
4086 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

A Cryptographic Protocol for Efficient Mutual
Location Privacy Through Outsourcing

in Indoor Wi-Fi Localization
Samuel N. Eshun and Paolo Palmieri , Member, IEEE

Abstract— Digital services and applications are increasingly
requiring location information from users to provide personalized
services. However, disclosing one’s location introduces significant
privacy risks, as location traces are highly unique and can
be used to infer additional sensitive data. While location-based
services were once restricted to outdoor spaces, given the lack
of GPS signal indoors, a growing number of applications rely
on Wi-Fi to provide indoor localization. Indoor localization
can impact privacy to an even greater degree, as most of our
daily activities occur indoors. Therefore, several indoor privacy
protocols have been proposed, focusing on protecting the user’s
location. However, the problem of mutual location privacy, that
is, the protection of both the user’s privacy and the service
provider’s location database, has not been addressed, particularly
against malicious (active) adversaries. In addressing this gap, this
paper presents an efficient and privacy-preserving cryptographic
protocol for indoor localization. Our protocol hides the user’s
location, while also protecting the service provider’s location map
and areas of interest against malicious users. Furthermore, the
protocol outsources most of the user-side heavy computation to
a third-party cloud server, which does not need to be trusted by
the parties as it remains oblivious to both user’s location and the
provider’s database throughout the computations. Compared to
leading solutions in the literature, including Eshun and Palmieri
(2019) and Li et al. (2014), our protocol is the first to provide
security against malicious users. Additionally, it significantly
reduces the user computation and communication overhead (of
up to 99%), making it potentially the first practicable scheme in
resource-constrained mobile and IoT environments.

Index Terms— Location privacy, garbled circuit, oblivious
transfer, homomorphic encryption, bloom filter.

I. INTRODUCTION

AGROWING trend in digital services is personalization,
where services are tailored based on user context, such

as location [3]. Location-Based Services (LBS) utilize user
devices with Global Navigation Satellites System (GNSS)
receivers, such as GPS and Galileo, to determine user location.
However, GNSS signals are weak indoors [4], prompting the
development of indoor localization techniques, with Wi-Fi

Manuscript received 22 August 2023; revised 12 January 2024;
accepted 15 February 2024. Date of publication 1 March 2024; date of
current version 2 May 2024. This work was supported in part by the Science
Foundation Ireland under Grant 13/RC/2077_P2 (CONNECT Phase 2). The
associate editor coordinating the review of this manuscript and approv-
ing it for publication was Dr. Alptekin Küpçü. (Corresponding author:
Samuel N. Eshun.)

The authors are with the School of Computer Science and IT, Uni-
versity College Cork, Cork, T12 XF62 Ireland (e-mail: s.eshun@cs.ucc.ie;
p.palmieri@cs.ucc.ie).

Digital Object Identifier 10.1109/TIFS.2024.3372805

emerging as a prominent solution due to existing infrastruc-
ture. Indoor Wi-Fi localization involves two phases: offline and
online. In the offline phase, a service provider (SP) constructs
a radio-map database using Wi-Fi received signal strength
(RSS) measurements at known reference points. In the online
phase, a user’s RSS measurements are compared with the
radio-map to compute their location using various distance
metrics [5].

This personalization introduces privacy challenges, as it
requires disclosing user information. Preserving location pri-
vacy in indoor LBS is particularly challenging due to the
necessity of SP involvement, which implies potential disclo-
sure of sensitive user and SP data. In this paper, we focus on
mutual location privacy, aiming to protect both user location
and SP’s sensitive data, aligning with the concept of secure
multi-party computation (MPC).

MPC, a cryptographic technique preserving privacy during
joint computations, can be applied in indoor Wi-Fi local-
ization protocols. However, MPC’s computational demands
may limit its scalability, especially for resource-constrained
users. Outsourcing user computation to cloud servers can
alleviate this bottleneck, offering high computational power
and storage, thereby enhancing the efficiency and privacy of
indoor localization protocols [6], [7], [8].

A critical, underexplored question is how an SP can securely
verify a user’s presence in predefined areas without learning
their location outside these areas. Examples include employee
attendance verification. In a healthcare context, hospitals may
seek to gather data on the average duration a patient spends
in a specific ward for a particular service. This data could
also be valuable to health insurance companies aiming to
compare hospitals and adjust their reimbursement strategies
based on the value of care provided [9]. To uphold patient
privacy, monitoring should be confined to designated areas
(e.g., a scan room), ensuring that the provider remains unaware
of the patient’s location outside these zones. Simultane-
ously, it is imperative to secure the building’s map and
specific indoor locations to safeguard sensitive infrastructure
information.

In emergencies, such as evacuations, or for contact tracing
during pandemics like COVID-19, it may be necessary to track
individuals within specific areas while preserving their privacy
outside these zones. This paper addresses these challenges,
proposing a solution that balances effective localization with
robust privacy protection.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6897-2373
https://orcid.org/0000-0002-9819-4880

ESHUN AND PALMIERI: CRYPTOGRAPHIC PROTOCOL FOR EFFICIENT MUTUAL LOCATION PRIVACY 4087

A. Related Work

In this paper, we categorize relevant works in location
privacy preservation into two primary approaches: homomor-
phic encryption and dual secure computations. We apply
the concept of outsourced secure multi-party computation to
location privacy, a concept previously validated in various
settings, such as in Araki et al. [10].

Li et al. [2] proposed a construction based on homomorphic
encryption for privacy-preserving indoor localization. How-
ever, their security model has vulnerabilities, as indicated
by results in [11], which show potential exposure of the
service provider’s database. Zhang et al. [12] also employ
homomorphic encryption, but their protocol is not secure
against a malicious user.

The work in [1] introduces a unique perspective, allowing
service providers to privately determine if a user is within
predefined areas, while the user can learn their exact location
privately. The second approach, exemplified by Shu et al.
[13] and Yang et al. [14], combines two secure computations,
such as Paillier encryption and oblivious transfer, to preserve
location privacy. These protocols, however, face challenges
in computational efficiency and security against malicious
entities.

Recent works, like Järvinen et al. [6] and Oleynikov et al.
[7], leverage Secure Multi-Party Computation (SMPC) to
offload computations to non-colluding, semi-honest parties,
enhancing protocol efficiency while maintaining security.

This paper aims to balance the privacy of both the user and
the service provider (SP). Specifically, our protocol enables
the SP to securely verify a user’s presence in predefined areas
while preserving the user’s privacy elsewhere. This is achieved
through the involvement of non-colluding servers, a widely
accepted assumption in the literature [6], [15], [16], [17].
We argue that the non-collusion assumption is practical and
motivated by legal, contractual, and reputational incentives
for both the SP and the cloud server to uphold user data
privacy and security. While collusion between the service
provider and the cloud server is conceivable, the risks and
legal obligations associated with user data privacy and security
serve as potent deterrents. These factors strongly motivate
both parties to adhere to the protocol and avoid collusion.
For instance, in scenarios where a business outsources data
processing to a third-party cloud service provider, the cloud
server may execute computations, but data ownership remains
with the company, further reducing the likelihood of collusion.

B. Contribution

This paper presents an efficient and secure indoor location
privacy protocol that allows the service provider to query if
a user is within an area of interest (out of a predefined set
of areas) while maintaining the exact location of the user’s
privacy. As such, the provider does not learn the location of
the user but only the identifier of the area of interest if the
user is within one and nothing otherwise. The scheme prevents
providers from defining too many or too broad areas, while
the provider’s database is also protected from malicious users.

The proposed protocol supersedes previous works in the
indoor Wi-Fi location privacy domain, including [1], where
the protocol offers protection to both the user’s fingerprint,
and the service provider’s database yet delivers the service
based on the users’ physical location. Unlike [1], where the
security model was limited by the assumption of honest-but-
curious users, this protocol’s security is assured even against a
malicious user. Our work combines state-of-the-art techniques
in secure multi-party computation to preserve the privacy of
the SP database against malicious users. The model builds
upon the spatial Bloom filter data structure [18], [19], [20]
and substantially improves the overhead at the user-side with
respect to comparable protocols in the literature. Specifically,
the main contributions of this paper are summarized below:
• We design a hybrid technique by combining Damgård,

Geisler and Krøigaard (DGK) [21], [22] encryption and
an optimized garbled circuit to preserve both parties’ pri-
vacy. DGK encryption protects the user’s query data and
significantly reduces the message size space compared
to other well-known additive homomorphic encryption
schemes like Paillier (used, for instance, in [10]). The
garbled circuit [23], [24], on the other hand, preserves
the privacy of the database against malicious users.

• Our protocol provides protection against malicious users
with the addition of a single server (CS). This method is a
significant improvement over comparable protocols, such
as [6], which requires two parties to achieve comparable
security levels.

• Our protocol significantly improves the computation over-
head for encrypting the fingerprint compared to solutions
in the literature (as discussed in Section V) and offloads
almost all the computation overhead at the retrieval
phase to the cloud server. In addition, the communication
overhead is reduced by over 99.99% at the user-side
compared to the non-outsourced protocols. We achieved
this by delegating most of the heavy computation of the
garbled circuit at the user-side to the cloud server, thus
making the protocol suitable for practical applications
when compared to computationally intensive user/server
proposals in [1], [2], and [11].

