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Frequency-Selective Adversarial Attack Against
Deep Learning-Based Wireless Signal Classifiers

Da Ke , Xiang Wang , and Zhitao Huang

Abstract— Although Deep learning (DL) provides state-of-art
results for most spectrum sensing tasks, it is vulnerable to
adversarial examples. Based on this phenomenon, we consider
a noncooperative communication scenario where an intruder
tries to recognize the modulation type of the intercepted signal.
Specifically, this paper aims to minimize the intruder’s accuracy
while guaranteeing that the intended receiver can still recover
the underlying message with the highest reliability. This process
is implemented by adding adversarial perturbations to the
channel input symbols at the encoder. In image classification, the
perturbation is limited to be imperceptible to a human observer
by minimizing the ℓ p norm, while in this work, we enriched the
connotation of adversarial examples, and first proposed that the
imperceptibility of adversarial examples in the field of wireless
signals is the imperceptibility of filters. Based on this perspective,
we optimized the model of adversarial examples and constrained
the adversarial perturbation to a narrow frequency band so that
filters cannot filter it out. We also define a new set of metrics to
describe the imperceptibility of the wireless signal adversarial
example. The simulation results demonstrate the viability of
our approach in securing wireless communication against state-
of-the-art DL-based intruders while minimizing communication
performance reduction.

Index Terms— Secure communication, deep learning, adver-
sarial attacks, modulation classification.

I. INTRODUCTION

ENSURING the security of wireless communication links
is as important as improving their efficiency and reli-

ability for military, commercial and civilian communication
systems. The standard method of securing communications
is to encrypt transmitted data. However, encryption may not
always provide full security (e.g., side-channel attacks) or
strong encryption due to complexity limitations (e.g., IoT
devices). To further enhance security, encryption can also be
complemented with other techniques that can even prevent an
adversary from recovering encrypted bits.

An adversary implements its invasion on a wireless commu-
nication link in four steps [1]: 1) tuning the frequency of the
transmitted signal; 2) detecting the presence or absence of a
signal; 3) intercepting the signal by extracting signal features;
4) demodulating the signal using the extracted features and
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obtaining a binary data stream. Preventing any of these steps
can significantly enhance the security of the communication
link. While encryption focuses on protecting the demodulated
bitstream, physical layer security [2] address the fourth step
by minimizing the mutual information available to intruders.
There has also been a strong interest in preventing the second
step through secret communications [3]. In this work, we focus
on the third step, which aims to prevent the adversary from
detecting the modulation scheme used for communication.

Modulation recognition is the step between signal detec-
tion and demodulation in communication links, and it plays
a significant role in data transmission and detection and
jamming of unwanted signals in military communications
and other applications [4]. Recently, deep learning (DL) has
significantly contributed to modulation recognition. Indeed,
DL-based methods extract features adaptively [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], surpassing the accuracy of con-
ventional modulation classifiers utilizing likelihood function or
feature-based representations [4].

The purpose of this paper is to prevent intruders employing
state-of-the-art modulation detectors from successfully identi-
fying the modulation scheme used. If an intruder is unable to
recognize the modulation type, it is not possible to decode the
underlying information or use modulation-dependent jamming
attacks to block communications. In order to achieve this, the
transmission signal needs to be modified. The main challenge
here is to ensure that the intended receiver of the (modi-
fied) transmission signal still reliably receives the underlying
information while preventing intruders from detecting the
modulation scheme used. Otherwise, the cost of decreasing
the accuracy of modulation-detecting intruders is that the bit
error rate of the intended receiver may increase significantly.
We assume that the intended receiver is blind to the modifi-
cations made by the transmitter, so the transmitter’s goal is
to make the smallest possible modifications to the transmitted
signal that are sufficient to fool the intruder but do not exceed
error-correcting capabilities of the intended receiver.

Introducing small changes in the modulation scheme that
can fool the intruder is similar to adversarial attacks on clas-
sifiers, especially on deep neural networks (DNNs) [15], [16].
In the literature, adversarial attacks are considered mainly in
the area of image classification, where they pose a security risk
by exposing the vulnerability of the classifiers to very small
changes in the inputs, which are imperceptible to humans but
can lead to wrong decisions. In contrast, we utilize the similar
approach here to protect communication links from intruders
that employ DNNs methods for interception.
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Fig. 1. (a) Time-domain waveform of a communication signal before and after being modified by an adversarial attack (we present only 128 points of the
signal to enhance presentation) and (b) Spectrum of a communication signal and the adversarial perturbation added.

