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Abstract— Federated learning (FL) allows clients at the edge
to learn a shared global model without disclosing their private
data. However, FL is susceptible to poisoning attacks, wherein
an adversary injects tainted local models that ultimately cor-
rupt the global model. Despite various defensive mechanisms
having been developed to combat poisoning attacks, they all
fall short of securing practical FL scenarios with heterogeneous
and unbalanced data distribution. Moreover, the cutting-edge
defenses currently at our disposal demand access to a proprietary
dataset that closely mirrors the distribution of clients’ data, which
runs counter to the fundamental principle of privacy protection
in FL. It is still challenging to devise an effective defense approach
that applies to practical FL. In this work, we strive to narrow the
divide between FL defense and its practical use. We first present
a general framework to comprehend the effect of poisoning
attacks in FL when the training data is not independent and
identically distributed (non-IID). We then present HeteroFL,
a novel FL scheme that incorporates four complementary defen-
sive strategies. These tactics are implemented in succession to
refine the aggregated model toward approaching the global
optimum. Ultimately, we devise an adaptive attack specifically
for HeteroFL, aimed at offering a more thorough evaluation of
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its robustness. Our extensive experiments over heterogeneous
datasets and models show that HeteroFL surpasses all state-
of-the-art defenses in thwarting various poisoning attacks, i.e.,
HeteroFL achieves global model accuracies comparable to the
baseline, whereas other defenses suffer a significant accuracy
reduction ranging from 34% to 79%.

Index Terms— Federated learning, poisoning attacks, defenses.

I. INTRODUCTION

FEDERATED Learning (FL) [25] has gained consider-
able momentum as a distributed learning paradigm with

promising potential. It offers a viable solution for collaborative
learning among resource-constrained clients, e.g., IoT devices,
without compromising their privacy-sensitive data. In FL,
numerous clients engage in local model training over their
private datasets and upload local updates (or models) to a
central server such as Google or Apple. The central server
then employs aggregation strategies to publish an aggregated
global model, which incorporates the contributions from the
local models. So far, FL has gained widespread adoption in a
variety of real-world applications such as finance [4], medical
care [40], and smart city [17], etc.

FL is known to be vulnerable to poisoning attacks, wherein
the adversary (e.g., compromised clients) can taint the local
training data (referred to as data poisoning attack [1],
[34], [36]) or the local models (known as model poisoning
attack [2], [13], [21], [33], [37]) to compromise the global
model. For instance, the adversary may manipulate the labels
of data to trigger erroneous predictions from the global model
or generate a random local model to conserve computing
resources while still benefiting from the global model.

To counteract poisoning attacks on FL, numerous research
endeavors have been dedicated to crafting defensive FL
schemes [3], [5], [26], [33], [35], [38], [41]. These schemes
strive to devise a robust aggregation strategy on the server-side,
with the goal of minimizing the influence of updates from
potentially malicious clients on the global model. However,
existing FL defenses suffer from two key limitations: 1) As
will be explicitly discussed in Section IV, existing works have
not taken full consideration of heterogeneous data distribution,
which is one of the most important and basic characteristics
of FL. Most existing defenses are only valid when clients’
datasets are independent and identically distributed (IID) [3],
[26], [33], [35], [41]. While recently proposed defenses claim
to be Byzantine-robust in the non-IID setting [5], [38], we have
experimentally found that they account for a very limited
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degree of heterogeneity, which is merely a special case of
the practical FL scenarios; 2) To enhance the identification
of harmful updates, certain defense mechanisms rely on a
validation dataset [5], [38], whose distribution should be close
or even identical to the distribution of data from clients.
However, in FL scenarios where the original intention is
to safeguard the privacy of diverse clients, this assumption
seems to be overly restrictive and invalid. How to protect FL
against poisoning attacks while not breaching privacy remains
a challenging problem, particularly when dealing with highly
heterogeneous data.

Our Contributions: In this study, we thoroughly examine
the failure of current approaches and then introduce HeteroFL,
an innovative defensive FL scheme. Importantly, we provide
an in-depth analysis of the impact of poisoning attacks on FL,
as well as effective defense strategies specifically tailored for
the non-IID setting.

A Deep Understanding of Poisoning Attacks on FL: We
begin by demonstrating that all existing FL methods are inad-
equate when dealing with heterogeneous data. While recent
studies [5], [22], [29], [30], [31], [38], [43] have assessed
their effectiveness on heterogeneous datasets, they have only
explored a much milder form of heterogeneity: clients possess
data samples with the same label types but only differing quan-
tities per label. To provide a precise characterization, we put
forward two metrics that gauge the extent of heterogeneity in
a given context: load diversity and label diversity. These two
metrics facilitate a meticulous assessment of the disparities in
the local training data among various clients. Following that,
we give a detailed analysis of prevalent defense schemes [3],
[5], [33], [38], [41] along with their failures. Drawing from our
observations, we present a general framework to illustrate how
the poisoned models injure the global model when operating
on non-IID data. Our findings suggest that the non-IID setting
substantially widens the legitimate direction space of local gra-
dients, which is the primary factor that makes it exceedingly
challenging to detect byzantine attacks.

A Novel FL Defense Scheme: Our proposal is called Het-
eroFL, a squeezing-then-rectifying FL defense scheme to
thwart data/model poisoning attacks. HeteroFL is the first
scheme capable of protecting against the most challenging
model poisoning attacks, Min-Max, and Min-Sum, outlined
in [33], in highly heterogeneous environments. Our approach
revolves around the idea of narrowing down the legitimate
gradient direction space as much as possible and applying
corrective aggregation to steer the aggregated global model
toward the the optimal state attained in the absence of attacks.
To achieve this goal, we suggest a four-stage procedure
for progressively compressing the expansive legitimate gra-
dient direction space. This will coerce attackers into crafting
adversarial gradients that closely resemble the benign ones,
ultimately curbing the effectiveness of the attacks. Specifi-
cally, we initially closely monitor the proximate gradients in
the legitimate direction space, which prevents attackers from
using sybil attacks to increase the stealthiness and potency
of their attacks. We then employ a clustering-then-grouping
strategy to identify strongly poisoned gradients in the space.
This approach makes the local gradients less heterogeneous,
allowing for the use of similarity detection techniques to filter

out the poisoned gradients. Additionally, to further deprive the
space available for the attackers to generate stealthier poisoned
gradients, we embed a watermark into each local gradient
using randomly generated trigger samples. This watermark
allows us to keenly detect any minor adversarial manipula-
tions on the local gradients. As a consequence, attackers are
confined to a narrow legitimate direction space, which only
permits the generation of weakly poisoned gradients. Finally,
our corrective aggregation further mitigates the impact of these
weakly poisoned gradients.

Defending Against Adaptive Attacks: It is essential to
assess the efficacy of HeteroFL in countering adaptive attacks,
where the attacker is familiar with the defense mechanisms
and can customize their attacks accordingly. To accomplish
this, we leverage the state-of-the-art AGR-tailored attack [33]
framework as a foundation to design a formidable adaptive
attack specifically for HeteroFL. We explore the effectiveness-
detectability trade-off for the adaptive attack and observe that
the potent adaptive attack learns to circumvent each detection
step. Nevertheless, the poisoned updates are already weakened
by HeteroFL, rendering them useless.

