
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024 4215

GuessFuse: Hybrid Password Guessing
With Multi-View

Zhijie Xie , Fan Shi , Min Zhang, Huimin Ma, Huaixi Wang, Zhenhan Li , and Yunyi Zhang

Abstract— Password guessing is a primary method for pass-
word strength evaluation. Despite various password guessing
models have been proposed, there is still a significant gap between
their guessing effectiveness and the actual cracking capabilities
of attackers. Integrating multiple models for password guessing,
also known as hybrid password guessing, could better capture
the cracking capabilities of real attackers. However, the reason
why hybrid password guessing can enhance cracking capabilities,
and how to effectively integrate multiple heterogeneous password
guessing models, are still not well understood. To address these
issues, this paper draws inspiration from the concept of multi-
view learning. We regard the guess lists generated by various
password guessing models as multiple views of the data. Through
a comprehensive analysis of these guess lists, we have identified
the key reason why hybrid password guessing can enhance
the cracking capabilities: integrating more diverse views allows
for the coverage of a wider range of heterogeneous password
characteristics, and provides more detailed information on effective
password distributions. Based on the findings, we propose a
new hybrid password guessing framework, named GuessFuse.
GuessFuse employs the multi-view subset extraction module
and the segment splitting selection module to accurately extract
and reorganize the effective password from diverse guess lists.
Experimental results on six large-scale datasets demonstrate the
effectiveness of GuessFuse. By combining two (resp. five) guess
lists, GuessFuse outperforms its foremost counterparts by an
average of 11.00% ∼ 59.62% (resp. 4.70% ∼ 17.66%) within
107 guesses. GuessFuse can effectively improve the cracking
success rate under a limited number of guesses, approaching
the actual cracking capabilities of attackers.

Index Terms— Password security, hybrid password guessing,
password guess list, multi-view learning.

I. INTRODUCTION

DESPITE the emergence of various alternative solutions,
such as two-factor authentication [1] and biometric

authentication [2], password-based authentication remains the
most fundamental authentication method in the foreseeable
future due to their ease of deployment and simplicity of
use [3], [4], [5]. However, this method is highly susceptible
to guessing attacks, such as offline trawling guessing [6],
[7] and online targeted guessing [8], [9], especially when

Manuscript received 28 July 2023; revised 19 December 2023; accepted 28
February 2024. Date of publication 11 March 2024; date of current version
6 May 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021YFB3100500. The
associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Albert Levi. (Corresponding author: Min Zhang.)

The authors are with the College of Electronic Engineering, National
University of Defense Technology, Hefei 230037, China (e-mail:
xzj9510@nudt.edu.cn; shifan17@nudt.edu.cn; zhangmindy@nudt.edu.
cn; mahuimin17@nudt.edu.cn; wanghuaixi@nudt.edu.cn; lizhenhan17@nudt.
edu.cn; zhangyyzyy@nudt.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3376246

confronting human vulnerable behaviors, including choos-
ing popular passwords [10], using personal information to
create passwords [8], and reusing existing passwords [11].
To tackle this problem, web services usually adopt a Password
Strength Meter (PSM) to prevent users from setting weak
passwords [12], [13], [14]. Several studies have shown that
well-designed PSMs indeed help users improve their pass-
word strength [13], [14]. In practice, accurately assessing the
attacker’s ability to crack passwords is found to be a crucial
basis for the design of PSMs [15], [16], [17], [18], [19].
Therefore, password guessing methods are extensively studied
in an attempt to accurately describe the attacker’s password
cracking capabilities.

Current mainstream password guessing methods concentrate
on two aspects: rule-based and data-driven methods. Previous
security community focused on rule-based methods [20], [21]
using the summarized user behaviors, while recent works refer
to data-driven password guessing models, such as PCFG [6],
Markov [22], FLA [15], PassGAN [23], and RFGuess [24].
These data-driven models demonstrate their specific advan-
tages in password guessing [16]. For example, PCFG [6]
yields better guessing performance on passwords with simple
structures (e.g., passsword123), while the Markov model [22]
is more effective on passwords with contextual correlation fea-
tures (e.g., 1qaz2wsx). However, there is still no model to take
all in the real-world scenario with the ongoing developments
of the password guessing techniques [25], [26], [27], [28].
Ur et al. [16] found that the cracking capabilities of real-
world experts far exceed those of single automated password
guessing models. Besides, it can be approximated by using
multiple password guessing models in parallel. Although the
parallel use of multiple password guessing models is merely
a hypothetical strategy and cannot be practically applied in
real scenarios, the advantage of integrating multiple password
guessing models (i.e., hybrid password guessing) to enhance
password guessing capabilities has begun to attract attention.

Research on hybrid password guessing is still in its primitive
stages. Ur et al. [16] designed a Minauto indicator as the
upper bound of hybrid password guessing by applying multiple
password guessing models in parallel. Several studies [29],
[30], [31], [32], [33] have attempted to integrate the advan-
tages of specific models at the structural level (e.g., applying
the PCFG model and the Markov model respectively at the
password structure level and the string level for password
guessing [29]). On the other hand, some studies [32], [34]
experimentally combine multiple guess lists generated from
different password guessing models for more effective pass-
word guessing. However, the above methods either integrate
two specific password guessing models or simply combine the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-0237-0702
https://orcid.org/0000-0003-4533-2706
https://orcid.org/0000-0001-6347-2767
https://orcid.org/0000-0003-0878-7656

4216 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

guess lists rather than solving this problem by mechanism.
They have not been able to effectively utilize the advantages
of multiple heterogeneous password guessing models. More
importantly, to the best of our knowledge, why integrating
multiple password guessing models can enhance cracking
capabilities has not yet been satisfactorily answered.

To address these issues, for the first time, we apply multi-
view learning to study hybrid password guessing. We regard
the guess lists generated by various password guessing models
as multiple views on the data. Through an in-depth analysis
of the combination of diverse guess lists, we reveal the key
reason why hybrid password guessing can enhance cracking
capabilities. That is, integrating more diverse views allows for
the coverage of a wider range of heterogeneous password
characteristics, and provides more detailed information on
effective password distributions. At the same time, we also
discover that the passwords in the subsets among guess lists
also follow Zipf’s law.

Building upon these findings, we propose a new hybrid
password guessing framework, named GuessFuse. Guess-
Fuse enables higher cracking capabilities than the individual
password guessing models according to the following work-
flow. GuessFuse first generates multiple password guess lists
using individual password guessing models, such as PCFG
and Markov models. Then, it extracts the intersecting and
complementary subsets between multiple guess lists using a
multi-view subset extraction method. Following that, Guess-
Fuse splits the subsets into password segments according to
the power law. Finally, GuessFuse reorganizes the effective
password segments and outputs the optimize guess list. Exten-
sive experiments demonstrate that GuessFuse outperforms
its foremost counterparts and can effectively integrate the
advantages of multiple password guessing models. We also
applied GuessFuse to PSM for a broader comparative analysis.
We find that the Minauto indicators underestimate the strength
of some passwords, which reduces the usability of password
settings. Using GuessFuse can solve this problem.

We summarize our contributions as follows:

1) A new analysis method for multiple password guess-
ing models. For the first time, we apply the concept
of multi-view learning to analyze multiple password
guessing models. By regarding the guess lists gener-
ated by different password guessing models as diverse
views on the data, we delve into and demonstrate the
key reason why hybrid password guessing can enhance
cracking capabilities. That is, integrating more diverse
views allows for the coverage of a wider range of het-
erogeneous password characteristics, and provides more
detailed information on effective password distributions.
We also find that the passwords in the multi-view subsets
also follow Zipf’s law.

2) A new hybrid password guessing framework based
on multi-view learning. Based on the above findings,
we propose a new hybrid password guessing framework,
named GuessFuse. GuessFuse utilizes the multi-view
subset extraction module and the segment splitting selec-
tion module to accurately extract and reorganize the
effective password from diverse guess lists. Extensive
experiments demonstrate that by integrating two(resp.
five) password guessing models, GuessFuse outperforms

its foremost counterparts by 11.00%(resp. 4.70%) ∼

59.62%(resp. 17.66%) on average within 107 guesses.
3) Two new insights into password guessing and PSM.

We present two substantive insights into password guess-
ing and PSM: 1) In the intra-site password guessing
scenarios, the popular password list in the training
set approaches the optimal upper limit of the crack-
ing efficiency. 2) The Min-auto indicator significantly
underestimates the strength of passwords, which can
inconvenience users when setting passwords. Using a
more precise hybrid password guessing method as the
PSM indicator can mitigate this issue.

II. PRELIMINARIES

We now briefly review the previous studies on hybrid pass-
word guessing and describe the password guessing scenarios,
the concept of multi-view learning, the details of the datasets
and models that this work is based on.