Existing literature suggests various methods exploiting
adversarial attacks to defend a communication link against an
intruder that employs DL classification methods for intercep-
tion [17], [18], [19], [20], [21], [22], [23], [24], [25]. In [17],
an adversarial attack for a DL-based modulation classifier has
been proposed where the adversary assumes the availability
of noisy symbols received at the modulation classifier for
generating the adversarial attack, which makes it impractical
and limited in scope. Similarly, [18] develops an autoencoder
that the receiver uses to preprocess the modified signal. In this
paper, the authors reveal that pre-training DL-based classifiers
in the radio frequency (RF) domain using an autoencoder
can mitigate the deceiving effect of adversarial examples.
Moreover, [19] considers the impact of the adversarial exam-
ples on the RF domain and demonstrated that adversarial
defense could improve the robustness of DL-based modulation
classifiers. In [1], the authors suggested an adversarial attack
method that reduces the modulation classification accuracy at
the intruder while maintaining a low bit error rate (BER)
at the legitimate receiver. In [20], the authors verified the
effectiveness of various adversarial attacks by reconstruct-
ing the waveforms in a modulation classification scenario.
Literature [21] investigates an adversarial attack scenario in
a real wireless channel and proposes a maximum received
perturbation power attack (MRPP). This method achieves
the state-of-art attack performance against a spectrum-sensing
deep learning model.

However, the adversarial examples generated by existing
adversarial attack methods will introduce more high-frequency
components due to the abrupt changes in the time domain.
For example, Fig. 1(a) illustrates a comparison of the
time-domain signal before and after being modified by Fast
Gradient Sign Method (FGSM). The modified signal has
more high-frequency perturbations compared to the original
signal. Moreover, Fig. 1(b) illustrates the spectrum of the
original signal and the adversarial perturbation, revealing that
the energy of the original signal is concentrated only in a
narrow frequency band. Opposing, the energy of the adversar-
ial perturbation is distributed over the entire frequency band.
In communication systems, both transmitters and receivers use
narrowband filters to filter out interference or noise outside

the signal band from the transmitted/received signals. This is
helpful for communication systems to obtain clean signals.
Nevertheless, it is challenging for most adversarial perturba-
tions to access the intruder and prevent it from recognizing
the modulation scheme.

To address this problem, a more realistic scenario must
be considered. This paper presents a more realistic wireless
attack built upon adversarial DL by accounting for filter
effects while designing the algorithm for adversarial attacks.
Motivated by the on-manifold adversarial attack [22], [23],
we add a constraint in the frequency domain to the calculated
adversarial example and thus restrict the generated adversarial
perturbations in the signal’s frequency band.

In summary, this paper’s main contributions are as follows:
1. We consider a more realistic scenario of a wireless

signal adversarial attack and establish a novel adversarial
attack framework. Based on this framework we design 2 novel
adversarial attack methods for the spectrum sensing task.

2. We define a new set of evaluation metrics to measure the
“imperceptibility” of adversarial perturbations in the wireless
signal scenario. The “imperceptibility” of the wireless signal
field should not be easily filtered rather than just not be
imperceptible to the human eye visual system. To the best
of our knowledge, this work is groundbreaking.

3. Further analysis reveals that our method finds an
on-manifold adversarial perturbation in the frequency sub-
space, which facilitates the study of the interpretability of the
adversarial example.

4. Extensive experiments reveal that our approach works
well in various settings compared to existing methods.

The remainder of this paper is organized as follows.
Section II describes the problem model, section III describes
the idealized adversarial example method and our improve-
ment, section IV presents the experimental results, and
Section IV discusses the findings and proposes future research
directions.

II. PROBLEM ANALYSIS

We consider a wireless communication system that com-
prises a transmitter, a receiver, and an intruder as depicted in
Fig. 2 [24]. To simplify the problem, we assume all nodes
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have a single antenna operating on a Gaussian channel. The
intruder classifies the intercepted signals using a deep neural
network (DNN), aiming to determine the modulation type the
transmitter uses. In the meantime, the transmitter transmits a
signal with adversarial perturbation over the air to fool the
intruder and impose it to make errors during the modulation
classification.

For a transmitter, a binary information sequence w ∈ {0, 1}
m

is mapped into a sequence of channel symbols, x ∈ Cn , and
then the modulated signal x = Ms (w) is obtained, where s ∈ S
is the employed modulation scheme with S denoting the finite
set of available modulation schemes, and Ms : {0, 1}

m
→ Cn

denotes the whole modulation function. The modulated signal
is transmitted into the physical world after undergoing fre-
quency mixing, narrowband filtering, and power amplification
in sequence. The signal x is sent over a noisy channel, which
is assumed to be an additive white Gaussian noise (AWGN)
channel for simplicity. The intercepted baseband signal y1
and y2, received by the intended receiver and the intruder,
respectively, are expressed as:

yi = Ms (w) + zi = x + zi , i = 1, 2 (1)

where zi is the AWGN with zero mean and unit variance σ 2
i .