Extensive Evaluations: We conduct evaluations over four
real-world heterogeneous datasets from different fields, includ-
ing three image classification datasets and a Shakespeare
dataset for a next-character prediction task. We evaluate
multiple poisoning attacks, including label-flipping attack (a
data poisoning attack), sign-flipping attack, adaptive attack,
Min-Max attack, and Min-Sum attack [33] (model poisoning
attacks). In a variety of heterogeneous scenarios, the results
show that HeteroFL significantly outperforms state-of-the-
art defense schemes. For instance, for CIFAR10 [18] with
Resnet20, Multi-Krum (MKrum), Zeno, FLTrust, and DnC
have 20%, 21%, 42%, and 62% reduction in global accuracy,
respectively, while HeteroFL can achieve similar global model
accuracy to the baseline with no attack. We also conduct
ablation studies for the proposed four steps in HeteroFL. The
results show that each step plays an indispensable role in
detecting poisoned updates.

II. BACKGROUND

A. Federated Learning

We consider a federated learning (FL) system with a central
server and n clients. Each client i has a local training dataset
Di . Specifically, the FL system iteratively performs the fol-
lowing steps.

Step I: In the t-th iteration, the server sends the global
model wt to all the clients or a subset of them.

Step II: Each client i trains a new local model wt+1
i over

Di by solving the optimization problem:

arg min
wt+1

i

ℓ(Di , w
t+1
i ), (1)

where ℓ(Di , w
t+1
i ) is the loss with wt set as the initialization

of wt+1
i . In particular, the optimization problem is usually

solved by wt+1
i ← wt+1

i − αi
∂ℓ(Di ,w

t+1
i )

∂wt+1
i

, where αi is the
learning rate of client i . After Ei iterations, the local update
gt+1

i = wt+1
i − wt will be uploaded to the server.
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Step III: The server aggregates all the updates (usually
using FedAvg [24]), and obtains a new global model update
gt+1, Finally, the server updates the global model as wt+1

=

wt
+ gt+1.

B. Poisoning Attacks on Federated Learning

Poisoning attacks can break many machine learning
systems, for instance, retrieval systems [20] and face recogni-
tion [32]. FL is also threatened by poisoning attacks [1], [2],
[13], [21], [33], [34], [36], [37].

Data Poisoning Attacks: The adversary constructs poisoned
model updates by contaminating the local training data [1],
[34], [36]. Data poisoning attacks can be untargeted or tar-
geted. The goal of untargeted attacks is to make the aggregated
global model have low accuracy or converge slowly. For
example, the label flipping attack changes the labels of training
examples while keeping the features unchanged [34]. In tar-
geted data poisoning attacks, the goal is to minimize the
accuracy of the global model on attacker-chosen samples while
keeping other non-target samples unaffected. For example,
the backdoor attack injects backdoor triggers into a part of
training samples, then the global model would falsely predict
the specific samples to the target label while predicting other
normal samples correctly [1], [36].

Model Poisoning Attacks: Unlike data poisoning attacks,
in model poisoning attacks the adversary can manipulate
local model updates directly [2], [13], [21], [33], [37].
Conventional model poisoning attacks include sign-flipping
attack [21], bit-flip attack [37], Gaussian attack [37], etc.
However, these attacks result in significant differences between
malicious and benign updates, making malicious updates easy
to be detected. Baruch et al. [2] demonstrated that small but
well-crafted perturbation is enough to circumvent defenses
for distributed learning. To construct more powerful attacks,
recently Fang et al. [13] formulated the local model poisoning
attack as an optimization problem to find the optimal poisoned
update. Based on this, Shejwalkar and Houmansadr [33]
presented three state-of-the-art model poisoning attacks: AGR-
tailored attack that aims to maximize the noise added to a
guiding normal update, Min-Max and Min-Sum attacks that
aim to minimize the maximum distance or the sum of distances
between malicious update and benign updates.

III. PROBLEM FORMULATION

Adversary’s Objective: We consider both data poisoning
and model poisoning attacks including extensive attack meth-
ods. The adversary aims to reduce the accuracy of the final
global model or prevent it from converging. We consider such
an objective since most of the attacks will result in that FL
cannot provide any model service for the clients. We admit that
such an objective may not include backdoor attack, however,
in the literature, backdoor attack is generally investigated
independently of the other byzantine attacks, in which many
backdoor defenses are complementary to our method.

Adversary’s Capability: Following existing works [3], [5],
[7], [15], [21], [26], [29], [35], [41], we assume that there are
less than 50% attackers, i.e., f/n < 0.5; here f stands for the

number of attackers. The adversary can arbitrarily modify the
labels of the training samples or tamper with the local model
updates directly. We also let the adversary have full knowledge
of the FL system, including its own local training data, the
aggregation strategy, and the updates of benign clients.

Defender’s Objectives: HeteroFL aims to achieve the
following goals:
• Accuracy of the global model. The method should

achieve similar accuracy to the global model with the
baseline where there is no attack.

• Robustness in non-IID settings. The method should
prevent malicious updates from degrading the accuracy
or the convergence rate of the global model in broad non-
IID settings.

• Efficiency for resource-constrained clients. The method
does not incur additional computation and communication
overheads for the resource-constrained clients.

• Privacy protection of clients. The method should not
incur any privacy concerns for clients.

Defender’s Knowledge and Capability: We assume that
the central server can only observe the local model updates
received from clients in each iteration.

IV. A DEEP INVESTIGATION ON POISONING ATTACKS AND
EXISTING DEFENSES

A. Existing Defenses Fail in Heterogeneous Scenarios

Heterogeneous local training data among different clients is
one of the uppermost characteristic of FL. Although recently
proposed schemes have performed experiments to demonstrate
the effectiveness over heterogeneous datasets [5], [38], [42],
their defense ability gets deteriorated rapidly when the hetero-
geneous degree becomes fairly higher, as evidenced through
our extensive experiments shown in Section VII.

To give a precise illustration, we first propose two metrics
to quantify the degree of a heterogeneous setting as follows.
• Load diversity evaluates the difference of the size of

local training data set among clients. It is obtained by
computing the standard deviation of the number of the
training data samples for a given label as:

ϕ = σ(v{i∈[n]}), (2)

where vi is an L-dimensional statistical vector for
client i , each element of which denotes the amount
of training data with label l (l ∈ [L − 1]), i.e.,
vi = (|D0

i |, |D
1
i |, |D

2
i |, . . . , |D

L−1
i |), and σ(·) denotes

the dimension-wise standard deviation of v, i.e., ϕ is a
vector.

• Label diversity evaluates the difference of training data
labels among clients. It is obtained by computing the
standard deviation of sign(vi ) as:

φ = σ(sign(v{i∈[n]})), (3)

where φ is a vector, sign denotes element-wise sign
function of v, and we set sign(0) = 0.

