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Abstract— Latent fingerprints are among the most important
and widely used evidence in crime scenes, digital forensics and
law enforcement worldwide. Despite the number of advancements
reported in recent works, we note that significant open issues
such as independent benchmarking and lack of large-scale eval-
uation databases for improving the algorithms are inadequately
addressed. The available databases are mostly of semi-public
nature, lack of acquisition in the wild environment, and post-
processing pipelines. Moreover, they do not represent a realistic
capture scenario similar to real crime scenes, to benchmark
the robustness of the algorithms. Further, existing databases for
latent fingerprint recognition do not have a large number of
unique subjects/fingerprint instances or do not provide ground
truth/reference fingerprint images to conduct a cross-comparison
against the latent. In this paper, we introduce a new wild
large-scale latent fingerprint database that includes five different
acquisition scenarios: reference fingerprints from (1) optical
and (2) capacitive sensors, (3) smartphone fingerprints, latent
fingerprints captured from (4) wall surface, (5) Ipad surface, and
(6) aluminium foil surface. The new database consists of 1,318
unique fingerprint instances captured in all above mentioned
settings. A total of 2,636 reference fingerprints from optical and
capacitive sensors, 1,318 fingerphotos from smartphones, and
9,224 latent fingerprints from each of the 132 subjects were
provided in this work. The dataset is constructed considering
various age groups, equal representations of genders and back-
grounds. In addition, we provide an extensive set of analysis of
various subset evaluations to highlight open challenges for future
directions in latent fingerprint recognition research.

Index Terms— Biometrics, latent fingerprints, fingerprint
recognition, database, performance evaluation.
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I. INTRODUCTION

LATENT fingerprints were first reported to convict a
suspect as evidence in 1893 [1]. Over the years, latent

fingerprints have been regarded as one of the most commonly
and broadly used sources of evidence in crime scenes, digital
forensics, law enforcement, etc [1]. Latent fingerprints can
be left on various surfaces when a finger makes contact
with an object. The manner in which a finger touches the
surface of an object has a significant impact on the latent
fingerprint quality (e.g., sharpness, contrast, and visible area).
There is a long history that latent fingerprint recognition was
performed by latent examiners before the development of
Automated Fingerprint Identification System (AFIS). In recent
years, latent AFIS has become one of the most commonly
used technologies by law enforcement agencies worldwide [2].
More than 300,000 latent fingerprint identification demands
were sent to the FBI over the United States only in 2020 [3].

Unlike rolled and slap fingerprints (reference fingerprint
images acquired using standard fingerprint capture devices),
latent fingerprints are captured under unconstrained and unsu-
pervised conditions. Low quality, partial visibility, and the
absence of satisfactory number and quality of minutiae points
are common issues faced in latent fingerprint recognition.
The National Institute of Standards and Technology (NIST)
announced two fingerprint vendor technology evaluations
(FpVTE) in 2003 and 2012, respectively, [4] to advance
the research on latent fingerprint recognition. FpVTE was
intended for the evaluation of fingerprint system performance
to meet the requirements for real-world applications for both
reference and latent fingerprints. In the latest FpVTE2012,
the best Rank 1 accuracy were reported as 99.5% by the
top-performing AFIS for reference fingerprints [5]. However,
the best Rank 1 accuracy was only 67.2% in the past
decade and have been significantly improved to about 85% in
recent years for latent fingerprints during the NIST Evaluation
of Latent Fingerprint Technologies: Extended Feature Sets
(ELFT-EFS) [6]. The major difference in recognition perfor-
mance between the reference and latent fingerprints is mainly
caused by the low fingerprint quality of the ridge-and-valley
structures in latent fingerprints. It is obvious that the further
development of robust and high-accuracy latent fingerprint
recognition systems is necessary, however a progress is cur-
rently limited by the sparse access to openly available datasets.

In the past decade, several studies have focused on develop-
ing latent fingerprint recognition algorithms [7]. However, the
performance evaluation of these methods was conducted on
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Fig. 1. Our contribution of latent fingerprint in the wild (LFIW) dataset compared to previous works.

only a few databases, such as the NIST SD27 Database [8],
IIIT-D Latent Fingerprint Database [9], and Tsinghua Over-
lapped Latent Fingerprint Database [10]. Despite being
valuable, these databases have major shortcomings:1) a small
number of subjects respectively finger instances and latent
fingerprint samples, 2) a constrained acquisition environment,
and 3) limited availability. Moreover, one of the most com-
monly used latent fingerprint databases NIST SD27 Database
has been withdrawn, making the development and performance
evaluation of latent fingerprint recognition even more difficult.

In this paper, we first review all existing studies on latent
fingerprint recognition to provide an overview to the reader.
We then provide an extensive analysis of algorithms that
are relevant for segmentation, minutiae extraction, and the
comparison of latent fingerprints both within and across sen-
sors. From a review of existing works, we note that latent
fingerprint recognition algorithms have rarely been tested
on large-scale datasets [11]. To the best of our knowledge,
there is no large-scale latent fingerprint in the wild database
containing reference fingerprints (ground truth), latent fin-
gerprints, and fingerphotos acquired from different surfaces
that come from a large number of unique subjects. There-
fore, it is necessary to establish a new large-scale latent
fingerprint in the wild database to meet the need for robust
latent fingerprint recognition algorithm development and
evaluation.