A. Previous Studies

Over the past several decades, extensive research has been
conducted on password guessing, resulting in a gradual evo-
lution from heuristic methods [35], [36], [37] to data-driven
machine learning models [6], [15], [22]. Earlier studies pri-
marily concentrated on developing one individual password
guessing model [25], [26], [27], [28], [38], continually opti-
mizing it to achieve better outcomes. Nonetheless, there is still
a significant gap between the password cracking effectiveness
of the password guessing models and the capabilities of the
real attackers [16]. In 2015, Ur et al. [16] found that the
cracking capabilities of real-world experts significantly out-
perform single automated password guessing models. Besides,
the performance could approximate that of experts by employ-
ing multiple carefully configured and fine-tuned password
guessing models in parallel. Consequently, They introduced
a conservative indicator, called Minauto, which represents
the minimum guess number required for each password to
be cracked by all password guessing models. However, the
Minauto indicator is only a theoretical upper bound, and
using multiple password guessing models in parallel takes
several times more guesses than using a single model, which
is inconsistent with the requirements in practical guessing
scenarios.

Despite the fact that the strategy of using multiple password
guessing models in parallel does not conform to real-world
scenarios, the advantages of hybrid password guessing have
begun to be recognized. In recent years, research on hybrid
password guessing has been proposed, but it is still in its
primitive stage. Based on the division of integrated objects,
existing hybrid password guessing approaches can be classified
into integration at the model architecture level and integration
at the guessing list level.

1) Integration at the Model Architecture Level: In 2018,
Zhang et al. [29] proposed a hybrid password guessing model
called SPSR. SPSR applies the PCFG model [6] to the
password structure layer and the Markov-chain model [22]
to the password string layer. In the same year, they also
proposed the SPRNN model [30], which combined structural
division and Bidirectional Long Short-Term Memory recursive

XIE et al.: GuessFuse: HYBRID PASSWORD GUESSING WITH MULTI-VIEW 4217

neural network (BiLSTM). Contrary to SPRNN, Xia et al. [31]
proposed another hybrid password guessing model called
PL. PL employed the PCFG model [6] for password string
layer deconstruction and the LSTM model [15] for structure
layer modeling. These dual approaches effectively utilized the
advantages of two password guessing models at different pass-
word analysis granularity layers. However, these integrations
at the model architecture level require targeted customization,
limiting their ability to integrate a wider variety of password
guessing models.

2) Integration at the Guessing List Level: In 2021,
Wang et al. [32] combined multiple password guess lists
equally and deduplicated the output. They found that inte-
grating password guessing models with distinctly different
password generation strategies (such as the RNN model [39]
and PCFG model [6]) can effectively increase the cracking
success rate. In 2022, Parish et al. [34] deduplicated the pass-
words in the training set and sorted them in descending order
of password frequency to generate a guess list. They defined
it as the Identity Guesser. They discovered that combining
multiple guess lists generated by models with the Identity
Guesser can significantly improve the cracking success rate.
However, these two studies only made preliminary attempts
at the guess list level. Combining guess lists equally does
not accurately extract the effective parts from each guessing
model.

In 2022, Han et al. [33] introduced a hybrid guessing
framework called hyPassGu. hyPassGu leverages the strengths
of the PCFG and Markov models by restricting each model to
generate targeted types of passwords and determining the num-
ber of guesses respectively. Despite the claim that hyPassGu
can be applied to other models beyond PCFG and Markov,
it requires prior knowledge about the model’s architecture
and the types of passwords it targets. Consequently, it cannot
be directly applied to other models. Additionally, hyPassGu
roughly divides the passwords into two categories based on
their structural characteristics, resulting in a significant loss
of effective passwords. Therefore, the cracking success rate
of hyPassGu is lower than that of an individual model, and
only marginally superior to the models which are restricted
the generation of specific types of passwords.

3) Summary: Existing studies on hybrid password guessing
have proven through methodological and experimental com-
parison that integrating various password guessing models can
effectively improve the cracking success rate. However, to the
best of our knowledge, there are still no satisfactory answers
to the following key questions: (1) What contributes to the
improved cracking capabilities of hybrid password guessing?
(2) How can we effectively leverage the strengths of multiple
different models? This paper focuses on addressing these
questions.

B. Password Guessing Scenarios
Consistent with the majority of related studies [16], [29],

[31], [32], [33], [34], this paper primarily focuses on hybrid
password guessing using data-driven password guessing mod-
els in trawling password guessing scenarios. In these scenarios,
attackers first build password guessing models based on leaked
datasets, then generate guesses using the models, and finally
attempt to crack all the target passwords using the guesses.

Fig. 1. Explanation of hybrid password guessing. Where, S is the training
set, {M1, M2, · · · , Ml } are l different password guessing models, H is the
hybrid password guessing approach, and G̃ is the guess list generated by H .

While rule-based password guessing tools [20], [21] can also
be used for hybrid password guessing, these tools still rely on
prior knowledge of the target dataset distribution to enhance
the effectiveness of password guessing.

Note that, depending on whether the leaked dataset and the
target passwords come from the same data source, trawling
scenarios can be further classified into intra-site scenarios and
cross-site scenarios. Although cross-site password guessing
scenarios are more realistic, attackers generally guess pass-
words based on the premise that they have partial distribution
information of the target data. Hence, to better describe
the concept of hybrid password guessing, we formalize the
password guessing task in intra-site trawling scenarios.

1) Formalization: Assume an attacker A wants to make k
guesses to crack a target server T. All the passwords in the tar-
get server are denoted as a multiset T = { f1 · pw1, f2 · pw2, f3 ·

pw3, · · · , fn · pwn}. Here, pwi represents the i-th distinct
password, and fi denotes the frequency of pwi in T, satisfying
the relation f1 ≥ f2 ≥ f3 · · · ≥ fn ≥ 1 . The k guesses are
denoted as an ordered list G = (g1, g2, g3, · · · , gk). Here, gi
represents the i-th guessed password. A sequentially selects
gi from G and compares it with any pw in T. If gi = pw j ,
it indicates that the i-th guessed password successfully cracks
f j passwords in T.

Fig. 1 shows the explanation of hybrid password guessing.
A assumes that the training set S shares the same password
distribution with the target server T, and uses the hybrid
password guessing approach H to generate an optimized guess
list G̃ based on S and different password guessing models
{M1, M2, · · · , Ml} modeled on S. The above process can be
formalized as H(M1, M2, · · · , Ml , S) → G̃.

C. Multi-View Learning

The concept of multi-view learning aligns well with that
of hybrid password guessing. Multi-view learning introduces
a function to model a specific view and jointly optimizes
all the functions to exploit redundant views of the same
input data, thereby enhancing learning performance [40]. At a
higher level, multi-view learning constructs multiple views
and evaluates their performance, then devises functions to
combine these views to improve learning outcomes. Similarly,
hybrid password guessing aims to enhance the effectiveness of
password guessing by utilizing multiple models that analyze
data in different ways. Therefore, multi-view learning can
be applied to address the challenge of integrating diverse
password guessing models in hybrid password guessing.

Xu et al. [41] proposed that multi-view learning effectively
leverages multiple views based on two key principles: con-
sensus and complementary. The consensus principle aims to

4218 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
BASIC INFORMATION ABOUT OUR SIX PASSWORD DATASETS

maximize the agreement among different views. The comple-
mentary principle states that each view may contain unique
knowledge that is not present in others. By effectively utilizing
the consensus and complementary aspects of multiple views,
a comprehensive and accurate description of the data can be
achieved. In this paper, we explore hybrid password guessing
based on these principles.

D. Our Datasets
In this paper, we employ six datasets (see Table I) containing

54 million plain-text passwords. Among these datasets, three
are sourced from English and three from Chinese websites,
covering six distinct service types. The diversity of data
sources helps to reduce bias in our analysis. As all our datasets
are ever publicly available on the Internet, the results of this
work are reproducible.

1) Data Cleaning: The raw datasets contain anomalies,
such as undecrypted hash strings, excessively long passwords
that are unlikely to be user-generated, and passwords
containing non-printable characters that do not conform to
standard password policies. Therefore, we first perform data
cleaning on the datasets. We remove passwords containing
characters outside the 95 printable ASCII characters and
delete passwords with lengths > 30. This data cleaning
strategy is also prevalent in the existing password guessing
literature [24], [26], and [42].

2) Ethical Considerations: Although the datasets we use
are ever publicly available and widely used in password
guessing research [8], [27], [32], [33], [34], these datasets
contain sensitive personal information. Therefore, we only
analyze the distribution characteristics of the password data
and report aggregated statistical information. We do not use
any data for purposes other than academic research, thus not
increasing the risk for affected individuals.

E. Password Guessing Models
We employ four leading password guessing models (such as

Markov, PCFG, FLA, and RFGuess) in our study. To mitigate
the impact of other factors on the analysis results, we focused
on the intra-site password guessing scenario. This scenario is
considered ideal because the training and test sets have the
same data distribution, ensuring consistency in our analysis.
We randomly sampled subsets of size 106 from the dataset
as the test sets, while the remaining data was used as the
training sets. We found that the results were sufficiently stable
for analysis based on this test set size. This phenomenon is
consistent with the papers [9], [43], [44]. The setup of each
model for generating the guess list is as follows:

1) PCFG. We utilized version 4.0 of the PCFG model [6],
which is available on the GitHub website.1 The grammar

1https://github.com/lakiw/pcfg_cracker

of this model includes six segment categories: alpha A,
digits D, other characters O , keyboard D, special string
X and years Y .