In practical applications, it’s common to encounter clients’
training datasets that exhibit both high load diversity and high
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Fig. 1. Load diversity v.s. Label diversity.

label diversity, especially when the datasets are sourced from
different geographical regions. Nevertheless, the experiments
in existing works only consider load diversity while paying
much less attention to label diversity. Fig. 1 compares
the experiment settings of FLTrust [5] and our work with
standard IID distribution over the CIFAR-10 dataset in terms
of load diversity and label diversity. We can see that although
FLTrust has a much larger load diversity than the standard
IID distribution, they have the same label diversity for all the
labels. In other words, the label types of the data samples
between clients are the same, only the amount of samples
for each label is different. On the contrary, our experiments
for evaluating HeteroFL are set with high load and label
diversities. Note that an exception occurs with label 9 since
the samples with label 9 are used as the same trigger dataset
for all clients.

B. Detailed Analysis of Existing Defenses

To figure out the reason of the failure of existing defenses,
we provide a theoretical analysis w.r.t. the impact of load and
label diversities on local gradients.

Theorem 1: The difference of gradients between any two
clients i and j is bounded by a number that is a function of
data distributions and the local models of the previous round.
Formally, we have:

∥gt+1
i − gt+1

j ∥ ≤

L−1∑
l=0

τxi |y j=l

∥∥∥wt
i − wt

j

∥∥∥
+ G

L−1∑
l=0

∣∣∣Xi [yi = l] − X j [y j = l]
∣∣∣, (4)

where ∥·∥ denotes the ℓ2-norm; τ and G represent Lipschitz
constant and the upper bound of gradient respectively.

Proof: see supplementary.
Remark 1: From Eq. (4), we know that the differences

between local model updates are mainly determined by two
parts: local data distributions Xi and X j , and the previous
round local models wt

i and wt
j , which is consistent with [44].

In the centralized FL, all the clients will receive the same
global model at the beginning of round t + 1, i.e., wt

i = wt
j ,

so local models (and the updates) of clients i and j are
similar to each other for the IID setting, i.e., Xi = X j . When
the load diversity and label diversity increase, the difference

between Xi and X j becomes larger, such that the gradients
and local model updates gradually differ from each other with
the iterations. Next, we will make use of this observation to
analyze five state-of-the-art defenses in the non-IID setting.
Please refer to the supplementary for more details of these
defenses. In addition, a detailed introduction for existing works
are moved to the supplementary.

Multi-Krum [3]: Multi-Krum does not work in the non-IID
setting since the difference between benign updates, evaluated
by Euclidean distance, may be larger than that of a malicious
update and benign updates, thus leading to the excluding of
benign updates.

Median [41]: In the non-IID setting, due to the large legiti-
mate direction space of local gradient caused by heterogeneous
data distribution, the median value in each dimension could
be significantly different from the result of FedAvg, resulting
in poor accuracy of the resultant global model.

Zeno [38]: Zeno fails to work in the non-IID setting for
two reasons. First, using an IID dataset to evaluate a local
gradient that is trained over a non-IID dataset will cause a
large estimated error, because there exist data samples in the
IID dataset that local models have not learned. Second, the het-
erogeneity property in local hyper-parameters (e.g., the amount
of batches) determines the magnitude of local gradients. As a
result, the magnitudes of benign gradients may become much
larger than that of malicious gradients.

FLTrust [5]: As suggested in Theorem 1, the non-IID setting
enlarges the legitimate direction space. Therefore it is possible
that the cosine similarity between the guiding gradient and
the benign local gradient is evaluated as negative, making the
scores assigned to benign gradients become zero after clipping.
As a result, they will be discarded while poisoned ones get
preserved.

DnC [33]: As the authors indicated, protecting FL from
adaptive attacks in non-IID settings is the shortcoming of
DnC. This limitation derives from the assumption that the
common features of poisoned and benign gradients should be
sufficiently separated, which apparently violates Theorem 1.

In summary, when dealing with heterogeneous data distri-
bution in FL, it is difficult to distinguish elaborately crafted
poisoned models from benign models by directly using sim-
ilarity detection over the raw local models, which is the
underpinning of most existing Byzantine-robust aggregation
algorithms.

C. A General Framework for Understanding
Poisoning Attack

To design a well-working defense method in heterogeneous
settings, we must first figure out the fundamental mechanism
of how poisoned local gradients impact the global model.
Existing study [23], [44] shows that the centralized training
over D ( D =

⋃n
i=1 Di ) following a distribution X can achieve

higher accuracy than the aggregated global model from FL.
For drawing a general conclusion, we take the centralized
training as a baseline to analyze the model accuracy of FL
under IID, non-IID, and adversarial settings, respectively.
We define the model from the centralized training as the
optimal one.
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Suppose the centralized training performs T iterations with
B batches and a batch size of S, then we denote d t,l

b as the
optimal gradient w.r.t. data sample (x, l) in the b-th batch at
iteration t , where l ∈ [L−1], b ∈ [B], t ∈ [T ]. For simplicity,
we assume FL also performs T global iterations and all the
clients perform E local epochs over B batches with a batch
size of S. We denote gt,l

i,b,e as the local update (gradient)
w.r.t. data sample (xi , l) in the b-th batch at local epoch e
at iteration t , where l ∈ [L − 1], b ∈ [B], e ∈ [E], t ∈ [T ].
When considering the IID setting, we refer to the IID setting
where Di = D (i ∈ [n]) and all the clients perform training
totally in the same way with the training. Therefore, all the
local models are updated toward the optimal point via the same
updating path, i.e., gt,l

i,b,e = d t,l
b , (i ∈ [n]). When considering

the non-IID setting, since each client follows a distribution
Xi differing from X , the local gradient of client i is thus
different from the optimal gradient d t,l

b . Therefore, there will
be a deviation over d t,l

b , denoted as 1
t,l
i,b,e. Then after one

epoch of the local training in FL, the deviation of client i

is accumulated as
B∑

b=1

L−1∑
l=0

1
S 1

t,l
i,b,e. When considering data

poisoning attack, an attacker has two ways to poison the
dataset: changing the training data xi into x̃i or its label
l into l̃. Hence the attacker will get a malicious gradient
g̃t,l

i,b,e trained over poisoned data sample (̃xi , l̃). Compared
with the local gradient gt,l

i,b,e = d t,l
b + 1

t,l
i,b,e on the non-

IID setting, the data poisoning attack in fact only causes a
deviation 1̃

t,l
i,b,e = g̃t,l

i,b,e − gt,l
i,b,e. Then in one epoch, the

deviation is accumulated as
B∑

b=1

L−1∑
l=0

1
S 1̃

t,l
i,b,e. For the model

poisoning attack, the most simple and effective approach for
an attacker is replacing the benign gradient with an arbitrary
one, which leads to a deviation on the local gradient gt

i after
one round. We denote such deviation as 1̃

t
i . Then, in the t-th

iteration, any client i would derive the gradient:

gt
i =

E∑
e=1

B∑
b=1

L−1∑
l=0

1
S
(d t,l

b +1
t,l
i,b,e + 1̃

t,l
i,b,e)+ 1̃

t
i , (5)

and the deviations have the following properties:

1
t,l
i,b,e =

{
0, Di is IID,

∗, Di is non-IID,

1̃
t,l
i,b,e =

{
0, client i is honest,
∗, client i conducts data poisoning,

1̃
t
i =

{
0, client i is honest,
∗, client i conducts model poisoning,

where “∗” represents an arbitrary deviation direction. Let 1t
de f

denote the rectified gradient generated by any defense method,
then, after receiving all the updates, the server performs the
aggregation as:

gt
=

n∑
i=1

1
n

gt
i +1t

de f

=

n∑
i=1

E∑
e=1

B∑
b=1

L−1∑
l=0

1
nS

d t,l
b︸ ︷︷ ︸

gt
i id

+

n∑
i=1

E∑
e=1

B∑
b=1

L−1∑
l=0

1
nS

1
t,l
i,b,e︸ ︷︷ ︸

1t
niid

+

n∑
i=1

E∑
e=1

B∑
b=1

L−1∑
l=0

1
nS

1̃
t,l
i,b,e︸ ︷︷ ︸

1̃
t
dp

+

n∑
i=1

1
n
1̃

t
i︸ ︷︷ ︸

1̃
t
mp

+1t
de f

= gt
i id +1t

niid + 1̃
t
dp + 1̃

t
mp +1t

de f , (6)

where gt
i id represents the optimal global gradient obtained

from the IID setting, 1t
niid , 1̃

t
dp and 1̃

t
mp represent the

global gradient deviations generated by non-IID setting, data
poisoning attack and model poisoning attack, respectively.

Remark 2: From Eq. (5) and (6), we can draw the following
conclusions: 1) An effective poisoning attack will definitely
cause the direction deviation of the global model. Gen-
erally, the attackers can tamper with either the magnitude or
the direction of the benign aggregated gradient gt

i id + 1t
niid

to destroy the global model accuracy. In practice, however,
it cannot change the magnitude of gt

i id +1t
niid independently

without affecting its direction, since the attackers are not able
to obtain the aggregated direction gt

i id + 1t
niid from benign

clients in the t-th iteration. 2) A larger legitimate direction
space is the key reason why non-IID settings make it
more difficult to detect poisoned updates. In IID settings,
the legitimate direction of benign gradients is limited to be
gt

i id , thus the attacker only has a quite small direction space
to manipulate the benign gradients, which makes it much
easier to be detected. But for the case of non-IID scenario,
the legitimate direction space of benign gradients ranges from
gt

i id to gt
i id +1t

niid , it thus becomes much more difficult to
detect abnormality since the server cannot figure out whether
such dissimilarity comes from the attack deviation 1̃

t
dp+1̃

t
mp

or from the non-IID deviation 1t
niid . 3) An effective defense

approach should eliminate malicious deviations as much
as possible. The primary approach for an effective defense
lies in rectifying global gradient direction by mitigating the
impact of 1̃

t
dp + 1̃

t
mp, such that the aggregated global model

moves towards the optimal model that was trained under no
poisoning. Fig. 2 gives a brief illustration for this observation.
We can see that a defensive algorithm performs best iff 1t

de f =

−(1̃
t
dp + 1̃

t
mp).

V. HETEROFL: OUR DEFENSIVE SCHEME

A. Intuition and Overview

The intuition behind HeteroFL is to squeeze the legitimate
direction space as much as possible, such that the available
direction space for the attacker to manipulate is quite small,
i.e., resulting in a small ||1̃dp+1̃mp||. Then, for the malicious
updates from the squeezed space, we generate 1de f to further
rectify the deviation 1̃dp + 1̃mp. Specifically, we make use
of four complementary defensive steps to sequentially squeeze
the legitimate direction space and construct 1de f by corrective
aggregation. Fig. 3(a) shows the entire legitimate direction
space with different kinds of poisoned updates. We divide
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Fig. 2. Illustration of the global model aggregation based on benign updates and malicious deviations after three iterations.

Fig. 3. Illustration of our proposed four defensive steps. (a) The legitimate direction space with various poisoned updates. (b) Sybil direction removal.
(c) Similarity detection & watermark verification based direction removal. (d) Magnitude rectification.

the legitimate direction space into two parts: the strong effect
area where a single poisoned update can significantly damage
the global model accuracy, and the weak effect area where
poisoned updates can only slightly change the direction of
the global model after aggregation. As shown in Fig. 3(b),
HeteroFL first restricts the legitimate direction space by
discarding updates whose directions are excessively similar
with each other, in order to prevent attackers from constructing
multiple updates through reinforcing their similarity (e.g., sybil
attack [14]), which will finally make a significant impact on
the global model. We call this sybil direction removal. Based
on this, HeteroFL then aims to push the legitimate direction
space into the weak effect area through removing all the
updates that lie in the strong effect area. As shown in Fig. 3(c),
in order to mitigate the impact of poisoned updates as much as
possible, we will find a direction space (called detectable area)
that is larger than the strong effect area by using our proposed
similarity detection and watermark verification steps. Finally,
HeteroFL rectifies the magnitudes of all the remaining updates,
such that the malicious updates will be more similar to the
benign local updates in terms of the magnitude (Fig. 3(d)). For
the remaining negative impact from 1̃dp + 1̃mp, they will be
rectified with 1de f generated from our corrective aggregation
strategy.

B. A Complete Description of HeteroFL

Algorithm 1 shows the complete HeteroFL algorithm. After
preprocessing an trigger dataset Dtrg (Lines 1-3), T itera-
tions are conducted. In each iteration, HeteroFL sequentially
executes four steps, i.e., sybil direction removal (Lines 9-10),
similarity detection (Lines 11-12), watermark verification

(Lines 13-14), magnitude rectification (Lines 15). Finally, with
the help of magnitude rectification, corrective aggregation is
achieved (Line 17-18).

C. Details of Our Defense Steps

Sybil Direction Removal: It is indicated in our experiment
in supplementary that even in homogeneous data settings,
updates that are extremely close with each other (measured
by cosine similarity) have a higher possibility of being mali-
cious. Removing such sybil gradient directions is beneficial to
compelling attackers to construct poisoned updates with more
abnormality. To this end, HeteroFL adaptively discards updates
with high relative similarities beyond the clipping upper bound
2(š + ř) (Alg. 2). Since we assume f/n < 0.5, š + ř will
approach the half of the maximal similarity of the benign
updates. Hence, we can estimate a small upper bound of the
benign similarities by 2(š + ř).

Similarity Detection: Our intuition is that the gradients
(including the aggregated ones) that are trained over the
datasets following similar distribution can have a nearly
consistent objective if they all are obtained from the same
initial model. Hence, any (aggregated) gradient whose training
dataset is poisoned will make the update move towards a
biased objective. In view of this, HeteroFL adopts a clustering-
then-grouping strategy to construct many aggregated gradients
with similar objectives such that we can make use of similar-
ity between the aggregated gradients to filter out malicious
gradients. As shown in Alg. 4, HeteroFL first utilizes the
popular mean shift clustering method [12] that can adaptively
decide the number of the clusters to divide the update set
(Lines 2-3) into several clusters, each of which consists of
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Algorithm 1 Complete Description of HeteroFL
Input: A trigger dataset Dtrg; number of classification tasks L;
number of global iterations T ; number of clients n; number of
sampled clients m; filtering fraction β; loss reduction threshold
λ.
Output: Final global model: wT .