In order to address the limitations mentioned above, we pro-
vide the following three major contributions in this paper:

• Noting the non-availability of public datasets, a large-
scale database of latent fingerprints in the wild is
presented in this work which is referred to as “Latent
Fingerprint In the Wild” (LFIW). The dataset is col-
lected in six different scenarios, constituting a total of
13180 images of 132 subjects, and is released along
with this paper. This dataset contains various age groups
and equal representations of genders and backgrounds,

Fig. 2. Examples of comparison scores of the fingerprints from the proposed
LFIW database.

making it a unique dataset for the performance evalua-
tion of latent fingerprint recognition algorithms. As can
be seen in Fig. 2, the comparison scores significantly
decrease from reference vs. reference comparison to latent
vs. latent comparison, which also indicates that the LFIW
dataset is suitable for the evaluation and development
for the current and future latent fingerprint recognition
techniques. The LFIW dataset is available for academic
research purposes.1

• Unlike other works, we also present a ground truth of
fingerprints captured using optical and capacitive sensors
to conduct an analysis of contact-based versus latent

1Upon acceptance of the paper. This database will be made available
globally. We will also provide an independent evaluation platform to facilitate
reproducible research where any researcher, governmental agency or private
entity can submit and evaluate their latent fingerprint recognition methods. The
platform will include all of our benchmarked results of the latent fingerprint
recognition performance to compare against.
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TABLE I
LATENT FINGERPRINT DATABASES

fingerprint comparison. In addition, owing to recent
trends in the use of smartphone-based fingerphotos in
biometrics, we also introduce fingerphoto images to
benchmark the latent to the fingerphoto recognition.

• A benchmark and independent evaluation of 5 state-
of-the-art fingerprint recognition methods and 1 latent
fingerprint recognition approach is presented to highlight
the performance limitations of existing approaches. For
each method, a total of 118,620 mated comparison scores
and 173,593,780 non-mated comparison scores were gen-
erated for performance evaluation to derive statistically
significant conclusions

The paper is organized as follows. Section II provides an
overview of past studies which are related to our work in
latent fingerprint recognition and databases. We introduce the
large-scale LFIW database where the details of the whole
dataset are illustrated in Section III. The evaluated fingerprint
recognition algorithms are introduced in Section IV, followed
by a detailed discussion of benchmarking results in Section V.
Finally, Section VI draws the conclusions.

II. RELATED WORKS

Latent fingerprint recognition is a complicated process and
the accuracy is generally low. As noted from Fig. 2, one
can note that the comparison scores for the mated samples
drop heavily from capacitive to latent fingerprint comparison.
Compensation through human examiner supervision (or semi-
automatic) can increase the accuracy of latent fingerprint
recognition (see Fig. 3 for an example of common latent
fingerprint recognition workflow). Such a workflow has a
significant difference from the common AFIS operation mode
(e.g. border control, mobile unlock and payment, etc.). With
the rapid development of biometric technology, more and more
fully automated latent fingerprint recognition algorithms have
been proposed. There are three steps in the automated latent
fingerprint recognition system: segmentation, minutiae extrac-
tion, and comparison. A brief review of existing approaches

Fig. 3. Latent fingerprint recognition with human examiner supervision.

for these three steps is given below and the detailed summary
is illustrated in Table II. Prior to discussing each of the
components, we also discuss present available datasets for
latent fingerprint recognition.

A. Latent Fingerprint Databases

There are several existing latent fingerprint databases
available for performance evaluation, such as, NIST
SD302 [12], West Virginia University (WVU) database [16],
Multisensor Optical and Latent Fingerprint (MOLF)
database [14], Tsinghua Latent Overlapped Fingerprint
(TOLF) database [10], a very recent MUlti-Surface multi-
Technique (MUST) latent fingerprint database [18], and so
on. A list of commonly used latent fingerprint databases is
given in Table I. However, NIST SD27 has been withdrawn
and is no longer available.

As we can see from Table I, the size of most existing
latent fingerprint databases is small and the simulation of
real-world scene latent fingerprints is a very challenging issue.
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TABLE II
LATENT FINGERPRINT RECOGNITION TECHNIQUES

Unfortunately, the only real crime scenes database NIST SD27
has been withdrawn. To develop latent fingerprint recognition
techniques, creating a new and challenging database is needed.
Therefore, a new database that meets the following require-
ments is desirable:

1) Large-scale database including large number of unique
finger instances and not just multiple fingers from a few
unique subjects;

2) Real-world scenarios where latent fingerprints vary in
terms of quality, resolution and material surfaces;

3) Both reference and latent fingerprints are available for
each unique fingerprint instance in contact-less and
contact-based scenarios;

4) Public availability of dataset for academic research
under different latent and cross-sensor (latent-vs-
contact-based) protocols.

Compared to other existing latent fingerprint databases, the
proposed LFIW dataset not only has the second-largest number

of total fingerprint samples (13,180) from various scenarios
but also has the largest amount of unique fingerprint instances
(1318 from 132 subjects). The database further meets the
criteria mentioned above.

B. Latent Fingerprint Segmentation Techniques

Latent fingerprint segmentation can be defined as the
separation of the fingerprint region from the entire image.
Segmentation methods with high accuracy can not only reduce
the computational complexity but also usually improve the
minutiae extraction performance. There are two types of
segmentation tasks: separating non-overlapping and overlap-
ping latent fingerprints. For non-overlapped latent fingerprint
segmentation task, an extended directional total variation
model was developed by Zhang et al. [19] to search
for and separate latent fingerprints from the background.
Cao et al. [20] presented a dictionary based approach to
segment latent fingerprints as well as improve their quality.
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Many machine-deep learning (ML/DL)-based latent finger-
print segmentation approaches have been developed over
the past few years. Patches from the region of interest
of an image are trained in a convolutional neural network
(CNN) and used for segmentation by Stojanovic et al. [21].
A foreground (latent fingerprint) and background classification
method was developed by Sankaran et al. [22], which takes
advantage of random decision forest. Nguyen et al. [23] intro-
duced a CNN-based latent fingerprint segmentation algorithm
(SegFinNet) to compensate for the insufficient performance
of existing Commercial Off-The-Shelf (COTS) latent finger-
print recognition methods. Compared to non-overlapped latent
fingerprint segmentation, separating overlapped fingerprints
from each other and from the background is challenging.
Chen et al. [24] applied local Fourier transform and relaxation
labelling to segment overlapped fingerprints. To overcome
the shortcomings of relaxation labelling-based methods,
Zhao and Jain [25] developed a zero-pole model, Legen-
dre polynomial, 2D Fourier Expansion, and monomial basis
function for overlapped fingerprint segmentation. An adap-
tive neuro-fuzzy inference system classifier was used for
overlapping fingerprint segmentation by Jeyanthi et al. [26].
Stojanovic et al. [27] combined neural networks and Fourier
analysis to separate the overlapping fingerprints.

