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Congruent Differential Cluster for
Binary SPN Ciphers

Ting Cui , Yiming Mao, Yang Yang, Yi Zhang, Jiyan Zhang , and Chenhui Jin

Abstract— This study is focused on the differential clustering
effect of the SPN block cipher, which employs a binary matrix
as its diffusion layer. We present a novel strategy for differential
estimation, named the congruent differential cluster. This method
does not guarantee the optimization of each single differential
characteristic but gathers a large number of characteristics
satisfying a specific condition, i.e., the output differences of
active S-boxes are equal. Given a binary SPN cipher, the exact
probability of the congruent differential cluster can be obtained
with negligible computational resources. Moreover, we consider
a popular instance, binary AES-like ciphers, since the process-
ing of their column-mixing layer can be divided into several
independent parts. Therefore, if we set the output differences
of the active S-boxes in the same partition to be equal, we can
obtain more differential characteristics in the cluster, known as a
semicongruent differential cluster. To demonstrate the application
of the proposed method, we apply it to several block ciphers,
i.e., Midori-64, CRAFT-64, SKINNY-64 and their variants
proposed in Todo and Sasaki (2022). Compared with the active
S-box counting method, the congruent differential clusters have
considerably higher probabilities for most instances. In addi-
tion, we find a 7-round semicongruent differential cluster for
Midori-64 with probability 2−52.25, an 8-round semicongruent
differential cluster for SKINNY-64 with probability 2−50.72 and
a 10-round semicongruent differential cluster for CRAFT-64 with
probability 2−42.32. To the best of our knowledge, the semicon-
gruent differential clusters we identify for 7-round Midori-64,
8-round SKINNY-64 and 10-round CRAFT-64 have the highest
probabilities thus far among the existing differential clusters
with the same rounds. Therefore, we believe that the proposed
method is a valuable tool for evaluating the differential security
of associated block ciphers.

Index Terms— Differential cryptanalysis, congruent differen-
tial cluster, DDT, binary SPN cipher.

I. INTRODUCTION

IN THE last several decades, block ciphers have played
a central role in the development of cryptology. Open

research on block ciphers started with the proposal of the
DES in 1977 [2], which provided the most important target for
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academic cryptanalysis. Around the 1990s, differential crypt-
analysis [3], [4] and linear cryptanalysis [5] were proposed
successively, which have become the two classic analyses of
DES.

Differential cryptanalysis forced designers to reconsider
their design methodologies. The basic idea to ensure robust-
ness against cryptanalysis is to introduce an upper bound on
the probability of any differential of the cipher. For an upper
bound p, the data complexity of the attack is approximately
1/p [6]. In the mid 1990’s, Luke O’connor [7] studied the
differential and linear properties of random permutations for
the first time. They give the probabilistic upper bound for a
differential characteristic. However, it remains challenging to
accurately estimate the probability of the differential of the
target cipher.

Another milestone in the development of block ciphers is
the proposal of the AES. To ensure robustness against differen-
tial/linear cryptanalysis, Daemen and Rijimen introduced the
wide trail design strategy during the design of Rijndael [8].
This strategy helps designers more easily evaluate the security
boundary against differential (and linear) cryptanalysis. Com-
pared with previous designs, the wide trail strategy eliminates
the necessity of heavy arguments or programming work in
ensuring differential security. Generally, if the cipher has no
less than n active S-boxes after an r -round cascade, then
there never exists an r -round differential characteristic with a
probability greater than pn

max , where pmax denotes the highest
differential probability of the S-box.

In recent years, many researchers have attempted to design
block ciphers under the wide trail strategy framework. Further-
more, with the continuous progress in automated cryptanalysis
technologies, increasing efforts are being made to evaluate the
resistance of block ciphers against differential cryptanalysis by
counting the active S-boxes.

For 4-round AES, there are at least 25 active S-boxes and
the highest differential probability of AES’s S-box is 2−6.
Theoretically, there is no differential characteristic with a
probability exceeding 2−6×25

= 2−150. However, in 2005,
Keliher proved that for 4-round AES, there exists a differential
hold with probability 1.881×2−114 [9]. This finding indicates
that the probability of the identified characteristic may be
considerably smaller than the differential in AES. Furthermore,
Ankele and Kölbl [10] developed an automated approach for
enumerating the characteristics with the highest probability
of contributing to a differential based on SMT solvers, and in
2020, Dunkelman et al. [11] noted that counting the minimum
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number of active S-boxes may not always be sufficiently
accurate. The authors introduced a 4-round Feistel with the
SPSPSPSP layer as its round function, and their block cipher
had at least 36 active AES S-boxes. However, there exist
differentials with a considerably higher probability. Although
Dunkelman’s block cipher is artificial, and the evidence of
the high probability differential is based on a mathematical
deduction instead of the real differential, it indicates that a
provable secure block cipher (other than the AES) against
differential cryptanalysis may still be insecure in practice.

In ASIACRYPT 2021 [12], Leurent et al. considered the
clustering effect of differential/linear properties in Simon and
Simeck, resulting in stronger distinguishers than previously
proposed differential/linear characteristics.

Our Contribution: This study focuses on binary SPN
ciphers, i.e., ciphers that use only S-box level XOR as their
diffusion layers. This kind of diffusion layer often has better
hardware and software implementation as well as lower energy
consumption, making them widely used in lightweight cryp-
tography. Typical representatives are SKINNY [13], Midori
[14], CRAFT [15], etc. The objective is to establish a novel
differential cluster (named congruent differential cluster and
its variant semicongruent differential cluster which we will
define later) for such ciphers. The main contributions of this
research can be summarized as follows:
• We present the theoretical framework of the congruent

differential cluster for binary SPN ciphers. Instead of
optimizing the probability of a single differential char-
acteristic, we collect a large number of differential char-
acteristics following several special differential patterns
to attain an appreciable probability effect. Moreover,
we prove that the exact probability of the congruent
differential cluster can be obtained by computing the
multiplication of r matrices of scale 2n

× 2n , where n
and r indicate the size of the S-box and the number
of cascading rounds of the target cipher, respectively.
Thus, the computational cost of the proposed approach
is negligible for widely used S-boxes.

• For a special type of binary SPN ciphers, i.e., binary AES-
like ciphers, we add more differential characteristics to
the cluster and obtain the semicongruent differential clus-
ter with higher probabilities. The column-mixing layer of
binary AES-like ciphers divides the intermediate state into
a number of independent parts. Thus, if we set the output
differences of the active S-boxes in the same partition
to be equal, we can obtain more differential character-
istics. We establish a realistic and feasible algorithm to
calculate the probabilities of semicongruent differential
clusters. Experimentally, semicongruent differential clus-
ters significantly improve the probabilities of congruent
differential clusters.