1: Label the samples in Dtrg with L .
2: The server sends Dtrg and a randomly initialized model

w0 with L + 1 classifications to all the clients.
3: The clients append Dtrg to their training datasets.
4: for t = 0, 1, 2, · · · , T − 1 do
5: The server broadcasts wt to m sampled clients.
6: Each client i uploads update gt+1

i using Eq. (1).
7: The server receives the update set C =

{gt+1
1 , gt+1

2 , · · · , gt+1
m }.

8: Initialize empty sets C1, C2, C3, C4 and C̃1, C̃2, C̃2.
9: C̃1 = SybilDirectionRemoval(C)

10: C1 ← C − C̃1.
11: C̃2 = SimilarityDetection(C1, β).
12: C2 ← C1 − C̃2.
13: C̃3 = WatermarkVerification(C2, Dtrg, w

t , λ).
14: C3 ← C2 − C̃3.
15: C4 = MagnitudeRectification(C3).
16: //Corrective aggregation.
17: ḡ← the average of all updates in C4.
18: wt+1

← wt
+ ḡ.

19: end for
20: return wT .

Algorithm 2 SybilDirectionRemoval(C)
Output: A malicious updates set Cmal .

1: Initialize an empty set Cmal .
2: {s1, s2, · · · , s|C |} = RelativeCosineSimilarity(C, C)

3: š ← the median of {s1, s2, · · · , s|C |}
4: ř ← the median of {|s1 − š|, |s2 − š|, · · · , |s|C | − š|}
5: Append all updates in C with si > 2(š + ř) to Cmal
6: return Cmal .

similar gradients which are trained over possibly similar data
distributions. Then HeteroFL randomly selects a gradient from
each cluster to constitute a new group (Lines 4-11) and
computes the average as its centroid (Lines 13-16). Each
centroid can be regarded as a gradient that is trained over
a dataset that covers samples as diverse as possible. Therefore
all the centroids can be viewed as “new” updates trained in an
IID-like setting, namely, they have a more consistent objective
than before. Since FL is used for large-scale distributed
learning and usually includes a massive number of clients
(e.g., millions of users), we can construct sufficient groups
that have similar centroids. Thus if any group contains mali-
cious updates, the corresponding centroid will be far from
the benign ones. In light of this, similarity can be used to
identify malicious centroids/groups and the malicious updates
in those groups (Lines 17-24). Note that existing schemes like
APFed [9] simply remove the outliers in the clusters, while
our similarity detection step designs a brand new grouping

Algorithm 3 RelativeCosineSimilarity(C1, C2)

Output: Relative similarity set.
1: for i = 1, 2, · · · , |C2| do
2: //Compute a score si for each update in C2.
3: si =

∑
C1[ j]∈0

i,
|C1|

2

⟨C1[ j],C2[i]⟩
∥C1[ j]∥·∥C1[i]∥

, where 0
i, |C1|

2
is the set

of the half of updates from C1 that have the highest
cosine similarity with C2[i].

4: end for
5: return {s1, s2, · · · , s|C2|}.

Fig. 4. Ablation study on similarity detection and magnitude rectification
over MNIST [19]. We set n = 100 and f = 20. We define removal success
rate as the ratio of malicious updates in the removed updates to the total
number of attackers. (a) The impact of our clustering-then-grouping strategy
on similarity detection under label flipping attack. (b) The impact of our
clipping strategy on FedAvg when ||1̃dp + 1̃mp || is increased.

strategy to put gradients from different clusters into the same
group. Furthermore, SmartFL [39] adjusts the aggregated
weights, while FedEqual [8] adjusts the model weights of each
layer. These aspects represent orthogonal designs that can be
seamlessly integrated into our scheme.

In Fig. 4(a), we perform an ablation study to intuitively
show the usefulness of the clustering-then-grouping strategy.
We can see that our similarity detection with the clustering-
then-grouping strategy can remove much high percentages of
the attackers while directly conducting similarity detection on
the raw local updates barely spots the attackers. This indicates
that our strategy can significantly improve the similarity of the
benign updates such that the malicious ones are more easily
detected by the similarity detection. We further prove this in
supplementary.

Watermark Verification: To prevent the adversary from
compromising the model performance, the server can embed
a watermark into each local model and then verify its effec-
tiveness to detect poisoned models. To do this, our core
idea is to send a watermark trigger dataset (Dtrg), which is
entirely different from the clients’ datasets, to all clients for
local training. The server can then verify the loss trend of
each local model to identify whether the watermark has been
broken. To this end, the server first extends the classification
task number of the global model from L to L + 1 and
randomly generates samples with the new label L to serve
as the watermark trigger dataset. By extending the model,
the server can ensure that the watermark trigger dataset is
entirely different from the clients’ datasets. Then, the server
will issue the trigger dataset and the extended global model
to the clients, who will append Dtrg to the local training
dataset and initiate the local model with the extended global
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Algorithm 4 SimilarityDetection(C, β)
Output: A set of malicious updates Cmal .

1: //Divide the update set C into c clusters by mean shift
clustering that can dynamically determine the clusters.

2: {s1, s2, · · · , s|C |} = RelativeCosineSimilarity(C, C)

3: Cluster{i∈[c]} = MeanShiftClustering({s1, s2, · · · , s|C |})
4: //Rearrange clusters into r groups such that each group

contains the most diverse updates.
5: r ← the size of the cluster that has the maximum number

of updates.
6: for i = 1, 2, · · · , r do
7: Initialize an empty set Groupi .
8: for j = 1, 2, · · · , c do
9: Groupi [ j] ← Cluster j [i]ifCluster j [i]! = ∅.

10: end for
11: end for
12: //Identify the groups that contain malicious updates.
13: Initialize three empty sets C1, C2, Cmal .
14: for i = 1, 2, · · · , r do
15: C1[i] ← the average of all updates in Groupi .
16: end for
17: {s1, s2, · · · , s|C1|} = RelativeCosineSimilarity(C1, C1)

18: Cluster ← the cluster with the maximum number of
updates by MeanShiftClustering({s1, s2, · · · , s|C1|})

19: Append updates in C1 but not in Cluster to Cmal .
20: //Select malicious updates from identified groups.
21: C2 ← set of updates of Group{i∈[r ]} whose average lies

in Cmal .
22: {s1, s2, · · · , s|C2|} = RelativeCosineSimilarity(C, C2)

23: Cmal ← ∅

24: Append β · |C2| updates from C2 with the lowest si to
Cmal .

25: return Cmal .

model (Lines 1-3 in Alg. 1). After receiving local updates
trained over such a mixed dataset, the server will conduct
watermark verification with Dtrg (Line 13 in Alg. 1). The local
updates whose loss reductions are smaller than a threshold λ
are regarded as malicious and will be removed (Lines 4-7
in Alg. 5). Note that Zeno [38] also uses loss reduction to
estimate the updates, however, it needs the dataset to follow
the same distribution as that of clients, which infringes privacy.
We make a comprehensive comparison between HeteroFL and
Zeno (see the supplementary).