C. Latent Fingerprint Enhancement Techniques

Before minutiae extraction, latent fingerprints usually need
to be enhanced to improve the performance of the extraction
step. The main idea is to improve the fidelity of the segmented
latent fingerprint, which enable as much information as possi-
ble to be used for minutiae extraction. Some automated latent
fingerprint enhancement approaches have been developed to
overcome the disadvantages of manually enhancement by
human examiner. Yoon et al. first developed a latent fingerprint
enhancement method based on coarse orientation field estima-
tion and Gabor filtering [28], and an optimized version was
then proposed by using Short-Time Fourier Transform (STFT)
and Randomized-RAndom SAmple Consensus (R-RANSAC)
algorithm to estimate the orientation field [29]. Kumar and
Velusamy [30] designed a latent fingerprint enhancement
algorithm which can correct the orientation field using a
look-up table. The latent fingerprint orientation problem has
been seen as a classification task by Can and Jain [31].
A ConvNet is used to classify orientation patches. Li et al.
[32] proposed a CNN-based latent fingerprint enhancement
method called FingerNet to remove image noise and estimate
finger orientation. Joshi et al. [33] used a generative adversarial
network to amplify the fingerprint ridge structure for latent
fingerprint enhancement.

D. Latent Fingerprint Minutiae Extraction Techniques

Many fingerprint minutiae extraction methods have been
developed in the past, however, the number of minutiae
extraction algorithms that are especially used for the latent
fingerprints is limited. Su and Srihari [34] developed a latent
fingerprint minutiae extraction approach using a regression
Gaussian process model to estimate the location of finger core

points and orientation fields. Sankaran et al. [35] intended
to classify minutia or non-minutia regions in a latent fin-
gerprint by using stacked denoising sparse auto-encoders.
Tang et al. [36] used a fully connected CNN to extract minutiae
from the complicated background so that latent fingerprint
segmentation and quality enhancement are no longer needed
in this approach.

E. Latent Fingerprint Comparison Pipeline

It is not a simple task to find a match between an unknown
fingerprint and a fingerprint in a big database, while this
becomes even more difficult for latent fingerprint. Jain and
Feng [37] combined extended fingerprint features and minutiae
to perform latent fingerprint comparison. Paulino et al. [16]
applied Descriptor-Based Hough Transform (DBHT) to com-
pare reconstructed orientation fields in two latent fingerprints.
Cao and Jain [1] proposed to generate two minutiae templates
(obtained from CNN-based and dictionary-based ridge flow,
respectively) and one texture template (virtual minutiae) for
latent fingerprint comparison. In addition to use minutiae for
matching, pores were also used by Nguyen and Jain [38] to
increase the accuracy of latent fingerprint comparison.

III. LATENT FINGERPRINT IN THE WILD DATABASE

As noted in the previous studies, the performance evaluation
of existing latent fingerprint recognition techniques is mainly
based on only one or certain databases, which are usually
limited in size, diversity of image acquisition devices, image
quality, and realistic capture environment. The best way to
evaluate the performance of a latent fingerprint recognition
algorithm is to challenge it using different databases, image
acquisition and testing protocols. In order to overcome these
limitations and provide a new database for performance eval-
uation under real-world scenarios with high image quality, the
LFIW database created in this work consists of six subsets
of which two subsets are traditional fingerprints, three latent
fingerprints and one fingerphoto set as provided below:

1) R-opt: Reference fingerprints from optical sensor;
2) R-cap: Reference fingerprints from capacitive sensor;
3) Smt: Smartphone fingerphotos;
4) L-wall: Latent fingerprints captured from wall surface;
5) L-ipad: Latent fingerprints captured from Ipad surface;
6) L-alum: Latent fingerprints captured from aluminum foil

surface.
Detailed information of the LFIW database is further pro-

vided in Table III. All fingerprint images have been cropped
and rotated to remove the background in order to avoid
unnecessary variables and facilitate the following processing
steps (e.g. enhancement, minutiae extraction, etc.). Examples
of the R-opt, R-cap, Smt, L-wall, L-ipad, and L-alum images
are illustrated in Fig. 1 red dotted block.

A. Reference Fingerprint Images: R-Opt and R-Cap

For each of the 132 subjects in the LFIW database, two
enrolment images were captured by using two professional
fingerprint acquisition sensors: one optical fingerprint sensor
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TABLE III
PROPERTIES OF THE ‘LATENT FINGERPRINT IN THE WILD’ DATABASE

and one capacitive sensor. The optical sensor is ZKTeco
Live10R fingerprint capture device and the capacitive sensor
is Bingup FPW-A360 fingerprint capture device. The original
size of the fingerprint images from the optical sensor is
288×375 pixels (106 KB) and is 256×360 pixels (91 KB) for
the capacitive sensor. All reference fingerprint images are in
500 ppi. There are a total of (132 subjects×10 f ingers−

2 lost) × 2 sensors × 2 enrolment = 5272 reference
fingerprint images in the LFIW database (One of the subjects
had lost two fingers, indicated as −2 lost).

