comparison With Related Work

In this section, we conduct an experimental comparison of
our scheme with those presented in Table IV. The focus is
on encryption, search, token generation, and decryption. It is
noteworthy that we exclude MACPABE [16] and GSSE [26]
from consideration. MACPABE [16] lacks support for cipher-
text search, and GSSE [26] is designed to provide a proof
for validating search results independently from any SSE
construction.

Experimental Setting: All the experiments are conducted on
a cluster named Ibex, which contains more than 400 nodes.
Each node has more than 40 cores and 350GB usable memory.
The operating system on the nodes is CentOS 7.9 and the job
scheduler is SLURM 20.11.6. All the remaining settings are
the same as the previously mentioned experimental setup.

Fig. 7. Ciphertext storage cost. We compare the cipertext storage cost of
PDSSE, CPAB-KSDS, and VAKSE with various numbers of entries.

Data Model: We use the publicly available Wikipedia
dataset [43] as the experimental dataset. In particular,
we choose the content written in English, namely 20220301.en
dataset. The total number of files is 6,458,670 and the total
number of extracted keywords is 9,198,084.

1) Performance Comparison: In the experiment, to main-
tain consistency, the number of data owners is uniformly
set to one across all schemes, and the number of threads
is configured to 10 for parallel search in both PDSSE and
PVAKSE. In addition, encryption operations are performed on
the extracted keywords. From the experimental result, the pub-
lic parameter size and private parameter size are 18 bytes and
48 bytes for PDSSE, respectively; 6290 bytes and 406 bytes
for CPAB-KSDS, respectively; and 1066 bytes and 96 bytes
for our schemes, respectively. For communication costs, given
that the retrieved results are the same, we focus on the size
of the query request. In PDSSE, the query request contains
only one token, with a total size of 30 bytes. In CPAB-KSDS,
the query size has two components: the first part includes the
fixed five group members, and the second part is determined
by the attribute size of the client. In our experiment, assuming
three client attributes, the query size comprises eight group
members, resulting in 2480 bytes. In VAKSE, the query
request includes three group members and totals 930 bytes.

The storage cost for the ciphertext is illustrated in Fig. 7.
PDSSE exhibits the highest storage cost, whereas our scheme
demonstrates the lowest cost. The substantial storage cost
associated with PDSSE is attributed to the maintenance of the
tree structure, which nonetheless offers significant advantages
in search operations. The encryption time cost is depicted
in Fig. 8. The encryption operation of CPAB-KSDS incurs

4328 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 8. Time cost of encryption operation. We compare the encryption time
cost of PDSSE, CPAB-KSDS, and VAKSE with various numbers of entries.

Fig. 9. Time cost of search operation. We compare the search time cost
of PDSSE, CPAB-KSDS, VAKSE, and PVAKSE with various numbers of
entries.

the heaviest time cost, and PDSSE incurs the lowest time
cost. The significant encryption time cost of CPAB-KSDS is
attributed to its large number of exponentiation and pairing
operations, which are not required by PDSSE. The search
time cost is illustrated in Fig. 9. In this figure, we compare
the search time costs of PDSSE, CPAB-KSDS, VAKSE,
and PVAKSE. PDSSE exhibits the best search performance,
PVAKSE takes the second position, VAKSE ranks third, and
CPAB-KSDS is the least efficient. Additionally, the time cost
of token generation for PDSSE, CPAB-KSDS, and VAKSE
is approximately 34ms, 900ms, and 169ms, respectively. For
decryption, CPAB-KSDS does not perform this operation. The
decryption time costs for PDSSE and our scheme are similar,
and both require approximately 0.02ms for decrypting one
ciphertext.

VIII. DISCUSSION

A. Mitigating the Storage Requirement of Data Owners
In the above schemes, the data owner needs to maintain

dictionary Dc to support detection. Each entry in Dc stores a
number that is selected by a client for keyword authorization,
which may result in a large size. To mitigate the demand for
storage, the rc,w could be generated by the data owner instead
of random selection by the client. However, the chosen num-
ber should match the requirement for distinguishing between

different clients and keywords. To meet the requirements,
the data owner conducts rc,w ← H(pkc, αw) to generate
the number, where pkc is the public key of a client, αw is the
hash result of the submitted keyword, and H is a hash function.
Using this design, the data owner does not need to store Dc.
As the side effect, the data owner is required to check all the
public keys of clients before able to detect the malicious user.

