
2370 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Dynamic Searchable Symmetric Encryption With
Strong Security and Robustness

Haochen Dou , Zhenwu Dan, Peng Xu , Member, IEEE, Wei Wang , Member, IEEE,
Shuning Xu, Tianyang Chen, and Hai Jin , Fellow, IEEE

Abstract— Dynamic Searchable Symmetric Encryption (DSSE)
is a prospective technique in the field of cloud storage for
secure search over encrypted data. A DSSE client can issue
update queries to an honest-but-curious server for adding or
deleting his ciphertexts to or from the server and delegate
keyword search over those ciphertexts to the server. Numerous
investigations focus on achieving strong security, like forward-
and-Type-I−-backward security, to reduce the information leakage
of DSSE to the server as much as possible. However, the
existing DSSE with such strong security cannot keep search
correctness and stable security (or robustness, in short) if
irrational queries are issued by the client, like duplicate add
or delete queries and the delete queries for removing
non-existed entries, to the server unintentionally. Hence, this
work proposes two new DSSE schemes, named SR-DSSEa and
SR-DSSEb, respectively. Both two schemes achieve forward-
and-Type-I−-backward security while keeping robustness when

Manuscript received 6 January 2023; revised 7 September 2023 and
8 December 2023; accepted 26 December 2023. Date of publication 5 January
2024; date of current version 11 January 2024. This work was supported in
part by the National Key Research and Development Program of China under
Grant 2021YFB3101304, in part by the National Natural Science Foundation
of China under Grant 62272186 and Grant 62372201, and in part by the
Innovation Project of Jinyinhu Laboratory under Grant 2023JYH010103. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Sushmita Ruj. (Corresponding author: Peng Xu.)

Haochen Dou is with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Laboratory, and the Hubei Key Laboratory of Distributed System Security,
Hubei Engineering Research Center on Big Data Security, School of Cyber
Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China, and also with the State Key Laboratory of Cryptology,
Beijing 100878, China (e-mail: haochendou@mail.hust.edu.cn).

Zhenwu Dan, Shuning Xu, and Tianyang Chen are with the National
Engineering Research Center for Big Data Technology and System, Ser-
vices Computing Technology and System Laboratory, and the Hubei Key
Laboratory of Distributed System Security, Hubei Engineering Research
Center on Big Data Security, School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: danzw@mail.hust.edu.cn; xusn@mail.hust.edu.cn; chentianyang@
mail.hust.edu.cn).

Peng Xu is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System Labo-
ratory, and the Hubei Key Laboratory of Distributed System Security, Hubei
Engineering Research Center on Big Data Security, School of Cyber Science
and Engineering, Huazhong University of Science and Technology, Wuhan
430074, China, and also with the Jinyinhu Laboratory, Wuhan 430040, China
(e-mail: xupeng@mail.hust.edu.cn).

Wei Wang is with the Cyber-Physical-Social Systems Laboratory, School
of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail: viviawangww@gmail.com).

Hai Jin is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System Labo-
ratory, and the Cluster and Grid Computing Laboratory, School of Computer
Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China (e-mail: hjin@hust.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3350330

irrational queries are issued. In terms of performance, SR-DSSEa
has more efficient communication costs and roundtrips than
SR-DSSEb. In contrast, SR-DSSEb has a more efficient search
performance than SR-DSSEa . Its search performance is close to
the existing DSSE scheme with the same security but fails to
achieve robustness.

Index Terms— Dynamic searchable symmetric encryption, for-
ward security, backward security, robustness.

I. INTRODUCTION

DYNAMIC Searchable Symmetric Encryption (DSSE) [1]
is a widely used technique for performing secure key-

word searches over ciphertexts that are constantly changing.
In DSSE applications, all data of the client is encrypted and
stored in remote environments like the cloud, which helps
to maintain data confidentiality. DSSE enables the client to
issue update queries to add or delete ciphertexts to or from
the cloud and delegate keyword search queries over his
ciphertexts to the cloud while maintaining keyword confiden-
tiality [2]. Many software products, such as the Mistubishi
Information and Communication System1 and the Crypteron
security platform,2 have made extensive use of DSSE.