2) Markov. We chose the 4-order Markov model and
adopted the Laplace smoothing and end symbol regu-
larization as used in [26] to generate guesses.

3) FLA. We utilized the open-source code of FLA, which is
available on the GitHub website,2 and followed the rec-
ommended parameters specified in the [15]. We trained
a model consisting of three LSTM layers with 128 cells
in each layer and two dense layers, a total of 20 epochs.

4) RFGuess. Referring to [24], We trained a random forest
with 30 decision trees. Its minimum number of leaf
nodes is 10, the maximum ratio of features is 80%, and
the rest are in default of the scikit-learn framework [45].

III. ANALYSIS

Previous studies on hybrid password guessing have only
demonstrated through experimental results that integrating
multiple password guessing models can effectively improve
cracking capabilities, yet the fundamental reason for this
enhancement remained undetermined.

In this section, through multi-view analysis, we sequentially
address the following questions: (1) What are the key reasons
that hybrid password guessing can improve cracking capabil-
ities? (2) What benefits can be gained from using guess lists
for hybrid password guessing?

A. Essence of Hybrid Password Guessing
We demonstrate the differences between password guessing

models by comparing the guess lists generated by each model.
As is shown in Fig. 2, the guess list generated by the
PCFG model includes passwords such as “dearbook123456”
and “DEARBOOK”, demonstrating a bias towards generating
passwords containing common phrases and simple structures.
The guess list produced by the Markov model contains pass-
words like “woshili” and “1989123”, reflecting a bias towards
guessing based on the character correlation within passwords.
The RFGuess model’s guess list includes passwords such
as “1234567>” and “1234567}”, indicating a tendency to
combine common phrases with various characters. The FLA
model, similar to the Markov model, generates a guess list
with passwords like “45665456” and “qwqwqwqww”, show-
casing its bias for sequential context coherence in passwords.
Nevertheless, the guess list generated by the FLA model also
differs from that of the Markov model.

Furthermore, there are passwords in the central area, such
as “dearbook” and “12345678”. It demonstrates that despite

2https://github.com/cupslab/neural_network_cracking

XIE et al.: GuessFuse: HYBRID PASSWORD GUESSING WITH MULTI-VIEW 4219

Fig. 2. Word cloud representation of the repeated and unique passwords
extracted from the top-104 guess lists generated by four models based on the
CSDN dataset. The size of the passwords reflects their ranking in the guess
lists. The passwords in the central area repeatedly appear in the guess lists
generated by various models, while the passwords in the four surrounding
areas appear independently in the guess lists generated by a single model.

each model’s unique bias, they have reached a consensus
on certain passwords. These passwords are likely commonly
used and easily predicted by various models. The similarities
and differences in the guess lists highlight that, even when
based on the same dataset, existing password guessing models
can generate guess lists that encompass distinct password
characteristics.

Essentially, password guessing models are designed based
on the behavior of users setting vulnerable passwords.
By accurately identifying and matching the characteristics of
weak passwords, these models can generate guess lists with a
high cracking success rate. However, due to the heterogeneous
diversity of user password-setting behaviors [42], even models
like PCFG, which already encompass a variety of weak
password characteristics (see Section II-E), cannot completely
cover all features within a limited number of guesses. Utilizing
a combination of multiple password guessing models with
different biases allows for more comprehensive identification
and matching of password features, thereby enhancing the
performance of password guessing.

A new challenge arises: how can we effectively utilize
a variety of heterogeneous password guessing models for
hybrid password guessing? Designing a new password guess-
ing model based on the specific principles of feature extraction
from different models can indeed enhance cracking capabil-
ities. However, leveraging multiple heterogeneous password
guessing models at the structural level is quite challenging and
not applicable to newly proposed password guessing models
(e.g., RFGuess), which deviates from the initial idea of using
multiple heterogeneous models. Fortunately, password guess-
ing models ultimately generate guess lists. Given the natural
suitability of multi-view learning for hybrid password guessing
(see Section II-C), we consider the guess lists generated by the
password guessing models as multiple views of the data.

We describe the concept of hybrid password guessing with a
schematic explanation. As illustrated by Fig. 3, the guess lists
{G1, G2, G3, · · · , Gl} generated by different password guess-
ing models can cover different parts of the test set T. Assuming
a hybrid password guessing method H can effectively extract
the password covering T from {G1, G2, G3, · · · , Gl} to gen-
erate an optimized guess list G̃. The more guess lists are
combined, the greater the coverage of the test set, resulting in
better cracking capabilities. Note that the schematic depicted
in Fig. 3 may not be general, as there are typically overlaps in

Fig. 3. Schematic explanation describing hybrid password guessing based
on multiple guess lists. The rectangle (containing blue and green) represents
the test set T. The four circles (containing orange and green) represent the
multiple guess lists generated by different models {G1, G2, G3, · · · , Gl }. The
green area signifies the optimized guess list G̃ generated by the optimal
combination through the hybrid password guessing method.

passwords among the guess lists. However, the causality that
combining more guess lists can cover more of the test set is
prevalent. We will prove this through the following analysis.

B. Advantages of Multi-View Integration
For clarity in this section, we have generated the top-

106 password guess lists based on the CSDN dataset as an
example. A multitude of experiments has confirmed that the
results we have described are consistently observed across six
datasets, thereby affirming their ubiquity.

1) Quantitative Feature Analysis: First, we conduct a quan-
titative comparison of the statistical features of the combined
guess lists to demonstrate the guessing effectiveness brought
by multi-view integrations. We combine the guess lists gen-
erated by each model in equal size and deduplicate them,
then compare the result with single guess lists. For example,
when comparing guess lists of size 103, we combine the top-
103 guesses generated by the PCFG and Markov models,
removing any duplicate passwords. The output is defined as
two views integration. Note that, this combination strategy is
identical to the calculation of the Minauto indicator [16] and
does not reflect a real-world scenario. Our aim is merely to
demonstrate the feasibility of enhancing password cracking
capabilities through the quantification of features across mul-
tiple views.

Table II provides a statistical analysis of four types of fea-
tures. Note that, we analyze the number of password structures
in the guess list based on the PCFG algorithm. For instance,
if the guess list contains passwords such as “dearbook134”,
“dearbook309”, and “123dearbook”, it encompasses two types
of password structures: “A8D3” and “D3A8”. As for the
ratio of effective passwords, a password in the guess list is
considered effective if it can match a password in the test set.

The ratio of effective passwords to the size of single
guess lists (denoted as Effect.) and the cracking success rate
on the test set (i.e., the Minauto indicators) illustrate the
improvement in guessing effectiveness resulting from multi-
view integrations. As shown in Table II, compared to the
average cracking success rate in a single view, integrating two
views can increase the Minauto indicators by 9.3% on average,
three-view integrations by 13.1%, and four-view integrations
by 15.5%. Similarly, compared to the average ratio of effective
passwords contained in a single view, integrating two views
can increase the average ratio of effective passwords by 42.7%
on average, three-view integrations by 67.0%, and four-view
integrations by 85.58%.

4220 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE II

STATISTICAL FEATURES OF HYBRID PASSWORD GUESSING USING MULTIPLE VIEWS1

On the other hand, the ratio of unique passwords to the
size of single guess lists (denoted as Uniq.) and the counts
of password structures (denoted as Struct.) demonstrate the
enhancement of diversity achieved by integrating multiple
views. Excluding the minor duplicate passwords that may
be generated by the PCFG model, the number of unique
passwords in a single view equals the size of single guess
lists. Compared to a single view, the integrations of two views
can increase the number of unique passwords by an average
of 63.8%, three-view integrations by 113.3%, and four-view
integrations by 157.5%. Additionally, the integrations of two
views also can increase the number of password structures by
an average of 45.5%, three-view integrations by 77.1%, and
four-view integrations by 102.9%. The above enhancement of
the four quantitative features indicates that integrating more
diverse views can increase the variety of guesses, cover more
password characteristics, and thereby improve the effective-
ness of passphrase guessing.

2) Effective Password Analysis: Combining multiple guess
lists results in a number of unique passwords that far exceed
the size of a single guess list. If all are used for the final
cracking, it would lead to an excessive consumption of
cracking attempts. Fortunately, Fig.4(a) shows that when the
guess number grows to approximately 4 × 104, the number
of effective passwords from combining multiple guess lists
begins to fall below the size of a single guess list. In this case,
by selecting a portion of these effective passwords, even if the
optimized guess list size is smaller than that of a single guess
list, the success rate of guessing can still reach the Minauto
indicators of multi-view integrations.

Based on the premise of knowing the test set, we hypoth-
esize an optimal hybrid password guessing method that can
effectively integrate multiple guess lists to produce an opti-
mized guess list. The optimized guess list generated by this
hybrid password guessing method contains the most effi-
cient passwords from each guess list. A guessed password

Fig. 4. The comparison of the number of effective passwords and the cracking
success rate between integrating multiple views and single views.

is considered to have the highest efficiency if it cracks the
passwords with the highest frequency in the test set. For
example, when integrating the guess lists of size 103, we first
deduplicate the guessed passwords and compare them with the
test set, calculating the number of test passwords each guessed
password can crack. Then, we select the guessed passwords
in descending order of the number of cracks and add them to
the optimal guess list until the size of the optimal guess list
also reaches 103.