Magnitude Rectification: For constructing an effective 1de f ,
we assume f/n < 0.5. As shown in Alg. 6, HeteroFL
adaptively removes the updates with too large or small mag-
nitudes (Lines 10-17) and rescales updates to have the same
magnitude that equals to the average of the remaining updates
(Lines 18-20). In this way, 1de f will be generated sponta-
neously when aggregating. Note that since m̌ + š approaches
half of the maximal normalized magnitude of the benign
updates. Hence, we can empirically estimate a bigger upper
bound of the benign normalized magnitudes by 8(m̌ + š).
Although clipping updates are considered in many previous
defenses, none of them take all the updates into consideration

Algorithm 5 WatermarkVerification(C, Dtrg, w
t , λ)

Output: a set of malicious updates
Cmal .

1: Initialize an empty set Cmal .
2: for i = 1, 2, · · · , |C | do
3: //Evaluate the loss with an estimated model ŵ

t+1
i .

4: ŵ
t+1
i = wt

+ C[i].
5: loss_reductioni = ℓ(Dtrg, w

t )− ℓ(Dtrg, ŵ
t+1

).
6: if loss_reductioni ≤ λ then
7: Append C[i] to Cmal .
8: end if
9: end for

10: return Cmal .

Algorithm 6 MagnitudeRectification(C)
Output: The final set of selected updates: C .
1: median← the median of ℓ2 norms of updates in C .
2: Initialize empty set D.
3: for i = 1, 2, · · · , |C | do
4: if ∥C[i]∥ < median then
5: Append median

∥C[i]∥ to D.
6: else
7: Append ∥C[i]∥

median to D.
8: end if
9: end for

10: //Remove updates with too small/large magnitudes by an
adaptive clipping bound 8(m̌ + š).

11: m̌, š ← the mean and standard deviation of the first |D|2
smallest values in D.

12: for i = 1, 2, · · · , |D| do
13: if D[i] > 8(m̌ + š) then
14: Remove C[i] from C .
15: end if
16: end for
17: mean← the mean of ℓ2 norms of updates in C .
18: for i = 1, 2, · · · , |C | do
19: C[i] ← C[i]

∥C[i]∥ · mean.
20: end for
21: return C .

to have the same magnitude for aggregation, which provides
critical corrective aggregation, i.e., generating 1de f (theoreti-
cal analysis in supplementary). Fig. 4b shows that FedAvg with
magnitude rectification can effectively eliminate the impact of
attacks with a small ||1̃dp+1̃mp||, while only clipping updates
suffers from significant drops in accuracy, which means 1de f
can be obtained by clipping the updates to have the same
magnitude.

VI. ADAPTIVE ATTACKS ON HETEROFL

A recently proposed adaptive attack [13], [33] is a new kind
of attacks where the attacker knows the defensive method
in advance and then adapts his attack strategy to circum-
vent the defense. In particular, AGR-tailored attack proposed
in [33] is a state-of-the-art framework for constructing a strong
adaptive attack. In this section, we first briefly introduce the
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AGR-tailored attack framework and then show the design of
adaptive attack on HeteroFL based on the framework.

A. Adaptive Attack Framework

To ease the expression, we assume the first f updates are
poisoned. In order to construct poisoned local updates, the
adversary with AGR-tailored attack performs the following
optimization problem:

argmax
γ
∥g −A (̃g{i∈[ f ]} ∪ g{i∈[ f+1,n]})∥

g̃{i∈[ f ]} = g + γ 1̃; g = FedAvg(g{i∈[n]}), (7)

where A is the known defense method, g{i∈[n]} are the benign
updates that the adversary knows, g is a reference benign
aggregation obtained by FedAvg [24] that averages all the
benign updates. 1̃ is a malicious perturbation and γ is a
scaling coefficient. In [33], three types of 1̃ are given as
follows:
• Inverse unit vector: 1̃uv = −

g
∥g∥ .

• Inverse standard deviation: 1̃std = −σ(g{i∈[n]}).
• Inverse sign: 1̃sgn = − sign(g).

B. Instantiating Adaptive Attacks

We utilize the state-of-the-art framework to design and solve
the optimization objective.

Optimization Objective: Recall that HeteroFL performs four
defensive steps to construct a benign selection set C4 and
calculates an average of the updates in C4 as its aggregate.
Thus, following [33], the adversary should maximize the num-
ber of poisoned updates in C4 to the optimal value f , while
maximizing the perturbation γ 1̃ added to the reference benign
update g to boost the attack impact on the final aggregate.
Formally, we have the following optimization objective to
attack HeteroFL:

argmax
γ

f = |{d ∈ g̃{i∈[ f ]}|d ∈ C4}|

g̃{i∈[ f ]} = g + γ 1̃{i∈[ f ]}; g = FedAvg(g{i∈[n]}), (8)

where all g̃{i∈[ f ]} do not loss performance on Dtrg; 1̃1 is one
of the three types of perturbation defined in Section VI-A; 1̃i
(2 ≤ i ≤ f ) are generated by randomly flipping the signs of
⌈µ · r⌉ elements in 1̃1 to the opposite; here µ and r are the
percentage of flips and the number of parameters in an update,
respectively.

Solving the Optimization Objective: We strictly follow [33]
to find the most efficient scale factor γ by Alg. 7. Given
malicious directions 1̃{i∈[ f ]} and the reference update g,
Alg. 7 begins with a large initial γ to construct the poisoned
updates.

VII. EXPERIMENTS

We use FedML [16], a popular research library and bench-
mark for FL, to evaluate the effectiveness of HeteroFL
against poisoning attacks, and compare with the baseline
(i.e., FedAvg [24] under no attack), FedAvg [24] under
attacks (abbreviated as FedAvg-A), and the state-of-the-art

Algorithm 7 Optimization Algorithm of Scale Factor γ

Input: γini t , g{i∈[n]}, γsucc, τ

1: step← γini t/2, γ ← γini t
2: while |γsucc − γ | > τ do
3: if |{d ∈ g̃{i∈[ f ]}|d ∈ C4}| = f then
4: γsucc ← γ

5: γ ← (γ + step/2)

6: else
7: γ ← (γ − step/2)

8: end if
9: step = step/2

10: end while
11: return γsucc

defenses, including Multi-Krum (abbreviated as MKrum) [3],
Median [41], Zeno [38], FLTrust [5], and DnC [33]. In
addition, we notice some recent related works [6], [10],
[27]. As [10] requires linear regression analysis for the local
model parameters of each dimension, which incurs significant
computing overhead and exceeds our memory upper bound,
we had to exclude it from our analysis. FedRecover [6] and
FRL [27] are orthogonal to HeteroFL and potentially can be
combined with ours. For a detailed analysis, please refer to
the supplementary.

A. Experimental Setup

1) Datasets and models: Please refer to supplementary.
2) Data partition method: Following FedML [16], we use

the popular Latent Dirichlet Allocation (denoted as Dirn(q),
q is the concentration parameter ) to partition the CIFAR-10
dataset. Specifically, we simulate a heterogeneous partition for
n clients by sampling pl ∼ Dirn(q) and allocating a pl,i
proportion of the training instances of class l to local client i ,
where pl is a n-dimensional vector and pl,i is the i-th value
in pl . Therefore, a smaller q leads to a higher heterogeneous
degree. In our experiments we set q = 0.2.

3) Evaluated poisoning attacks: We evaluate both data
poisoning attacks and model poisoning attacks.