Recently, numerous researchers have paid attention to devel-
oping DSSE with strong security to restrict the information
leakage of DSSE as much as possible. To address these
concerns, Stefanov et al. paid an apparent effort by defin-
ing two new kinds of security, named forward security and
backward security [3]. The former restricts that information
about the earlier queries’ keywords is not leaked by any new
update query, while the latter guarantees that an attacker
cannot learn “too much” information about update queries
issued between any two adjacent search queries. Following
the seminal work, Bost et al. categorized backward security
into three different types (from the strongest one to the weak-
est one), which is denoted as Type-I, Type-II, and Type-III,
respectively, to restrict the information leakage in the degree
from strong to weak [4]. To restrict the information leakage
further, Zuo et al. proposed Type-I−-backward security, which
is the strongest one so far as we know [5].

In brief, Type-I−-backward security requires that the infor-
mation leakage caused by a search query contains which
files match the query and when the related update queries

1https://www.mitsubishielectric.com/en/about/rd/research/highlights/comm-
unications

2https://www.crypteron.com/

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0000-0062-5463
https://orcid.org/0000-0003-4268-4976
https://orcid.org/0000-0003-4457-6709
https://orcid.org/0000-0002-3934-7605

DOU et al.: DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION WITH STRONG SECURITY AND ROBUSTNESS 2371

are issued. Note that in Type-I−-backward security, an attacker
cannot distinguish add and delete queries. Compared with
the Type-I−-backward security, the Type-I-backward security
allows the search query to have an additional leakage of
the time when the related add queries are issued. In Type-II-
backward security, leakage of the search query additionally
consists of when the related add and delete queries are
issued. Finally, compared with Type-II-backward security, the
weaker Type-III-backward security also allows a search
query to leak the relationships between the related add and
delete queries, namely which add queries a delete query
wants to remove.

A. Motivation
For the time being, FB-DSSE is firstly proposed to

achieve forward-and-Type-I−-backward security [5]. It uses a
bitmap index to represent all possible files’ identifiers. Each
FB-DSSE ciphertext contains a keyword and an assigned
bitmap index to denote which files pair with the keyword.
When receiving a keyword search query, the server com-
putes corresponding indexes at the beginning. Using these
indexes, the server retrieves relevant ciphertexts, aggregates
those ciphertexts into one by an addition homomorphic
operation, and finally returns the client the aggregated cipher-
text. The returned ciphertext contains an assigned bitmap
index to denote all the files matching the search query.
Later, three other DSSE schemes, named FBDSSE-CQ,
SFBDSSE-CQ [9], and FBDSSE-RQ [10], respectively, were
proposed to obtain the forward-and-Type-I−-backward secu-
rity. In particular, both FBDSSE-CQ and SFBDSSE-CQ aim at
achieving conjunctive keyword search, whereas FBDSSE-RQ
aims at solving range keyword search.

All the aforementioned works have achieved forward-and-
Type-I−-backward security. However, they fail to ensure stable
search correctness and security (referred to as robustness
for brevity) in case the client unintentionally issues irra-
tional queries. The robustness of DSSE was first investigated
by Xu et al. [8]. They demonstrated that a practical DSSE
scheme must be robust since it is very hard to avoid the
mistake caused by the careless client, like issuing duplicate
add or delete queries, or removing non-existed entries by
delete queries either. And they constructed a DSSE scheme
named ROSE to obtain the robustness and the forward-and-
Type-III-backward security. Hence, a natural open problem
is thus: “Could we construct a DSSE scheme to obtain the
robustness and the forward-and-Type-I−-backward security
simultaneously?”