As mentioned in Section I, both transmitters and receivers
would filter the signal (dropping out the noise outside the
signal’s band), So the finally intercepted signal sequence of
the intruder is expressed as:

y2 = H (x + z2) , (2)

where H (•) is the filter used to drop out the noise. Such a
filter includes but is not limited to band-pass and low-pass
filters.

The intruder aims to recognize the transmitter’s modulation
type based on its intercepted noisy output y2. On the other
hand, the transmitter wants to communicate without its mod-
ulation scheme being correctly detected by the intruder while
keeping the transmitted signal as uncorrupted as possible.

Formally, the intruder aims to determine the transmitter’s
modulation type, which can be formulated as a classification
problem where the label s ∈ S is the employed modulation
scheme. The classifier assigns y2 to the predicted label:

ŝ = arg max
s∈S

fθ (y2) , (3)

where fθ : Cn
× S → R is a score function parametrized

by θ ∈ Rd , which assigns a score to each possible class s ∈

S. For the purpose of notation simplification, we denote the
resulting class label by ŝ = fθ (y2). The goal of the intruder is
to maximize the probability Pr

(
s = ŝ

)
of correctly detecting

the modulation scheme, which is considered as the intruder’s
success probability. State-of-the-art modulation classification
schemes consider fθ is a DNN classifier [5], [6], [7], [8],
[9], θ denotes the neural network weights, and fθ (y) are the
so-called logit values for the class labels s ∈ S.

III. METHODOLOGY

A. Adversarial Attack in an Idealized Scenario

This paper modifies the encoding processes Ms so that,
given a modulation type s ∈ S, the new encoding method M ′

s

Fig. 2. System model where a transmitted signal is intruded.

ensures that the intruder’s success probability becomes smaller
and the receiver’s signal is not modified substantially. This idea
is motivated by adversarial attacks on image classification [15],
where modifying images makes the modification imperceptible
to a human observer, but advanced image classifiers perform
significantly poor. By applying the same idea to the investi-
gated problem, we aim to find defensive modulation schemes
M ′

s (w) ≈ Ms (w), but the intruder misclassifies the new
intercepted signal y′

2 = M ′
s (w) + z2 with higher probability.

Following the idea of adversarial attacks on image classifiers
directly, [10] proposes an idealized yet impractical adversarial
attack mechanism that modifies a correctly classified channel
output sequence y2 (i.e., for which s = fθ (y2)) with a
perturbation δ ∈ Cn such that fθ (y2 + δ) ̸= fθ (y2), the
true label while imposing the restriction ∥δ∥2 ⩽ ϵ for some
small positive constant ϵ. For a DNN-based classifier fθ , the
problem above can be formulated as a constrained optimization
problem:

max L (θ , y2 + δ, s) s.t. ∥δ∥p ⩽ ϵ, (4)

where L (•) is a loss function often used to train the classifier
fθ . L (•) is typically defined as a cross-entropy function in
classification problems. There are several methods to solve
approximately, i.e., when p = ∞ (4) can be solved using the
fast gradient sign method (FGSM) [15], [26] while considering
a one-step adversarial attack:

δ = ϵsign
(
∇yL (θ , y, s)

)
, (5)

where ∇ denotes the gradient operator. Moreover, the pro-
jected gradient descent (PGD) [27] attack can iteratively
achieve state-of-the-art attack performance. Starting from y0

=

y, at each iteration t it calculates:

yt
=

∏
Bϵ(y)

(
yt−1

+ βsign
(
∇yL

(
θ , yt−1, s

)))
, (6)
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where β denotes the step size, sign (•) denotes the sign
operation,

∏
Bϵ(y) (•) is the Euclidean projection operator to

the ℓ2−ball Bϵ (y) of radiusϵ centered at y. The attack is
typically run for a specified number of steps, which depends
on the computational resources. In practice y is more likely
to be a successful adversarial example for larger values of t .
Note that this formulation assumes we can access the intruder’s
logit function fθ . These methods are called white-box attacks.
If fθ is unknown, one can create adversarial examples against
another classifier f ′

θ , hoping it will also work against the
targeted model fθ . Such methods are called black-box attacks.
In this paper, we only consider white-box attacks against
intruders.