B. Detection of Denial of Query Service

A malicious CSP may reject a query or directly return an
empty search result. To detect such misbehavior, the token
generation process needs to be modified. Before a data owner
decides to approve the authorization request, the data owner
needs to verify whether the requested keyword is contained in
the dataset. If it is not present in the dataset, the data owner
rejects the authorization request. Otherwise, the data owner
processes the authorization request as before. Based on the
existing configuration, the situation in which an empty search
result is considered to be valid should not occur. As a result,
a client has the capability to identify instances where the CSP
refuses to process queries or return empty search results.

C. Real-World Use Cases and Deployment Scenarios

The proposed scheme is versatile and well-suited for deploy-
ment in environments that require selective data sharing or
utilization across multiple tenants. One specific application is
for managing patient data. With the increasing prevalence of
cloud services, hospitals are opting to outsource their data to
a CSP and to become tenants of its cloud service. To ensure
data protection, the outsourced data requires safeguarded in
accordance with self-interest and regulations. In addition,
patients may visit different hospitals for various medical
conditions. Ultimately, when patients seek access to their
historical records for specific diseases, it becomes essential to
search across multiple tenants. Another example application
is in academic certificates. Currently, universities and schools
are utilizing the services of a CSP and enjoying the benefits
as tenants. An individual may often receive requests to prove
their educational background. In such a scenario, individuals
need access to access data from multiple tenants to gather all
their educational information.

IX. CONCLUSION

Herein, we propose a privacy-preserving, efficient, verifi-
able, accountable, and parallel solution for the keyword search
problem in a multitenant cloud environment. To achieve this,
we devised a privacy-preserving inverted index to enable a
verifiable ciphertext search. Each entry contains encrypted
keyword and document identity pairs and the compressed
MAC for all corresponding documents. Then, we designed a
fine-grained access control mechanism through keyword-based
token generation. Moreover, we embedded the user identity
into the token to achieve user accountability. All those compo-
nents were built into the VAKSE scheme. To further improve
search efficiency, we introduced the PVAKSE, in which
the inverted index was partitioned into small segments that

ZHU et al.: PRIVACY-PRESERVING AND TRUSTED KEYWORD SEARCH FOR MULTI-TENANCY CLOUD 4329

could be searched synchronously. Finally, we formally ana-
lyzed the security of our proposed schemes and conducted
extensive experiments to show their effectiveness. For future
work, we intend to enhance the security and performance of
PVAKSE further.

REFERENCES

[1] (2022). Healthvana. [Online]. Available: https://healthvana.com/
[2] (2022). CDPHP. [Online]. Available: https://www.cdphp.com/
[3] (2022). Customer Success Stories. [Online]. Available: https://aws.

amazon.com/solutions/case-studies/
[4] (2022). HiPAA. [Online]. Available: http://www.cms.hhs.gov/

HIPAAGenInfo/
[5] D. Xiaoding Song, D. Wagner, and A. Perrig, “Practical techniques for

searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy. (S&P),
May 2000, pp. 44–55.

[6] E.-J. Goh, “Secure indexes,” Cryptol. ePrint Arch., Oct. 2003.
[7] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable

symmetric encryption: Improved definitions and efficient constructions,”
J. Comput. Secur., vol. 19, no. 5, pp. 895–934, 2011.

[8] Q. Chai and G. Gong, “Verifiable symmetric searchable encryption
for semi-honest-but-curious cloud servers,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2012, pp. 917–922.

[9] C. Chen et al., “An efficient privacy-preserving ranked keyword search
method,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp. 951–963,
Apr. 2016.

[10] F. Han, J. Qin, H. Zhao, and J. Hu, “A general transformation from KP-
ABE to searchable encryption,” Future Gener. Comput. Syst., vol. 30,
pp. 107–115, Jan. 2014.

[11] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. 13th
ACM Conf. Comput. Commun. Secur., Oct. 2006, pp. 89–98.

[12] R. Brinkman, L. Feng, J. Doumen, P. H. Hartel, and W. Jonker, “Efficient
tree search in encrypted data,” Inf. Syst. Secur., vol. 13, no. 3, pp. 14–21,
May 2004.