• We provide a security and complexity analysis of our
protocol and quantify the computation and bandwidth
gains compared to other similar localization protocols
available in the literature (Sections IV and V).

II. PRELIMINARIES

This section introduces the primitives employed in the
design of the proposed protocol (presented in Section III).
Table I provides the notation and symbols used in this paper.

A. Homomorphic Encryption (HE)

Homomorphic encryption schemes, which are semantically
secure (IND-CPA), enable specific computations on encrypted
data. This paper’s protocol leverages the additive property of
such encryption, allowing addition between encrypted data
and multiplication by a plaintext constant. Given plaintexts
a, c, and d, with encryption and decryption functions Enc(),

4088 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
NOTATION: ACRONYMS AND SYMBOLS

Dec(), and operations ⊞ and ⊡ for homomorphic addition and
plaintext multiplication, respectively, we have:

Enc (c + d) = (Enc (c) ⊞ Enc (d)) , (1a)
Enc (a · c) = (a ⊡ Enc (c)) (1b)

where the operations (+, ·) are computed in the plaintext
space, and (⊞, ⊡) in the ciphertext space.

Paillier encryption [25] is a widely used additive homo-
morphic encryption scheme, and its security relies on the
decisional composite residuosity problem. It has a public key
size of T-bits RSA modulus N = p · q, where p and q are
two large primes. To encrypt a message x , let ZN be a set
of integers modulus N and Z∗N ⊆ ZN . Choose g ∈ Z∗N 2 , the
generator of the multiplicative group and a random number
r ∈ Z∗N , then for x ∈ ZN gives:

Enc(x) = gxr N mod N 2 , (2)

and the public key being (g, N). The reader is referred to [25]
for a detailed description and the security proof of the scheme.

In order to increase efficiency with respect to Paillier-based
schemes, the protocol proposed in this paper makes use of
the DGK [21], [22] encryption scheme, which has a smaller
ciphertext compared to Paillier due to the lower exponent of
the modulus. Without any modification, DGK works only on
small message space (µ) because it was initially designed for
secure comparisons of integers. The DGK hardness is based
on the strong assumption of the RSA subgroup, and it per-
forms better than the other additive homomorphic encryption
schemes for both encryption and decryption. Compared to
Paillier, the ciphertext space is T -bits of the RSA modulus
N = p · q while Paillier is 2T . Similar to other cryptographic
algorithms, the scheme has three main parts:

Key Generation The process of generating a key starts by
first choosing RSA modulus N = p ·q, where p and q are two
large primes and log2 p ≈ log2 q. Select a plaintext space µ of
size l − bits and another two distinct primes of size t − bits;
pt and qt such that pt |p− 1 and qt |q − 1. Choose g, h ∈ Z∗N
the generators of Z∗N , such that g and h have orders µpt qt and
pt qt respectively. Therefore, the public key is (N , g, h, µ) and
the secret key (p, q, pt , qt).
Encryption To encrypt a message x ∈ Zµ, choose r ∈ ZN
and compute:

Enc(x) = gx hr mod N (3)

Decryption The decryption is simply raising the ciphertext
Enc(x) to a power pt qt modulus N , i.e.,

x = Enc(x)pt qt mod N (4)

Due to the small message space µ, a table of g pt qt values
can be built to optimize the decryption process.

Though DGK works on small message space µ, it can be
modified to work on large plaintext space using the Pohlig-
Helman algorithm [26] to perform the decryption.

B. Oblivious Transfer (OT)

Oblivious Transfer (OT) is a two-party protocol where one
party (the sender) holds a secret input of n bits or strings of
bits, and the other party (the receiver) wants to obtain one
of these bits/strings. The receiver wants the sender to remain
oblivious to which bit she chooses, while the sender wants to
ensure only one bit is revealed to the receiver. When n = 2,
we call it 1-out-of-2 OT. The protocol was first introduced
in 1981 by Rabin [27] and has since become a fundamental
component in several cryptographic constructions [28], [29],
[30]. In detail, for a 1-out-of-2 OT protocol, a sender inputs
m-pairs of bits {K0

i ,K
1
i } and the receiver inputs her choice in

the form of m-bits bi ∈ {0, 1}. At the end of the protocol, the
receiver obtains Kbi

i and learns no information about K1−bi
i .

On the other hand, the sender obtains nothing and learns
nothing about the receiver’s choice bi .

C. Garbled Circuit (GC)

Garbled circuits [23], [24], a work of Yao in the late 1980s,
allow two parties to compute a function on their private input.

For a given Boolean circuit C , party S (the generator)
constructs a garbled circuit G. For each wire wi of C ,
S assigns two random keys (k̃0

i , k̃1
i). For each gate Gi , S uses

these keys to encrypt and create a table Ti , where each entry
holds the encrypted output value. S then permutes Ti and sends
it, along with the garbled circuit and the generator’s input
garble values, to the other party (the evaluator).

To evaluate the garbled circuits, the evaluator (E) and S
engage in 1-out-of-2 OT to obtain E’s plain inputs’ garbled
values from S. With these values for both parties, E evaluates
the garbled circuit gate by gate, retrieving the output from
the output wires. Due to table permutation, these wires reveal
nothing about the internal circuitry, so E learns only the output
values. A translation table converts these to plain output values

ESHUN AND PALMIERI: CRYPTOGRAPHIC PROTOCOL FOR EFFICIENT MUTUAL LOCATION PRIVACY 4089

for the output party. For Yao’s protocol security proof in the
semi-honest model, see [31].

To enhance the original protocol’s security, various
optimization techniques were introduced, including free
XOR [32], point-and-permute [33], [34], and garbled row
reduction [35]. [36] further reduced AND gates to two cipher-
texts, albeit incompatible with free XOR. This was refined
by [37] using a half-gate technique, achieving two ciphertexts
for AND gates and zero for XOR gates (free XOR). These
advancements collectively enhance the protocol’s efficiency,
notably reducing communication and computation overhead
in circuit construction and evaluation.

D. Bloom Filter (BF)

A Bloom Filter (BF) [38] is a space-efficient probabilistic
data structure that supports set-membership queries. It repre-
sents a set S = {x1, · · · , xn} of n-elements using an array
of size m-bits. Independent cryptographic hash functions H =
{h1, · · · , hk} are used to insert elements into the filter. Initially,
the filter is set to zero. To insert an element x , each hash
function h ∈ H maps x to a position a ∈ {1, · · · , m} in the
filter B, and sets B{a} = 1. To query if an element y belongs
to S, all hash functions in H must map y to positions already
set to 1 in B minus the probability of a false positive. If this
is true, y is likely in S. If any hash function maps y to a 0 in
B, then y definitely does not belong to S, as BF does not have
false negatives. The false positive probability is a function of
the filter’s parameters and can be calculated accordingly.

E. Spatial Bloom Filter (SBF)

Spatial Bloom Filters (SBF) [18] extend the original Bloom
Filter (BF) [38] for space-efficient set membership queries.
Unlike BF, SBF uses a byte array, allowing multiple sets in
one filter, initially designed for spatial representations. SBF
introduces inter-set errors, a unique false positive where an
element is misattributed to a different set within the filter,
in addition to the standard BF false positives. False negatives
are disallowed in both. In SBF, sets are represented by integer
values, replacing the classical BF’s binary indicators.

Unlike the traditional BF [38], SBF is able to handle mul-
tiple sets (like complex geographical data) with priority-based
encoding system while providing efficient secure data han-
dling. For a detailed analysis of SBF and its probabilistic
properties, see [19], and [20].

In an SBF, each set is represented by an integer numerical
value, and such values are written into the filter during
construction instead of the 1s that would be written in a
classical BF. We refer to [19], and [20] for a detailed analysis
of the filter and its probabilistic properties. Figure 1 shows
an example of a spatial Bloom filter Enc(B#

u); which is a
product of Bloom filter (Bu) and encrypted spatial Bloom
filter Enc(B#). The encrypted filter simply means the values
encoded in the filter are not in the plaintext as shown in the
diagram.

III. PRIVATE INDOOR WI-FI LOCALIZATION

In this section, we present an innovative protocol for pri-
vate indoor Wi-Fi-based localization. We assume familiarity

Fig. 1. Example of Spatial Bloom filter: The private Hadamard product of
Enc(B#) and Bu , producing sbf Enc(B#

u). For clarity and ease of reading,
the image depicts plaintext values (rather than the corresponding ciphertexts)
for Enc(B#) and Enc(B#

u) (in light blue).

Fig. 2. System architecture for secure three-party computation. Most of the
heavy user-side computation is delegated to the cloud server (CS) without
revealing the user’s private input. Using the OT protocol, the CS can securely
interact with the service provider (SP) in order to perform secure computations
on the user’s behalf. The arrow’s colour indicates the flow of information from
one party to another, with light blue, light green, and light orange representing
the user, SP, and CS, respectively.

with key primitives: homomorphic encryption (specifically,
the DGK cryptosystem), Oblivious Transfer (OT), Garbled
Circuits (GC), Bloom Filters (BF), and Spatial Bloom Filters
(SBF) introduced in the previous section, II.

The protocol engages three parties: a user, a location service
provider, and a third-party computation outsourcer. Protocol
security is addressed in Section IV, and efficiency comparisons
are in Section V.