B. Our Contributions
We propose a solid answer to the question in this work.

First, before giving our solutions, we have to redefine forward-
and-Type-I−-backward security, such that the new definition
allows an attacker to issue irrational queries to simulate the
careless client (in Section II). Note that the traditional def-
inition of forward-and-Type-I−-backward security implicitly
assumes that irrational queries are not considered. Second,
we find that the bitmap index adapted in FB-DSSE cannot cor-
rectly represent the client’s update queries during search

queries. For example, if two duplicate add queries are issued
to insert the same keyword and file, it is natural to require
that the correct search results contain this file. But the bitmap
index returned by the search query of FB-DSSE represents
that this file is removed. We give an efficient solution to
this problem, which is constructing a new kind of bitmap
index, named bi-bitmap index, and designing a particular
boolean circuit to support the ciphertexts’ aggregation when
searching a keyword, such that the returned bi-bitmap index
can represent the correct search results (in Section III).

In Section IV, we construct the first DSSE scheme, named
SR-DSSEa , to achieve robustness and forward-and-Type-I−-
backward security simultaneously. SR-DSSEa applies our
bi-bitmap index and particular boolean circuit. To achieve
the particular boolean circuit, SR-DSSEa applies Torus
Fully Homomorphic Encryption (TFHE) [11]. If the client
issues a search query and sends the trapdoor to the
server, the SR-DSSEa server itself can retrieve and aggre-
gate corresponding ciphertexts. Hence, SR-DSSEa achieves
the non-interactive aggregation of ciphertexts. The search
process of SR-DSSEa takes one communication roundtrip.
SR-DSSEa also saves the client overhead when searching a
keyword.

To improve the search performance, we construct the second
DSSE scheme, named SR-DSSEb, in Section V. SR-DSSEb
has the same robustness and strong security as SR-DSSEa .
When searching a keyword, SR-DSSEb applies an interactive
method to achieve the aggregation of ciphertexts. Specifically,
after the server finds all matching ciphertexts, these ciphertexts
are returned to the client. When receiving them, the client
performs decryption and aggregates their contained bi-bitmap
indexes. Finally, the client re-encrypts the aggregated index.
This result is uploaded to the server for the next keyword
search. Compared with SR-DSSEa , SR-DSSEb prevents the
server from running the expensive aggregation process and
saves the search overhead of the server. Although SR-DSSEb
increases the communication roundtrips and the client over-
head, the total search performance is still much better than
SR-DSSEa .

Table I compares SR-DSSEa and SR-DSSEb with some
previous DSSE schemes that achieve robustness (Moneta
and ROSE), at least forward-and-Type-I-backward secu-
rity (ORION and FB-DSSE), or state-of-the-art practi-
cal performance and bitmap-based index (IM-DSSEII and
IM-DSSEI+II). Compared to Moneta and ROSE, SR-DSSEa
and SR-DSSEb achieve higher backward security. Com-
pared to ORION and FB-DSSE, our proposed schemes
achieve robustness. Finally, compared to IM-DSSEII and
IM-DSSEI+II, SR-DSSEa and SR-DSSEb achieve both
robustness and higher level of backward security. Particularly,
SR-DSSEb achieves higher search computation efficiency than
Moneta and ROSE, and higher update computation efficiency
than Moneta, ORION, IM-DSSEII, and IM-DSSEI+II.