B. Smartphone Fingerphoto Images: Smt

All smartphone fingerphoto images were taken by Huawei
Honor20 smartphone (48+8+2 megapixel triple camera). All
subjects were asked to place each of their ten fingers on
a white background under additional white light source.
The acquisition distance to the fingers and the focus were
controlled and the build-in flash has been turned off. The
original size of the fingerprint images is 3000 × 4000 pixels
(∼2MB) and the ppi is 96 by default. There are a total of
132 subjects ×10 f ingers −2 lost = 1318 smartphone
fingerprint images in the LFIW database.

C. Wall Surface Latent Fingerprint Images: L-Wall

In order to simulate the latent fingerprints captured on
the wall in a real crime scene (indoor environment, such as
office, bank, school, etc.), subjects were required to touch
all 10 fingers on a marked area of an office desk partition
wall to leave their fingerprints on the wall. The wall was
cleaned before the acquisition for each subject by using a
wet and a dry tissue respectively. Copper powder was used
to make fingerprints visible and wall latent fingerprint images
were taken by Iphone 8 plus smartphone (12 megapixel dual
camera). Additional white light source was used and the
acquisition distance to the fingerprints was controlled while
the build-in flash has been turned off. The original size
of the wall latent fingerprint images is 3024 × 4032 pixels
(∼2.5MB) and the ppi is 72 by default. There are a total of
132 subjects×10 f ingers−2 lost = 1318 wall surface
latent fingerprint images in the LFIW database.

D. Ipad Surface Latent Fingerprint Images: L-Ipad

In order to simulate the latent fingerprints captured on the
surface of electronic devices as well as on the glasses in a real

crime scene, subjects were required to touch all 10 fingers on
an Ipad screen surface (without protective film) to leave their
fingerprints on the Ipad screen. The ipad surface was cleaned
before the acquisition for each subject by using a wet and
a dry tissue respectively. Copper powder was used to make
fingerprints visible and latent fingerprint images were taken by
the same Iphone 8 plus smartphone. The acquisition setups and
images properties are the same as the L-wall. Since additional
white light source was used, the screen reflection was avoided
as much as possible during the acquisition process. There are a
total of 132 subjects×10 f ingers−2 lost = 1318 Ipad
screen surface latent fingerprint images in the LFIW database.

E. Aluminum Foil Surface Latent Fingerprint Images:
L-Alum

In order to simulate the latent fingerprints captured on the
(deformable) metal surface in a crime scene, subjects were
required to touch all 10 fingers on an aluminum foil surface
to leave their fingerprints on the foil. Copper powder was again
used to make fingerprints visible and aluminum foil surface
latent fingerprint images were taken by the same Iphone 8 plus
smartphone. The acquisition setups and images properties are
the same as the L-wall. Since additional white light source
was used, the aluminum foil reflection was avoided as much
as possible during the acquisition process. There are a total of
132 subjects × 10 f ingers − 2 lost = 1318 aluminum
foil surface latent fingerprint images in the LFIW database.

A gallery of latent fingerprint samples from LFIW and
other commonly used databases is shown in Fig. 4 in order to
illustrate the difference between LFIW and other databases.

F. Fingerprint Images Preprocessing

All Smt, L-wall, L-ipad, and L-alum original images have
been cropped and rotated manually for further processing, thus
the size of these cropped and rotated fingerprints varies.

IV. FINGERPRINT RECOGNITION ALGORITHMS

As described in the previous sections, a number of existing
state-of-the-art and commonly used fingerprint recognition
algorithms are evaluated on the new LFIW database. Mean-
while, different versions of minutiae/features have been
generated by these evaluated algorithms and stored in the
benchmark databases for further evaluation. In this section,
we briefly discuss the algorithms that were tested on the LFIW
database.

1) NIST Biometric Image Software (NBIS) [41]: The NBIS
is one of the most well-known fingerprint recognition toolkits
that can be freely used and distributed. Two components
are used for the performance evaluation: MINDTCT and
BOZORTH3. MINDTCT is a minutiae detector and it can
automatically locate and record ridge endings and bifurcations
in a fingerprint image. BOZORTH3 is a fingerprint comparison
algorithm and it is minutiae-based. It accepts minutiae gener-
ated by the MINDTCT algorithm. All extracted minutiae from
MINDTCT are stored in the benchmark databases and can
be used for other fingerprint-comparison algorithms in case
needed.
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Fig. 4. Illustration of latent fingerprint samples from LFIW (a)-(f) and
other databases (g)-(p). (a) and (b) are L-wall samples; (c) and (d) are L-ipad
samples; (e) and (f) are L-Alum samples; (g)-(j) are from MUST; (k) and
(l) are from MOLF; (m) and (n) are from TOLF; (o) and (p) are from SD27.

2) Minutia Cylinder-Code (MCC) Fingerprint Recognition
SDK [42], [43]: The so-called ‘cylinder’ is a 3D data structure
containing minutiae distances and angles. Any standardized
minutiae position and direction (e.g. ISO/IEC 19794-2 [44])
can be used as mandatory pre-condition to establish the
cylinder. Instead of designing complex metrics to calculate
local similarities and generate the comparison score, a very
simple algorithm is applied in MCC by taking advantages of
the cylinder invariance. MCC uses ISO/IEC minutiae infor-
mation to generate its own minutiae template for fingerprint
comparison [45], [46].