Wi-Fi fingerprinting, central to this protocol, involves two
phases: offline set-up and online phase. In set-up, the service
provider constructs a reference database D, creating a finger-
print (V) at each reference point, representing the received
signal strength (RSS) at varying access points. For a reference
point (xi , yi), an n-dimensional vector Vi = {r1, r2, · · · , rn}

is formed, where n is the total number of access points and
m is the total number of reference points.

The fingerprints of all reference points form the reference
database (radio map), used in the online phase to localize a
user. Table II shows an example of this database. Symbol ⊥
indicates a reference point outside the range of an access point
(no signal received).

In the online phase, a user u seeking their location gen-
erates a fingerprint by measuring the RSS values Vu =

{r1, r2, · · · , rn} at location (xu, yu). This fingerprint is

4090 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE II
Wi-Fi-FINGERPRINT REFERENCE DATABASE (D): EACH COLUMN

RELATES TO AN ACCESS POINT api , WHILE EACH ROW
REPRESENTS THE FINGERPRINT Vi FOR REFERENCE

POINT COORDINATES (xi , yi). ⊥ INDICATES NO
SIGNAL FROM THE ap AT THAT LOCATION.

D IS ALSO CALLED A RADIOMAP

compared to the reference database D to estimate the user’s
position using a distance computing algorithm.

The Euclidean distance, given in Equation 5, is a commonly
used algorithm. It quantifies the difference between V and Vu .

δ = ∥V − Vu∥ =

√∑n

i=1
(Vi − Vui)

2 (5)

A computation involving the square roots cannot be directly
rendered through homomorphic computation; hence the
squared Euclidean distance (equation 6), which achieves the
same result, is used here instead.

δ = ∥V−Vu∥
2
=

∑n

i=1
(ri − rui)

2

=

∑n

i=1
r2

i +
∑n

i=1
r2

ui
+

∑n

i=1
− 2rui · ri · (6)

From equation 6, the smallest k nearest distances {δ j }
k
j=1

are selected and the average (k-means) is computed to localize
the user.

A. Protocol Participants

Three parties participate in the proposed protocol are:
User: A mobile device that inputs RSS fingerprint Vu to a

service provider to obtain its exact location.
Service Provider (SP): Wants to verify if a user is within

a specified area ∇ without learning the user’s location
outside this area. When the user is in ∇, the SP only
learns this fact, not the exact location. The SP can define
multiple areas of interest ξ = {∇1, . . . ,∇l}.

Cloud Server (CS): A third party assisting the user with
computationally intensive operations, without contribut-
ing to the evaluation function.

B. Protocol Overview

We provide a high-level overview of the protocol, detailed
further later in the text, outlining each participant’s operations.

The protocol initiates with the SP generating a key pair
(pks, sks) and constructing a Spatial Bloom Filter (SBF) B#

over the set of areas of interest ξ = {∇1, . . . ,∇l}, as in [19].
The SP encrypts B# with pks and sends Enc(B#) to the Cloud
Server (CS). This step can be offline.

The user creates a key pair (pku, sku), constructs their
location fingerprint Vu using RSS data, and encrypts it:

c = Enc (pku, Vu). The user sends c to the SP and sku to
the CS, assuming non-collusion between CS and SP.

The SP computes a masked encrypted Euclidean distance
Enc[δ] using the user public key pku , the received fingerprint,
and the reference database D.

The SP computes function F (garbled circuit function) and
engages CS in secure two-party computation and oblivious
transfer to: 1) remove the SP’s masking from Enc(δ), and 2)
compute the k-smallest Euclidean distances.

The CS sends the indexes of the k-nearest distances (appear-
ing as random noise to the CS) to the user, who then localizes
their exact location using these distances.

Periodically, the user computes their geocode, encodes it
using a keyed hash function H⋆, supplied by the SP, and sends
the hash digests to the CS. The CS constructs a user filter
(Bu) and computes the entry-wise homomorphic product with
the SP’s (B#). The result, sent to the SP, confirms the user’s
presence in an area of interest, without revealing specifics to
either party. The CS remains unaware.

The protocol comprises an offline preparation phase and
four online phases: measuring, computation, retrieval, and
server localization. The complete protocol is depicted in
Protocol 1. Algorithms 1-2 detail the perspective of each party,
cross-referenced in Protocol 1 for clarity.

1) Preparation and Initialization Phase: In this phase,
the SP publishes the localization-aided data {T1, T2} of the
reference database (D) it holds to all users, where T1 =

{ap1, · · · , apn} is the access points and T2 = {τ1, · · · , τm}

represents the list of reference points. Importantly, it does not
release the entire radio map. The user generates an encryption
key pair < pku, sku > using the DGK cryptosystem and
publishes the public key pku while the server uses an encryp-
tion scheme that allows private Hadamard product to generate
key pairs < pks, sks >. Through a secure communication
channel, the user sends the decryption key sku (this can always
be revoked if compromised) to the CS. Using a keyed hash
function (H⋆), the SP constructs a spatial Bloom filter (B#)

over the areas of interest (∇) using the algorithm described
in [19] where ∇ ∈ ξ , and encrypts it with the public key (pks)

to obtain Enc(B#). It is worth noting while ξ constitutes the
set of all the areas of interest (∇), ξ ⊆ T2, thus the exact
location of the user, d ∈ T2 but may be /∈ ξ depending on the
position of the user. The service provider SP sends its public
key (pks) together with the encrypted filter Enc(B#) to the CS,
and H⋆ and garbled output function

[
(H(π0), 0), (H(π1), 1)

]
to the user. The above process can be executed once and offline
(that is, separately from the execution of the remainder of the
protocol).

2) Measuring Phase: The user generates the RSS finger-
print Vu = {r1, · · · , rn} of her position, and computes:

c = Enc(−2ru1), · · · , Enc(−2run) (7a)

Enc(ϕ) j3 = Enc
(∑n

i=1
r2

ui

)
(7b)

The results are sent to the SP, as indicated in Algorithm 1
(step 1). The RSS measurement can always be done in an
offline phase, and new RSS data is generated only when the
user’s position changes. Also, this is the only computation

ESHUN AND PALMIERI: CRYPTOGRAPHIC PROTOCOL FOR EFFICIENT MUTUAL LOCATION PRIVACY 4091

Protocol 1 Outsourcing Privacy Preserving Protocol for Indoor Wi-Fi Localization

$

$

$

U SP CS

Enc(pku, Vu) C = (c, Enc(ϕ) j 3)
(1)

{Enc[δi]}
k
i=1

(2)

Enc(δi) C ⊙ V

[δi] Dec(sku, Enc[δi])

K0
i

K1
i

[δi]

Kδi
i

di = Dec(H, πi)

(4)πi

d = (x, y) = loc{di }
k
i=1

H(d) = hi (d), where d ∈ T2
H(d)(5)

Dec
(
sk, B#

u
)

Bu B j [hi (d)]

B#
u = Enc

(
B#)
⊙ Bu

B#
u (6)

j {1 j }
s
i=1

0 Otherwise

$

$

$

$

$

C

(3)

1− 2 OT

(
K δi

i ,F
)

πi

D F
Vu {0, 1}$

(K0,K1) Enc(K)

the user does before receiving the indexes of the k-smallest
Euclidean distances from the CS. Interaction between the
mobile user and the SP ends after the input query; the rest
of the communication is either between the SP and the CS or
the CS and the mobile user.

3) Computation Phase: After receiving the user’s encrypted
fingerprint {ci }

n
i=1, the SP computes the masked encrypted

Euclidean distances Enc[δ] between the received fingerprint
and the reference database D (Table II). The results are
forwarded to the CS. The computation is possible due to the
homomorphic properties of the DGK cryptosystem [21] as
depicted in step (2) of Algorithm 2.

Specifically, the SP computes:

Enc(ϕ) j1 = Enc
(∑n

i=1
r2

i

)
(8a)

Enc(ϕ) j2 =
∏n

i=1

(
ci

)ri
, (8b)

and the encrypted euclidean distance Enc(δ) such that:

Enc(δ) = Enc
(n∑

i=1

(ri − rui)
2
)

(9)

= Enc
(n∑

i=1

r2
i

)
·

n∏
i=1

(ci)
ri · Enc

(n∑
i=1

r2
ui

)
(10)

= Enc(ϕ) j1 · Enc(ϕ) j2 · Enc(ϕ) j3 (11)

where the user is responsible for computing Enc(ϕ) j3 as
shown in equation 7b, and SP computes both Enc(ϕ) j1 and
Enc(ϕ) j2 as delineated in 8a and 8b respectively. Thus, the
user computed Enc(ϕ) j3 , in conjunction with the SP computed
Enc(ϕ) j1 and Enc(ϕ) j2 , form the basis of the encrypted
Euclidean distances, Enc(δ).

In order to protect the database D from being leaked to the
cloud server or a malicious user (i.e., if the user colludes with
the cloud server), the service provider blinds (masks) each of
the encrypted distances Enc(δ j) with a unique random value
γ j ∈ R such that:

Enc
[
δ j

]
= Enc(δ j) · Enc(γ j) (12)

where γ j ∈ {0, 1}n ∀ j ∈ {1, · · · , m}. The SP finally sends
the masked encrypted distances Enc [δ] to the cloud server
(CS) (line 21-25 of Algorithm 2).