In the experiment part, we test SR-DSSEa and SR-DSSEb
and compare them with FB-DSSE in Section VI. First, we test
the above three schemes regarding the client overhead dur-
ing a keyword search. The experimental results show that
SR-DSSEa has a constant client time cost. Both SR-DSSEb

2372 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
COMPARISONS WITH PRIOR DSSE WORKS. N IS THE TOTAL NUMBER OF KEYWORD/FILE-IDENTIFIER PAIRS, |W| DENOTES THE AMOUNT OF ALL

DIFFERENT KEYWORDS, AND |F| DENOTES THE TOTAL NUMBER OF DISTINCT FILES. FOR KEYWORD w, aw IS THE TOTAL NUMBER OF INSERTED
ENTRIES, dw IS THE NUMBER OF DELETE QUERIES, nw IS THE NUMBER OF FILES CURRENTLY CONTAINING w, sw IS THE NUMBER OF

SEARCH QUERIES THAT OCCURRED, iw IS THE TOTAL NUMBER OF ADD QUERIES, AND s′w IS A NUMBER HAVING s′w ≤ sw . ALL
SCHEMES EXCEPT ROSE HAVE aw = nw+dw . SPECIFICALLY, ROSE HAS aw = nw+s′w+dw . RT IS THE NUMBER OF ROUND

TRIPS FOR SEARCH UNTIL THAT THE CLIENT OBTAINS THE MATCHING FILE IDENTIFIERS. FS AND BS STAND FOR
FORWARD SECURITY AND BACKWARD SECURITY, RESPECTIVELY. COMP. AND COMM. ARE ABBREVIATIONS

OF COMPUTATION AND COMMUNICATION, RESPECTIVELY. THE NOTATION
Õ HIDES POLYLOGARITHMIC FACTORS

and FB-DSSE have an increasing client time cost which
is linear with the total amount of retrieved ciphertexts. For
search bandwidth cost, both SR-DSSEa and FB-DSSE are
constant, and SR-DSSEb takes a linear cost with the num-
ber of matching ciphertexts. Furthermore, if the number of
matching ciphertexts is less than 4,210, the bandwidth cost of
SR-DSSEb is cheaper than that of SR-DSSEa .

Secondly, we test the total search time cost of SR-DSSEb
and compare it with FB-DSSE. Note that the total search
time cost consists of both the server’s and the client’s time
cost during a keyword search. Both SR-DSSEb and FB-DSSE
have the linear search time cost with the amount of match-
ing ciphertexts. And SR-DSSEb is better than FB-DSSE in
practice if a keyword has been searched several times. The
main reasons are that the client time cost of SR-DSSEb relies
on the increasing number of matching ciphertexts between
two adjacent search queries. However, the client time cost
of FB-DSSE is always determined by the total amount of
matching ciphertexts.

In summary, our contributions are:
1) We redefine DSSE and its forward-and-Type-I−-

backward security in the context of robustness and design
the bi-bitmap index and its boolean circuit as building
blocks of our DSSE schemes.

2) We construct two new DSSE schemes, SR-DSSEa and
SR-DSSEb, to achieve robustness and forward-and-Type-
I−-backward security simultaneously. The two proposed
schemes outperform previous DSSE works in many
aspects, e.g., robustness, security, or performance.

3) Finally, we test SR-DSSEa and SR-DSSEb and compare
them with FB-DSSE. The numerical results show that
SR-DSSEa has a better client time cost, and the total
search time cost of SR-DSSEb is better.

II. ROBUST DSSE AND ITS SECURITY DEFINITIONS

A robust DSSE scheme must keep search correctness and
stable security even if the client issues irrational update
queries, like the duplicate add or delete queries and the
delete query to remove the nonexistent entry. Because

the correctness and the security of DSSE are separately
defined and not unified, we integrate robustness to those
two properties, respectively. In this section, we will redefine
the formal concept of DSSE and its forward-and-Type-I−-
backward security in the context of robustness.