B. Frequency-selective Adversarial Attack

As mentioned above, directly applying an idealized adver-
sarial attack to our problem is practically infeasible as the
intruder can filter the intercepted signal y2, prohibiting most
adversarial perturbation power from accessing the intruder.
Thus, the newly received signal model is expressed as:

y′

2 = H (x + z2 + δ) , (7)

Accordingly, the new modulation scheme aims to find
defensive modulation schemes that allow the intruder to mis-
classify the newly received signal y′

2 = H (x + z2 + δ) as
much as possible. Our scenario involves a new connotation
regarding the constraint that modifications are imperceptible
to human observers. Specifically, we require the perturbation
power δ to be as small as possible and not easily detected
by the filter. This ensures that the adversarial attack will not
affect the intended receiver and will access successfully on the
intruder.

Following the improved idea of adversarial attacks, we pro-
pose a more realistic mechanism. The optimization prob-
lem (4) can be improved as:

max
δ

L (θ , H (y2 + δ) , s) s.t. ∥δ∥p ⩽ ϵ, (8)

where H (•) is a frequency filter. With this improvement,
we expect to restrict the search space in the adversarial
direction to the subspace of the signal.

Next, we solve (8) using the approximation technique.
Specifically, we assume that H (•) is a linear transformation
(later, we will implement H (•) using the linear method) so
H (y2 + δ) can be expanded as H (y2) + H (δ) = ỹ + δ̃.
Then (8) can be rewritten as 1:

max
δ

L
(

ỹ + δ̃
)

s.t. ∥δ∥p ⩽ ϵ . (9)

In practice, ỹ can be easily obtained by filtering y. So,
we can directly approximate the loss function by its first order
Taylor expansion at point ỹ. The problem in (9) then becomes:

max
δ

L(ỹ) + ∇ỹ L(ỹ)Tδ̃ s.t. ∥δ∥p ≤ ϵ. (10)

1 L(θ , x, s) might be shorthanded as L(x) or L in the following text.

This problem is trivially linear and hence convex w.r.t.
δ. We obtain a closed-form solution using the Lagrangian
multiplier method (see the Appendix), yielding:

δ = ϵsign
(
JH · ∇yL

) ( ∣∣JH · ∇yL
∣∣∥∥JH · ∇ỹL
∥∥

p∗

) 1
p−1

, (11)

where p∗ is the dual of p, i.e., 1
p∗ +

1
p = 1, and JH is the

Jacobian of H (•). When p = ∞, (11) reduces to:

δ = ϵsign
(
JH · ∇ỹL

)
, (12)

which is similar to (5).
Discrete Fourier transform (DFT). DFT decomposes a

signal into complex index components and represents a natural
signal in the frequency space. More precisely, given a discrete
signal y ∈ Cn , the Y = DFT (y) is:

Yk =

n−1∑
i=0

yi e− j(2π/n)ki , 0 ⩽ k ⩽ n − 1, (13)

where φ(i) = e− j(2π/N )ki , 0 ⩽ k ⩽ n − 1 are a set of primary
functions. DFT is invertible, with the inverse y = IDFT (Y),

yi =
1
n

n∑
k=0

Yke j(2π/n)ki , 0 ⩽ i ⩽ n − 1. (14)

To calculate δ in (8), we employ a filter H (•) in the DFT
process involving a set of weights h ∈ Rn :

hi =

{
1 nl ⩽ i ⩽ nh
0 otherwise i = 1, 2, . . . , n, (15)

where nl and nh are related to the sampling rate Fs of the
signal and the number of DFT points NF FT . Specifically, let
fl and fh be the minimum and maximum frequencies of the
signal, respectively. Then nl and nh are fl

(Fs/2)
· NF FT and

fh
(Fs/2)

· NF FT . Next, we can implement

H (y) = IDFT (h · DFT (y)) . (16)

Since DFT is a linear transformation, IDFT is also a linear
transformation. So H (•) is a linear transformation proving
that our assumptions in holds. Then, we compute JH .

First, through the chain rule, we have:

JH = JIDFT · h · JDFT, (17)

where JDFT and JIDFT are the Jacobian of DFT and IDFT
respectively. According to (13), the DFT operation can be
written in the form of matrix multiplication:

Y = F · y

=


e− j 2π

n ×0×0 e− j 2π
n ×0×1

· · · e− j 2π
n ×0×(n−1)

e− j 2π
n ×1×0 e− j 2π

n ×1×1
· · · e− j 2π

n ×1×(n−1)

...
...