• To demonstrate the application of the proposed frame-
work, we test the probabilities of semicongruent differ-
ential clusters for several typical block cipher instances,
namely, SKINNY-64, Midori-64, and CRAFT-64,
and the results are summarized in Table I. In most cases,
we have achieved the best results so far. However, there
are still some results that cannot surpass other methods.

And we attribute this to the fact that our clusters have
more active S-boxes than theirs at the corresponding
rounds. According to our approach, we also find a differ-
ential cluster of 15-round SKINNY-128. The probability
of the cluster is about 2−122.9 which has a gain of
29.1 compared to the security boundary by counting the
number of active S-boxes.

Organization: Section II introduces the basic notations and
definitions. Section III and Section IV describe the basic idea
and calculation of the probabilities of congruent differential
clusters, respectively. Section V describes the development
of semicongruent differential clusters and the correspond-
ing probability calculation. Section VI describes the applica-
tion of the proposed framework to several typical instances.
Section VII presents the concluding remarks.

II. FUNDAMENTALS

The following symbols are used in this paper.
n size of the S-box;
m number of S-boxes in one layer of

the SPN cipher;
⊕ XOR operation;
g ◦ f composition of f and g,

i.e., g ◦ f (x) = g( f (x));
M(i, j) or Mi, j i × j-th entry of matrix M ;
M<r> M<r>

=(mr
i, j ), where M=(mi, j );

wt (α) hamming weight of α;
#• cardinal number of the set •;
GF(2n) finite field with 2n elements.
Differential cryptanalysis is a classical cryptanalysis tech-

nique introduced by Biham and Shamir [3], [4], which exploits
the propagation of differences in the target cipher. This
cryptanalysis starts from a carefully chosen differential pair
(a, b) such that the probability of E(x) ⊕ E(x ⊕ a) = b is
considerably higher than 2−mn , where E denotes the target
cipher.

The difference distribution table (DDT) of a single S-box is
a 2n
×2n table, where the a×b-th entry is the number of pairs

that satisfy the difference (a
S
→ b). Notably, in several studies,

the a×b-th entry of the DDT is defined as 2n
×Pr(a

S
→ b). For

simplicity, in this paper, we omit the constant 2n , and the a×b-
th entry of the DDT is defined as DDTS(a, b) = Pr(a

S
→ b).

It is challenging to calculate the exact probability of the
differential for large-scale mappings. Fortunately, the prob-
ability of a differential characteristic can be derived from
difference propagation over several rounds of the cipher.
Thus, the differential characteristic with a high probability
is usually used to represent a differential. In other words,
the probabilities of differential characteristics can quantify the
resistance against differential cryptanalysis to some extent.

Lai et al. [18] introduced the Markov cipher Er , in such a
cipher, the probability of an r -round characteristic of Er is the
product of the probabilities of each round function, i.e.,

Pr(δ0 E
→ δ1 E

→ · · ·
E
→ δr ) =

r∏
i=1

Pr(δi−1 E
→ δi ).
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TABLE I
SUMMARY OF DIFFERENTIAL DISTINGUISHERS FOR SKINNY, MIDORI AND CRAFT IN THE SINGLE-TWEAK MODEL

In general, the probability of a differential is the sum over all
compatible characteristics, which can be calculated as

Pr(δ0 Er
→ δr ) =

∑
δ1,δ2,··· ,δr−1∈{0,1}mn

Pr(δ0 E
→ δ1 E

→ · · ·
E
→ δr ).

Theoretically, there exist at most 2mn×(r−1) possible differen-
tial characteristics compatible with such a differential.

In this study, we explore the clustering effect for binary
SPN ciphers by exploring a class of differential characteristics
in which the active S-boxes remain in the same positions.
Formally, we construct a subset � ⊆ {0, 1}mn and then

estimate the probability of∑
δ1,δ2,··· ,δr−1∈�

Pr(δ0 E
→ δ1 E

→ · · ·
E
→ δr ).

If the cardinal number of � is adequately large, the probability
advantages associated with the best differential characteristic
will likely be surpassed.

First, we introduce several basic definitions.
Definition 1 [19]: Let SLayer be a nonlinear transforma-

tion on {0, 1}mn defined by m paralleled n-bit S-boxes, i.e.,

SLayer(x0, · · · , xm−1) = (S(x0), · · · , S(xm−1)),
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the permutation layer P : {0, 1}mn
→ {0, 1}mn is a linear

bijection, and the one-round SPN structure E is defined as

E(x) = P ◦ SLayer(x ⊕ k),

where k denotes the subkey.
Accordingly, in an r -round SPN cipher Er , if P can be

represented by an m × m binary matrix P , i.e.,

P(x) = P × x,

where P is a binary matrix over GF(2n), then E is termed
the round function of a binary SPN cipher. Typical examples
of this configuration are SKINNY [13], Midori [14] and
CRAFT [15].

Definition 2 [19]: Let (x0, · · · , xm−1) ∈ {0, 1}mn and θ :

{0, 1}n → {0, 1} corresponds to the following mapping:

θ(x) =

{
0, if x = 0;
1, if x ̸= 0.

Then,

χ(x0, · · · , xm−1) = (θ(x0), · · · , θ(xm−1))

is said to be the pattern of (x0, · · · , xm−1).
If we assume that δ0 E

→ δ1 E
→ · · ·

E
→ δr is one differential

characteristic of an r -round SPN cipher, then the pattern of
the characteristic is calculated as (χ(δ0), χ(δ1), · · · , χ(δr−1)).
Instead of searching a single characteristic with the highest
probability, we search for a large number of differential
characteristics having the same low-weight pattern. The final
probability of our differential cluster is the sum of the prob-
abilities of potential characteristics. This tradeoff is expected
to facilitate the realization of our objective.

III. ARCHITECTURE OF THE CONGRUENT
DIFFERENTIAL CLUSTER

Instead of minimizing the number of active S-boxes, our
core idea is to increase the number of differential characteris-
tics with the same number of active S-boxes. We focus on the
differential behavior of the binary SPN cipher, and the process
is initiated at the diffusion layer. First, we present several basic
definitions.