Definition 1 (Robust DSSE): Three protocols are the core
compose of a robust DSSE scheme 6. They are:
• 6.Setup(λ, n): With the inputted security parameter λ

and the maximum number n of files, the client initial-
izes an empty encrypted database EDB (kept remotely),
a master secret key K6 and a secret status σ (both kept
locally by the client);

• 6.Update(K6, σ, op, (w,F);EDB): To update (add or
delete) some files containing the same keyword w to
the server, the client takes K6 , σ , and the entry (w,F)

as inputs, where F is the set of those files’ identifiers,
generates an update tokens and sends it to the server.
Finally, the server updates EDB as the client’s will;

• 6.Search(K6, w, σ ;EDB): Given the master secret key
K6 , an expected keyword w, and the secret status σ ,
a corresponding search trapdoor is generated by the
client and sent to the server. Then, all the ciphertexts
containing keyword w are retrieved from EDB. Finally,
the client outputs the file identifiers that are correspond-
ing to the files containing keyword w.

A robust DSSE must be consistent in any scenarios. That is,
for any pair of keyword w and file identifier f , no matter how
many times to update (add or delete) this pair, the output
of protocol 6.Search(K6, w, σ ;EDB) always contain f if
the final update is a add one, otherwise the output does
not contain f .

Before redefining forward-and-Type-I−-backward security,
we redefine the L-adaptive-security of a robust DSSE scheme
6, where L = (LSetup,LU pdate,LSearch) includes DSSE
setup, update, and search leakage functions, which denote the
information leaked in each protocol. Compared to traditional
security definition, the redefined security allows the adversary
to issue irrational update queries. The adaptive security
definition always includes two games: a game presenting the

DOU et al.: DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION WITH STRONG SECURITY AND ROBUSTNESS 2373

actual interactions named Real and a game presenting the
simulated one named IDEAL. In the real game, an adver-
sary can issue any update or search query (including
the irrational queries) multi-times. The interactions gener-
ate real transcripts and can be observed by the adver ary.
On the contrary, in the ideal one, same queries as in the
real game can be issued by the adversary A, and a simu-
lator takes L as input to forge the corresponding transcripts
for the adversary. If the adversary is unable to distinguish
the real game from the ideal game, the robust DSSE is
said to be adaptively secure. The formal definition is as
follows.

Definition 2 (L-adaptive-security of A Robust DSSE):
For a robust DSSE scheme 6, if for any adversary A,
we can construct an efficient simulator S (with the input L)
having that |Pr [REALA(λ) = 1] − Pr [IDEALA,S(λ) = 1]|
is negligible, where REALA(λ) and IDEALA,S(λ) are as
follows:
• REALA(λ): In the real game, the implementation of

DSSE protocols is exactly the same as in the real world.
Arbitrary update or search queries (including the
irrational queries) can be issued by the adversary A.
A observes the transcripts of protocols’ execution and
finally outputs a bit b ∈ {0, 1};

• IDEALA,S(λ): Like the real game, the adversary A issues
the same update or search queries. With the input of
L, the simulator S simulates the transcript of protocols’
execution. At the end, the adversary A outputs a bit b ∈
{0, 1}.

In the forward-and-Type-I−-backward security, the leakage
L in the above definition must be less than an expected
value. Hence, we define some basic leakage functions in the
following content at first. Let Q denote the list of all issued
search queries with the form (t, w), where t denotes the
timestamp of a search query, and w denotes the searched
keyword. Let U denote the list of all issued update queries
with the form (t, op, (w,F)), where t denotes the timestamp
of a update query, op ∈ {add,delete}, (w,F) denotes
the pair of updated keyword and the modified file identifiers in
the update query. Some basic leakage functions are defined
as follows:
• 1srch(w) = {t | (t, w) ∈ Q}: The search pattern

leakage function inputs a searched keyword (denoted as
w). It outputs the timestamps of the historical search
queries of w;

• 1rst (w) = {F ′ | ∀(t, op, (w,F)) ∈ U ,F ′ consists
of the non-deleted file identifiers in F}: The result pat-
tern leakage function outputs the non-deleted file identi-
fiers matching a given keyword w in current;

• 1T ime(w) = {t | (t, op, (w,F)) ∈ U}: This leakage
function outputs the inserted time (denoted as t) of all
the historical add and delete queries associated with
a given keyword w.