. . .
...

e− j 2π
n ×(n−1)×0 e− j 2π

n ×(n−1)×1
· · · e− j 2π

n ×(n−1)×(n−1)



·


y1
y2
...

yn−1

 . (18)
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Matrix F denotes the matrix form of the Fourier transform and
it is a symmetric matrix, so

JDFT = FT
= F. (19)

Similarly, we can get JIDFT = FI , where FI is the matrix
of IDFT. In summary, JH (δ) = H (δ) and can be rewritten
as:

δ = ϵsign
(
H
(
∇ỹL

)) ( ∣∣H (
∇ỹL

)∣∣∥∥H
(
∇ỹL

)∥∥
p∗

) 1
p−1

. (20)

The physical meaning of (20) can be expressed as filtering
the gradient to obtain the in-band subspace of the gradient.
It can be observed that the proposed algorithm in this paper is
achieved by constraining the frequency of the gradient vector
during its computation. Therefore, the proposed algorithm can
be easily embedded into existing gradient-based adversarial
attack frameworks, such as PGD and C&W. Accordingly,
we refer to them as Frequency Selective PGD(FS-PGD) and
Frequency Selective C&W(FS-C&W) algorithms.

The value of p has been discussed in [26] and will not be
repeated in this paper. Thus, we directly set p = ∞ and design
a multi-step iterative attack, as presented in Algorithm 1.

Algorithm 1 Frequency-selective adversarial perturbation
Input: Original signal example y; ground-truth label s; loss
function L; The filter coefficients h.
Input: The perturbation size ϵ and the iteration N .
Output: An adversarial example y∗, where ∥y∗

− y∥∞ ⩽ ϵ.
1. y∗

0 = h · y β = ϵ/N
2. for i ter = 0 : N − 1:
3. Calculate the gradient ∇h·yL;
4. Compute h · ∇h·yL;
5. Update y∗

i ter+1 = y∗

i ter + βsign
(
h · ∇h·yL

)
6. end for
7. return y∗

= y∗

N

C. Imperceptibility

In the realm of adversarial examples, imperceptibility is a
crucial metric for evaluating their performance. In particular,
in the domain of wireless signals, the imperceptibility of adver-
sarial examples should be manifested as being undetectable by
filters. This attribute is of paramount importance in assessing
the efficacy of adversarial attacks on wireless communication
systems, where the ability to evade detection is a critical factor
in their success.

For approximating the “imperceptibility”, existing
work [26]would like to use ℓp norms to quantify average
variations of the basic structure information between the
original and adversarial examples. Several works on the topic
of wireless signal adversarial examples have established the
perturbation-signal power ratio (PSR) [1], [17] as a metric
for quantifying the imperceptibility of adversarial examples:

PSR = 10 lg
(

Pδ

Py

)
, (21)

where Pδ and Py represent the power of the perturbation
and the signal, respectively. This metric describes the relative
energy of the perturbation to that of the signal.

From a frequency domain perspective, both the ℓp norm and
PSR metrics describe the relative energy of the perturbation
and signal across the entire frequency band. However, when
a signal contaminated with adversarial perturbation passes
through a filter, the perturbation and signal components outside
the filter bandwidth become irrelevant. In this context, novel
evaluation metrics are required to measure the relative energy
of the perturbation and signal within the filter bandwidth,
while also assessing the imperceptibility of the adversarial
perturbation to the filter.

Based on this perspective, we define in-band perturbation-
to-signal power ratio (IB-PSR) to quantify average variations
of the basic structure information between the original and
adversarial examples. The IB-PSR is defined as:

IB- PSR = 10 lg
(

PH(b)

Py

)
. (22)

Correspondingly, we introduce the concept of filter loss 1 PSR
to measure imperceptibility in our study. The 1 PSR is the
difference between PSR and IB-PSR.

IV. EXPERIMENTS

In this part, we perform extensive experiments to evaluate
our proposed FS-PGD and FS-C&W in attacking DL-based
modulation classifier.

A. Experimental Setup

1) Datasets: We assume that the binary source data is gen-
erated independently and uniformly at random. Ten standard
baseband modulation schemes are considered: 2ASK, 2FSK,
8PSK, BPSK, QPSK, OQPSK, pi/4-QPSK, 16QAM, 32QAM,
64QAM. The square root cosine filter is used for pulse shaping
of the modulated data with a roll-off factor of 0.3, a code rate
of 0.1 MHz, and sampling rates of 1MHz. In particular, the
frequency offset of the 2FSK modulated signal is 0.75 times
the code rate. The modulated data is sent through an AWGN
channel with a signal-to-noise ratio (SNR) varying between
−12 dB and 20 dB, with a small Doppler bias.