[13] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query process-
ing,” in Proc. 23rd ACM Symp. Oper. Syst. Principles (SOSP), 2011,
pp. 85–100.

[14] J. Wang and S. S. Chow, “Omnes pro uno: Practical multi-writer
encrypted database,” in Proc. 31st USENIX Secur. Symp. (USENIX
Security), 2022, pp. 2371–2388.

[15] J. Li, K. Ren, B. Zhu, and Z. Wan, “Privacy-aware attribute-based
encryption with user accountability,” in Proc. Int. Conf. Inf. Secur.
Berlin, Germany: Springer, 2009, pp. 347–362.

[16] J. Li, X. Chen, S. S. M. Chow, Q. Huang, D. S. Wong, and Z. Liu,
“Multi-authority fine-grained access control with accountability and its
application in cloud,” J. Netw. Comput. Appl., vol. 112, pp. 89–96,
Jun. 2018.

[17] A. Soleimanian and S. Khazaei, “Publicly verifiable searchable sym-
metric encryption based on efficient cryptographic components,” Des.,
Codes Cryptogr., vol. 87, no. 1, pp. 123–147, 2019.

[18] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-
preserving multi-keyword ranked search over encrypted cloud data,”
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 222–233,
Jan. 2013.

[19] J. Wang et al., “Efficient verifiable fuzzy keyword search over encrypted
data in cloud computing,” Comput. Sci. Inf. Syst., vol. 10, no. 2,
pp. 667–684, 2013.

[20] W. Sun et al., “Privacy-preserving multi-keyword text search in the
cloud supporting similarity-based ranking,” in Proc. 8th ACM SIGSAC
Symp. Inf., Comput. Commun. Secur., 2013, pp. 71–82.

[21] Z. Fu, L. Xia, X. Sun, A. X. Liu, and G. Xie, “Semantic-aware searching
over encrypted data for cloud computing,” IEEE Trans. Inf. Forensics
Security, vol. 13, no. 9, pp. 2359–2371, Sep. 2018.

[22] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” in Proc. Int. Conf. Financial Cryptography Data
Secur. Berlin, Germany: Springer, 2013, pp. 258–274.

[23] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you
lie to me: Efficient verifiable conjunctive keyword search over large
dynamic encrypted cloud data,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 2110–2118.

[24] R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable dynamic sym-
metric searchable encryption: Optimality and forward security,” Cryptol.
ePrint Arch., Jan. 2016.

[25] K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryp-
tion,” in Proc. Int. Conf. Financial Cryptogr. Data Secur. Berlin,
Germany: Springer, 2012, pp. 285–298.

[26] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren, “Enabling
generic, verifiable, and secure data search in cloud services,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 8, pp. 1721–1735, Aug. 2018.

[27] M. Hinek, S. Jiang, R. Safavi-Naini, and S. Shahandashti, “Attribute
based encryption with key cloning protection,” Tech. Rep. 2008/478,
2008.

[28] S. Yu, K. Ren, W. Lou, and J. Li, “Defending against key abuse attacks in
KP-ABE enabled broadcast systems,” in Proc. Int. Conf. Secur. Privacy
Commun. Syst. Berlin, Germany: Springer, 2009, pp. 311–329.

[29] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable attribute-based
keyword search over outsourced encrypted data,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2014, pp. 522–530.

[30] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, 2004, pp. 506–522.

[31] K. Liang and W. Susilo, “Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage,” IEEE Trans. Inf. Foren-
sics Security, vol. 10, no. 9, pp. 1981–1992, Sep. 2015.

[32] Q. Huang, G. Yan, and Q. Wei, “Attribute-based expressive and ranked
keyword search over encrypted documents in cloud computing,” IEEE
Trans. Services Comput., vol. 16, no. 2, pp. 957–968, Mar. 2023.

[33] C. Ge, W. Susilo, Z. Liu, J. Xia, P. Szalachowski, and L. Fang, “Secure
keyword search and data sharing mechanism for cloud computing,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 6, pp. 2787–2800,
Nov. 2021.

[34] R. A. Mollin, An Introduction to Cryptography. Boca Raton, FL, USA:
CRC Press, 2006.