Definition 3: Let P be an m×m binary matrix over GF(2n).
Then, the m × m matrix B(P) over GF(2) is defined by

B(P) =

{
1, if Pi, j = 1 (∈ GF(2n));

0, else.

which is termed the basic matrix of P .
The partition mapping

Pi : {0, 1}mn
7→ {0, 1}m

for a vector

x=[(x1,1, x1,2,· · ·, x1,n),· · ·,(xm,1, xm,2,· · ·, xm,n)]∈{0, 1}mn

is defined as

Pi (x) := x̂i = (x1,i , x2,i , · · · , xm,i ).

Fig. 1. Differential bypass for one round of a binary SPN.

Inversely, we define the combined mapping C : {0, 1}m×n
7→

{0, 1}mn as

C (̂x1, x̂2, · · · , x̂n) = x .

Note that the diffusion layer P of the binary SPN diffuses the
input by n-bitwise XOR. The process of the mn-bit diffusion
can be divided into m copies of independent n-bit diffusions
B(P). Specifically,

P × x = C[B(P)× x̂1,B(P)× x̂2, · · · ,B(P)× x̂n].

Since B(P) = P in form, we use the symbol P to represent
both B(P) and P .

Definition 4: Let α = (α0, α1, · · · , αm−1) be a vector over
GF(2n) and χ0 ∈ {0, 1}m . If all the nonzero entries of α remain
the same and χ(α) = χ0, then α is termed an equal extension
vector of χ0, denoted by χ0 ∝ α.

For any equal extension vector α of a given pattern χ0
(formally denoted as α = a×χ0), we have P×α = a× (P×
χ0). Consequently, if the equal extension vector α is the input
difference of the linear layer P, P×α is also an equal extension
vector of P×χ0, and each of the nonzero components remains
unchanged. If this property can be inherited by the SLayer,
we can combine these two properties to identify a number of
differential characteristics (Fig. 1).

Lemma 1: Let P be the matrix representation of the P-
layer in a binary SPN cipher’s round function E and S be
the S-box. Then, for any χ0 ∈ {0, 1}m , we can find at least
#{DDTS(a, b) > 0 : 1 ≤ a, b ≤ 2n

− 1} of difference pairs
α
E
→ β such that χ(α) = χ0 and χ(β) = P × χ0.

Proof: We assume that χ0 = (λ0, λ1, · · · , λm−1). For
any (a, b) ∈ {0, 1}mn

× {0, 1}mn with any a, b such that
DDTS(a, b) > 0, we construct two differences α and α′ by
setting

αi =

{
a, if λi = 1;
0, else.

and α′i =

{
b, if λi = 1;
0, else.

In this case, the difference α
SLayer
→ α′ is one of the possible

differentials of the SLayer. Thus, we conclude that we find
at least #{DDTS(a, b) > 0 : 1 ≤ a, b ≤ 2n

− 1} differential
pairs.

Let P × α′ = β, it follows βi =
⊕m−1

j=0 Pi, j × α′j . Since P
is a binary matrix, any nonzero β• equals to b, and θ(βi ) =⊕m−1

j=0 Pi, j × λ j .

Q.E.D.

Given an input pattern χ0, we can obtain a sequence of
r -round patterns (χ1, χ2, χ3, · · · , χr ) by computing
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χi = P × χi−1, or equivalently, we can obtain the
pattern by computing a linear systematic code

(χ0, χ1, · · · , χr ) = (E |P|P2
| · · · |Pr )× χ0.

The core idea is to collect the differential characteristics
following such a pattern, i.e., we search for some χ0 ∝

δ0 such that for the active S-boxes, empirically, the value of
wt[(E |P|P2

| · · · |Pr−1)× χ0] is minimized. We compute the
sum of probabilities of all characteristics δ0

→ δ1
→ · · · →

δr , such that χ1 ∝ δ1, · · · , χr−1 ∝ δr−1. More formally,
we introduce the definition belows.

Definition 5: Let χi (0 ≤ i ≤ r − 1) be the input pattern
of the (i + 1)-th round of a binary SPN cipher, where χi =

P × χi−1. The differential cluster δ0 Er
⇝ δr that contains all

the differential characteristics (δ0, δ1, · · · , δr−1, δr ) satisfying
χ1 ∝ δ1, · · · , χr−1 ∝ δr−1 is called a congruent differential
cluster, i.e.,

Pr(δ0 Er
⇝ δr ) :=

∑
χ1∝δ1,··· ,χr−1∝δr−1

Pr(δ0 E
→ δ1 E

→ · · ·
E
→ δr ).

Accordingly, if the input differences of the active S-boxes
remain the same, we may assume that all the output differences
of the active S-boxes are equal, and t = #{DDTS(a, b) > 0 :
1 ≤ a, b ≤ 2n

− 1}. In this case, we may collect at most tr

differential characteristics compatible with such given r -round
pattern. In any characteristic of such a differential cluster, the
differences of all the S-boxes remain the same.

IV. PROBABILITY OF A CONGRUENT
DIFFERENTIAL CLUSTER

Next, we examine the probability of our congruent dif-
ferential cluster. Historically, the probability of a differential
characteristic has been used in evaluating the resistance of
a cipher against differential cryptanalysis. In [6], Nyberg
and Knudsen studied the provable security against differential
cryptanalysis for DES-like ciphers, e.g. Serpent [20]. Later,
the wide-trail strategy was proposed [8]. According to the
wide-trail strategy, the branch number of the linear layer and
maximum differential probability of the S-box layer can be
used to bound the probability.

The same logic applies to our differential cluster. The fol-
lowing text describes the factors that influence the probability
of our differential cluster Pr(δ0 Er

⇝ δr ).
Theorem 1: Let P be the matrix representation of the P-

layer in an r -round binary SPN cipher Er , and DDT be the
difference distribution table of the S-box. Then, the value
of Pr(δ0 Er

⇝ δr ) equals the ρ0 × ρr -th entry of the matrix
r∏

i=1
DDT<wt (P i−1

×χ0)>, where χ0 = χ(δ0), ρ0 and ρr are

the nonzero entries of δ0
= (δ0

0, δ0
1, · · · , δ0

m−1) and δr
=

(δr
0, δ

r
1, · · · , δ

r
m−1), respectively.

Proof: By definition, we assume that χ(δ0) = χ0, and
for 1 ≤ i ≤ r , we set χi = P × χi−1. By definition, the
probability of the differential cluster is

Pr(δ0 Er
⇝ δr ) :=

∑
χ1∝δ1,··· ,χr−1∝δr−1

Pr(δ0 E
→ δ1 E

→ · · ·
E
→ δr )

=

∑
χ1∝δ1,··· ,χr−1∝δr−1

r∏
i=1

Pr(δi−1 E
→ δi )

=

∑
ρ1 ̸=0,··· ,ρr−1 ̸=0

r∏
i=1

[Pr(ρi−1
S
→ ρi )]

wt (χi−1).