Label Flipping (LF) Attack: LF is a data poisoning attack.
Specifically, for each training example (xi , yi ) ∈ Di , the data
poisoning attackers flip its label yi to L − yi − 1.

Sign Flipping (SF) Attack: SF is a local model poisoning
attack. An attacker would flip the direction of the local update
gi to −zgi ; here z is a scale factor.

Min-Max Attack: Min-Max attack [33] is an
optimization-based approach to make the poisoned updates
lie close to the clique of the benign updates by minimizing
the maximum distance between malicious gradient and other
gradients.

Min-Sum Attack: Min-Sum attack [33] aims to minimize
the sum of distances between malicious gradient and all the
benign gradients.

Adaptive Attack: We evaluate the adaptive attack proposed
in Section VI-B, which is the strongest attack on HeteroFL.

4) Evaluation metrics: We define global model accuracy
as the proportion of correctly predicted testing samples to the
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TABLE I
A COMPARISON WITH STATE-OF-THE-ART DEFENSE METHODS OVER HETEROGENEOUS DATASETS IN TERMS OF THE GLOBAL MODEL ACCURACY

total testing samples. Besides, we define removal success rate
as the ratio of malicious updates in the removed updates to
the total number of attackers.

5) Parameter settings: Please refer to the supplementary.

B. Comprehensive Comparison With
State-of-the-Art Defenses

HeteroFL Achieves the Four Defense Goals: We aim to
design a defense method satisfying four goals presented in
Section III. Table I exhibits the experimental results using
diverse defenses under five attacks.

Accuracy: HeteroFL achieves nearly identical accuracy to
the baseline [24]. Nevertheless, some of the existing defenses
yield much lower accuracy even under no attacks. For exam-
ple, on the CIFAR-10 dataset, the global model accuracy
of HeteroFL is 72.39%, while that of FLTrust and Median
are 58.47% and 68.64%, respectively. Note that there are
counter-intuitive cases where the adaptive attack on HeteroFL
is weaker than the other attacks (at most 0.0014 worse)
because it uses a coarse-grained optimization way (solving
for the most effective γ via updated step sizes). The original
paper [33] also shows similar counterintuitive cases in its
Table II (Purchase), e.g., in Purchase (Table II), adaptive attack
on Bulyan (Iθ = 28.7) is 1.6 weaker than Min-Sum attack
(Iθ = 30.3).

Robustness: The accuracy of HeteroFL under all attacks
is comparable to that of baseline. However, the accuracy
of the existing defenses decreases significantly, especially
under the adaptive attack. For example, on the CIFAR-10 and
EMNIST [11] datasets, the accuracy of the other defenses
is considerably reduced after performing the adaptive attack,
while the accuracy of HeteroFL is barely reduced. This is
because HeteroFL can effectively remove most malicious
updates. Then a few malicious updates escaped from our
detection only have little impact on the global model and are
further rectified by the corrective aggregation strategy.

TABLE II
COMPARISON OF TIME-TO-ACCURACY UNDER DIFFERENT SETTINGS.

WE REPORT THE TIME-TO-ACCURACY, WHICH IS THE TIME FOR A
SYSTEM TO TRAIN TO A TARGET ACCURACY (TA). WE MEASURE

THE TIME-TO-ACCURACY IN HOURS (H)

Efficiency: Our method involves simple computation oper-
ations that can be easily handled by a FL server typically
with powerful computational resources. Initially, the server
provides clients with a trigger dataset of 4 samples, incurring
minimal communication costs before FL training without over-
head during training. Next, the first step involves computing
pair similarities between updates. This operation is computa-
tionally efficient and widely accepted in the literature (e.g.,
Multi-Krum, FoolsGold, Bulyan). The second step utilizes a
clustering-then-grouping approach on scalar pair similarities.
Scalar computations are typically executed at a very high
speed, often measured in nanoseconds or even picoseconds.
The third step only requires computing the loss values for
the 4 samples. Calculating the loss for a few samples can be
completed in milliseconds or less. Finally, in the fourth step,
computing the norm of updates is a standard operation in the
literature and machine learning systems, and it is not time-
consuming. To gain an intuitive insight into the efficiency,
Fig. 5 compares the testing loss of the global model for Het-
eroFL over the CIFAR-10 dataset under attacks and no attacks,
HeteroFL can converge as fast as the baseline, which indicates
that HeteroFL does not incur heavy communication costs to
clients. Table II shows that our method does not impose heavy
computational overhead compared to the baseline FedAvg and
achieves comparable computation time with existing methods.
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Fig. 5. The global model testing loss on CIFAR-10. (a) The global model
testing loss when HeteroFL is under all attacks. (b) The global model testing
loss of different defenses under no attacks.

Fig. 6. The attack effectiveness-detectability continuum. A trade-off must be
made between the effectiveness of the attacks and how easy they are to detect.
(a) The impact of γini t on the trade-off. (b) The impact of heterogeneity and
poisoned ratio on the trade-off.

Privacy: HeteroFL utilizes a randomly generated dataset to
construct the trigger dataset, which does not require any private
information about clients’ local training datasets. Hence, Het-
eroFL does not undermine the principle of privacy protection.

C. Trade-Off Between Effectiveness and Detectability of
Adaptive Attack

There exists a trade-off between attack effectiveness and
detectability given a defense method. The stealthier the poi-
soned models are, the less effective they will be. Hence, it is
necessary to demonstrate where the trade-off point is and how
it impacts the final global model. Next, we will show the
adaptive attack with the following three factors that mainly
affect the trade-off:

Impact of γini t on the Trade-Off: From Algorithm 7,
it is easy to know that the most effective γ should be in
the range [0.5γini t , 1.5γini t ], where a large initial γ leads
to a large solution γ and makes the adaptive attack more
detectable. We use Fig. 6(a) to simply illustrate the situation
that different γini t can bring a different range of effectiveness
and detectability. The experimental results are shown in
Fig. 7, when the detectability decreases (the initial γ reduced
from 0.09 to 0.001), the adaptive attack can gradually break
through HeteroFL, and its trade-off points on HeteroFL occur
at γini t = 0.03. However, the best effectiveness only leads
to a negligible impact on HeteroFL. Besides, even if the
adversary changes the initial 1̃ to be 1̃uv or 1̃sgn over four
heterogeneous datasets, HeteroFL can also not remove all the
poisoned updates. However, they are still insufficient to poison
our HeteroFL in the trade-off point. Note that we leave the
experimental results on all datasets to the supplementary.

Impact of Data Heterogeneity (Including IID Setting) on
the Trade-Off: As discussed in Remark 2, a larger legitimate
direction space resulting from the higher heterogeneous degree
could make the adaptive attack generate more threatening
poisoned models. Fig. 6(b) roughly depicts the trade-off sit-
uations under different heterogeneous degrees. It would be

Fig. 7. Adaptive attack using perturbation 1̃std . The removal success rate is
the average of removal success rates in all rounds. (a) EMNIST. (b) CIFAR-10.

Fig. 8. Impact of homogeneous and heterogeneous setting on CIFAR-10.
(a) Impact of heterogeneous degree. A smaller q has a higher heterogeneous
degree. (b) The global model accuracy of HeteroFL in homogeneous setting
under all attacks.