We compare the cracking success rate of the optimal guess
lists with that of the guess lists generated by single password
guessing models (see Fig.4(b)). As is shown in Fig.4(b), when
guesses number < 4×104, compared to the PCFG model, the
cracking success rate of the optimal guess lists integrating two
views increased by an average of 1.3%, integrating three views
increased by 2.6%, and integrating four views increased by
2.8%. Although the number of effective passwords exceeds the

XIE et al.: GuessFuse: HYBRID PASSWORD GUESSING WITH MULTI-VIEW 4221

Fig. 5. Venn diagram of multi-view subsets based on CSDN dataset. The features are listed from top to bottom as follows: the number of effective passwords
in the subset (represented by unsigned numerical values), the number of unique passwords (enclosed in quotation marks “”), the proportion of effective
passwords in the subset (enclosed in parentheses ()), and the subset’s cracking success rate (indicated by bold).

size of a single guess list, selecting a portion of the equivalent
size of guessed passwords with the highest efficiency can still
enhance the cracking capabilities. The above results indicate
that accurately extracting effective passwords from multiple
views is key to conducting effective hybrid password guessing.

3) Multi-View Subset Analysis: To discover an effective
way for extracting effective passwords from multiple views,
we conduct an analysis of the subsets among multiple views.
Specifically, we perform set operations on guess lists of equal
size generated by different models to obtain the intersecting
and complementary subsets.

We analyze the variations in multi-view subsets when inte-
grating different numbers of views (see Fig. 5). As illustrated
in Fig. 5, integrating two views generates three subsets, three
views integrations result in seven subsets and four views
integrations lead to 15 subsets. Moreover, as the number
of integrated views increases, the distribution of effective
passwords within each subset becomes more concentrated. The
proportion of effective passwords in the intersecting subset
(indicated by the red numerical value in the middle) increases
with the addition of integrated views. In the experiments based
on the CSDN dataset, the proportion of effective passwords
in the intersecting subset is 51.51% when integrating two
views. This proportion increases by 21.0% when integrating
three views, and by an additional 3.9% when integrating
four views. These results demonstrate that integrating multiple
views provides incremental information on the distribution
of effective passwords. As more views are integrated, the
incremental information increases, and the distribution of
effective passwords is more concentrated.

We continue to analyze the distribution of effective pass-
words across various subsets. Currently, as we extract the
intersecting and complementary subsets among guess lists
solely through set operations, the passwords within the subsets
do not include a sequential order. Therefore, we evaluate
the distribution of effective passwords within the subsets by
analyzing the average cracking success rates of subsets among
the guess lists of different sizes (see Fig. 7). For ease of repre-
sentation, we use Fig. 6 to indicate the subsets represented by
each average cracking success rate. Specifically, we name each
subset using a 4-bit binary code, where each bit represents the

Fig. 6. Venn diagram of four guess lists. The binary encoding represents
the names of each subset. The outer circle of each subset corresponds to the
characteristics (i.e., color and dashed lines) of the subset curves in Fig. 7.

Fig. 7. Distribution of the average cracking success rate of the subsets in the
multiple guess lists. The y-axis represents the average cracking success rate
of passwords within each subset (calculated as cracking success rate of subset

size of subset).
Note that the y-axis is in logarithmic form.

appearance of a password in the guess lists generated by a
specific model, from left to right, respectively: PCFG, FLA,
Markov and RFGuess. For instance, “1000” represents that the
passwords in this subset appear only in the PCFG guess lists.

As shown in Fig. 7, the overall cracking efficiency of the
intersecting subset “1111” is significantly superior to other
subsets. However, the latter part of the passwords in the
intersecting subset does not outperform the earlier part of the
passwords in other subsets. For example, the average cracking
success rate of intersecting subset “1111” is 3.57×10−6 within

4222 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE III
FITTING RESULTS OF THE CORRELATION BETWEEN THE AVERAGE

CRACKING SUCCESS RATE OF SUBSETS AND THE SIZE OF SINGLE
GUESS LISTS USING THE PDF-ZIPF MODEL1

101 guesses, while that of complementary subsets “0010” is
2.61 × 10−5 within 101 guesses.

Interestingly, the average cracking success rate of the sub-
sets shows an approximate linear relationship with the size
of single guess lists. This becomes even more evident when
we consider the 15 curves as a whole. This may adhere to
Zipf’s law in passwords [46]. We fit the data using the PDF-
Zipf model [46]: log f r = logC − s · logr , where f r and
r correspond to the average cracking success rate and the
size of single guess lists, respectively. As shown in Table III,
C ∈ [−3.55,−0.85] and s ∈ [−0.92,−0.63] are constants.
The RMSE of the fitting is within the range of [0.08, 0.24].

This phenomenon aids in leveraging the advantages of mul-
tiple password guessing models in hybrid password guessing.
Although Zipf’s law in password distribution is commonly
used to explain user behavior in setting passwords, there
are also studies [33], [47] that improved password guessing
models by analyzing the presence of Zipf’s law within them.
In our case, Zipf’s law indicates that the efficiency of guessed
passwords declines with their descending order of rank within
the subset. In other words, passwords ranked higher in the
subset are considered to have higher cracking efficiency.

4) Summary: Through analyzing different guess lists as
multiple views of data, we have revealed the key reasons why
hybrid password guessing can enhance cracking capabilities.
That is, integrating more diverse views allows for the coverage
of a wider range of heterogeneous password characteristics,
and provides more detailed information on effective password
distributions. We also discovered that subsets generated by
integrating multiple perspectives have a more concentrated dis-
tribution of valid passwords, and the efficiency of passwords
within subsets follows Zipf’s law. We will utilize this in the
following design.

IV. GuessFuse

In this section, we use the aforementioned analysis findings
to design a hybrid password guessing framework based on
multi-view learning, naming it GuessFuse. We sequentially

Fig. 8. Overall framework of GuessFuse.

answer the following questions: (1) Why do we design Guess-
Fuse? (2) How do we implement it?

A. Overall Framework
In Section III, we demonstrate that the more password

guessing models are integrated, the higher cracking capabili-
ties. However, existing approaches cannot effectively integrate
multiple heterogeneous password guessing models. Fortu-
nately, since password guessing models ultimately generate
guess lists, the integration of guess lists can well solve this
problem. Not only that, in Section III, we reveal the biases
of various password guessing models through word cloud
analysis, and these biases are also well reflected in the guess
lists generated by the models. At the same time, the inter-
secting and complementary subsets between multiple guess
lists well reflect the consensus and complementary aspects
between different models, which can also help integrate the
advantages of multiple password guessing models. Therefore,
we propose a new hybrid password guessing framework,
GuessFuse, to effectively integrate the guess lists generated
by multiple heterogeneous password guessing models.

As shown in Fig. 8. GuessFuse integrates multiple guess
lists generated by different password guessing models.
It includes two modules, namely the multi-view subset extrac-
tion module and the segment splitting selection module.
By inputting l guess lists, the module outputs 2l

−1 multi-view
subsets. The multi-view subsets contain information about the
ranking of the passwords in the original guess lists, so the
module is more than just a simple set operation. The splitting
selection module receives the multi-view subset collection,
extracts the effective parts of the passwords in the multi-
view subset based on the validation set, and reorganizes them
to generate the final optimized guess list. In the following
subsections, we will elaborate on the motivation and concrete
implementation of each module.

B. Multi-View Subset Extraction
The multi-view subset extraction module extracts the inter-

secting and complementary passwords between the guess lists

XIE et al.: GuessFuse: HYBRID PASSWORD GUESSING WITH MULTI-VIEW 4223

Fig. 9. An example of multi-view subset extraction on two guess lists 1 and 2 with the priority prior(1) > prior(2).

to generate multi-view subsets. Unlike the intersection and
complement sets in set operations, the multi-view subsets
include the ranking order of the guessed passwords.

1) Motivation: There are duplicate and independently
appearing passwords between multiple guess lists (see Fig. 2).
If multiple guess lists are simply combined in equal amounts,
a considerable part of the passwords will be used for cracking
repeatedly, heavily wasting the opportunities of crack. Extract-
ing and integrating the intersecting and complementary subsets
between multiple guess lists can effectively solve this problem.
Not only that, in Section III, we show that integrating more
guess lists can produce more subsets, and effective passwords
will be more concentrated in specific subsets (see Fig. 5).
Retaining the order of the guessed passwords can assist in
extracting effective passwords from the subset, which we will
apply in the segment splitting selection module.