3) VeriFinger Fingerprint Recognition SDK v12.3 [47]:
VeriFinger is a commercial fingerprint recognition software
designed for biometric systems developers and integrators
by Neurotechnology [47]. The software can conduct fast
fingerprint comparison in 1-to-1 and 1-to-many modes. The
VeriFinger algorithm is based on deep neural networks and fol-
lows the commonly accepted fingerprint recognition scheme,
which uses a set of minutiae along with a number of propri-
etary algorithmic solutions that enhance system performance
and reliability. VeriFinger can produce its own minutiae tem-
plate for fingerprint comparison. It has also been submitted to
the FVC-onGoing [45], [46] framework and has reached NIST
MINEX compliance.

4) MinutiaeNet Minutiae Extractor [48]: MinutiaeNet can
perform fully automatic latent fingerprint minutiae extraction
by using two independent deep neural networks. The first
network is named as CoarseNet and it estimates the minutiae
score map and minutiae orientation based on CNN and finger-
print domain knowledge (enhanced image, orientation field,
and segmentation map). FineNet is the second network and
it refines the candidate minutiae locations based on the score
map. MinutiaeNet has been particularly tested on NIST SD27
latent fingerprint database and the performance is better than
several other state-of-the-art minutiae extraction algorithms.
However, MinutiaeNet needs to apply other methods for
minutiae comparison, such as MCC or BOZORTH3.

5) MSU Latent Automatic Fingerprint Identification Sys-
tem [49]: MSU-LAFIS is an end-to-end latent fingerprint
search system, which has five main steps: 1) fingerprint region
of interest segmentation, 2) segmented image pre-processing,
3) feature extraction, 4) feature comparison, and 5) comparison
results generation. Two isolated feature extraction algorithms
are used to produce additional feature templates. In order
to avoid an insufficient number of extracted features from
latent fingerprints (too small area or very low image quality),
the feature template can be established by combining real
extracted features and a group of generated virtual features.
Each latent fingerprint feature and its neighbourhood are used
to obtain a 96-dimensional descriptor for feature comparison.
The descriptor length of the virtual feature is further com-
pressed from 96 to 16 to increase processing speed by using
DeepMDS [50] first and then product quantization.

V. PROTOCOLS, RESULTS AND DISCUSSION

With the newly introduced dataset, we also conduct an
extensive evaluation by introducing three different protocols.
The first protocol is to establish the baseline performance in
traditional fingerprint capture devices (optical and capacitive
sensors). The second protocol is to evaluate the scenarios
of comparing the latent-vs-latent and latent fingerprint with
traditional contact-based fingerprints. The third protocol is to
account for comparison of latent fingerprints with contactless
fingerprints derived from fingerphotos. With our protocols,
we cover all possible scenarios of relevance in real-world use
cases. Given the large scale of LFIW dataset, we also perform
both verification and identification experiments to provide the
reader with an understanding of the challenges and thereby
suggest directions for future works.

A. Verification Results - Overall

Before each of the protocols is considered, we provide
an overall evaluation of the dataset by combining all the
images of LFIW dataset. In the overall evaluation exper-
iment, a total of 118,620 mated comparison scores and
173,593,780 non-mated comparison scores are generated. The
Detection Error Tradeoff (DET) curves of the overall com-
parison experiments for the LFIW dataset are presented in
Fig. 5 along with the detailed results for various metrics
in Table IV. Two algorithms, VeriFinger and MCC perform
slightly better than the average, however, the Equal Error
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TABLE IV
PERFORMANCE INDICATORS MEASURED ON THE LFIW DATABASE FOR THE OVERALL COMPARISON EXPERIMENTS

Fig. 5. DET curve of the overall comparison experiments for the LFIW
database.

Rate (EER) is 22.82% and 32.27% respectively. Even the
MinutiaeNet and MSU-LAFIS which are particularly designed
for latent fingerprint recognition perform poorly with an EER
of 51.85% (MinutiaeNet-MCC)/45.61% (MinutiaeNet-NBIS)
and 47.51%, respectively. We have therefore analyzed the
causes of low performance and observe a high Failure To Enrol
Rate (FTER) for most of the selected algorithms. The overall
FTER are:

• FT E RN B I S = 25.2% (3321 samples),
• FT E RMCC = 36.7% (4834 samples),
• FT E RV eri Finger = 40.8% (5375 samples),
• FT E RM N−MCC = 28.1% (3704 samples),
• FT E RM N−N B I S = 26% (3428 samples),
• FT E RM SU−AF I S = 7.7% (1011 samples),
Further, FTER for different protocols are given in Table VI.

Such a high FTER for the second and third protocol in
Table VI indicates the difficulty to extract minutiae from
images in LFIW making it a challenging dataset. In addition,
we have illustrated the overall FTER for the most commonly
used latent fingerprint databases compared to the proposed
LFIW dataset in Table V. As some of the latent fingerprint
databases have rolled fingerprints included, only latent finger-
prints were used to generate the error rates in Table V. From
Table V we can observe that the proposed LFIW database
has the highest FTER compared to the other existing latent
fingerprint datasets with an exception to FTER from NBIS.

TABLE V
THE OVERALL FTER FROM THE MOST COMMONLY

USED LATENT FINGERPRINT DATABASES

This also means that the proposed LFIW database is one of the
most challenging datasets in terms of successfully enrollment
for commonly used fingerprint recognition systems.

Although some minutiae (features) can be successfully
extracted, the number of high quality minutiae (features) might
be insufficient for an eligible comparison. MSU-LAFIS has
the lowest FTER, NBIS and MinutiaeNet (both MCC and
NBIS) have the FTER lower than 30%. Since MSU-LAFIS is
especially developed for latent fingerprint, so it corresponds to
our expectation that it can handle more than 90% of the latent
fingerprints in the LFIW database. The FTER for VeriFinger
reaches more than 40% which means that almost half of the
latent fingerprints in the LFIW database cannot be used for
recognition or identification when using VeriFinger algorithm.
On one hand, the high FTER from selected non-latent-oriented
methods indicates that the latent fingerprints in the LFIW
database are much more difficult to be processed compared to
existing fingerprints and latent fingerprints. Therefore, robust
latent fingerprint recognition algorithms are needed. On the
other hand, the pre-processing approaches from the selected
algorithms can be optimized to be able to handle latent
fingerprints in the LFIW database.