After receiving the masked encrypted distances,
{Enc [δ] j }

m
j=1, the CS decrypts these distances using the user’s

decryption key sku to obtain unencrypted masked euclidean
distances {[δ] j }

m
j=1 made up of the euclidean distances (δ)

and the added noise (γ) as shown in equation 13. The process

4092 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 1 User (U)

Input : Vu = {r1 · · · rn}; ri ∈ {0, 1}n, H Output : Bu

USER OUTSOURCED LOCATION

1 : C←$∅

2 : for i←$ 1 · · · n do
3 : ci ←$ Enc(−2ri)

4 : Enc(ϕ) j3 ←$ Enc
(∑n

i=1r2
i
)

5 : C.append
{
c, Enc(ϕ) j3

}
6 : post C to S

Step (1)

of Protocol 1

RETRIEVING PRIVATE LOCATION

7 : D←$∅

8 : get {πi }
k
i=1 f rom CS

9 : {h1, · · · , hk} ←$H
10 : for j←$ 1 · · · k do
11 : d j ←$ lsb(π j)⊕ h j
12 : append{d j }

k
j to D

13 : d = (x, y)←$ loc{D}

Step (4)

of Protocol 1

is described in Algorithm 3.

[δ] j = δ j + γ j (13)

In the first part, which is to remove the noise (γ), the SP and
the CS use Yao’s protocol (garbled circuit) and OT. The SP
constructs a garbled circuit by first representing a subtraction
function a l̂

− bl̂
= [δ]− γ as a Boolean circuit, where l̂ is the

bit-length of the distance. Substituting equation 13 into this
function yields:

a − b = [δ]− γ = (δ + γ)− γ = δ (14)

The subtraction circuit is similar to the one in [39] and
[40], takes 2-input AND gate and ‘free’ XOR [32] compu-
tations (i.e., evaluation of the XOR-gates do not require any
garble tables). The second part of the garbled function, F ,
is to perform the comparisons & conditional swap using the
technique of [6]. The entire circuit is converted into a garbled
circuit (encrypted circuit) and sent to CS. The SP’s input
values of the circuit γ1, · · · , γm , are converted into garbled
values γ̃1, · · · , γ̃m , which can be sent along with the circuit to
CS. The garbled input of CS,

[
δ̃1

]
, · · · ,

[
δ̃m

]
corresponding

to the masked distances [δ1] , · · · , [δm] are transferred to CS
using parallel OT to enable the CS evaluates the circuit
as shown in step (3) of Algorithm 3. At the end of the
evaluation, CS obtains the indexes π1, · · · , πk corresponding
to the k-smallest Euclidean distances δ1, · · · , δk . The CS
then forwards the output indexes {πi }

k
i=1 to the mobile user

(line 39 of algorithm III); these indexes are indistinguishable
from random noise by the CS without the translation output
table/function.

4) Retrieval Phase: When the user receives the garbled
output indexes {πi }

k
i=1 of the smallest k-nearest Euclidean

distances, she uses the output function/translation table[
(H(π0), 0), (H(π1), 1)

]
sent by the SP to translate the

Algorithm 2 Service Provider (SP)

Input : {Vi }
n
i=1, γ

R
←− ∈ {0, 1} Output : Enc [δ]

USER OUTSOURCED LOCATION

14 : get ci , Enc(ϕ) j3 ←$ C f rom User
15 : for j ←$ 1 · · ·m do
16 : for i ←$ 1 · · · n do
17 : Enc(ϕ) j1 ←$ Enc

(∑n
i=1V 2

i j

)
18 : Enc(ϕ) j2 ←$

∏n
i=1

(
ci

)vi, j

19 : Enc(δ j)←$ Enc(ϕ) j1 · Enc(ϕ) j2 · Enc(ϕ) j3

20 : return Enc(δ)←$

{
Enc(δ j)

}m

j=1

Step (2) of
Protocol 1

MASKING THE DISTANCES

21 : for j ←$ 1 · · ·m do
22 : Enc(γ j)←$ Enc(pks , γ j)
23 : Enc[δ] j ←$ Enc(δ j) · Enc(γ j)

24 : return Enc[δ]←$

{
Enc[δ] j

}m

j=1
25 : post Enc[δ] to CS

TABLE III
COMPARISON OF COMPUTATIONAL COMPLEXITY AT USER-SIDE

garbled values (garbled output) to the corresponding plain
indexes. The plain k-indexes correspond to the k-smallest
euclidean distances d j as depicted in step (4) of Algorithm 1.
With the translation table, the user can determine the semantics
of the output wire, i.e., H(π0) represents 0 and H(π1)

represents 1 for all the l̂ bits of each of the received euclidean
distances. The user then estimates the private location d by
computing the centroid of the k-nearest neighbours using T2
(the list of reference points).

5) Server Localization Phase: When the SP makes a
request about the user’s location, the user determines the
geocode of d(xi , yi) ∈ T2 (list of reference points). Using
a keyed hash function H⋆, the user computes the H⋆(d),
i.e., the digest over the location d , and sends the results
{h1(d), · · · , hk(d)} to the CS, where hi (d) is the hash
values/digest over d.

When CS receives the hash values {hi (d)}ki=1, CS cre-
ates a Bloom filter Bu , by mapping the hash values unto
the filter and the number of 1s = α counted since this
filter is binary and only takes 1s and 0s as input. Due to
the multiplicative homomorphic properties, CS can compute
Enc(B#

u) = Enc(B#)⊡ Bu , using SP’s public key (pks). If the
user’s current location was mapped unto to the spatial Bloom
filter (SBF) by the SP, then after the multiplication of the
two filters, all non-zero values in Enc(B#

u) corresponding to
the user’s mappings in filter Bu , will remain, while all other
positions in Enc(B#

u) become zero. Finally, CS permutes the
results, Enc(B#

u), which changes the order to hide the location

ESHUN AND PALMIERI: CRYPTOGRAPHIC PROTOCOL FOR EFFICIENT MUTUAL LOCATION PRIVACY 4093

Algorithm 3 Cloud Server (CS)

Output : π

OBTAINING USER’S EUCLIDEAN DISTANCES

26 : get Enc[δ] f rom SP
27 : for j←$ 1 · · ·m do
28 :

[
δ j

]
←$ Dec(sku, Enc

[
δ j

]
)

29 : return [δ] ←$ [δ1] · · · [δm]

1-2-OBLIVIOUS TRANSFER

30 : get
{
K0

i ,K
1
i

}m

i=1
←$K f rom SP

31 : [δ1] · · · [δm] ←$ [δ]
32 : for j←$ 1 · · ·m
33 : foreach [δ] do
34 : Kδ

j ←$ {Kδ1
1 , · · · ,Kδm

m }

35 : return Kδ
←$Kδ

1 · · ·K
δ
m

Step (3) of
Protocol 1

CIRCUIT EVALUATION
36 : for j←$ 1 · · · k do
37 : πi ←$F(Kδ)

38 : return π ←$ π1 · · ·πk
39 : post π to User

Step (4) of
Protocol 1

of the user, and sends both α and Enc(B#
u) to the SP for

verification.
When the SP receives the encrypted filter Enc(B#

u),
it decrypts it using the secret key sks and subsequently
performs location verification. If the number of non-zeros in
the filter is < α, then certainly the user is not within an area of
interest, i.e., d /∈ ∇. Else, if the number of non-zeros equals
α, then the smallest output value ∇ j , will be the area that
contains the geocode of the user’s location, i.e., (d ∈ ∇ j),
minus the false probability.

IV. SECURITY

The security of the proposed Protocol 1 relies on the
underlying cryptographic primitives used. The security model
is based on a malicious user, and honest-but-curious non-
colluding service provider (SP) and cloud server (CS). In other
words, the SP and CS can analyze the data they receive to
try to recover other parties’ inputs, but should not deviate
from the protocol, and should not be under the same author-
ity/administrator. The user can instead provide arbitrary inputs
and deviate from the protocol. This is novel with respect to the
leading solutions in the literature, including [1] and [2], which
offer protection only against honest-but-curious adversaries.

This security model, and in particular the non-collusion
requirement, is established in the literature and is in line with
current research on outsourced multi-party computation [41],
[42], [43]. We argue that the model is also in line with industry
practice and real-world expectations. While it is appropriate to
assume a service provider and outsourced cloud server could
become “curious”, that is, learn as much as possible from their
interactions, it is also realistic to assume they do not actively

deviate from the protocol. This, however, can not be assumed
of a user. Non-collusion is also a common legal requirement
in the industry sector, for instance in the case of financial and
technical independent audits [44].

In the following, we first provide an informal overview of
the privacy achieved by the protocol (Section IV-A); then we
provide a formal security definition (Section IV-B) and proof
(Section IV-C).

A. Privacy

Privacy in this protocol is defined as follows:
• The SP learns only if the user is in a predefined area of

interest ∇, not the exact location. If the user is outside
these areas, the SP remains unaware of the user’s location.

• The user learns only their estimated private location based
on their input, without gaining knowledge of the SP’s
reference database or the predefined areas (∇).

• The cloud server (CS) remains oblivious to both the user’s
location and the SP’s database.

The user’s input (Vu) is encrypted using her public key
and the DGK-cryptosystem [21], which is semantically secure.
This ensures the server cannot recover the user’s plain RSS
input within polynomial time without the secret key (sku).

The protocol settings, including the use of Garbled Circuits
(GC) and Oblivious Transfer (OT), are designed to protect the
privacy of both the user’s location and the SP’s database. The
CS, despite having access to the user’s private key sku , cannot
deduce information from the masked Euclidean distances [δ]
without the user’s plain input.