2) Implementation: To better describe the process of the
multi-view subset extraction module, we use an example to
describe the flow of the module’s operation (see Fig. 9).
During the process, the module first generates 2l

− 1 subsets
according to the number of input guess lists l and assigns
logical labels to them one by one. In Fig. 9, for the input of
two guess lists, the module first generates 22

− 1 = 3 subsets.
Then, a two-bit binary code is used to represent the logical
relationship between the subset and the guess list, in the same
way as shown in Fig. 6. The module maintains these subsets
throughout the processing. Next, the module processes the
guessed passwords round by round according to the ranking,
comparing whether the input password already exists in each
subset. If the password does not appear in the subset, it is
added to the complementary subset corresponding to the
guess list. If it already exists in the subset, it is added to
the corresponding intersection subset according to the logical
rules. Note that, in a single round of processing, there is
a priority for processing passwords in multiple guess lists.
For example, in Fig. 9, the priority of the guess lists is the
prior(1) > prior(2). In the second round of processing, guess
lists 1 and 2 input the passwords “123456” and “password”
respectively. The module first queries the password “123456”
in the subset. If it exists, it is moved into the subset “11”

according to the logical rules. Then the password “password”
is queried and moved into the subset “11”. This process is
repeated until the generated subsets contain enough quantities
to generate an optimized guess list. Finally, the module outputs
the maintained multi-view subsets.

As this module processes guessed passwords round by
round according to the ranking, our framework can also be
directly applied to integrate the password guessing models and
generate guessed passwords without the need to pre-generate
guess lists. The application of the next segment splitting selec-
tion module only needs to limit the size of the subset output
by the multi-view subset extraction module. This emphasizes
that GuessFuse can be widely used for the integration and
optimization of existing password guessing models. In the
practical application of GuessFuse for experimental verifi-
cation, we use the power-law distribution interval generated
by Algorithm 1 as sampling points to evaluate the optimized
guess list. After outputting the multi-view subsets containing
a certain number of guess passwords to the segment splitting
selection module and generating the optimized guess list, the
multi-view subset extraction module retains these multi-view
subsets and removes the passwords that have been used. Then,
in the next sampling interval, the module integrates new guess
passwords into these multi-view subsets for output.

C. Splitting Selection

After receiving the multi-view subsets, the splitting selection
module further refines each subset into multiple password
segments according to the power law interval. Based on the
average successful cracking rate calculated by the validation
set, it reorganizes the effective password segments to generate
the final optimized guess list.

1) Motivation: The Zipf’s law of passwords in the subset
indicates that the cracking efficiency of passwords is inversely
proportional to their rank in a power-law relationship. Fig. 7
also shows that, although the overall performance of the
intersecting subset is better than other subsets, the lower-
ranked passwords in the intersection are less efficient than the
higher-ranked passwords in other subsets. Therefore, splitting

4224 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 10. An example of splitting selection into three multi-view subsets. Note that, for ease of presentation, the presented interval sequence is not strictly
generated according to Algorithm 1.

the subsets into multiple password segments according to the
power law can accurately extract the effective parts for sorting.

In the scenario of intra-site password guessing, using data
samples with the same distribution of the test set to evaluate
the cracking efficiency of password segments in the subset can
effectively sort them. However, repeated use of the training
set may lead to over-fitting of the data and consume excessive
computational resources. Therefore, a small part of the training
set can be split out as a validation set, used solely for evalu-
ating the cracking efficiency of password segments, and does
not participate in the training of individual models. This still
has corresponding real-world scenarios in cross-site password
guessing, which we will elaborate on in the experimental setup
section of Section IV.

Algorithm 1 Power-Based Interval Sequence Generation
Require: Optimized guess list size k.
Ensure: Interval list L .

tolerance = 1,temp = 0,basetime = 10,L = []
while temp < k do

if temp < basetime then
L append [temp, temp + tolerance]
[temp, temp + tolerance]

else
tolerance = basetime
L append [temp, temp + tolerance]
temp+ = tolerance
basetime = tolerance × 10

end if
end while
Return L

2) Implementation: Similar to Section IV-B, we also intro-
duce an example to illustrate how to implement the segment
splitting selection module (see Fig. 10). In order to generate
an optimized list containing k guessed passwords, the seg-
mentation selection module initially employs Algorithm 1 to
produce a power-based interval sequence with a maximum
value of k. Subsequently, the module utilizes this interval
sequence to segment the input subsets into finer-grained
password segments. Following this, the module employs a
validation set to evaluate the cracking efficiency of these

password segments, specifically, the average cracking success
rate. In detail, the module calculates the average cracking
success rate of each password segment with the validation set
and then sorts the password segments based on this efficiency.
Finally, the module selects the password segments with the
highest cracking efficiency, sequentially concatenates them
into an optimized guess list, and truncates and outputs this
list once it reaches k entries.

At present, we have not found an effective way to pre-
estimate the number of guess passwords or the size of the
guess list that each integrated password guess model needs to
generate in order to create an optimized guess list containing
k passwords. We are uncertain about the number of passwords
each subset will contain among multiple guess lists, and the
maximum interval that needs to be segmented within each
subset. Therefore, we can only limit the original guess list
and the maximum segmentation interval based on the k size
of the optimized guess list. When the passwords in a subset
are insufficient to fill the segmentation interval, we discard the
tail interval and treat the remaining passwords as a password
segment. Fortunately, our analysis of Fig. 4 in Section III
and our evaluation experiments indicate that when using an
optimized guess list of the same size as the original guess list,
its cracking ability also shows a significant improvement.

V. EVALUATION

In this section, we conduct a comprehensive and in-depth
evaluation of the proposed hybrid password guessing frame-
work. The experiments we designed mainly aim to answer the
following three questions: (1) Are all the modules included
in GuessFuse necessary? (2) Can GuessFuse effectively inte-
grate multiple password guessing models? (3) Compared to
existing approaches, can the GuessFuse further enhance the
performance of hybrid password guessing?

A. Experimental Setups

1) Data Preparation: We randomly sampled the datasets
into training sets, validation sets, and test sets at a ratio of
8:1:1. Taking the ClixSense dataset as an example, which has
the least amount of data among the six datasets, the training
set contains approximately 2.9 million passwords. The test set
and validation set each contain about 3.6 × 105 passwords.

XIE et al.: GuessFuse: HYBRID PASSWORD GUESSING WITH MULTI-VIEW 4225

Fig. 11. Comparison of the cracking success rate between the Identity guesser
and the Optimal guesser in the intra-site password guessing scenarios.

2) Experiment Details: To address the three questions
posed in the introduction of this section, we designed three
experimental schemes: ablation study, effectiveness analysis,
and comparative experiments. Firstly, we generated five types
of guess lists, a total of 30, based on six training sets.
In addition to the guess lists generated by the four pass-
word guessing models mentioned earlier (i.e., PCFG, Markov,
FLA and RFGuess), we also referred to related researches
[34] to generate another type of guess list. We sorted the
passwords in the training set according to their frequency
to generate a password list. We defined it as the guess
list generated by the Identity Guesser [34]. Through our
comparative analysis of the cracking success rates of five
types of guess lists, we set the priority of the guess lists
as prior(Identity) > prior(RFGuess) > prior(PCFG) >

prior(FLA) > prior(Markov).
We define the cumulative distribution of the password

samples in the test set as the cracking capability curve of the
Optimal Guesser and compare it with the Identity Guesser
(see Fig11). In the context of in-site password guessing,
the Identity guesser can approximate the optimal cracking
efficiency by guessing the popular passwords in the training
set (usually guess number < 104), which is difficult for other
individual password guessing models to achieve. Therefore,
when integrating the Identity Guesser, we first use the top-
104 guess lists generated by the Identity Guesser as the head of
the optimized guess lists, and then use GuessFuse to integrate
the remaining parts of the guess lists.

In the ablation study, we removed the multi-view subset
extraction module and segment splitting selection module from
GuessFuse respectively to generate variants of GuessFuse for
comparisons. The specific implementations of the variants of
GuessFuse are as follows:

1) noSE-GuessFuse. We removed the multi-view subset
extraction module and directly used the segment splitting
selection module to integrate guess lists.

2) noSS-GuessFuse. We removed the segment splitting
selection module. For the generated multi-view subsets,
we sequentially selected those subsets that have the
highest cracking success rate for the validation set.
We added these subsets to the optimized guess list.
Finally, we removed the tail password part that exceeded
the required size from the list.

In the effectiveness analysis, we used GuessFuse and
EqualFuse to integrate different numbers of password guess
lists respectively, and compared the min-auto indicators of

different integrations with GuessFuse. Among them, Equal-
Fuse is a hybrid password guessing method at the guess
list level. We implemented it by referring to papers [32],
[34]. More specifically, to generate an optimized guess list
containing k passwords, we combine the first k/ l guessed
passwords from l guess lists and deduplicate the combination
results.

In the experiments and analyses of this paper, our sampling
points are also based on Algorithm 1. This is because the
results of the password guessing experiments are widely
power-law distributed. That is, when the sampling points
are small, the results of the experimental analysis change
dramatically, and gradually flatten as the sampling points
increase. For some situations where sampling points cannot be
accurately used, we will skip this sampling point. For example,
when applying EqualFuse to integrate four guess lists, using
a sampling point of 10 obviously cannot combine passwords
in equal amounts, so we skipped this sampling point.