The distributions of the overall comparison scores from
the selected algorithms are illustrated in Fig. 6. It can be
observed that none of the selected algorithms can well separate
the mated scores and the non-mated scores well. The highest
frequency mated and non-mated scores are almost overlapping
for all the methods. Compared with other methods, the mated
scores of VeriFinger are more distributed far away from the
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Fig. 6. Distributions of the overall comparison scores in the LFIW database.

non-mated scores (see Fig. 6 (c)). This is probably due to
the high FTER where latent fingerprints have been rejected
during the enrollment phase while it could process reference
fingerprints captured by using optical and capacitive sensors.
There are also a number of mated comparison scores separated
far from the non-mated scores for MSU-LAFIS in Fig. 6 (f),
but the proportion is lower than VeriFinger. The mated and
non-mated scores of MinutiaeNet (both MCC and NBIS)
are highly overlapped. In addition to the distributions of the
comparison scores, we present the most important performance
indicators measured on the LFIW database for the overall
comparison experiments in Table IV. It can be noted that
VeriFinger has the highest Area Under the ROC Curve (AUC)
value and lowest EER. Except VeriFinger, MCC outperforms
the rest of the algorithms, however, its AUC and EER is
still far from indicating the properties of a robust latent
fingerprint recognition system. Nevertheless, it is difficult to
distinguish whether those higher mated comparison scores are
from reference comparisons or latent comparisons by only
looking at the overall experimental results. Therefore, in the
following parts we will investigate the results for reference
and latent comparisons, respectively.

B. Protocol I: Verification Results - Traditional Sensors

We illustrate the DET curves of the NBIS, MCC, VeriFin-
ger, MinutiaeNet-MCC, MinutiaeNet-NBIS, and MSU-LAFIS
comparison experiments for the LFIW database in Fig. 7 and
the most important performance indicators measured for the
selected algorithms in Table VI. From Fig. 7 and Table VI
we can observe that the reference comparisons (e.g. R1-opt
to R2-opt, R2-opt to R2-cap) have better performance than

latent comparisons (e.g. R2-opt to L-wall, L-ipad to L-alum).
Except for VeriFinger, the best performance in reference
comparisons is from ‘R1-opt to R2-opt (reference fingerprints
from optical sensor session 1 vs. reference fingerprints from
optical sensor session 2)’ (see blue dashed lines with square
markers in Fig. 7). The comparisons ‘R1-cap to R2-cap’ give
the best performance for VeriFinger. Although the comparisons
‘R1-cap to R2-cap’ (red dashed lines with triangle markers)
are between the same acquisition device, the performance is
lower than ‘R1-opt to R2-opt’ for most of the algorithms.
It means that the utility of reference fingerprints from optical
sensor is better than the capacitive sensor measured by NBIS,
MCC, MinutiaeNet (both MCC and NBIS), and MSU-LAFIS.
The performance of the remaining reference comparisons are
very similar. In Table VI, the EER from the ‘R1-cap to R2-
cap’ comparison experiment is 0.82% for MCC, which is
also higher than the ‘R1-opt to R2-opt’ experiment. However,
both the above mentioned two EERs are smaller (0.11% and
0.89%, respectively) than the NBIS. Moreover, the difference
between ‘R1-opt to R2-opt’ and ‘R1-cap to R2-cap’ com-
parison experiments for MCC are also 0.78 less, compared
to NBIS. It means that MCC has a better ability to process
the reference fingerprints in the LFIW database than NBIS.
We can see from Table VI that the overall EERs and FMR100s
for VeriFinger are lower than NBIS and MCC, which is the
same as we already discussed previously in the overall results
section. By comparing Fig. 7 (d) and (e), as well as EER
values for MinutiaeNet we can discover that, NBIS has slightly
better overall system performance than MCC when using the
extracted minutiae from MinutiaeNet. However, neither MCC
nor NBIS can achieve better system performance for Minuti-
aeNet compared to other fingerprint recognition systems.
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Fig. 7. DET curves of the NBIS, MCC, VeriFinger, MinutiaeNet-MCC, MinutiaeNet-NBIS, and MSU-LAFIS comparison experiments for the LFIW database.

1) Protocol Ia: Verification Results - Traditional Cross-
Sensors: We also study the cross-sensor recognition for the
completeness of the analysis by comparing the optical v/s
capacitive sensors. However, the recognition performance of
‘R1-opt to R1-cap’ (orange dashed line with triangle markers)
and ‘R1-cap to R2-opt’ (purple dashed line) are lower than
same-sensor comaprison for MSU-LAFIS (see Fig. 7 (f)).