With the basic leakage functions defined above, we can
define the forward-and-Type-I−-backward security of a robust
DSSE scheme as follows. Note that because the forward-and-
Type-I−-backward security leaks quite little information, the

leakage functions defined below are quite similar to those
defined for FB-DSSE. But we emphasize that they have differ-
ent essence. Because our leakage functions are defined over
the assumption that the client may issue irrational update
queries, while those of FB-DSSE are defined with the opposite
assumption.

Definition 3 (The Forward-and-Type-I−-Backward Secu-
rity): For a robust and L-adaptively-secure DSSE scheme 6,
iff its search and update leakage functions LU pdate and
L Search can be written as

LU pdate(op, (w,F)) = L′(op),

LSearch(w) = L′′(1srch(w), 1rst (w), 1T ime(w))

where both L′ and L′′ are stateless, we say that 6 is forward-
and-Type-I−-backward secure.

III. THE BI-BITMAP INDEX

The bitmap index was used in FB-DSSE to represent the file
identifiers that the client wants to update. Suppose the system
can support up to n files, then the binary size of the bitmap
index is also n, and each bit of the bitmap index denotes a file.
Let the least significant bit of the bitmap index denote file f1,
and the i-th bit of the bitmap index denote file fi . To add (or
delete) a keyword w and the associated files F , the FB-DSSE
client sets the corresponding bits of the bitmap index to be “1”
according to F , encrypts w and the assigned bitmap index,
and uploads the generated ciphertext to the server. When the
client hopes to search keyword w and a related query is issued,
the server receives the search trapdoor, retrieves corresponding
ciphertexts and aggregates them into one. The aggregation of
those matching ciphertexts means doing the binary addition
on the bitmap indexes that are contained in those matching
ciphertexts.

For example, suppose n = 6, and the client has added entries
(w,F = { f4, f2}) and (w,F = { f5, f3}) to the server succes-
sively. Suppose that the client now issues a search query for
w. It generates w’s search trapdoor and sends it to the server.
For the server, it has to retrieve two matching ciphertexts and
make the aggregation. Figure 1 shows the bitmap indexes
contained in those two ciphertexts and the resulted bitmap
index contained in the aggregated ciphertext. Now, suppose
to delete entry (w,F = { f2}), then the client uploads a new
FB-DSSE ciphertext containing the bitmap index “000010”
to the server. When searching the keyword w again, the
aggregated ciphertext contains the bitmap index “011100”.
It means that files { f5, f4, f3} are still valid and matching the
keyword w. Obviously, FB-DSSE can keep search correctness
if all update queries are rational; otherwise, it cannot. In the
prior example, if the client adds file f3 repeatedly and then
searches the keyword w, the resulted bitmap index contained
in the aggregated ciphertext is “011000”. It causes a mistake
that the file f3 is removed.

To achieve the robustness, we propose the bi-bitmap
index to represent files and construct a particular boolean cir-
cuit to guarantee that the aggregated bi-bitmap index can keep
search correctness even if the client’s update queries are

2374 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 1. An example about the bitmap index in FB-DSSE.

TABLE II
THE TRUTH TABLE FOR KEEPING THE Robustness

irrational. The bi-bitmap index consists of two bitmap indexes.
The first bitmap index denotes files, and the second bitmap
index denotes the operations of files. When adding a file,
the corresponding bits in the first and second bitmap indexes
will be set to “1”. When deleting a file, the corresponding
bits in the first and second bitmap indexes will be set to “1”
and “0”, respectively. To update (add or delete) an entry,
the generated ciphertext contains a bi-bitmap index. If the
client generates a search query of the inputted keyword,
the server repeats to find out a new matching ciphertext
and aggregates it with the last aggregated ciphertext until
all matching ciphertexts are found. Note that the aggregated
ciphertext contains a bitmap index, not a bi-bitmap index. Let
bsc denote the bitmap index contained in the last aggregated
ciphertext (the initial value of bsc is all zero), and (bsa, bsb)

denote the bi-bitmap index contained in a found matching
ciphertext. The essence of aggregating the matching ciphertext
and the last aggregated ciphertext is to compute the boolean
circuit

bsc[i] = (bsa[i] ∧ bsc[i])⊕ (bsa[i] ∧ bsb[i])

for each bit, where bs[i] denotes the i-th bit in the bitmap
index bs.