Next, we prove that∑
ρ1 ̸=0,··· ,ρr−1 ̸=0

r∏
i=1

[Pr(ρi−1
S
→ ρi )]

wt (χi−1)

= (

r∏
i=1

DDT<wt (P i−1
×χ0)>)ρ0,ρr

by performing mathematical induction on round r .
For r = 2, we may verify that∑

ρ1 ̸=0

Pr(ρ0
S
→ ρ1)

wt (χ0) × Pr(ρ1
S
→ ρ2)

wt (χ1)

= (DDT<wt (χ0)> × DDT<wt (χ1)>)ρ0,ρ2 .

Assuming that the equation holds for less than the (r − 1)-
round, we check the case of the r -round cascade.

∑
ρ1 ̸=0,··· ,ρr−1 ̸=0

r∏
i=1

[Pr(ρi−1
S
→ ρi )]

wt (χi−1)

=

∑
ρr−1 ̸=0

∑
ρ1 ̸=0,··· ,ρr−2 ̸=0(r−1∏

i=1

[Pr(ρi−1
S
→ ρi )]

wt (χi−1) ×[Pr(ρr−1
S
→ρr )]

wt (χr−1)

)
=

∑
ρr−1 ̸=0

[Pr(ρr−1
S
→ ρr )]

wt (χr−1)

×

∑
ρ1 ̸=0,··· ,ρr−2 ̸=0

r−1∏
i=1

[Pr(ρi−1
S
→ ρi )]

wt (χi−1)

=

∑
ρr−1 ̸=0

(DDT<wt (Pr−1)>)ρr−1,ρr

× (

r−1∏
i=1

DDT<wt (P i−1
×χ0)>)ρ0,ρr−1

= (

r∏
i=1

DDT<wt (P i−1
×χ0)>)ρ0,ρr

Q.E.D.

According to this theorem, we can promptly calculate the
exact probability of the differential cluster for a given binary
SPN cipher. The main cost of the computation is the multi-
plication of r of 2n

× 2n matrices, where n is the size of the
S-box (typically 4 or 8). Thus, the computational complexity
of a practical binary SPN cipher is negligible. In addition, the
largest entry of the matrix

∏r
i=1 DDT

<wt (P i−1
×χ0)> indicates

the probability of the best congruent differential cluster.
An interesting question follows: Given an r -round binary

SPN cipher Er , can we find a new r -round binary SPN
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cipher E ′r that keeps the best probability of r -round congruent
differential clusters unchanged?

Let P1 and P2 be two distinct n×n binary diffusion layers.
If for any input pattern χ1 of P1, there exists input pattern
χ2 of P2 such that

wt ([E |P1| · · · |Pr−1
1 ] × χ1) = wt ([E |P2| · · · |Pr−1

2 ] × χ2),

and the multiple set {wt (χ1), wt (P1 × χ1), · · · , wt (Pr−1
1 ×

χ1)} is equal to the multiple set {wt (χ2), wt (P2 ×

χ2), · · · , wt (Pr−1
2 × χ2)}. Then, if we adopt P1 and P2 in

two binary SPN ciphers and keep the S-box unchanged, the
probabilities of the best r -round congruent differential clusters
of these two ciphers are identical.

Empirically, it seems that if we replace the current S-box
with a new one, the probability of the best r -round congruent
differential clusters of the binary SPN cipher is uncontrollable.
However, this probability remains unchanged if we replace the
S-box with certain affine equivalent S-boxes.

Definition 6 [21]: Let S′ and S be two n-bit S-boxes.
If there exist two affine mappings A0 and A1, such that

S′(x) = A1 ◦ S ◦ A0(x),

then S and S′ are termed affine-equivalent (AE).
Within the AE assumption, most of the basic properties of

S-boxes, such as the maximum differential probability, linear
correlation properties, and algebraic degree, remain invariant.
We may verify the properties between DDTS and DDTS′ as
follows.

Lemma 2: Let M0, M1 be two invertible n × n matrices.
If S and S′ are two AE S-boxes and S′(x) = [M1 ◦ S ◦M0(x⊕
c0)] ⊕ c1, then

DDTS′(i, j) = DDTS(M0 × i, M−1
1 × j),

where c0 and c1 are two constants.
Theorem 2: Let Er and E ′r be two r -round binary SPN

ciphers that employ the unified P-layer. S and S′ are the
S-boxes of E and E ′, respectively. If S′(x) := [M ◦ S ◦
M−1(x⊕c0)]⊕c1, then the probabilities of the best congruent
differential clusters in these two cipher are equal, where
constants c0, c1 ∈ {0, 1}n and M denote an invertible n × n
matrix.

Proof: This argument follows the notation used in
Theorem 1. We assume that the best congruent differential
cluster of E is δ0 Er

⇝ δr . According to Theorem 1, Pr(δ0 Er
⇝

δr ) = (
∏r

i=1 DDT
<wt (P i−1

×χ0)>)ρ0,ρr . Then,

(

r∏
i=1

DDT<wt (P i−1
×χ0)>

S )ρ0,ρr

=

∑
ρ1,ρ2,··· ,ρr−1

r∏
i=1

[(DDT<wt (P i−1
×χ0)>

S )ρi−1,ρi ],

Applying Lemma 2, we obtain

[(DDT<wt (P i−1
×χ0)>

S )ρi−1,ρi ]

= [(DDT<wt (P i−1
×χ0)>

S′ )M×ρi−1,M×ρi ],

Fig. 2. Differential behavior of S and S′ in a congruent differential cluster.

it follows

Pr(δ0 Er
⇝ δr )

=

∑
ρ1,ρ2,··· ,ρr−1

r∏
i=1

[(DDT<wt (P i−1
×χ0)>

S )ρi−1,ρi ]

=

∑
ρ1,ρ2,··· ,ρr−1

r∏
i=1

[(DDT<wt (P i−1
×χ0)>

S′ )M×ρi−1,M×ρi ]

µ•:=M×ρ•
=

∑
µ1,µ2,··· ,µr−1

r∏
i=1

[(DDT<wt (P i−1
×χ0)>

S′ )µi−1,µi ]

= (

r∏
i=1

DDT<wt (P i−1
×χ0)>

S′ )µ0,µr = Pr(α0
E ′r
⇝ αr ),

where χ(δ0) ∝ α0 and χ(δr ) ∝ αr ; and the nonzero
components of α0 and αr are µ0 and µr , respectively. Thus,
we conclude that the best r -round congruent differential cluster
of E is not greater than that of E ′ and vice versa.