The intruder has to estimate the modulation scheme after
receiving 4096 complex I/Q (in-phase /quadrature) channel
symbols. All previous work used 128-point complex I/Q [17],
[18], [19], [20], [21], which we believe is unreasonable. This
is because the number of data points is too short to effectively
traverse all the code element states of the modulated signal.
For example, 64QAM theoretically has 64 states, and the
theoretical minimum sampling multiple is 2 times (which is
far from enough in practice), and thus use 10 times sampling.
Then at least 640 I/Q are theoretically required to traverse all
the code element states. Considering the balance of algorithm
performance and computational resources, we chose 4096 I/Q
as the input to the model.

We generated 2720 blocks of data for each modulation type,
each containing 4096 I/Q sampling data. We divided the data
into a training, validation, and test set according to a 7:2:1
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Fig. 3. The structure of fine-tuned Resnet18.

TABLE I
RESULTS OF THE FR BY SEVEN ATTACK APPROACHES WITH PSR= −20DB

ratio. We fine-tuned the Resnet18 network as a classifier to fit
our data dimensionality, and the detailed network structure is
illustrated in Fig. 3.

2) Implementation Details: All experiments were per-
formed on an NVIDIA GeForce GTX 3090. Each of the
attack methods was implemented in PyTorch. We use Adam
to optimize the target model and the ReLU as the activation
function in all layers. In the experiments, we utilized the
categorical-cross entropy loss functions. The training epoch
was set to 200, and we used the early-stopping strategy with
a patience of 20.

3) Evaluation Metrics: The performance evaluation relied
on the fooling rate (FR), which is defined as follows:

FR =
1
n

n∑
i=1

I ( f (yi + δ) ̸= f (yi ))

where f (yi ) = true label, (23)

where I (•) is the indicator function, which means that when
the event occurs, it takes the value of 1, and if it does not occur,
it takes the value of 0. The implication of FR is that the attack
is considered successful if the classifier misclassifies a sample
that has been correctly identified by adding an adversarial
perturbation.

We illustrate the performance of our methods through the
following experiments:

• Compare the white-box attack performance of our meth-
ods with that of white gaussian noise(WGN), FGSM [15],
[20], PGD [20], [27], C&W [28] and MRPP [21]. While
FGSM, PGD and C&W methods were first used for
image recognition tasks, literature [20] shows that the
above methods also perform well in spectrum sensing
tasks. MRPP, on the other hand, is an adversarial attack
method designed specifically for spectrum sensing tasks,
which solves the problem of poor performance of tiny
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Fig. 4. A comparison of the spectrum of a 16QAM modulated signal with a SNR of 20dB under 7 different adversarial attacks. (The blue line represents
the spectrum of the original signal, while the orange line represents the spectrum of the adversarial perturbation.)

adversarial perturbations in the real physical world, and is
currently the state-of-the-art method for spectrum sensing
tasks. The power of adversarial perturbation was uni-
formly set to PSR=−20dB, and the iteration number was
set to 10 for iterative algorithms such as PGD and C&W.
We will also visualize the distribution of the perturbations
generated by the above method in the frequency domain.
As mentioned above, the frequency offset of the 2FSK
signal is 0.75 times the code rate, so the actual bandwidth
occupied by the 2FSK signal is 1.75 times the code
rate. Therefore, to avoid destroying the original signal
information, the bandwidth for all experiments is set to
at least 0.2MHz.

• To evaluate the robustness of our algorithm to adversarial
defense models, we compare its performance with other
white-box attacks such as WGN, FGSM, PGD, C&W and
MRPP under adversarial defense conditions.

• Test our methods’ robustness when the bandwidth and
types of filters are mismatched (i.e., the bandwidth of the
constrained perturbation does not match the filter band-
width used by the actual receiver). This trial evaluates
robustness of our methods against filter mismatch.

B. Attack Performance

In order to evaluate the attack performance of our pro-
posed FS-PGD and FS-C&W adversarial attack methods,
we compare them with WGN as well as four state-of-the-
art adversarial attack methods including FGSM, PGD, C&W
and MRPP. This section evaluates the adversarial power
and imperceptibility of the examples generated by different
approaches in a white-box scenario, where the knowledge
of the target system is fully accessible. Tab. I reports the
performance of 7 attack approaches over 5 different metrics.
Without considering filtering, FGSM, PGD and C&W achieve
FR of 100%, and the FR of MRPP is 94.23%. Our proposed

FS-PGD and FS-C&W methods also achieve FR close to the
optimal comparison algorithms without the use of filter in the
classifier, reaching 99.98% and 99.96%, respectively. When
the effect of filtering exists, our method has an obvious advan-
tage presenting the smallest filtering loss 1PSR (−0.42dB)
and the highest FR (98.18% and 98.41%). In contrast, the
comparison algorithms only realize FRs of 1.20%, 42.20%,
43.55%, 47.32%, 88.66%, respectively. In addition to the two
methods proposed in this paper. The MRPP is better adapted to
the real physical world in the presence of filters than existing
adversarial attack methods.