[35] R. W. van der Heijden, S. Dietzel, T. Leinmüller, and F. Kargl, “Sur-
vey on misbehavior detection in cooperative intelligent transportation
systems,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 779–811,
4th Quart., 2018.

[36] S. Ruj, M. A. Cavenaghi, Z. Huang, A. Nayak, and I. Stojmenovic,
“On data-centric misbehavior detection in VANETs,” in Proc. IEEE Veh.
Technol. Conf. (VTC Fall), Sep. 2011, pp. 1–5.

[37] (2022). Enron Email Dataset. [Online]. Available: https://www.cs.
cmu.edu/

[38] (2022). CPU Cores Threads per CPU Core per Instance
Type. [Online]. Available: https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/cpu-options-supported-instances-values.html

[39] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
in Proc. 13th ACM Conf. Comput. Commun. Secur., 2006, pp. 79–88.

[40] A. De Caro and V. Iovino, “JPBC: Java pairing based cryptography,” in
Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2011, pp. 850–855.

[41] (2022). Java Security Message Digest. [Online]. Available: https://
docs.oracle.com/javase/7/docs/api/java/security/MessageDigest.html

[42] Oracle. JavaTM Platform, Standard Edition 8 API Specification.
Accessed: Feb. 1, 2023. [Online]. Available: https://docs.oracle.com/
javase/8/docs/api/javax/crypto/Cipher.html

[43] Wikimedia Foundation. Wikimedia Downloads. Accessed: Feb. 1, 2023.
[Online]. Available: https://dumps.wikimedia.org

Xiaojie Zhu (Member, IEEE) received the M.S.
degree from the University of Chinese Academy of
Sciences in 2015 and the Ph.D. degree from the
University of Oslo in 2021. He is currently a Staff
Research Scientist with KAUST. His research inter-
ests include cloud security, applied cryptography,
and distributed systems.

4330 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Peisong Shen received the bachelor’s degree from
the University of Science and Technology of China
in 2012 and the Graduate degree from the University
of Chinese Academy of Sciences in 2018. Since
then, he has been with the Institute of Information
Engineering as a Research Assistant. He is currently
an Assistant Researcher with the Institute of Infor-
mation Engineering, Chinese Academy of Sciences.
His research interests include applied cryptography
and data privacy protection.

Yueyue Dai (Member, IEEE) was a Researcher
with Nanyang Technological University, Singapore,
in 2020. She is currently an Associate Professor with
Huazhong University of Science and Technology.
Her current research interests include edge intel-
ligence, the Internet of Vehicles, and blockchain.
She serves/has served as a Guest Editor for many
leading journals IEEE Network, Future Generation
Computer Systems, and Digital Communications and
Networks; a PC Member for IEEE Symposium on
Blockchain; and a TPC Member for IEEE ICC 2022,

IEEE GLOBECOM 2021, IEEE ICC 2021, and VTC2020-Spring.

Lei Xu (Member, IEEE) received the Ph.D. degree
from Nanjing University of Science and Technology
in 2019. He is currently an Associate Professor with
the School of Mathematics and Statistics, Nanjing
University of Science and Technology. Before that,
he was a Post-Doctoral Researcher with the Depart-
ment of Computer Science, City University of Hong
Kong, Hong Kong. He was a Visiting Ph.D. Student
with the Faculty of Information Technology, Monash
University, from April 2017 to April 2018. His main
research interests focus on applied cryptography and
information security.

Jiankun Hu (Senior Member, IEEE) is currently
a Full Professor in cyber security with the School
of Engineering and Information Technology, The
University of New South Wales, Defence Force
Academy (UNSW@ADFA), Australia. His major
research interests include computer networking and
computer security, especially biometric security.
He has been awarded ten Australia Research Coun-
cil Grants. He served as the Security Symposium
Co-Chair for IEEE GLOBECOM ’08 and IEEE ICC
’09. He was the Program Co-Chair of the 2008

International Symposium on Computer Science and its Applications. He is
serving as an Associate Editor for the following journals: Journal of Security
and Communication Networks (Wiley), a Senior Area Editor for IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, and an
Area Editor for KSII TIIS, IET CPS, IEEE OPEN JOURNAL OF THE COM-
MUNICATIONS SOCIETY, and S&P (Wiley).