Q.E.D.

In the design of the SPN cipher, one of the key concerns
regarding the S-box is to maintain the efficiency of the
decryption. One possible approach is to employ an involutory
core function S (for example, the inverse function of the finite
field S(x) := x−1) and an affine mapping A. In this case we
can construct a new involute S-box by

S′(x) := A−1
◦ S ◦ A(x).

The result of Theorem 2 indicates that such a modification
will not change the probability of the congruent differential
cluster.

V. EXTENSION OF THE CONGRUENT DIFFERENTIAL
CLUSTER TO BINARY AES-LIKE CIPHER

Given any pattern χ0 ∈ {0, 1}m \ {0} and χ0 ∝ δ0 for a
binary SPN cipher, we can efficiently calculate the congruent
differential cluster δ0 Er

⇝ δr . Note that the diffusion layer is
considered to be a binary matrix without distinction. There-
fore, we can harvest more differential characteristics for the
cluster if more details of the cipher are considered.
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Fig. 3. Development of the difference and the pattern.

A series of recently proposed block ciphers adopt the AES-
like SPN structure, and their diffusion layers satisfy certain
typical constructions, i.e., a word-width shuffle followed by
several independent copies of a binary P-layer. In this case,
we may add more differential characteristics to the congruent
differential cluster.

Paralleled binary permutation: Let C = diag(M, M ,
· · · , M) be a diagonal matrix, and M be a binary submatrix
over GF(2n). Then, C is called a paralleled binary permutation.

Shuffle matrix: Let L be an m × m binary submatrix over
GF(2n) and f be a bijection over {0, 1, · · · , m−1}, such that

Li, j =

{
1, if f (i) = j;
0, else.

Then, L is called a shuffle matrix.
Let Ar be an r -round binary SPN cipher. If its diffusion

layer consists of a shuffle matrix and paralleled binary permu-
tation, i.e.,

P(x) = C ◦ L(x),

then Ar is an r -round binary AES-like cipher.
Next, we will demonstrate the basic idea of our improve-

ment. For simplicity, in the rest of this section we assume that
m is a square number.

Definition 7: Let χ ′ ∈ {0, 1}m and γ := (γ0, γ1,
· · · , γ√m−1) ∈ {0, 1}mn , where γi = (γi,0, γi,1, · · · , γi,

√
m−1)

is a vector over GF(2n). If χ(γ ) = χ ′ and for any 0 ≤ i ≤
√

m− 1, all the nonzero entries of each separate γi are equal,
then γ is called a semicongruent vector of χ ′, denoted by
χ ′ ⋉ γ . The set of all semicongruent vectors of χ ′ is denoted
by Gχ ′ .

Now we take a closer look at the paralleled binary permuta-
tion layer. This layer consists of several copies of one binary
permutation M , at this time, if the input difference of C is
restricted as a semicongruent vector, then the output difference
of C always keep the ’semicongruent’ property.

Example 1: We choose m = 16 and n = 4 for
a binary AES-like cipher, i.e., the size of the S-box is
4-bit, and the submatrix M in the C-layer is a 4 ×
4 binary matrix (typical instances include Midori-64,
SKINNY-64 and CRAFT-64). Then for an input dif-
ference of the paralleled binary permutation layer γ =

(0,0xA,0xA,0, 0x5,0,0x5,0x5, 0,0,0,0, 0xB,0xB,0,0) and a
16-bit pattern χ ′ = (0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0),
it could be verified that χ(γ ) = χ ′, therefore we have χ ′⋉γ .

In the example above, the nonzero entries of each 4-tuple
of γ are identical, at the same time, the submatrix M is a
4 × 4 binary matrix. As a consequence, the semicongruent
property is inherited by the C-layer.

Proposition 1: Let A be the round function of a binary
AES-like cipher, i.e., A = P ◦ SLayer = C ◦ L ◦ SLayer
and α ∈ {0, 1}mn be the input difference of A. If L ◦
SLayer1(α) ∈ GL(χ0), then χ(A(α)) = P(χ(α)), where
SLayer1(α) denotes the output difference of α bypass the
SLayer.

Proof: Since SLayer does not change the development
of patterns, then χ(SLayer1(α)) = χ(α). The shuffle matrix
L before the C layer can be treated as a word-level permuta-
tion. Thus, χ(L × SLayer1(α)) = L × χ(SLayer1(α)).
According to the definition of paralleled binary permuta-
tion, the mapping C can be treated as

√
m binary P-layers

M√m×
√

m (over GF(2n)) in parallel. Therefore, the input
difference of C can be divided into

√
m independent parts,

i.e., L × SLayer1(α) = (x0, x1, · · · , x√m−1), where xi ∈

GF(2n)
√

m for 0 ≤ i ≤
√

m − 1 and χ(L× SLayer1(α)) =

(χ(x0), χ(x1), · · · , χ(x√m−1)). Then, the output difference of
C can be calculated as (M × x0, M × x1, · · · , M × x√m−1),
i.e.,

C ◦ L ◦ SLayer1(α) = (M × x0, M × x1, · · · , M × x√m−1).

Since L ◦ SLayer1(α) ∈ GL(χ0) and M is a binary
matrix, it follows from the discussion in Section III that
χ(M × xi ) = M × χ(xi ). From the independence of M ×
x0, M × x1, · · · , M × x√m−1, it can be inferred that

χ(M × x0, M × x1, · · · , M × x√m−1)

= (χ(M × x0), χ(M × x1), · · · , χ(M × x√m−1)),

and then,

χ(A(α)) = χ(C ◦ L ◦ SLayer1(α))

= χ(M × x0, M × x1, · · · , M × x√m−1)

= (χ(M × x0), χ(M × x1), · · · , χ(M × x√m−1))

= (M × χ(x0), M × χ(x1), · · · , M × χ(x√m−1))

= C(χ(L× SLayer1(α)))

= C(L× χ(SLayer1(α))

= P(χ(SLayer1(α)))

= P(χ(α)).

Q.E.D.

As a result, given an input difference α, if the shuffle matrix
L makes the output difference of the SLayer (also the input
difference of the C-layer) a semicongruent vector, i.e., L ◦
SLayer1(α) ∈ GL(χ(α)), then we predict that:

1) The semicongruent property will hold for the output
difference of a single round.

2) The output pattern of the round function can be obtained
by applying the linear layer to the input pattern, which
is the same as that of the congruent differential cluster.