Here, we show why the above boolean circuit can keep
the robustness. Recall that a robust DSSE must keep search
consistency even if there are irrational update queries.
Without loss of generality, for a file fi , the above boolean
circuit must satisfy the following conditions:

• Case 1: bsc[i] = 0, namely the file fi has been removed
or never be added. In this case, to keep search consistency,
we have bsc[i] = 1 only if bsa[i] = 1 and bsb[i] = 1;
otherwise, we still have bsc[i] = 0.

• Case 2: bsc[i] = 1, namely the file fi has been added
and is still valid. In this case, to keep search consistency,
we have bsc[i] = 0 only if bsa[i] = 1 and bsb[i] = 0;
otherwise, we still have bsc[i] = 1.

According to the above conditions, we have a truth table
shown as Table II and construct the following boolean
circuit to satisfy those conditions by Karnaugh map

reduction [12].

bsc[i]

= (bsa[i] ∧ bsb[i] ∧ bsc[i])⊕ (bsa[i] ∧ bsb[i] ∧ bsc[i])

⊕ (bsa[i] ∧ bsb[i] ∧ bsc[i])⊕ (bsa[i] ∧ bsb[i] ∧ bsc[i])

= (bsa[i] ∧ bsc[i])⊕ (bsa[i] ∧ bsb[i]) (1)

Hence, the above boolean circuit on the bi-bitmap index can
help guarantee robustness.

IV. SR-DSSEa : OUR FIRST DSSE SCHEME

This section gives the construction of the first DSSE scheme
SR-DSSEa . The server is allowed to aggregate the correspond-
ing ciphertexts it retrieved, such that the bi-bitmap indexes
contained in those ciphertexts are aggregated according to the
above boolean circuit. Since the aggregation of ciphertexts is a
kind of homomorphic boolean computation, we employ TFHE
to achieve such operations.

A. TFHE Review

TFHE was proposed by Chilloti et al. in 2016 [11]. The
security foundation of TFHE is the Learning With Errors
(LWE) hardness assumption [13], [14]. The following content
reviews the main functions of TFHE. More details can be
found in [11]. The TFHE scheme T consists of the following
four algorithms.
• T .KeyGen(λ): With the input of a security parameter λ,

this algorithm generates a secret key sk and an evaluation
key pk;

• T .Enc(sk, m): Taking sk and a message m ∈ {0, 1}, this
algorithm generates a TFHE ciphertext C ;

• T .Dec(sk, C): This algorithm takes sk as input. With an
assigned TFHE ciphertext C , the algorithm decrypts C
and outputs a confined message m ∈ {0, 1};

• T .Eval(gate, pk, C1, C2): Given a logical gate gate ∈
{AND,XOR,NOT} and two TFHE ciphertexts C1 and C2,
with input of pk, the algorithm generates a new TFHE
ciphertext C ′, such that after decryption, the plaintext
(denoted as m′) has that m′ = gate(m1, m2), where
m1 and m2 are the messages contained in C1 and
C2, respectively. Note that the inputted C2 is empty if
gate = NOT.

Compared with other FHE schemes, TFHE supports logical
operations, like XOR, NOT, and AND. TFHE also has the fastest
bootstrapping to the best of our knowledge [15]. Hence, it has
a good tool for us to construct SR-DSSEa .