The user’s exact location is further protected by mapping
hash values into a filter, which the SP cannot reverse due to
the cryptographic nature of hash functions and the shuffling
of the filter Enc(B#

u). The SP can only infer if the user is
within a predefined area of interest (∇), without pinpointing
the exact location. Though there might be some information
leakage regarding the location of the user to the CS, should
the user visit the same location more than once: this would
be evident to the CS, which would however remain oblivious
to the actual location. In other words, CS may learn that a
user is visiting again a previous location, but would not learn
the actual position of that location of the user. However, this
can easily be mitigated by using session keys in the hash
function computation, so that the same location would result
in a different hash value for each session. This session-based
mechanism ensures that the hash values are unpredictable and
unique to each interaction.

From the SP’s perspective, the user only receives output
based on her input and does not participate in the computation
after submitting her encrypted input. This limits the potential
for a malicious user to corrupt the computation of her location.

The use of homomorphic encryption to encrypt the filter
preserves the privacy of the predefined areas encoded in the
filter, allowing the CS to compute privately without gaining
additional information about Enc(B#

u).
Despite potential adversarial attempts to construct their own

database (D̃), this is either impractical or ineffective due to
controlled environments and the high accuracy of the SP’s

4094 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

well-trained reference database (D). Attacks on the physical
infrastructure are beyond the scope of this work.

B. Security Definition

We formulate a security definition based on the Real/Ideal
world paradigm similar to [45], [46], and [47]. As indicated
earlier, our model setting involves 3-parties in the execution
of the protocol. One of the parties (the user, such as a mobile
user) can be malicious. The other two servers (SP and CS)
are independent non-colluding parties. In this setting, each
party’s input is simulated in an ideal view of the execution
of the protocol. And, if the view during the simulation in the
ideal world is computationally indistinguishable from that of
the real execution of the protocol (3) based on the party’s
input/output, then the protocol is considered secure. In other
words, no party learns any additional information except
what the protocol intended to output. Furthermore, our secure
multiparty computations protocol has only one-output function
f (x1, x2) based on the user’s and SP’s input. We now define
the Ideal/Real-world execution of the protocol below:

Real-World Execution: The execution of the protocol (3)

in the real-world model involves parties P = {U, C S, S P}
and a corresponding subset adversary A = {AU , AC S, AS P }

who can corrupt the associated party. Let xi be the protocol
input, and bi ∈R {0, 1}∗ be the auxiliary input (a string or side
information that an attacker may have prior to the protocol’s
execution) and k the security parameter during the execution of
the protocol. Except for the CS, who only inputs b, all parties
input x and b. The two servers (SP and CS) are semi-honest
and non-colluding, according to the model assumption. As a
result, both servers will correctly input the appropriate data.
This condition, however, does not apply to the malicious user.
Let OU T i be the output for the party Ai ∈ A, and OU T j for
i ̸= j , be the output of the honest party during the execution of
the protocol. Thus the protocol output during the real execution
(real view) of the protocol is defined as:

RE ALV iew
3 [A](x̄, k)k∈N

def
= OU T i

3 ∪ {OU T j
3 : j ∈ H}

where x̄ = {x1, x2, b1, b2, b3}, and H is honest parties.
Ideal-World Execution: The ideal world of the protocol

execution has the same settings as the Real-world model
with the same parties and input. However, in the ideal world,
a trusted party receives all input from the parties participating
in the protocol. The trusted party (TTP) securely computes the
output function based on the received parties’ input.

Thus let f : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗, represent the ideal
functionality where:

Inputs: xi denotes the input of User (U) and Service
provider,(S P). Let bi be the auxilliary input of adversary A
and security parameter k for all party (U, CS,SP) including
TTP.

The honest party (semi-honest) Pj always sends its input
(x ′i = x) as required to the trusted party (TTP). However, the
corrupted party Ai (malicious) can decide whether to send its
arbitrary input (x ′) or not to the TTP. Should the corrupted
party decide not to send its input, an empty string (⊥) or abort
message is sent to the trusted party. In that case, an abort

message is delivered to all parties. Else, the execution of the
protocol continues, i.e., the trusted party (TTP) evaluates the
function f.

Output: Let OU T j be the output (f (x ′1, x ′2)), returned to
the honest party H ⊆ P by the trusted party (TTP) and
OU T i be the arbitrary output (computed within probalistic
polynomial time) returned to the corrupted party Ai . Thus
the i-th partial output of the ideal-world execution of f
between the parties (U, C S, S P) in the presence of adversary
A (independently malicious simulators) is given by:

I DE ALV iew
f [A](x1, x2, k)k∈N

def
= OU T i

f ∪ {OU T j
f : j ∈ H}

We now provide a security definition for the three-party
protocol based on the introduction of the Ideal/Real-world
protocol executions.

Definition 1 (Security): A three-party protocol 3, securely
computes the function f (with an abort option in the presence
of malicious parties), if for every probabilistic polynomial time
(PPT) adversary A, for the real model, ∃ a PPT adversary S
in the ideal model, such that:{

I DE ALV iew
f [S, A](x1, x2, k)

c
≈ RE ALV iew

3 [A](x̄, k)
}

k∈N

where
c
≈ means computationally indistinguishable.

Our privacy-preserving protocol for indoor Wi-Fi-localization
is secure according to Theorem 1 below and meets the
security Definition 1. The proof can be found in the following
(Section IV-C).

Theorem 1: Protocol 1 computes the function f securely in
the presence of a malicious user, a semi-honest SP, and a semi-
honest CS.

C. Security Proof

In showing the protocol’s security, we formulate the view of
the real execution of the protocol by constructing the view of
the simulator for each considered adversary (AU , AC S, AS P)

based on the input/output in the ideal world. If the view of
the ideal world is computationally indistinguishable from the
view in the real execution of the protocol, then we conclude
that the protocol is secure. Thus, the adversary does not learn
any extra information apart from what the protocol intended
to output.

1) View of a Malicious User: From the user’s perspective,
its input to the protocol is the encryption of ri , and the output
is the garbled values of the k-nearest Euclidean distances.
We choose a simulator SU , which runs AU , and controls the
other parties. Similar to the real world, AU obtains ri (any
arbitrary input) and sends it to SU . As the adversary can
make any arbitrary input, the experiment terminates if AU
sends an incorrect input bitlength or an empty string. Else,
SU simulates the user’s view by encrypting ri since it has
the keys. Since the experiment controls both the SP and the
CS, SU computes the garbled values γ̃i and δ̃i like in the real
execution of the protocol 3. SU then queries the trusted party
TP for the evaluation of f (γ̃i , [δ̃i]). Finally, SU sends to AU
the garbled output of the k-nearest Euclidean distances and the
output translation function

[
(H(π0), 0), (H(π1), 1)

]
as in the

ESHUN AND PALMIERI: CRYPTOGRAPHIC PROTOCOL FOR EFFICIENT MUTUAL LOCATION PRIVACY 4095

real execution of the protocol. Due to the semantic security of
the garbled output (random values), the view of the adversary
AU in the ideal world is indistinguishable from the view of
the real-world execution of the protocol; that is, the ideal/real
output of the protocol are computationally indistinguishable.

2) View of the (Semi-Honest) Service Provider: Now we
construct a simulator SS P for in the ideal world to simulate
the adversary’s (AS P) view in a real execution of the protocol.
In this scenario, SS P runs AS P and controls the other parties.
In the ideal execution, the simulator SS P prepares its input
of choice, similar to the mobile user’s input (ri), in the real
execution of the protocol. This input is encrypted and sent to
the AS P . The adversary AS P now performs its computation
similar to the steps in the real execution of the protocol
and computes the garbled circuit as well. AS P then sends
to SS P the garbled circuits alongside its garbled input γ̃i .
Since the adversary AS P is semi-honest as, in the definition
of the security model, the right input is expected to be sent
else the experiment terminates.

Since the simulator controls the other parties; AS P and
the simulator engages in 1-2 OT protocol to deliver the keys
corresponding to the simulator’s input ([δi]) as in the real
execution of the protocol. The simulator SS P , now having both
input to the function f , queries the trusted party TP, to evaluate
f (γ̃i , [δ̃i]).

Due to the security of oblivious transfer, it is evident
that the adversary AS P cannot learn any information about
the simulators’ input of the garbled circuit. In addition, the
semantic security (IND-CPA) of the DGK cryptosystem makes
it impossible for AS P to learn any meaningful information
about the Mobile user’s input within a polynomial time similar
to the real execution of the protocol. Furthermore, any modi-
fication or incorrect construction of the circuit will cause the
experiment to terminate, bearing in mind that the server is a
semi-honest party this is not an issue. Thus, the adversary AS P
has no way to statistically distinguish the above interaction in
the ideal world from, that of the real execution of the protocol.

3) View of the (Semi-Honest) Cloud Server: Finally,
we construct a simulator (SC P) which in the ideal world can
simulate the adversary’s view (AC P) in the real execution of
the protocol.