Therefore, we only take consider of the differential char-
acteristics that ensure the input difference of C to be a semi-
congruent vector in each round, we name such characteris-
tics as semicongruent differential characteristics. In particular,
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the congruent differential characteristics are special cases of
semicongruent differential characteristics. So if we are able to
add more semicongruent differential characteristics into to our
congruent differential clusters (Fig. 4: the same color indicates
the same difference value or zero difference), the probability
of differential cluster could be certainly increased.

Definition 8: Let χi (0 ≤ i ≤ r − 1) be the input pattern
of the (i + 1)-th round of a binary AES-like cipher, where

χi = P(χi−1). The differential cluster δ0
Ar

⇛ δr that contains all
the differential characteristics (δ0, δ1, · · · , δr−1, δr ) satisfying
L(χ0)⋉L◦SLayer1(δ0), · · · ,L(χr−1)⋉L◦SLayer1(δr−1)

is called a semicongruent differential cluster, i.e.,

Pr(δ0A
r

⇛ δr )

:=

∑
L(χ0)⋉L◦SLayer1(δ0),··· ,L(χr−1)⋉L◦SLayer1(δr−1)

Pr(δ0 A
→ ···

A
→ δr ).

We use SC to denote the set of all the differential charac-
teristics of the semicongruent differential cluster, i.e.,

SC := {(δ0, · · · , δr ) : L(χ0) ⋉ L ◦ SLayer1(δ0),

· · · ,L(χr−1) ⋉ L ◦ SLayer1(δr−1)}.

Then we have

Pr(δ0A
r

⇛ δr )

=

∑
(δ0,δ1,··· ,δr−1,δr )∈SC

Pr(δ0 A
→ δ1 A
→ ···

A
→ δr )

=

∑
(δ0,δ1,··· ,δr−1,δr )∈SC

Pr(δ0
→δ1)×···×Pr(δr−2

→ δr−1)

× Pr(δr−1
→ δr )

=

∑
δr−1
:

(δ0,δ1,··· ,δr−1,δr )∈SC

Pr(δr−1
→ δr )

×

∑
(δ0,δ1,··· ,δr−1):

(δ0,δ1,··· ,δr−1,δr )∈SC

Pr(δ0
→δ1)×···×Pr(δr−2

→δr−1)

=

∑
δr−1
:

(δ0,δ1,··· ,δr−1,δr )∈SC

Pr(δr−1
→ δr )× Pr(δ0A

r−1

⇛ δr−1),

so we can calculate the probability of the semicongruent
differential cluster round by round. We introduce Algorithm 1
to calculate to probability of the semicongruent differential
cluster for a given input and output differences.

Let δi (0 ≤ i ≤ r−1) be the input differences of the (i+1)-
th round and σ i (0 ≤ i ≤ r − 1) be the input differences
of paralleled binary permutation in the (i + 1)-th round. Let
χi (0 ≤ i ≤ r − 1) be the input pattern of the (i + 1)-th round.
For a semicongruent differential cluster, we have χi = P(χi−1)

and σ i
∈ GL(χi ).

To calculate the probabilities of the semicongruent differ-

ential clusters δ0
Ai+1

⇛ δi+1, we traverse δi and sum up the

probabilities Pr(δ0
Ai

⇛ δi ) × Pr(δi SLayer
−−−−→ L−1(σ i )), where

Algorithm 1 Calculating the Probability of r -Round
Semicongruent Differential Clusters

Input: input difference δ0
= (δ0

0, .., δ0
m−1), number of

encryption rounds r , round function
E = C ◦ L ◦ SLayer;

Output: (δr , Prδr );
1 Let χi be the input pattern and δi

= (δi
0, . . . , δ

i
m−1) be

the input differences of round i + 1. Let
σ i
= (σ i

0, . . . , σ
i
m−1) be the input differences of the

paralleled binary permutation in the (i + 1)-th round,
then δi+1

= C(σ i ). Denote Prδi the probabilities of

the semicongruent differential clusters δ0
Ai

⇛ δi .
2 for all σ 0

∈ GL(χ0) do
3 Prδ1 = Pr(δ0 SLayer

−−−−→ L−1(σ 0))

4 record (δ1, Prδ1) in an array
5 end
6 for 2 ≤ i ≤ r do
7 for all σ i−1

∈ GL(χi−1) do
8 Algorithm 2
9 record (δi , Prδi ) in an array

10 end
11 end
12 return (δr , Prδr )

σ i
= C−1(δi+1) ∈ GL(χi ). We calculate round by round

like this until obtain the probability of δr . From Definition 8,
we can deduce that there are theoretically 2li×n output differ-
ences for the i-th round, where li is numbers of the partitions
with active S-boxes and n is the size of S-box. The calculation
of Pr(δi SLayer

−−−−→ L−1(σ i )) can be attributed to looking up
DDT for ti times, where ti is the numbers of active S-boxes in
the i-th round. Thus, the computational complexity of the i-th
round is ti × 2li−1×n

× 2li×n times DDT look-up, theoretically.
In programming implementation, we do not simply traverse

each (δi , σ i ) and then calculate Pr(δi SLayer
−−−−→ L−1(σ i )) by

looking up ti times DDT. And we introduce Algorithm 2 to
improve the efficiency. Firstly, only the δi with nonzero prob-
abilities will be recorded. It means that the input differences
of active S-boxes in the (i + 1)-th round may not take all the
2n values. Then we iterate through the input differences of
the active S-boxes one by one. For example, assuming there
are two active S-boxes S1 and S2 in the current partition, and
their input differences are a and b, respectively. To meet the
conditions of semicongruent vectors, the input differences a
and b must have the same output differences after S-box. If the
current input differences a and b cannot lead to a same output
difference c, then we do not consider other active S-boxes and
can abandon a series of δi . An array is needed to record the
output differences and their probabilities of the current round.
For the i-th round, the array has at most 2li×n entries, where
li is numbers of the partitions with active S-boxes and n is the
size of S-box. Thus, the storage complexity is O(2max(li )×n),
where 0 ≤ i ≤ r−1. If there exists i that meets li =

√
m, then

the storage complexity reaches its maximum value O(2
√

m×n).
In addition, we can set a probability threshold and retain δi
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Fig. 4. Differentials compatible with the congruent differential cluster of AES-like construction.

TABLE II
INPUT PATTERNS AND CORRESPONDING NUMBERS OF ACTIVE S-BOXES

when Prδi exceeds this threshold. This can further improve the
efficiency.

VI. EXPERIMENTS AND APPLICATIONS

We apply the theory discussed above to specific block
ciphers, i.e, Midori [14], SKINNY [13], and CRAFT [15]
(see Appendix).