In the comparative experiments, we compared GuessFuse
with EqualFuse, and hyPassGu. Based on the research [33],
we implemented another hybrid password guessing method,
hyPassGu. This method integrates the PCFG model and the
Markov model through model pruning and guess number
allocating. Specifically, hyPassGu restricts each model to gen-
erate only specific types of guess passwords. Then, hyPassGu
calculates the number of guess passwords that each model
needs to generate by statistically analyzing the distribution of
specific types of passwords in the training set. Finally, these
guess passwords are combined as output.

We did not compare GuessFuse with other hybrid password
guessing models that integrate at the model architecture level.
This is because GuessFuse is fundamentally different from
them in terms of integration. Precisely because of this, Guess-
Fuse directly integrates on the guess list, which can solve
the generalization problem that exists when integrating at the
model architecture level.

B. Experimental Results
1) Ablation Study: We employ GuessFuse and its two

variants to integrate the aforementioned five types of guess
lists. Subsequently, we quantify the relative improvements of
the GuessFuse method and its variants within 107 guesses
in the in-site password guessing scenarios (see Table IV).
In addition, we also quantify the relative improvements of
the variants using a single module compared to the Identity
guessers, which have relatively the best cracking capabilities
compared to the single guessing models.

As shown in Table IV, GuessFuse outperforms noSE-
GuessFuse by an average of 2.908% to 6.245% across six
datasets. This indicates that the use of multi-view subset
extraction modules can enhance the cracking capabilities of
GuessFuse. On the other hand, noSS-GuessFuse outperforms
the Identity Guesser by an average of 0.896% to 5.567%.
noSS-GuessFuse represents the method of using the multi-
view subset extraction module alone and combining it simply.
These results reveal that the multi-view subset extraction
module significantly affects the cracking success rate.

As for the segment splitting selection module, the cracking
capabilities of noSE-GuessFuse are on average 0.304% to
2.923% lower than that of the Identity guessers, but a max-

4226 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE IV
STATISTICAL INFORMATION FOR THE ABLATION STUDY. WHERE A VS

B REPRESENTS THE IMPROVEMENT OF A RELATIVE TO B , WHICH
IS CALCULATED AS A−B

B . “NOSS” REPRESENTS NOSS-GuessFuse,
AND “NOSE” REPRESENTS NOSE-GuessFuse

imum increase of 4.84% to 31.93%. Meanwhile, GuessFuse,
compared to noSS-GuessFuse which does not use this module,
has an average increase of 0.05% to 0.29%, and a maximum
increase of 0.57% to 4.42%. The impact of this module on
GuessFuse is not as obvious as that of the multi-view subset
extraction module. This module cannot make the average
cracking rate of the optimized guessing list higher than the
Identity guesser. However, its maximum increase relative to
the Identity guesser and the overall increase of GuessFuse still
show its contribution to the integration of the guess lists.

We compared GuessFuse and its two variants and found
that GuessFuse can effectively integrate the guess lists. This
is mainly because the multi-view subset extraction module can
pre-divide the repeated passwords and independent passwords
in the guess lists. The repeated passwords in the guess lists
will cause simple combinations to generate already guessed
passwords, thus wasting the number of cracks. This is also
why the cracking ability of noSE-GuessFuse is lower than that
of the Identity guesser. The repeated and independent parts of
the password respectively reflect the consensus and comple-
mentary information extracted by different models from the
dataset, which should be treated separately. The experimental
results also show that the segment splitting selection module
is effective. However, we emphasize that in order to achieve
the ideal performance, it needs to be used in conjunction with
the multi-view subset extraction module.

2) Effectiveness Analysis: We first used GuessFuse and
EqualFuse to integrate different numbers of guess lists respec-
tively, and analyzed their cracking success rates to compare
the effectiveness of them in integrating multiple guess lists.
As shown in Fig 12, the cracking success rates of the compared
optimized guess lists from high to low are, PFRM-GuessFuse
> PFR-GuessFuse > PF-GuessFuse > PF-EqualFuse > PFR-
EqualFuse > PFRM-EqualFuse. As the number of integrated
guess lists grows, the cracking capabilities of the optimized
guess lists output by GUESSFUSE continue to improve. Con-
trary to GuessFuse, the cracking success rate of the optimized
guess lists generated by EqualFuse decreases as the number
of integrations increases. This indicates that GuessFuse can
effectively integrate multiple guess lists, while simple combi-
nations cannot achieve this effect.

Fig. 12. Comparison of the effectiveness of integrating multiple guess lists
in the intra-site password guessing scenarios based on the CSDN dataset. The
first half of the legend represents the integrated list of guesses. For example,
PFRM-GuessFuse represents the optimized guess list generated by integrating
PCFG (termed P), FLA (termed F), RFGuess (termed R), and Markov (termed
M) models using GuessFuse.

TABLE V
THE STATISTICAL INFORMATION FOR THE COMPARISONS. WHERE

coverate REPRESENTS THE SUCCESS RATE OF THE GUESS LIST, n
REPRESENTS THE NUMBER OF GUESSES AND THE VALUES ARE

CALCULATED AS A
B FOR A VS B

We further compared the gap between the cracking capa-
bilities of GuessFuse and its upper limit (i.e., the Minauto
indicators) when integrating multiple guess lists. Table V
presents statistical information on the comparisons. It provides
two types of comparisons: GuessFuse vs. Minauto reflects
the effectiveness of integrating five single guess lists, and
PM-GuessFuse vs. PM-Minauto reflects the effectiveness of
integrating two single guess lists. We calculated the fraction
of the cracking success rate (termed coverate) achieved by
GuessFuse, generating optimized guess lists of the same size
as the single guess lists, compared to the Minauto indicator.
Additionally, we analyzed the fraction of the number of
password guesses (termed n) required by the single guess lists
compared to the Minauto indicators.

The results show that when combining two single guess
lists, GuessFuse can select a subset of passwords that repre-
sents an average fraction of 57.47% to 61.91% of the total
passwords, achieving a success rate ranging from 90.97% to
97.63% of the upper limit indicated by Minauto. It is worth
noting that the case with the lowest coverate of only 3.16%
in the Myspace dataset is not representative as it involves
the fusion of only two passwords. However, GuessFuse con-
sistently demonstrates its effectiveness in achieving higher
success rates for the other datasets.

XIE et al.: GuessFuse: HYBRID PASSWORD GUESSING WITH MULTI-VIEW 4227

Fig. 13. Comparison of the cracking success rate in the intra-site password
guessing scenarios based on CSDN dataset.

Furthermore, when combining five single guess lists, Guess-
Fuse selects a subset of passwords that represents an average
proportion of 39.32% to 46.48% of the total passwords,
achieving a success rate ranging from 87.82% to 95.18% of
the upper limit indicated by Minauto. These findings highlight
the effectiveness of GuessFuse and indicate that the fusion
of more guess lists using GuessFuse can effectively reduce
resource waste on invalid passwords.

3) Comparative Experiment: We first compared the effec-
tiveness of GuessFuse, EqualFuse, and hyPassGu to integrate
guess lists. hyPassGu can only integrate guess lists generated
by the PCFG and Markov models. Therefore, in the experi-
ments of the intra-site password guessing scenarios, we used
GuessFuse and EqualFuse to integrate the PCFG and Markov
models. Due to the restriction of hyPassGu on the type of
password generated by models, we customized the guess lists
generated by the PCFG and Markov models. We deleted the
single-character passwords in the PCFG guess list and also
deleted the passwords containing more than two types of
characters in the Markov guess list. In this way, we formed
the PCFG-cutoff and Markov-cutoff guess lists.

As shown in Fig.13, the cracking success rate of PM-
GuessFuse surpasses its competitors for most guess numbers.
Although for certain specific guess numbers (e.g., guess num-
bers > 107), the cracking success rate of PM-GuessFuse is
lower than that of PM-EqualFuse. In contrast, the cracking
success rate of hyPassGu is lower for most guess num-
bers, only surpassing the guess lists generated solely by the
Markov model and the customized guess lists PCFG-cutoff
and Markov-cutoff. This indicates that the effectiveness of
GuessFuse to integrate guess lists surpasses that of EqualFuse
and hyPassGu.

Note that, the cracking success rate of the guess list gen-
erated by the PCFG model is superior to other guess lists,
and there is a noticeable increase around the guess number
of 105. This may be due to the specific distribution of the
CSDN dataset. We analyzed the distribution of the dataset
and found that the passwords with a frequency of 2 to 4 are
significantly more than the passwords with a frequency of 1.
On the other hand, the bias of the PCFG model and Markov
model represented in Fig.2 reveal that the reason for the poor
integration effectiveness of hyPassGu is that its restriction
method for the password types of the models is too crude,
resulting in a large waste of effective passwords.

We further analyzed the effectiveness of GuessFuse, Equal-
Fuse, and hyPassGu in cross-site password guessing scenarios.

Fig. 14. Comparison of the cracking success rate in the cross-site password
guessing scenarios. The experiment extracted the training set from the CSDN
dataset, and generated the validation and test sets from the Dodonew dataset
using sampling without replacement.