Fig. 9. Impact of the percentage of attackers on the accuracy of global
model. (a) EMNIST. (b) CIFAR-10.

interesting to show how much legitimate direction region
HeteroFL can restrict when it is enlarged by the heterogeneous
data distribution. We evaluate the impact of heterogeneous
degree on the CIFAR-10 dataset, considering 25% attackers
under adaptive attack with γini t = 0.03. The experimen-
tal results in Fig. 8(a) show that when the heterogeneous
degree is increased (q decreases from 0.9 to 0.1), all the
defenses suffer from increasing drops in accuracy, which
indicates higher heterogeneity makes the attack more effective
at the trade-off point. HeteroFL has the smallest drop in
accuracy, being acceptable, which shows HeteroFL largely
restricts the legitimate direction space to a benign region.
In addition, HeteroFL works also well in the homoge-
neous setting when facing various attacks, as shown in
Fig. 8(b).

Impact of the Percentage of Attackers on the Trade-Off: It is
obvious that using more poisoned updates, the adaptive attack
can construct poisoned updates that slightly deviate from the
benign ones, thus being less detectable. As shown in Fig. 6(b),
more poisoned updates move the trade-off point to a more
stealthy position. To evaluate this scenario, we set q = 0.2 and
use the most effective γini t for all datasets. Fig. 9 illustrates
the accuracy of the existing defenses against adaptive attack
when the percentage of attackers varies from 10% to 49%.
We can see that high-ratio attackers significantly improve the
attack effectiveness on all defenses, i.e., the trade-off points
roughly occur in 10% percentage for the other defenses, and
30% percentage for our HeteroFL.
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TABLE III
ABLATION STUDY OF HETEROFL OVER CIFAR-10 DATASET. NOTE

THAT WE REPORT THE GLOBAL MODEL TESTING ACCURACY (%),
DENOTED AS ACC, AND THE AVERAGE REMOVAL SUCCESS RATE

ON ALL ROUNDS (%), DENOTED AS ARSR

D. Ablation Studies on HeteroFL
HeteroFL consists of four core defense steps: sybil direction

removal (step 1), similarity detection (step 2), watermark
verification (step 3), and magnitude rectification (step 4).
We will keep stacking each step onto FedAvg and evaluate
the resulting defense variants (i.e., step 1, steps 1-2, and steps
1-3) against the same attacks.

Table III compares FedAvg, the three variants w.r.t. the
global model accuracy and the removal success rates under
different attacks. Firstly, step 1 is primarily effective in pre-
venting the adversary from utilizing similar poisoned updates
to enhance the attacks, but is not effective against dissimilar
poisoned updates. When FedAvg absorbs step 1, the Min-Max
and Min-Sum attacks require uploading dissimilar updates,
resulting in step 1 having higher ACC even under similar
ARSRs compared to FedAvg. Secondly, step 2 can easily
detect simple attacks (e.g., LF and SF attacks), but its ability
to mitigate more sophisticated attacks (e.g., adaptive attacks)
is moderate. Thirdly, step 3 can spot more sophisticated
attacks but is ineffective against the simple LF attack. Finally,
step 4 can rectify the remaining weakly poisoned gradients
from all attacks. Steps 1-4 (i.e., HeteroFL) show no ARSR
improvement over steps 1-3 while achieving similar ACC
compared to the Baseline.

Note that the current clustering-based defenses operate on
the assumption that non-outlier clusters are always consid-
ered safe. However, in situations where the data is non-IID,
benign updates can vary significantly. This implies that the
non-outliers could potentially be malicious updates as well,
such as those depicted in Fig. 3(a), where g̃1 progresses
to g̃10. In contrast, our first step allows for the adaptive
removal of similar non-outliers, thereby enabling attackers to
create malicious updates like g̃8, g̃9, g̃10 using a larger space,
consequently increasing the risk of detection. In the second
step, we establish groups of benign updates that resemble
IID cases, effectively eliminating additional non-outliers (e.g.,
g̃8, g̃9, g̃10) that deviate from the benign ones but still fall
within the legitimate space. The third step involves filtering
out non-outliers that closely match the benign ones (e.g.,
g̃5). Lastly, in the fourth step, we supplement the detection
of malicious updates by considering their magnitudes and
minimizing the impact of such updates through corrective
aggregation.

Overall, HeteroFL combines the strengths of the four com-
plementary steps and thus keeps the ACC high for all levels
of attack complexity. This shows the necessity and benefits
of integrating the four steps, as they effectively overcome the

Fig. 10. Impact of different parameters on HeteroFL under different
attacks. (a) Impact of the trigger dataset size |Dtrg | in watermark verification.
(b) Impact of the loss reduction threshold λ in watermark verification.

limitation of one-step defense in existing methods like Multi-
Krum, Median, and FLTrust, which cannot fully monitor the
entire survival space for the adversaries to construct poisoned
gradients. In contrast, our four steps provide complementary
monitoring across the entire space, effectively addressing this
limitation and enhancing the overall defense mechanism.

E. Evaluating Key Parameters in HeteroFL
HeteroFL only contains two empirical parameters β and λ.

β can be set as a small value to select the minorities like
existing works did. Next, we will investigate how other key
parameters λ, and |Dtrg| impact each step in HeteroFL.

Impact of the Trigger Dataset Size |Dtrg| : Our watermark
verification relies on an trigger dataset that is completely
irrelevant with client private datasets. Fig. 10(b) shows the
impact of size of trigger dataset on the global model accuracy
under five attacks on MNIST. We observe that our water-
mark verification is sensitive to the model poisoning attacks.
With only 4 synthetic samples, our watermark verification
can achieve similar accuracy with the baseline. Using only
4 samples can achieve the high sensitivity against attacks since
the samples are directly learned by the local models.

Impact of the Loss Reduction Threshold λ: As shown in
Fig. 10(c), when λ decreases from −1 to −3, the LF attack
can result in a sharp reduction on the global model accuracy.
This is because the watermark verification is ineffective against
data poisoning attack such that a too large λ can remove many
benign updates, which increases the proportion of malicious
updates in an aggregation. We show that when λ = −5, the
watermark verification can achieve the similar accuracy with
the baseline.

VIII. LIMITATION

Defending Poisoning Attacks Over Ciphertext Gradients:
Despite our substantial strides in mitigating poisoning attacks
in challenging highly non-IID scenarios, we acknowledge the
presence of more complex situations that require attention.
One such situation is defending against poisoning attacks over
ciphertext gradients. Currently, our approach primarily centers
around traditional research topics [2], [3], [5], [28], [33] that
address poisoning attacks over plaintext gradients, which may
not be inherently applicable to encrypted data. Effectively
adapting these techniques to handle encrypted gradients would
necessitate special design considerations. In our ongoing
research, we are dedicated to investigating and developing
techniques that can effectively and securely handle encrypted
gradients within highly non-IID scenarios.
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IX. CONCLUSION

We analyzed the failure of existing methods and the effect of
poisoning attacks. We then proposed HeteroFL, a new defense
that is suitable for heterogeneous settings. Our evaluations
on four datasets demonstrated that HeteroFL outperforms
state-of-the-art defense methods and can defeat all poisoning
attacks.
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