A. Decide the Input Patterns and Input Differences

First, we traverse all input patterns χ0 of Midori,
SKINNY, and CRAFT and calculate χ1, . . . , χr−1 by
P(χ0), . . . ,P(χr−2). As mentioned in Section III, wt (χi ) is
the number of active S-boxes in round i + 1. We focus on the
input patterns that minimize the total number of active S-boxes
after encrypting a certain number of rounds. Table II shows
the input patterns we choose and the corresponding numbers
of active S-boxes.

Next, it comes to choose the input differences for the active
S-boxes of the first round. We empirically believe that clusters
containing single characteristic with high probability may have
better performance. Therefore, we choose the input differences
with the maximum differential transition probabilities for
active S-boxes. For example, when 0×2 and 0xa be the input
differences of Midori-64’s S-box, the probabilities of the
possible output differences are the maximum value 0.25. Thus,
we choose 0x2 and 0xa to be the input differences for the
active S-boxes of the first round.

B. Apply Semicongruent Differential Clusters to Midori,
SKINNY, and CRAFT

Based on the above strategies, we obtain the differential clu-
aters of Midori-64, SKINNY-64, and CRAFT-64. Some
clusters are as follows:

0x000a00a0000a00a0
7−round Midori-64
−−−−−−−−−−−−−→ 0xaa0aaa0aaaa0aaa0.

0x0001111101110110
8−round SKINNY-64
−−−−−−−−−−−−−→ 0x2022222222020220.

0x000a0a0a00000a0a
10−round CRAFT-64
−−−−−−−−−−−−−→ 0x0a00000000000a0a.

To the best of our knowledge, the probabilities of these
three clusters are higher than those of the clusters with the
same number of rounds.

We also find a differential cluster for 15-round
SKINNY-128 with a probability 2−122.9. The detail is
as follows:

0x(21, 21, 00, 00, 00, 00, 00, 00, 00, 21, 21, 00, 21, 00, 21, 00)

→ 0x(00, 00, 00, 00, 04, 00, 00, 04, 04, 00, 04,

00, 00, 00, 04, 04).

In the design report, the total number of active S-boxes for
15-round SKINNY-128 is at least 66. The maximum dif-
ferential transition probability for SKINNY-128’s S-box is
2−2, so there is no differential characteristic with a probability
greater than 2−132. In our cluster, the total number of active
S-boxes is 74 which means the maximum probability of the
differential characteristic is 2−148. However, when considering
the cluster effect, we have a gain about 29.1 compared with
the current theoretically optimal differential characteristic.
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Algorithm 2 Calculating Prδi (i > 1)

Input: σ i−1
∈ GL(χi−1), all δi−1 where Prδi−1 ̸= 0;

Output: (δi , Prδi );
1 Separate L−1(σ i−1) into

√
m partitions

(γ i
0 , γ i

1 , · · · , γ i√
m−1) ∈ {0, 1}

√
m×
√

m×n where the
nonzero entries of each partition are equal. Denote
the value of the nonzero entries of γ i

j ∈ {0, 1}
√

m×n

by ηi
j ∈ {0, 1}n and the input difference of SLayer

correspond to γ i
j by

ξ i−1
j = (ξ i−1

j,0 , ξ i−1
j,1 , · · · , ξ i−1

j,
√

m−1) ∈ {0, 1}
√

m×n .
2 Prδi = 0
3 for all ξ i−1

0 do
4 if all the nonzero entries of ξ i−1

0 have nonzero
probabilities to ηi

0 then
5 for all ξ i−1

1 do
6 . . .
7 for all ξ i−1

√
m−1 do

8 if all the nonzero entries of ξ i−1
√

m−1 have

nonzero probabilities to ηi√
m−1 then

9 Prδi = Prδi + Prδi−1×Pr(ξ i−1
0 →

γ i
0)×···× Pr(ξ i−1

√
m−1→γ i√

m−1)

10 end
11 end
12 end
13 end
14 end
/* Pr(ξ i−1

j →γ i
j ) can be obtained by

looking up DDT. For example,
if ξ i−1

j has two nonzero entries ξ i−1
j,0

and ξ i−1
j,1 , then

Pr(ξ i−1
j →γ i

j ) = DDT(ξ i−1
j,0 , ηi

j )× DDT(ξ i−1
j,1 , ηi

j ).

*/
15 return (δi , Prδi )

In addition, we apply this method to variants of
Midori-64 and SKINNY-64 in [1]. Todo and Sasaki noted
the presence of chains of differences 11 → 12 → 13 →

· · · over the S-boxes of Midori-64 and SKINNY-64,
in which each transition occurs with a high probability of 2−2.
To enhance the resistance of Midori-64 and SKINNY-64
against differential cryptanalysis, Todo and Sasaki designed
new S-boxes ensuring that the high-probability chain length
is at most 2. Employing the improved S-box, the maximum
differential characteristic probability of 6-round Midori-64
decreases from 2−60 to 2−68, and the maximum differential
characteristic probability of 8-round SKINNY-64 decreases
from 2−72 to 2−76. Similar to the method reported in [10],
Ankele and Kölbl constructed a 6-round differential cluster of
Midori-64 using the new S-box with a probability of 2−61.
Using Algorithm 1, we construct semicongruent differential
clusters of 6-round Midori-64 and 8-round SKINNY-64
using the new S-box, with probabilities of 2−58.58 and 2−60.74,
respectively.

Finally, we investigate the probability gap between differ-
ential clusters and characteristics. The results are summarized
in Table III. A large distance can be observed between the
differential characteristics and clusters. If only the number
of active S-boxes is used as the criterion for evaluating the
resistance of the cipher against differential attacks, we may
receive a marginal security bound. Therefore, it is necessary to
consider the clustering efficiency for the target block ciphers.

C. Gap Between Our Clusters and Real Differentials

In order to enhance the persuasiveness of our work, we ver-
ified the differential clusters obtained using our method. Due
to limitations in computing resources, it is difficult to verify
differential clusters with a large number of rounds. So we used
the same method to construct some differential clusters with
probabilities around 2−25 for verification.

We constructed a 6-round cluster with a probability 2−24.41

for CRAFT-64, a 4-round cluster with a probability 2−23.58

for Midori-64 and a 5-round cluster with a probability
2−22.9 for SKINNY-64. The details are as follows:

0x000a0a0a00000a0a
6−round CRAFT-64
−−−−−−−−−−−−→ 0

x000000000aa00a00,

0x2000200000200020
4−round Midori-64
−−−−−−−−−−−−−→ 0

x0222022222022202,

0x0000100000010110
5−round SKINNY-64
−−−−−−−−−−−−−→ 0

x5555050000550555.