C. Protocol II: Verification Results - Traditional v/s Latent

We further consider a realistic evaluation scenrio where
the latents are to be compared against traditional fingerprints.
As noted from Table VI, the overall performance for latent
v/s traditional fingerprints is low. The EER values are around
50% and the FMR100 values are close to 100% for most
of the reference to latent and latent to latent comparisons
from all algorithms. The results suggest that comparing latent
fingerprints in the LFIW database is a very complex task for
the selected algorithms. An interesting EER value 18.8% can
be observed from the ‘L-ipad to L-alum’ comparison experi-
ment for NBIS. This EER value is much less than the others
obtained from latent fingerprints comparisons. Introspecting
the comparison scores, we note a very high FTER in NBIS
for ‘L-ipad to L-alum’ comparisons resulting in a misleading
low EER. The results also indicate that latent fingerprints
captured from Ipad surface and from aluminum foil surface
are the most difficult ones for NBIS to extract minutiae.
We can see the EER values for VeriFinger are low for many
reference fingerprints to latent fingerprints comparison (e.g.
EER for R1-opt to L-ipad is 10.2% and latent fingerprints
to latent fingerprints comparison (e.g. EER for L-wall to
L-ipad is 7.1%) experiments. After investigating the compar-
ison scores from these comparison experiments, we explore

that the number of scores is quite small. For example, there
are 29 mated scores left for L-wall to L-ipad comparison, there
is only one mated score left for L-wall to L-alum comparison
experiments. All the above discovered atypical EER and FMR
values (e.g. low for NBIS and high for VeriFinger) are due
to the high FTER that already discussed previously (noted
in Table VI). Although MinutiaeNet has been tested on NIST
SD27 latent fingerprint database and MSU-LAFIS is especially
developed for latent fingerprints, they still fail to provide
robust latent fingerprints recognition performance on the LFIW
database after looking at the EER and FMR100 values in
Table VI.

D. Protocol III: Verification Results - Fingerphoto
Comparisons

We further consider another protocol according to recent
trends and benchmark the performance for fingerphoto to
latent fingerprint comparison. Specifically, the protocol is
aimed at using fingerphotos as a replacement to traditional
fingerprint capture from contact-based sensors. We therefore
evaluate, fingerphotos as reference and compare it to latent
comparisons. From Fig. 7 and Table VI (in the bottom sector),
one can note that the EER (more than 50%) and FMR100
are high and indicate a challenging nature of smartphone
fingerphotos to latent comparison in the LFIW database.

E. Identification Results

In addition to demonstrating verification results, we also
illustrate the performance of identification results using Cumu-
lative Match Curves (CMC) of the Rank Identification (RI)
rates (rank-10) for NBIS, MCC, VeriFinger, MinutiaeNet-
MCC, MinutiaeNet-NBIS, and MSU-LAFIS identification
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TABLE VI
PERFORMANCE INDICATORS MEASURED ON THE LFIW DATABASE FOR THE SIX DIFFERENT ALGORITHMS
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Fig. 8. Cumulative match curves of the rank identification rates for NBIS, MCC, VeriFinger, MinutiaeNet-MCC, MinutiaeNet-NBIS, and MSU-LAFIS
identification experiments for the LFIW database.

experiments for the LFIW database as shown in Fig. 8. From
Fig. 8 we can observe that the overall RI rates for reference
comparisons are higher than latent identification. The RI rates
for MCC, VeriFinger, MinutiaeNet-MCC, and MSU-LAFIS
can reach 100% at rank-6 to rank-10. While the RI rates
for NBIS and MinutiaeNet-NBIS are lower than 60% in
all 10 ranks. Similar to the verification results, ‘R2-opt to
R1-opt’ comparisons (gray dashed lines in Fig. 8) remains
the best performance but none of the algorithms can get RI
rates to 1 before rank-4.

In summary, none of the selected algorithms can provide
high accuracy latent fingerprints minutiae extraction and com-
parison by using fingerprints from the LFIW database for
both verification and identification scenarios. From the exper-
imental results above we can conclude that latent fingerprint
recognition by existing techniques is still very challenging
and complex, especially for latent fingerprints captured in the
wild conditions. The results indicate again the need for the
development of robust latent fingerprint minutiae extraction
and recognition algorithms for wild latent fingerprints.

F. Additional Analysis

1) Latent Fingerprint Enhancement: In addition to the
above protocols, we have also investigated if latent fingerprint
enhancement techniques can improve system performance
on LFIW. We first demonstrate some examples of enhanced
latent and smartphone fingerprints in Fig. 9. Two latent
fingerprint specific enhancement approaches are used: Cao’s
method [51] (in column (c)) and FingerGAN [52] (in col-
umn (d)). As MSU-LAFIS has a built-in latent fingerprint
enhancement pipeline, we illustrate its enhancement results
with detected minutiae in column (f). Compared to the original
latent and smartphone fingerprints in Fig. 9 (b), better quality

TABLE VII
CHANGES IN PERFORMANCE INDICATORS MEASURED

ON THE LFIW DATABASE AFTER ENHANCEMENT

and more minutiae points can be observed from enhanced
fingerprint samples in Fig. 9 (c), (d), and (f). However, if we
compare the marked minutiae between rolled fingerprints (in
column (e)) and enhanced latent/smartphone fingerprints (in
column (f)), only smartphone fingerprint has a high accuracy.
Most of the marked minutiae from L-wall, L-ipad, and L-alum
are incorrect. This could be one of the reasons why error
rates from Table VI are high. We then evaluate whether
latent fingerprint enhancement can reduce FTER and EER, and
the changes in FTER and EER after enhancement are given
in Table VII. From Table VII we can see that, the FTERs
have been greatly reduced from 5%(from reference to latent
comparison experiments using NBIS) to nearly 30%(from
latent to latent comparison experiments using VeriFinger).
Overall, the FTER of latent to latent comparison experiments
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Fig. 9. Latent fingerprint enhancement results. Column (a) represents rolled fingerprints (R-opt) samples from selected subjects; Column (b) represents
fingerprint samples from Smt, L-Wall, L-ipad, and L-alum, respectively; Column (c) represents latent fingerprint enhancement results by using Cao’s
method [51]; Column (d) represents latent fingerprint enhancement results by using FingerGAN [52]; Column (e) represents rolled fingerprints with minutiae
annotated by MSU-LAFIS; Column (f) represents Smt and latent fingerprints with enhancement and minutiae annotated by MSU-LAFIS; Fingerprints in the
same row are from the same finger.

is reduced the most, while the FTER of reference to latent
comparison experiments is reduced the least. The low quality
of latent fingerprint samples in LFIW cannot be recognized
by selected comparison algorithms. In addition, compared
with the substantial decrease in FTER, there is no similar
decrease in EER. This is mainly because even if the enhanced
latent fingerprints can be enrolled by the system, the quantity
and quality of their real minutiae have not been significantly
improved. Therefore, whether it is enhancement, segmentation,
feature extraction or comparison, latent fingerprints in the
proposed LFIW database are still a challenge to existing
algorithms.