This infers that, compared to the comparison algorithms,
our attack implements an adversarial perturbation that avoids
being dropped out by the filter as much as possible, thus
achieving a more effective adversarial attack for intruders.
This is numerically demonstrated as our method has the lowest
1PSR with −0.42dB. Such experimental results also show that
our proposed methods are more adaptable to the filter effects
at the transmitter/receiver than the state-of-the-art adversarial
attack method (MRPP) for spectrum sensing tasks.

Further, we visualize the spectrum and time-domain wave-
form of the signal before and after the attack with a 16QAM
modulated signal with 20dB SNR, as illustrated in Fig. 4
and Fig. 5. Fig. 4 (b)∼(d) demonstrate that the spectrum of
the adversarial perturbations generated by the three methods
FGSM, PGD and C&W are closer to that of the WGN
(Fig. 4(a)) and is characterized by a uniform distribution of
the energy over the entire frequency band. However, according
to Fig. 4(e)∼(g), the spectrum of the adversarial perturbations
generated by WRPP and our proposed methods are closer to
the signal itself, characterized by the energy of the perturbation
being within the band of the signal. In contrast, our proposed
methods produce a more concentrated perturbation energy, and
this analysis also demonstrated by the fact that our method has
a smaller 1PSR.
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Fig. 5. A comparison of the waveform of a 16QAM modulated signal with a SNR of 20dB under 7 different adversarial attacks. (The blue line represents
the waveform of the original signal, while the orange line represents the waveform of the adversarial example.)

From the perspective of the time domain, Fig. 5 (b)∼(d)
demonstrate that the waveforms of adversarial examples
generated by FGSM, PGD and C&W have more violent
perturbation corresponds to more high-frequency components
in the frequency domain than the original signal, which are
easily dropped by filters and abrupt to the human visual
system. Fig. 5 (e)∼(g) show that the time-domain waveforms
of MRPP, FS-PGD and FS-C&W are smoother, i.e., pre-
dominantly low-frequency components. More low-frequency
components mean that the adversarial attack is less likely
blocked by the filter, and smoother waveform means that it
is less noticeable to the human visual system. Therefore, our
adversarial attack methods achieve imperceptibility to both the
filter and the human visual system and an appealing attack
performance.

C. Attack Adversarial Training Model

To illustrate further the attack performance of our adver-
sarial attack methods against the adversarial defense model,
we retrain the model using adversarial training and attack
the model with our methods. The corresponding results are
reported in Tab. II, highlighting that when an adversarial
attack retrains the model, it has a certain defense ability against
various adversarial attack methods, and the FR before filtering
decreases to different degrees. The best performance before
filtering is the C&W attack, with FR of 96.56%. Our methods
are close to the optimal performance with an FR of 95.53%
and 93.88% before filtering, still maintaining the ability to
adapt to the filter and demonstrating the highest FR after
filtering, attaining 91.43% and 90.7%.

Interestingly, the adversarial examples generated by the
competitor algorithms (FGSM, PGD, C&W and MRPP)
against the robust model did not present a catastrophic
performance reduction after filtering. Their FR decreased

only by −13.16%, −11.95%, −11.16% and −5.96%, respec-
tively. Moreover, the filtering losses 1PSR infer a −1.78dB,
−1.27dB, −1.36dB and −0.82dB performance reduction,
which is much smaller than attacking the original model.
Besides, we visualize the spectrum of adversarial perturbations
generated by the four algorithms attacking the robust model.
Fig. 6 depicts that the energy of the adversarial perturbations
generated by the four attack methods are concentrated in the
frequency band of signal.

In response to this phenomenon, Tsipras et al. [29] tries to
give an explanation. Tsipras separated the adversarial exam-
ples created with small epsilon, clean-trained the network, and
created one using large epsilons and robust networks. While
the former looks like noise, the latter creates examples that
resemble the target class. Shamir et al. [23] used on-manifold
and off-manifold adversarial examples to demonstrate a very
similar phenomenon. In their view, the on-manifold per-
turbation does what the human would expect, while the
off-manifold perturbation is hard to interpret. Our experimen-
tal results corroborate the above two views from the spectrum’s
perspective, revealing that the perturbations generated against
the robust model are closer to the target class, i.e., on-
manifold perturbation. In the scenario investigated in this
paper, we reveal that the energy of the perturbation against
the robustness model is more concentrated in the signal’s
frequency band, while the proposed method can naturally
find the on-manifold perturbation, both for clean and robust
models. Further, since our method sets a strong constraint on
the frequency of the adversarial perturbations, our method has
better performance even for robust models.