The output of CS is the l-bits of the smallest Euclidean dis-
tances (garbled output). In this experiment, the simulator SC S
runs AC S and controls the other parties (SP and the user). First
SC P , sends to AC P an encrypted masked distance (Enc[δ]).
This allows AC P to decrypt the encrypted, masked distance
as in the real-execution of the protocol. The simulator SC P
then simulates a garbled circuit and sends it to AC S alongside
the server’s garbled input (γ̃i). Finally SC P simulates an OT
protocol, and engages AC P in a 1-2 oblivious transfer protocol
to allow AC S to recover the keys to its garbled input. AC P then
evaluates the circuit and sends back to SC P garbled output
values of Euclidean distances. Since the AC P is semi-honest
per the definition of the security model, it will not tamper
with the garbled output, else that will cause SC P to trigger
(⊥), guaranteeing the correct output of the garbled circuit.
Also, the semantic security (IND-CPA) of the garbled output
and the security of the Oblivious transfer protocol makes the

garbled values indistinguishable from pseudo-random noise.
As a result, the AC S is unable to distinguish between the
simulated interaction in the ideal world and the real execution
of the protocol.

D. Potential Expansion to a Malicious Service Provider

Although this protocol was designed to provide secu-
rity against a semi-honest service provider, in this section,
we introduce and briefly discuss some potential capabilities
when the service provider is assumed to be malicious. This
might be useful for the reader in comprehending the reasoning
behind the choice of the security model for the protocol con-
struction. As a malicious adversary, the most likely scenario
for the SP is to construct the Spatial Bloom filter so that
verifying the user’s location is always true. In other words, the
SP will include all locations of the infrastructure in question
so that the user’s location is always disclosed, regardless
of whether the user is within an area of interest. However,
we believe that additional hardening of the protocol could
easily reveal that the SP is cheating, as the size of the areas of
interest could be agreed upon beforehand, revealing the size
of the filter; thus, any additional insertion into the filter will
result in the SP being caught, as the size of the filter will
exceed what was agreed upon. Also, as SP is the constructor
of the garbled circuit, in order to send the garbled version
of F, SP can easily send the incorrect F to CP, as SP is not
required to adhere to the protocol’s instructions. As CS only
receives ciphertext or encrypted circuits, it is unable to confirm
that the correct F or circuit was sent. This intent will affect
the protocol’s correctness. In reality, this is a problem of both
correctness and privacy. Thus, the output of the evaluation
may appear to be random garbage, but it reveals the CS’s
entire input (user’s location). A potential solution to address
the issue of a malicious party constructing a circuit is to
use the cut-and-choose paradigm. This approach involves the
constructor creating multiple copies of the circuits and the
evaluator requesting the constructor to open more than half
of them. By doing so, if the constructor has constructed the
circuit incorrectly, there is a high probability of being caught
during the verification process. This approach provides a way
to ensure the security and accuracy of the circuit construction
in the presence of malicious parties.

V. EVALUATION

This work makes use of homomorphic encryption in
preserving the privacy of the users’ queries. Using homomor-
phism clearly increases the computation and communication
incurred on the user side, which is why in the design of the
protocol, we outsourced most of the user’s computations. Due
to the higher bandwidth and computational capabilities, we can
safely assume to be at the disposal of the SP and CS, the cost
analysis focuses more on the user side, which we presume
to be a constrained mobile or IoT device. For completeness,
we nonetheless include the SP and CS computation and
communication costs in Section V-C.

For this analysis, we use the recommendations [48], [49] of
key size up-to-long-term protection. The security parameters;

4096 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

T denotes the asymmetric key and t for the symmetric key.
Though a key-length T = 1024 (in Table V) is widely
acknowledged to be obsolete for security by the cryptographic
community, we included it for the sake of completeness of the
analysis.

In the following, we evaluate the computational and commu-
nication complexity of the proposed cryptographic protocol,
and we compare it to the current leading solutions in the
literature. In particular, we compare it directly to [1] and [2],
as these schemes have comparable constructions. As neither
of these schemes has been implemented, we compare the
computational complexity in terms of exponentiations and
multiplications, as standard in the relevant literature. In both
cases, the proposed protocol has a significant complexity
advantage. This stands even if the improvements to previous
protocols proposed in [11] for [2] are included.

A. Computational Complexity

Analyzing computational complexity is essential to secure
multi-party computation (SMC) efficiency, especially consid-
ering IoT devices.

Localization protocols using additively homomorphic
encryption mostly use Paillier encryption [25], where the
hardness relies on the composite residual problem with RSA
modulus N as the public key. This protocol instead uses
DGK [21], [22], which has smaller plaintext space but with
better performances. We use the DGK for encryption while
the GC is for the subtraction and computing of the shortest
Euclidean distances.

To make fair comparisons with other similar localization
protocols, we use the optimized version of these protocols
where most of the expensive modular exponentiation is pushed
to the set-up phase. Table III depicts a summary of the
findings. In protocols [1], [2], a total of 2n elements (RSS) of
the user’s input query are encrypted using the Paillier encryp-
tion. The cost of Paillier encryption requires two modular
exponentiation (Exp) and one modular multiplication (Mul).
The complexity of the encryption is improved by choosing
g = N + 1 in the equation 2 to become:

Enc(x) = (x N + 1) · r N mod N 2 (15)

making the encryption complexity to be only one exponenti-
ation and two modular multiplications instead. Thus in total,
each user requires 2n exponentiation and 4n modular multi-
plications for each input query. Using the DGK cryptosystem
results in the encryption complexity of one exponentiation
modulo N being more efficient than the Paillier due to the
lower exponent. In total, the user requires approximately n
exponentiation which is a significant improvement. In [2] and
[1], decrypting one ciphertext requires one exponentiation with
optimization technique while using our outsourced protocol
requires negligible computation.

Comparing this protocol to [11], which suggested the use of
Paillier and GC as a solution to the security weakness in [2],
our proposed protocol has better performance, especially the
heavy GC computations at the user side are all delegated to
the CS, making it more practicable in a real-world setting.

TABLE IV
TIME REQUIRED BY THE USER TO PERFORM THE REQUIRED ENCRYPTION

COMPUTATION, FOR DIFFERENT KEY SIZES. THE TABLE DETAILS
THE MEAN ENCRYPTION TIMES IN MILLISECONDS (MS)

AVERAGED OVER 10 ENCRYPTION ROUNDS. THIS
ILLUSTRATES THE RELATIONSHIP BETWEEN

INCREASING KEY SIZE AND ENCRYPTION
DURATION, HIGHLIGHTING THE

COMPUTATIONAL IMPACT OF
STRONGER ENCRYPTION IN
SECURE COMMUNICATIONS

Even when most of the computations are in the setup phase,
users in [11] in the online phase still need to compute n
exponentiation for n ciphertexts and GC evaluation requiring
lm non-XOR gates for subtraction. Evaluating the GC for
the indexes of k smallest distances by the user using the k
nearest neighbour search algorithm of [50], and later improved
by [6] would still require the invocation of cryptographic
hash functions of k(2ml + m log2 m) non-XOR gates for k
comparisons and 2k conditional swap, where log2 m is the
circuit depth for m values of bit-length l̂. This computation
is undoubtedly expensive for a mobile device (especially IoT)
with limited resources to perform compared to the proposed
protocol.

To assess the computational burden on the user-side,
particularly for devices with constrained processing power,
we provide experimental results on the time required to
perform the encryptions needed to securely transmit data
to the servers. The analysis focuses on the user, as SP
and CS are presumed to be equipped with robust com-
putational resources. The implementation was done using
Python, and run on a 2.40 GHz Intel(R) Core(TM) pro-
cessor. The results, illustrated in Table IV, comprise the
time complexity for both equations 7a and 7b, which are
encryptions performed by the user before transmitting data
to the Service provider (SP). Specifically, we use a sample
ri = {−40,−42,−46,−49,−50,−55}, obtained from an
experiment on live access points. This evaluation is crucial
for understanding the practicality and efficiency of the protocol
in real-world scenarios, especially when used by devices with
constrained resources. The results highlight the relatively small
computational effort and time required, which would be easily
achieved on any modern user device (such as a smartphone).

B. Communication Complexity

The communication complexity of Paillier and DGK is
largely dependent on the size T of the RSA modulus N. The
size of the ciphertext of the Paillier cryptosystem is as twice
as that of DGK. Moreover, unlike protocol [1], [2], where 2n
output ciphertexts are sent from the user to the SP, the user
in this protocol sends a total of n + 1 ciphertexts to the SP,
an improvement by a factor of approximately 2 in the online
communication.

ESHUN AND PALMIERI: CRYPTOGRAPHIC PROTOCOL FOR EFFICIENT MUTUAL LOCATION PRIVACY 4097

TABLE V
COMPARISON OF BANDWIDTH USAGE AT USER-SIDE: FOR THIS PROTOCOL, THE USER’S TRAFFIC EMANATES FROM THE CLOUD SERVER

TABLE VI
COMPUTATIONAL AND COMMUNICATION COMPLEXITY AT THE SP AND CS

Table V shows a significant gain in this protocol’s com-
munication bandwidth compared to that of [1] and [2]. The
user’s encrypted message sent to the SP in this protocol has
a communication bit of (n + 1)T asymptotically compared
to 4nT of [1], [2]. As shown in Table V as the keysize
increases, the gain in bandwidth in our protocol asymptotically
approaches a factor of 4.