TABLE VI
STATISTICAL INFORMATION COMPARING GuessFuse WITH THE GEN-

ERALLY OPTIMAL SINGLE GUESS LISTS AND EXISTING HYBRID
PASSWORD GUESSING APPROACHES

Specifically, we extracted training samples from one dataset.
Based on this, we generated a guess list by a single model.
Then, we drew a validation set and a test set from another
dataset without replacement. These were used to optimize and
test the integration of the guess list. This experimental scenario
is realistic. Attackers often use simpler means than password
guessing models (such as weak password attack [48]) to obtain
a part of the target data. Then, they use the target data to
further expand the attack results [12], [27].

As illustrated in Fig.14, the cracking success rate of PFRM-
GuessFuse significantly surpasses that of other guess-list
generation methods, including PM-GuessFuse. This suggests
that the capabilities of cracking can be substantially enhanced
by integrating more guess lists using GuessFuse. Despite
hyPassGu demonstrating comparable performance to PM-
GuessFuse and PFRM-EqualFuse for a majority of guess
numbers, its inability to integrate other guess-lists hinders any
further improvement in its cracking capability in cross-site
password guessing scenarios.

We compare the effectiveness of GuessFuse relative to
existing methods in the context of intra-site password guessing
scenarios. Table VI presents the statistical information for the
comparative experiments. The results show that GuessFuse can
effectively improve the cracking success rate of the optimized
guess lists when integrating five or two guess lists.

The dual-integration guess lists generated by GuessFuse
outperform the generally optimal single guess lists (i.e.,

4228 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 15. Weighted Spearman correlation coefficient of five PSMs.
GuessFuse-PSM outperforms other PSMs in the ranking evaluation of the
top-104 passwords in the test set.

PCFG), with an average improvement in success rate ranging
from 0.09% to 7.73%. The five-integration guess lists gener-
ated by GuessFuse outperform the generally optimal single
guess lists (i.e., Identity), with an average improvement in
success rate ranging from 0.78% to 2.54%. The variation in
improvement is because the performance of password guessing
also depends on the distribution of the dataset.

Compared to existing hybrid password guessing approaches,
GuessFuse demonstrates superior performance. On average,
GuessFuse achieves a higher success rate than EqualFuse,
by 4.70% to 17.66%. Furthermore, compared to hyPassGu,
GuessFuse achieves an average relative improvement of
25.46% to 87.67% in success rate.

4) Summary: Through ablation study, effectiveness analy-
sis, and comparative experiments, we obtained the following
results. (1) Both modules of GuessFuse are effective in
integrating multiple guess lists. Among them, the multi-
view subset extraction module makes a major contribution
to enhancing the effectiveness of integration. The conjunction
of the two modules can achieve better results. (2) GuessFuse
can effectively integrate multiple guess lists, and the more it
integrates, the stronger the cracking capability. (3) GuessFuse
performs better than existing hybrid password guessing meth-
ods in terms of generalization and effectiveness.

VI. APPLICATION & DISCUSSION

1) Application of PSM: We applied GuessFuse mentioned
in Section V to create a PSM, named GuessFuse-PSM, and
compared it with PSMs implemented using four individual
password guessing models (i.e., PCFG, Markov, FLA and
RFGuess). We calculated the Weighted Spearman correlation
coefficient (Wspearman) between the top-104 ranked samples
of the ideal PSM (i.e., the top-104 passwords in the Optimal
guess lists in the test sets) and the five PSMs mentioned above
(i.e., the rank of passwords in each model-generated guess
list). The experimental setup was consistent with [49] and [50].
We used the CSDN dataset as an example, and the Wspearman
coefficient curves are presented in Fig. 15. It should be
noted that GuessFuse-PSM includes the Identity guess list
in its fusion process, which results in the same Wspearman
coefficient as the Identity guess list. The comparison revealed
that GuessFuse-PSM achieved the best performance within the
top-104 passwords.

Furthermore, we analyzed the count of incorrectly eval-
uated passwords. This evaluation metric is similar to the

TABLE VII
THE COUNT OF INCORRECTLY EVALUATED PASSWORDS. THE NUM-

BERS HIGHLIGHTED IN RED REPRESENT THE COUNT OF PASSWORDS
THAT HAVE BEEN OVERESTIMATED, WHILE THE NUMBERS HIGH-

LIGHTED IN GREEN REPRESENT THE COUNT OF PASSWORDS
THAT HAVE BEEN UNDERESTIMATED

concept of “unsafe errors” in previous studies [15], [28].
We believe that incorrect password evaluations not only pro-
vide insecure guidance to users (i.e., overestimating password
strength), but also reduce the usability of password setting (i.e.,
underestimating password strength, thus restricting users from
setting passwords that are actually strong enough). Therefore,
we deliberately named this metric “count of incorrectly eval-
uated passwords” instead of “unsafe errors.”

We used the CSDN dataset as an example, and the analysis
results are presented in Table VII. Based on Finding 2,
we consider that the strength of the top-104 ranked passwords
should belong to the same category (i.e., common passwords).
We have also analyzed the Wspearman coefficient for the
top-104 passwords in GuessFuse-PSM. Hence, we grouped
them into the same interval. We assume that passwords within
the same magnitude should have the same evaluation of
password strength. It can be observed that the PSMs of the
four individual models tend to overestimate or underestimate
the strength of certain passwords to different extents compared
to GuessFuse-PSM. However, none of them demonstrated
the same level of password guessing capability as modeled
by GuessFuse-PSM. Therefore, utilizing GuessFuse-PSM not
only enhances the security of user-set passwords but also
improves the usability of password settings for users.

2) Application of This Study: GuessFuse requires an opti-
mization after each password guessing model generates a
guess list, which consumes more computing power than a
single password guessing model. However, GuessFuse can
effectively improve the cracking success rate of a single
password guessing model within a limited number of guesses.
In online guessing scenarios or situations where password
encryption is complex (i.e., slow-HASH [51] and memory-
hard HASH [52], which are widely used to prevent offline
password guessing attacks [53], [54], [55]), the cost of testing
a password is much higher than the resource consumption
involved in generating a password. Therefore, GuessFuse still
holds significant practical value. On the other hand, GuessFuse
only performs optimization at the guess list level, which has
universal adaptability. Compared with other hybrid password
guessing approaches, users of our framework can enhance
them without understanding the specific design of every single
model. They only need to obtain the guess lists generated
by every single model to achieve a higher password cracking
success rate.

3) Future Work: Our proposed password guessing frame-
work provides a new research direction for hybrid password

XIE et al.: GuessFuse: HYBRID PASSWORD GUESSING WITH MULTI-VIEW 4229

guessing: finding the practical parts of password guess lists
generated by each guessing model. In our analysis, we find
that the password distribution of the model output guess list
is strongly related to the distribution of the training dataset,
so machine learning models can be used to associate the
dataset distribution with the guess list quantity output by
multiple models for prediction, thus restricting the number
of model guesses during the guess list generation process.
We will further investigate this in the future.

VII. CONCLUSION

In this paper, we have made a substantial step towards
hybrid password guessing based on guess lists. More specif-
ically, we systematically analyze the multiple guess lists
generated from various password guessing models. Through
analysis, we have obtained six valuable findings for hybrid
password guessing. Based on this, we design a new hybrid
password guessing framework, named GuessFuse. Extensive
experiments demonstrate that GuessFuse can effectively com-
bine multiple password guess lists, enhance the success rate of
the output, and outperform existing hybrid password guessing
approaches. This work pioneers a novel research trajectory in
hybrid password guessing.

REFERENCES

[1] D. Wang and P. Wang, “Two birds with one stone: Two-factor authenti-
cation with security beyond conventional bound,” IEEE Trans. Depend.
Secur. Comput., vol. 15, no. 4, pp. 708–722, Sep. 2016.

[2] A. K. Jain, A. Ross, and S. Pankanti, “Biometrics: A tool for information
security,” IEEE Trans. Inf. Forensics Security, vol. 1, no. 2, pp. 125–143,
Jun. 2006.

[3] C. Herley and P. van Oorschot, “A research agenda acknowledging
the persistence of passwords,” IEEE Secur. Privacy, vol. 10, no. 1,
pp. 28–36, Jan. 2012.

[4] J. Bonneau, C. Herley, P. C. V. Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 553–567.

[5] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “Passwords
and the evolution of imperfect authentication,” Commun. ACM, vol. 58,
no. 7, pp. 78–87, Jun. 2015.

[6] M. Weir, S. Aggarwal, B. D. Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proc. 30th IEEE
Symp. Secur. Privacy, May 2009, pp. 391–405.

[7] J. Blocki, B. Harsha, and S. Zhou, “On the economics of offline pass-
word cracking,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 35–53.

[8] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2016, pp. 1242–1254.

[9] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential
stuffing: Password similarity models using neural networks,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2019, pp. 417–434.

[10] J. Bonneau, “The science of guessing: Analyzing an anonymized cor-
pus of 70 million passwords,” in Proc. IEEE Symp. Secur. Privacy,
May 2012, pp. 538–552.