We randomly generated 200 keys, and for each key 231 random
plaintext pairs with the given input difference were encrypted.
A counter was needed to record the number of ciphertext
pairs with the corresponding output difference after encryption
for each key. Then we calculated the experimental probabil-
ity for each cluster according to the average value of the
counter. The experimental probabilties are 2−23.71 for 6-round
CRAFT-64’s cluster, 2−26.13 for 4-round Midori-64’s
cluster and 2−21.51 for 5-round SKINNY-64’s cluster. It can
be found that the experimental results are in general agreement
with the theory.

VII. DISCUSSION AND CONCLUSION

Although differential cryptanalysis was proposed more than
30 years ago, it still plays an important role in modern
cryptanalysis. In recent decades, counting the number of active
S-boxes has become the mainstream strategy for evaluat-
ing the resistance against such attacks. However, for certain
constructions, the use of differential characteristics instead
of differentials involves several challenges. Thus, it is of
significance to investigate the differential probability for new
block cipher design. In particular, an increasing number of
cryptographic schemes have been designed based on round-
reduced block ciphers, e.g., AEGIS [22], SNOW-V [23], and
Rocca [24]. A better understanding of the security of round-
reduced block ciphers can provide valuable guidance for future
block cipher designers.
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TABLE III
PROBABILITY GAP BETWEEN DIFFERENTIAL CLUSTERS AND CHARACTERISTICS

This paper proposes a novel technique to estimate the
resistance against differential cryptanalysis for binary SPN
ciphers by introducing the congruent differential cluster. For a
binary AES-like cipher, which is the most popular instance
of binary SPN ciphers, we introduce the semicongruent
differential cluster and add more characteristics into this
cluster. For congruent differential clusters, the probability
calculation involves the multiplication of several 2n

× 2n

matrices, where n indicates the size of the S-box. Moreover,
we present an efficient algorithm (the source code is available
at https://github.com/hahahai123/cluster.git) to calculate the
probability of a semicongruent differential cluster. Compared
to automatic methods, our approach requires fewer computa-
tional resources and often yields results in a shorter period
of time. And our approach has better generalization with
the help of limited computational resources compared to the
theoretical derivation methods. Our method has provided the
optimal results for the target ciphers in some rounds. And from
both theoretical and experimental viewpoints, our methods are
insensitive to the size of the S-boxes and the number of the
rounds and can thus serve as an efficient tool for estimating
the differential security of the target block ciphers.

We believe that congruent and semicongruent clusters can
quickly evaluate the resistance to differential cryptanalysis of
binary SPN ciphers and binary AES-like ciphers. Thus, it is
interesting to extend these two kinds of clusters to SPN ciphers
with bit-level linear layers. The difficulty of this extension
lies in how to describe the development of patterns for such
ciphers. We consider it as an open problem for our future
research.

APPENDIX A
INTRODUCTION TO MIDORI-64

Midori is a family of AES-like ciphers, published at
ASIACRYPT 2015 [14]. This cipher has been advertised as

TABLE IV
S-BOX OF MIDORI-64

one of the first lightweight ciphers optimized in terms of
the energy consumed by the circuit per bit in encryption or
decryption operations.

The round function of Midori-64 consists of the S-layer
and P-layer and uses the following 4× 4 array named “state”
as a data expression.

State =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 ,

where the size of each cell is 4 bits for Midori-64. A 64-bit
plaintext P is loaded into the state.

The round function of Midori consists of an S-layer
SubCell, P-layers ShuffleCell and MixColumn, and
a key-addition layer KeyAdd. Each layer updates the 64-bit
state as follows.
SubCell: A 4-bit S-box is applied to every 4-bit cell of

State in parallel. The 4-bit S-box of Midori-64 is presented
in Table IV.
ShuffleCell: Each cell of the state is permuted as

follows:

(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15)

→(s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6,

s7, s13, s2, s8).

MixColumn: M is applied to every 32-bit column of the
state, i.e., for i = 0, 4, 8, 12

(si , si+1, si+2, si+3)
τ
← M × (si , si+1, si+2, si+3)

τ ,
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TABLE V
S-BOX OF SKINNY-64

where the binary matrix M is defined as

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

KeyAdd(RKi , State): The round key RKi is XORed to
State.

Clearly, Midori-64 is a binary SPN cipher that operates
on a 4-bit word.

APPENDIX B
INTRODUCTION TO SKINNY-64

SKINNY is a family of AES-like ciphers, published at
CRYPTO 2016 [13]. As a tweakable block cipher, SKINNY
has excellent hardware/software implementation performance.

The round function of SKINNY-64 consists of SubCells,
AddConstants, Add-RoundTweakey, ShiftRows, and
MixColumns. We use the following 4×4 array named “state”
as a data expression.

State =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 ,

where the size of each cell is 4 bits for SKINNY-64. A 64-
bit plaintext P is loaded into the state. Each layer updates the
128-bit state as follows.
SubCell: A 4-bit S-box is applied to every 4-bit cell of the

state in parallel. The 4-bit S-box of SKINNY-64 is presented
in Table V.
ShiftRows: Each cell of the state is rotated to the right.

Specifically, the first, second, third, and fourth cell rows are
rotated by 0, 1, 2, and 3 positions to the right, respectively.
MixColumn: Each column of the cipher internal state array

is multiplied by the following binary matrix M :

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

APPENDIX C
INTRODUCTION TO CRAFT-64

CRAFT is a family of AES-like ciphers, published at ToSC
2019 [15]. The efficient protection of CRAFT-64 implemen-
tations against differential fault analysis (DFA) attacks was
one of the main design criteria.

The round function of CRAFT-64 consists of
MixColumns, AddConstants, Add-RoundTweakey,

PermuteNibbles, and SubCells. We use the following
4× 4 array named “state” as a data expression.

State =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 ,

where the size of each cell is 4 bits for SKINNY-64. A 64-
bit plaintext P is loaded into the state. Each layer updates the
128-bit state as follows.
MixColumn: Each column of the cipher internal state array

is multiplied by the following binary matrix M :

M =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1

 .

PermuteNibbles: Each cell of the state is permuted as
follows:

(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15)

→(s15, s12, s13, s14, s10, s9, s8, s11, s6, s5,

s4, s7, s1, s2, s3, s0).

SubCell: A 4-bit S-box is applied to every 4-bit cell of the
state in parallel. The 4-bit S-box of CRAFT-64 is the same
as that of Midori-64.
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