The encrypted distances that the SP transfers to the user
in [1] and [2] require an asymptotic communication overhead
of 2mT bits; juxtaposing it, this protocol has a much lower
communication complexity of kl bits. Table V depicts the
pattern of gains for different security parameters. Let m =
924 and n = 520 in the database (D) as in [51]. The scan
result at each reference point depends on the internal structure
and the positions of the installed access points. Reference [2]
estimated an average of 6 APs is enough to localize a user.
To estimate the communication in bandwidth, we set n = 121

goal in table V for the average scan result per reference point
that a user sends to the SP. And let k = 5 and maximum of l̂ =
24, (where l̂ = log2n+2l bi ts+1, is the maximum bit-length
of the euclidean distance). During the online phase, as the
key-size of [1] and [2] increases, the bandwidth size grows
proportionally while in our proposed protocol, the bandwidth
remains constant.

The estimated communication cost in the suggested solu-
tion [11] in the user/server settings still poses a significant
communication overhead at the user side. The communication
cost for sending one Paillier ciphertext will be 2T . The OT
protocol of [53] against a semi-honest SP and the malicious
user will result in communication complexity bits of ≈ 12mlt .
And the offline communication complexity for transferring
the GC will be lm non-XOR gates for the subtraction and
approximately 3klm (klm for comparisons and 2klm for the
minimum selection) for computing the Euclidean distances.

1The work of [2] showed that scan results (number of available ap) ≥ 6 per
reference point is enough to localize a user. In [51], the average number of
available AP per reference point is 18 while in [52], it ranges from 11 to 67.

Thus, using the Garbled row reduction of [35] will result in a
complexity of approximately 3t bits per non-XOR gate.

Therefore, this outsourced protocol brings significant com-
munication bandwidth gains, considering the limited resources
on the user side. Though combining the efficient OT protocol
of [28] and [30] will allow most of the expensive operations
to be done in the set-up phase, and in effect, improve the
complexity. Nevertheless, the bandwidth involved would still
be an overburden for a resource constraint user in addition
to the direct impact on power consumption. Without the
outsourcing server, the total online communication complexity
in the phase of optimization would asymptotically be 2mT
for m Paillier ciphertexts transferred by the SP plus 2ml̂t of
the online part of the OT protocol for m values of bit-length
l̂ and security parameter t . Thus communication complexity
of kl̂ − bits for k values of bit-length l̂ in this protocol for
resource constraint mobile user is a significant improvement
over [11], not to mention the communication overhead in the
set-up phase for the user.

C. Communication and Computation for SP and CS

Our focus for the cost analysis is mainly on the user side,
who normally uses a constrained mobile device and is the
party that benefits the most from a reduction in overheads.
However, for completeness, we briefly discuss the approximate
computational complexity of the service provider (SP) and
cloud server (CS), as well as their communication costs. The
results are summarised in Table VI, where L = 2l

−1 and l is
the bit-length of the RSS value. To accurately track the cost of
communication between a Service Provider (SP) and a Cloud
Server (CS) in a secure computing environment, it is necessary
to consider all relevant factors. Therefore, the communication
Table VI records the full cost of this communication, which
includes the DGK ciphertext, the total ciphertext sent in the
Oblivious Transfer (OT) step, and the garbled values received
by the CS. This differs from the first Table V, which merely
monitors the total number of packets the user receives from the
Cloud server. Considering these variables, the communication

4098 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

table provides a more comprehensive and realistic depiction of
communication costs in a safe computing environment. It is
important to remember that both parties (CS and SP) are very
likely to have no constrain in communication capabilities and
a very high computational capacity. Nonetheless, our results
show that both computation and communication overheads are
perfectly manageable even by low-resource servers.

In the set-up phase, a total of mn exponentiation is needed
to compute Enc(v2) plus m encryption of the noise (γ). For
the garbled circuit, SP will invoke 22 hash functions for each
2-input non-xor gate created; the technique of [37] will bring
it down to only 2 per 2-input non-xor gate. The random
oracle (RO) protocol of [30] will result in 2l̂ invocation of
cryptographic hash functions for the computation of OT by
the SP in the set-up phase. In computing the filter, the SP
will invoke approximately k cryptographic hash functions for
each position inserted in the filter. The CS, on the other hand,
only needs one invocation of the cryptographic hash function
for each 2-input non-xor gate. It is important to highlight that
most SP’s computations would be more cost-effective than
shown in the theoretical analysis, as most RSS values are
zero at each reference point. Given that cloud service providers
have state-of-the-art infrastructure and tremendous resources at
their disposal, computational work by the CS is easily doable.
Computations for all non-xor gates are negligible.

In the online phase, the cost for computing Enc(ϕ) j2 will
be ≈ Lm exponentiations (where L = 2l

− 1 and l is the
bit-length of the RSS value) plus mn modular multiplications.
Finally, 2m modular multiplications are required in computing
Enc(δ) and m modular multiplication for computing Enc[δ].

With regards to communication complexity, the SP will send
a total of 3l̂ t per each 2-input non-XOR gates using the garbled
row reduction [35] for the garbled circuit plus ≈ 6l̂ t for the
OT based on the random oracle [30]. In the online phase,
the communication cost will be asymptotically mT of DGK
ciphertext and 3l̂mt bits (l̂mt for SP’s garbled input and 2l̂mt
for the OT based on two rounds of communication between
SP and CS).

VI. CONCLUSION

In this paper, we propose an efficient and privacy-preserving
protocol for indoor Wi-Fi localization that guarantees both the
service provider and the user’s privacy. Our protocol combines
a number of cryptographic primitives to preserve the privacy of
the parties involved. In particular, our scheme employs additive
homomorphic encryption (DGK encryption) to preserve the
privacy of the user’s location fingerprint while allowing the
service provider to make computations over the encrypted
fingerprint. Whereas the use of a garbled circuit preserves the
privacy of the SP’s reference database against malicious users,
and at the same time, delivers the location output (k-nearest
neighbours) to the user. The spatial Bloom filter allows the SP
to use the location-based service in the indoor environment
to learn the user’s vicinity in predefined areas of interest
while preventing the user from learning these predefined areas.
When the user happens to be outside these predefined areas
of interest (∇), the service provider learns nothing about the
user’s location.

Compared to other similar protocols [1], [2], our protocol’s
complexity analysis shows a very significant reduction in
computational costs at the user-side, as most of the heavy
computations of the garbled circuit operations are securely and
effectively outsourced to the cloud server. Online communica-
tion costs show a reduction of about 99.99% compared to other
similar protocols in the user/server setting, making our proto-
col more efficient and practicable in the Internet of Things
environment. Additionally, our protocol is the first among
those analyzed to provide security against malicious users,
with other protocols limited to honest-but-curious adversaries.

Potential directions for future work include extending the
protection against malicious cloud servers/service providers
and implementing it by leveraging the ABY [54] framework
for mixed protocol multi-party computation.

REFERENCES

[1] S. N. Eshun and P. Palmieri, “A privacy-preserving protocol for indoor
Wi-Fi localization,” in Proc. 16th ACM Int. Conf. Comput. Frontiers,
Apr. 2019, pp. 380–385.

[2] H. Li, L. Sun, H. Zhu, X. Lu, and X. Cheng, “Achieving privacy
preservation in WiFi fingerprint-based localization,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2014, pp. 2337–2345.

[3] A. Göker and H. I. Myrhaug, “User context and personalisation,” in
Proc. 6th Eur. Conf. Case Based Reasoning, 2002, pp. 1–7.

[4] NOAA. (2022). GPS Accuracy. [Online]. Available: https://www.
gps.gov/systems/gps/performance/accuracy/

[5] J. Torres-Sospedra, R. Montoliu, S. Trilles, Ó. Belmonte, and J. Huerta,
“Comprehensive analysis of distance and similarity measures for Wi-Fi
fingerprinting indoor positioning systems,” Expert Syst. Appl., vol. 42,
no. 23, pp. 9263–9278, Dec. 2015.

[6] K. Järvinen et al., “PILOT: Practical privacy-preserving indoor local-
ization using OuTsourcing,” in Proc. IEEE Eur. Symp. Secur. Privacy,
Jun. 2019, pp. 448–463.

[7] I. Oleynikov, E. Pagnin, and A. Sabelfeld, “Outsourcing MPC precom-
putation for location privacy,” in Proc. IEEE Eur. Symp. Secur. Privacy
Workshops, Genoa, Italy, Jun. 2022, pp. 504–513.

[8] P. Zhang et al., “Privacy-preserving and outsourced multi-party
K-means clustering based on multi-key fully homomorphic encryption,”
IEEE Trans. Dependable Secure Comput., vol. 20, pp. 2348–2359,
May/Jun. 2023.

[9] L. Calderoni, M. Ferrara, A. Franco, and D. Maio, “Indoor localization
in a hospital environment using random forest classifiers,” Expert Syst.
Appl., vol. 42, no. 1, pp. 125–134, Jan. 2015.

[10] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an honest
majority,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2016, pp. 805–817.

[11] Z. Yang and K. Järvinen, “The death and rebirth of privacy-preserving
WiFi fingerprint localization with Paillier encryption,” in Proc. IEEE
Conf. Comput. Commun., Apr. 2018, pp. 1223–1231.

[12] T. Zhang, S. S. M. Chow, Z. Zhou, and M. Li, “Privacy-preserving Wi-Fi
fingerprinting indoor localization,” in Proc. 11th Intl. Workshop Secur.,
2016, pp. 215–233.