D. Robustness to Filter Bandwidth Mismatch

The most critical improvement made by the suggested meth-
ods are to consider the effect of the filter H (•). The above
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TABLE II
RESULTS OF THE FR BY SEVEN ATTACK APPROACHES AGAINST THE ADVERSARIAL TRAINING MODEL WITH PSR= −20DB

Fig. 6. Spectrum of the adversarial perturbations and original signals attacked
by 6 different adversarial attack methods on an adversarial training model.
(The blue line represents the spectrum of the original signal, while the orange
line represents the spectrum of the adversarial perturbation.)

experiments set the constrained perturbation and the receiver
of the intruder to the same kind of filter and bandwidth.
It is clear that this is impossible in practical applications,
as the transmitter cannot know the intruder’s filter type and
bandwidth. Hence, we designed the following experiment
to evaluate performance of our methods in case of filter
mismatch. We compared the adaptability performance of our
algorithms under four different filter implementation methods
used by the intruder, namely FFT filter, Chebyshev Type I
filter, Chebyshev Type II filter, and Butterworth filter. For
the transmitter of the adversarial example, the code rate of
the signal is known. Therefore, we fix the bandwidth of the
constrained perturbation constant to 0.2MHz and then vary the
filtering bandwidth of the receiver from 0.2MHz to 0.4MHz
to evaluate our method’s performance.

TABLE III
THE FR OF FS-PGD UNDER DIFFERENT FILTER SETTING

We only presented the performance of the FS-PGD
algorithm, and the performance of the FS-C&W follows a
similar pattern. Tab. III shows the FR of our algorithm under
different filter configuration conditions. It can be observed
that the performance of our algorithm remains unchanged
regardless of whether there is bandwidth mismatch or imple-
mentation mismatch in the filter. This indicates that our
algorithms have strong robustness to changes in both the
parameters of the filter and the type of filter.

V. DISCUSSION AND FUTURE WORK

This paper considers a more realistic scenario of a wireless
signal adversarial attack, where the wireless receiver filters
the signal, resulting in adversarial perturbations that cannot
access the target model. Hence, we propose a novel framework
to accommodate this scenario, aiming to perturb signals by
attacking their frequency subspace. The experimental results
demonstrate that such an approach to attacking wireless signals
works well in various settings. Further analysis demonstrates
that the essence of our approach is to find the on-manifold
adversarial perturbation.

We also define a new set of evaluation metrics to mea-
sure the “imperceptibility” of adversarial perturbations in
the wireless signal domain. To our knowledge, this work
is groundbreaking, enriching the connotation of adversarial
samples.

The conclusion about the on-manifold adversarial pertur-
bation is only illustrated experimentally, lacking theoretical
support. Thus, an in-depth study poses a future research
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direction. Besides, the receiver is only part of the physical
world factor, and the wireless channel also affects the per-
formance of the adversarial attack. Hence, we will study the
adversarial attack under the influence of a wireless channel
to make our adversarial attack scenario closer to the real
world.

APPENDIX
SOLVING δ

max
δ̃

L(ỹ) + ∇ȳ L(ỹ)Tδ̃ s.t. ∥δ∥p ≤ ϵ.

Since L
(
ỹ
)

is independent of δ. Our problem is

max
δ

∇ỹLT δ̃ s.t. ∥δ∥p ⩽ ϵ (24)

Clearly, the optimal δ would have a norm of ϵ, otherwise,
we can normalize δ to get a greater loss. Therefore, we are
set to solve

max
δ

∇ỹLT δ̃ s.t. ∥δ∥p = ϵ (25)

This could be solved by standard Lagrangian multiplier
method, where f (δ) = ∇ỹLT δ̃, and g (δ) ≡ ∥δ∥p = ϵ. Set
∇ f (δ) = λ∇g (δ), we have

∇ f (δ) = λ∇g (δ) (26)

JH · ∇ỹL = λ
δ p−1
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(30)
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∥∥p∗

p∗ =

(
λ

p

)p∗

∗ 1 (31)

λ

p
=
∥∥JH · ∇ỹL

∥∥
p∗ (32)

Combine (28) and (32), it is easy to see

δ = ϵsign
(
JH · ∇ỹL

) ( ∣∣JH · ∇ỹL
∣∣∥∥JH · ∇ỹL
∥∥

p∗

) 1
p−1

(33)
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