[11] D. Florencio and C. Herley, “A large-scale study of web pass-
word habits,” in Proc. 16th Int. Conf. World Wide Web, May 2007,
pp. 657–666.

[12] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-
strength meters from Markov models,” in Proc. NDSS, 2012, pp. 1–14.

[13] B. Ur et al., “How does your password measure up? The effect of
strength meters on password creation,” in Proc. 21st USENIX Secur.
Symp., 2012, pp. 65–80.

[14] D. L. Wheeler, “zxcvbn: Low-budget password strength estimation,” in
Proc. 25th USENIX Secur. Symp., 2016, pp. 157–173.

[15] W. Melicher et al., “Fast, lean, and accurate: Modeling password
guessability using neural networks,” in Proc. 25th USENIX Secur. Symp.,
2016, pp. 175–191.

[16] B. Ur et al., “Measuring real-world accuracies and biases in modeling
password guessability,” in Proc. 24th USENIX Secur. Symp., 2015,
pp. 463–481.

[17] Q. Dong, C. Jia, F. Duan, and D. Wang, “RLS-PSM: A robust and
accurate password strength meter based on reuse, leet and separation,”
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 4988–5002, 2021.

[18] D. Wang, D. He, H. Cheng, and P. Wang, “FuzzyPSM: A new password
strength meter using fuzzy probabilistic context-free grammars,” in
Proc. 46th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2016, pp. 595–606.

[19] P. G. Kelley et al., “Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms,” in Proc.
IEEE Symp. Secur. Privacy, May 2012, pp. 523–537.

[20] J. Steube. (2018). Hashcat. [Online]. Available: https://hashcat.net
/hashcat/

[21] A. Peslyak. (Feb. 1996). John the Ripper Password Cracker. [Online].
Available: http://www.openwall.com/john/

[22] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proc. 12th ACM Conf. Comput. Commun.
Secur., Nov. 2005, pp. 364–372.

[23] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “PassGAN: A deep
learning approach for password guessing,” in Proc. ACNS, 2019,
pp. 217–237.

[24] D. Wang, Y. Zou, Z. Zhang, and K. Xiu, “Password guessing using
random forest,” in Proc. 32nd USENIX Secur. Symp., 2023, pp. 965–982.

[25] R. Veras, C. Collins, and J. Thorpe, “On the semantic patterns of
passwords and their security impact,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2014, pp. 1–16.

[26] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 689–704.

[27] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2021, pp. 1382–1399.

[28] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han, “Chunk-level
password guessing: Towards modeling refined password composition
representations,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Nov. 2021, pp. 5–20.

[29] M. L. Zhang, Q. H. Zhang, W. F. Liu, X. X. Hu, and J. H. Wei,
“A method of password attack based on structure partition and
string reorganization,” Chin. J. Comput., vol. 42, no. 4, pp. 914–928,
2019. [Online]. Available: http://cjc.ict.ac.cn/online/onlinepaper/zml-
201941793554.pdf

[30] M. Zhang, Q. Zhang, X. Hu, and W. Liu, “A password cracking method
based on structure partition and BiLSTM recurrent neural network,” in
Proc. 8th Int. Conf. Commun. Netw. Secur., Nov. 2018, pp. 79–83, doi:
10.1145/3290480.3290501.

[31] Z. Xia, P. Yi, Y. Liu, B. Jiang, W. Wang, and T. Zhu, “GENPass:
A multi-source deep learning model for password guessing,” IEEE
Trans. Multimedia, vol. 22, no. 5, pp. 1323–1332, May 2020.

[32] D. Wang, Y. Zou, Y. Tao, and B. Wang, “Password guessing based on
recurrent neural networks and generative adversarial networks,” Chin.
J. Comput., vol. 44, no. 8, pp. 1519–1534, 2021. [Online]. Available:
http://cjc.ict.ac.cn/online/onlinepaper/wd-20218794702.pdf

[33] W. Han et al., “Parameterized hybrid password guessing method,”
J. Comput. Res. Develop., vol. 59, p. 2708, Jul. 2022. [Online]. Avail-
able: https://crad.ict.ac.cn/article/doi/10.7544/issn1000-1239.20210456

[34] Z. Parish, C. Cushing, S. Aggarwal, A. Salehi-Abari, and J. Thorpe,
“Password guessers under a microscope: An in-depth analysis to inform
deployments,” Int. J. Inf. Secur., vol. 21, no. 2, pp. 409–425, Apr. 2022.

[35] R. Morris and K. Thompson, “Password security: A case history,”
Commun. ACM, vol. 22, no. 11, pp. 594–597, Nov. 1979.

[36] D. V. Klein, “Foiling the cracker: A survey of, and improvements
to, password security,” in Proc. 2nd USENIX Secur. Workshop, 1990,
pp. 5–14.

[37] T. D. Wu, “A real-world analysis of Kerberos password security,” in
Proc. NDSS, 1999, pp. 13–22.

[38] S. Houshmand, S. Aggarwal, and R. Flood, “Next gen PCFG pass-
word cracking,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 8,
pp. 1776–1791, Aug. 2015.

[39] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681,
Nov. 1997.

[40] S. Sun, “A survey of multi-view machine learning,” Neural Comput.
Appl., vol. 23, no. 7, pp. 2031–2038, 2013.

http://dx.doi.org/10.1145/3290480.3290501

4230 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

[41] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” 2013,
arXiv:1304.5634.

[42] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-
security: Understanding passwords of Chinese web users,” in Proc. 28th
USENIX Secur. Symp., 2019, pp. 1537–1555.

[43] D. Wang, Y. Zou, Y. A. Xiao, S. Ma, and X. Chen, “Pass2Edit: A multi-
step generative model for guessing edited passwords,” in Proc. 32nd
USENIX Secur. Symp., 2023, pp. 983–1000.

[44] M. Dell’Amico and M. Filippone, “Monte Carlo strength evaluation:
Fast and reliable password checking,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2015, pp. 158–169.

[45] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,”
J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[46] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law
in passwords,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 11,
pp. 2776–2791, Nov. 2017.

[47] Y. Wu, D. Wang, Y. Zou, and Z. Huang, “Improving deep learning
based password guessing models using pre-processing,” in Proc. ICICS,
vol. 13407, 2022, pp. 163–183.

[48] E. R. Verheul, “Selecting secure passwords,” in Topics in Cryptology—
CT-RSA 2007. Berlin, Germany: Springer, 2006, pp. 49–66.

[49] D. Wang, X. Shan, Q. Dong, Y. Shen, and C. Jia, “No single silver
bullet: Measuring the accuracy of password strength meters,” in Proc.
32nd USENIX Secur. Symp. (USENIX Security), 2023, pp. 1–28.

[50] M. Golla and M. Dürmuth, “On the accuracy of password strength
meters,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 1567–1582.

[51] P. Sriramya and R. Karthika, “Providing password security by salted
password hashing using Bcrypt algorithm,” ARPN J. Eng. Appl. Sci.,
vol. 10, no. 13, pp. 5551–5556, 2015.

[52] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New generation
of memory-hard functions for password hashing and other applications,”
in Proc. IEEE Eur. Symp. Security Privacy (EuroS&P), May 2016,
pp. 292–302.

[53] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Digital identity guidelines,”
NIST, Gaithersburg, MD, USA, Tech. Rep. NIST SP 800-63-3, 2017,
vol. 800, pp. 3–63.

[54] K. Moriarty, B. Kaliski, and A. Rusch, PKCS #5: Password-Based
Cryptography Specification Version 2.1, document RFC 8018, 8018.
[Online]. Available: https://www.rfc-editor.org/info/rfc8018

[55] F. G. G. Meade, “Information assurance technical framework (IATF),”
Nat. Secur. Agency (NSA), Fort Meade, MD, USA, Tech. Rep.
ADA606355, 2002.

Zhijie Xie received the M.S. degree from the
National University of Defense Technology, where
he is currently pursuing the Ph.D. degree in
cyberspace security. His research interests include
password-based authentication security, social engi-
neering, and data mining.

Fan Shi received the M.S. degree from the Elec-
tronic Engineering Institute. Currently, he is an
Associate Professor with the National University of
Defense Technology. His research interests include
cyberspace surveying and mapping, network security
knowledge graphs, and cyberspace content security.

Min Zhang received the Ph.D. degree from Anhui
University. He is currently a Full Professor with
the National University of Defense Technology.
His research interests include intelligent information
processing, machine learning, and data mining.

Huimin Ma received the M.S. degree from North
China Electric Power University. She is currently an
Associate Professor with the National University of
Defense Technology. Her research interests include
network security protection.

Huaixi Wang received the Ph.D. degree from
Peking University. He is currently an Associate
Professor with the National University of Defense
Technology. His research interests include cryptog-
raphy, information security, and cloud computing
security.

Zhenhan Li received the M.S. degree in commu-
nication engineering from Xiamen University. He is
currently with the National University of Defense
Technology. His research interests include network
security protection and social engineering.

Yunyi Zhang received the M.S. degree from
Sun Yat-sen University. He is currently pursuing
the Ph.D. degree in cyberspace security with the
National University of Defense Technology. His
research interests include network security, DNS
security, and cybercrime.