[13] T. Shu, Y. Chen, J. Yang, and A. Williams, “Multi-lateral privacy-
preserving localization in pervasive environments,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2014, pp. 2319–2327.

[14] C. Yang, Z. Jia, and S. Li, “Privacy-preserving proximity detection
framework for location-based services,” in Proc. Int. Conf. Netw. Netw.
Appl. (NaNA), Oct. 2021, pp. 99–106.

[15] M. Raykova, B. Vo, S. M. Bellovin, and T. Malkin, “Secure anonymous
database search,” in Proc. ACM Workshop Cloud Comput. Secur.,
Chicago, IL, USA, Nov. 2009, pp. 115–126.

[16] E. Stefanov and E. Shi, “Multi-cloud oblivious storage,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Berlin, Germany, 2013,
pp. 247–258.

[17] S. Kamara, P. Mohassel, M. Raykova, and S. S. Sadeghian, “Scaling
private set intersection to billion-element sets,” in Proc. 18th Int.
Conf. Financial Cryptogr. Data Secur., vol. 8437. Cham, Switzerland:
Springer, 2014, pp. 195–215.

ESHUN AND PALMIERI: CRYPTOGRAPHIC PROTOCOL FOR EFFICIENT MUTUAL LOCATION PRIVACY 4099

[18] P. Palmieri, L. Calderoni, and D. Maio, “Spatial Bloom filters: Enabling
privacy in location-aware applications,” in Proc. 10th Int. Conf. Inf.
Secur. Cryptol., 2014, pp. 16–36.

[19] L. Calderoni, P. Palmieri, and D. Maio, “Location privacy without
mutual trust: The spatial Bloom filter,” Comput. Commun., vol. 68,
pp. 4–16, Sep. 2015.

[20] L. Calderoni, P. Palmieri, and D. Maio, “Probabilistic properties of the
spatial Bloom filters and their relevance to cryptographic protocols,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1710–1721,
Jul. 2018.

[21] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and secure
comparison for on-line auctions,” in Proc. 12th Australas. Conf. Inf.
Secur. Privacy, 2007, pp. 416–430.

[22] I. Damgard, M. Geisler, and M. Kroigard, “A correction to ‘efficient and
secure comparison for on-line auctions,”’ Int. J. Appl. Cryptogr., vol. 1,
no. 4, p. 323, 2009.

[23] A. C. Yao, “Protocols for secure computations (extended abstract),” in
Proc. 23rd Annu. Symp. Found. Comput. Sci., 1982, pp. 160–164.

[24] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in Proc. 27th Annu. Symp. Found. Comput. Sci., 1986, pp. 162–167.

[25] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.,
Jan. 1999, pp. 223–238.

[26] S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing
logarithms over G F(p) and its cryptographic significance (corresp.),”
IEEE Trans. Inf. Theory, vol. IT-24, no. 1, pp. 106–110, Nov. 1978.

[27] M. Rabin, “How to exchange secrets by oblivious transfer,” Harvard
Aiken Comp. Lab, Cambridge, MA, USA, Tech. Rep. TR-81, 1981.

[28] D. Beaver, “Precomputing oblivious transfer,” in Proc. Annu. Int. Cryp-
tol. Conf., 1995, pp. 97–109.

[29] M. Naor and B. Pinkas, “Computationally secure oblivious transfer,”
J. Cryptol., vol. 18, no. 1, pp. 1–35, Jan. 2005.

[30] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in Proc.
12th Annu. ACM-SIAM Symp. Discrete Algorithms, 2001, pp. 448–457.

[31] Y. Lindell and B. Pinkas, “A proof of security of Yao’s protocol for two-
party computation,” J. Cryptol., vol. 22, no. 2, pp. 161–188, Apr. 2009.

[32] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in Proc. Int. Colloq. Automata, Lang., Program.,
vol. 5126, Jul. 2008, pp. 486–498.

[33] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols (extended abstract),” in Proc. ACM Symp. Theory Comput.
(STOC), 1990, pp. 503–513.

[34] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay—A secure two-
party computation system,” in Proc. 13th USENIX Secur. Symp., 2004,
pp. 287–302.

[35] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions
and mechanism design,” in Proc. 1st ACM Conf. Electron. Commerce,
Nov. 1999, pp. 129–139.

[36] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in Proc. Int. Conf. Theory Appl. Cryptol.
Inf. Secur., vol. 5912, M. Matsui, Ed. Berlin, Germany: Springer,
Dec. 2009, pp. 250–267.

[37] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a
whole—Reducing data transfer in garbled circuits using half gates,” in
Proc. EUROCRYPT, 2015, pp. 220–250.

[38] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[39] T. Schneider, Engineering Secure Two-Party Computation
Protocols—Design, Optimization, and Applications of Efficient
Secure Function Evaluation. Cham, Switzerland: Springer, 2012.

[40] V. Kolesnikov, A. Sadeghi, and T. Schneider, “Improved garbled circuit
building blocks and applications to auctions and computing minima,” in
Proc. 8th Int. Conf. Cryptol. Netw. Secur., 2009, pp. 1–20.

[41] H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure outsourced
garbled circuit evaluation for mobile devices,” J. Comput. Secur., vol. 24,
no. 2, pp. 137–180, Apr. 2016.

[42] T. P. Jakobsen, J. B. Nielsen, and C. Orlandi, “A framework for
outsourcing of secure computation,” in Proc. 6th ACM Workshop Cloud
Comput. Secur., Nov. 2014, pp. 81–92.

[43] S. Kamara, P. Mohassel, and B. Riva, “Salus: A system for server-aided
secure function evaluation,” in Proc. ACM Conf. Comput. Commun.
Secur., Oct. 2012, pp. 797–808.

[44] F. Doelitzscher, C. Reich, and A. Sulistio, “Designing cloud services
adhering to government privacy laws,” in Proc. 10th IEEE Int. Conf.
Comput. Inf. Technol., Jun. 2010, pp. 930–935.

[45] O. Goldreich, The Foundations of Cryptography—Volume 2: Basic
Applications, vol. 2. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[Online]. Available: http://www.wisdom.weizmann.ac.il/%7Eoded/foc-
vol2.html

[46] S. Kamara, P. Mohassel, and M. Raykova, “Outsourcing multi-party
computation,” IACR Cryptol. ePrint Arch., vol. 2011, p. 272, Oct. 2011.
[Online]. Available: http://eprint.iacr.org/2011/272

[47] Y. Lindell, “How to simulate it—A tutorial on the simulation proof
technique,” in Tutorials on the Foundations of Cryptography. Cham,
Switzerland: Springer, 2017, pp. 277–346, doi: 10.1007/978-3-319-
57048-8.

[48] NIST. (2016). Recommendation for Key Management, Special Publi-
cation 800–57 Part 1 Rev. 4. [Online]. Available: https://csrc.nist.gov/
Projects/Key-Management/publications

[49] ENCRYPT. (2018). Algorithms, Key Size and Protocols Report
(2018), H2020-ict-2014—Project 645421, D5.4, Ecrypt-CSA.
[Online]. Available: https://www.ecrypt.eu.org/csa/documents/D5.4-
FinalAlgKeySizeProt.pdf

[50] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar,
“Compacting privacy-preserving k-nearest neighbor search using logic
synthesis,” in Proc. 52nd ACM/EDAC/IEEE Design Autom. Conf. (DAC),
Jun. 2015, pp. 1–6.

[51] J. Torres-Sospedra et al., “UJIIndoorLoc: A new multi-building and
multi-floor database for WLAN fingerprint-based indoor localization
problems,” in Proc. Int. Conf. Indoor Positioning Indoor Navigat. (IPIN),
Oct. 2014, pp. 261–270.

[52] E. Lohan and J. Talvitie. (2014). Indoor Wlan Measure-
ment Data. [Online]. Available: http://www.cs.tut.fi/tlt/pos/
MEASUREMENTS_WLAN_FOR_WEB.zip

[53] W. Aiello, Y. Ishai, and O. Reingold, “Priced oblivious transfer: How
to sell digital goods,” in Proc. EUROCRYPT, 2001, pp. 119–135.

[54] D. Demmler, T. Schneider, and M. Zohner, “ABY—A framework for
efficient mixed-protocol secure two-party computation,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2015, pp. 497–511.

Samuel N. Eshun received the B.Sc. degree in
mathematics and statistics from the University of
Cape-Coast (UCC), Ghana, in 2011, the M.Sc.
degree in coding theory and cryptography from the
University of Trento, Italy, and the Ph.D. degree
from University College Cork, Ireland. He is cur-
rently a Senior Cyber Security Engineer with Jaguar
Land Rover, Shannon, Ireland. His current research
interests include data privacy, cryptography, and
secure multiparty computation, location privacy, and
anonymization.

Paolo Palmieri (Member, IEEE) received the Ph.D.
degree in cryptography from Université Catholique
de Louvain, Belgium, in January 2013. Then, he was
a Post-Doctoral Researcher with Delft University of
Technology, The Netherlands, and also lectured with
Bournemouth University and Cranfield University,
U.K. He is currently a Lecturer in cyber security
with University College Cork, Ireland. His research
interests include cryptography, privacy, anonymity,
secure computation, privacy-enhancing technologies,
anonymity protocols, location privacy, and smart
cities.

http://dx.doi.org/10.1007/978-3-319-57048-8
http://dx.doi.org/10.1007/978-3-319-57048-8