2) Latent Fingerprint Quality Assessment: Latent finger-
print quality assessment is another aspect worth to be
investigated. We have employed two quality assessment
method on LFIW: NFIQ 2.0 [53] and AFQA [54], [55],
where AFQA is particularly suitable for the quality assessment
of latent fingerprints. Both NFIQ 2.0 and AFQA assign a
quality score to an input fingerprint between 1 and 100,
where 1 represents the lowest quality and 100 represents the
highest quality. The distribution of AFQA quality scores for
three latent fingerprints subsets and reference fingerprints in
LFIW is illustrated in Fig. 10. The overall quality scores of
NFIQ 2.0 and AFQA, as well as minutiae count are listed in
Table VIII.

As seen from Fig. 10 and Table VIII, (1) reference finger-
prints in the LFIW have the best quality (see lower right red

Fig. 10. Distribution of AFQA scores for three latent fingerprints subsets and
reference fingerprints. A quality score can be from 1 to 100, where 1 represents
the lowest quality and 100 represents the highest quality.

TABLE VIII
QUALITY ANALYSIS OF THE LFIW DATABASE COMPARED

TO MUST AND SD27 DATABASES

plot in Fig. 10); (2) there is no obvious quality difference
between different latent acquisition protocols; (3) the pre-
dicted average fingerprint quality scores of AFQA and NFIQ
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2.0 are very similar; (4) different latent fingerprint comparison
approaches provided a variety of minutiae count, however
MCC always can detect more minutiae than others, and fewer
minutiae are able to be recognized by MinutiaeNet; (5) the
proposed LFIW database remains one of the most challenging
latent fingerprint database because both average quality scores
are minutiae count are less, compared to MUST and NIST
SD27 databases.

G. Directions for Future Works

As illustrated from the experimental results discussed in
the above sections, the system performance of evaluated
latent fingerprints recognition algorithms does not meet the
operational requirements. By looking at FMR100, we can see
from the overall results in Table IV or the reference/latent
comparisons results in Table VI that the result is around 20%
only for reference fingerprints comparison experiments. For
latent and smartphone fingerprints comparison experiments,
the FMR100 is higher than 90% and many of them are even
close to 100%. From a practical point of view, this behaviour
would cause a noticeable number of false matches and, as a
result, a bigger number of false non matches during latent
fingerprints recognition at crime scene, digital forensic, or law
enforcement scenarios. This would not help to find the real
suspects. Therefore, the directions for the future works could
be as the following:

• Given that the existing fingerprint recognition systems
have very low performance on smartphone and latent fin-
gerprints captured from different material, more accurate
and robust algorithms are desired in order to overcome
the difficulties and challenges of wild latent fingerprints
recognition.

• As it also has been discussed that the FTER is rela-
tively high for existing fingerprint recognition algorithms,
including systems that particularly for latent fingerprints.
Despite FTER reducing after enhancement, the EER
remains at a high level. Therefore, reliable and accurate
latent fingerprints pre-processing (e.g.segmentation, qual-
ity enhancement, minutiae orientation estimation, etc.)
and minutiae extraction approaches need to be developed.

• While there exist quality assessment algorithms like
NFIQ 2.0 [53] for rolled fingerprints and AFQA [54],
[55] for latent fingerprints, quality assessment algorithms
that can accurately predict the recognition performance
for latent fingerprints are still very few.

• As an additional direction, the performance of human
examiner latent fingerprints comparison could be investi-
gated in a standardized manner to discover the important
factors in recognizing the latent fingerprints captured in
wild environment.

• The LFIW database is one of the largest available latent
fingerprint databases contains 132 unique subjects, how-
ever, the number of latent fingerprint samples need to be
increased to train deep networks (e.g., CNN). Therefore,
an extension of LFIW database is already planned and
the extended version will be released in the near future.

VI. CONCLUSION

Latent fingerprints recognition has always been a complex
and challenging task with the availability of no public and
large-scale datasets. In this work, we have introduced LFIW,
a new database of latent fingerprints in the wild. This database
has included six different acquisition scenarios: reference
fingerprints from (1) optical and (2) capacitive traditional
fingerprint sensors, (3) smartphone fingerphotos, latent fin-
gerprints captured from (4) wall surface, (5) Ipad surface,
and (6) aluminium foil surface. The new database consists of
1318 unique fingerprint instances captured in all of the above-
mentioned settings. A total of 2636 reference fingerprints from
optical and capacitive sensors, 1318 fingerphotos from smart-
phone, and 9224 latent fingerprints from every 132 subjects are
provided in this work. The presented wild latent fingerprints
database with large number of unique fingerprints will be
publicly available in order to allow researchers to benchmark
their algorithms in a free and sustainable manner to develop
robust and accurate latent fingerprints recognition algorithms.
Additionally, a benchmark of several existing state-of-the-art
fingerprint recognition systems is also provided in this paper
to eliminate the limitations in the existing latent fingerprints
recognition methods, and to provide some directions for future
works in this research field.
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