B. Some Basic Functions

Here, we construct some basic functions, such as B.Enc,
B.Dec, and B.Eval. They will be employed in SR-DSSEa .
Function B.Enc aims to encrypt a given bitmap index, where
each bit in the given bitmap index is encrypted by TFHE
independently. Function B.Dec is the corresponding decryp-
tion function of B.Enc. Function B.Eval takes an encrypted
bi-bitmap index as input and aggregates it with an encrypted
bitmap index by TFHE. And the aggregated result satisfies

DOU et al.: DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION WITH STRONG SECURITY AND ROBUSTNESS 2375

Algorithm 1 Functions B.Enc, B.Dec, and B.Eval
B.Enc(sk, bs, n)

1: Take a TFHE secret key sk and a bitmap index bs with
size n as inputs;

2: Initialize an empty vector V with size n;
3: for i ← 1 to n do
4: Compute V[i] ← T .Enc(sk, bs[i]);
5: end for
6: return V;
B.Dec(sk,Vc, n)

1: Take a TFHE secret key sk and a vector Vc with size n as
inputs, where each element of Vc is a TFHE ciphertext;

2: Initialize an empty bitmap index bs with size n;
3: for i ← 1 to n do
4: Compute bs[i] ← T .Dec(sk,Vc[i]);
5: end for
6: return bs;
B.Eval(pk, (Va,Vb),Vc, n)

1: Take an TFHE evaluation key pk, the bi-bitmap index
ciphertext (Va,Vb), and the ciphertext Vc of a bitmap
index as inputs, where Va , Vb, and Vc have the same
size n;

2: Initialize an empty and temporary vector Vt with size n;
3: for i ← 1 to n do
4: Compute Vt [i] ← T .Eval(NOT, pk,Va[i]);
5: Compute Vc[i] ← T .Eval(AND, pk,Vt [i],Vc[i]);
6: Compute Vt [i] ← T .Eval(AND, pk,Va[i],Vb[i]);
7: Compute Vc[i] ← T .Eval(XOR, pk,Vc[i],Vt [i]);
8: end for
9: return Vc;

that particular boolean circuit introduced in Section III. Let n
be the binary size of a bitmap index. Algorithm 1 gives the
details of those functions.

C. Construction

With the above functions, we construct our first robust
DSSE scheme SR-DSSEa in Algorithm 2. To update an
entry (w,F), the client of SR-DSSEa transforms this entry
to a bi-bitmap index according to the rules introduced in
Section III, encrypts the index by function B.Enc, and sends
the generated ciphertext to the server for storage. Then, if a
search query containing the inputted keyword w is issued,
SR-DSSEa’s server retrieves all corresponding ciphertexts
with a search trapdoor from the client, aggregates those
ciphertexts into one ciphertext by function B.Eval, and return
the resulted ciphertext to the client. In the end, the client makes
the decryption of received ciphertexts by function B.Dec and
obtains the matching-and-still-valid files. More explanations
are as follows.

In protocol SR-DSSEa .Setup, the client initializes some
hash functions, a pseudo-random function, acceptable TFHE
keys, a secret key, and some data structures to store the client’s
states and the server’s states, respectively. Particularly, the
client encrypts an all-zero bitmap index by function V0 ←

B.Enc(sk, bs, n) (sk denotes the initialized secret key of

TFHE, bs = 0n , and n denotes the maximum n files the system
supports). The generated V0 will be used by the server as
the original state to aggregate the matching ciphertexts when
searching a keyword.

In protocol SR-DSSEa .Update, the client transforms the
chosen update type (add or delete) and the updated entry
(w,F) into a bi-bitmap index, encrypts the resulted bi-bitmap
index by function B.Enc, and generates a searchable ciphertext
of keyword w. All those ciphertexts are sent to the server.
Finally, the client updates his local states. These states will be
used to generate the corresponding keyword search trapdoor if
the client performs a search after the previous update query.

In SR-DSSEa .Search, a keyword search trapdoor for the
corresponding search query is generated via the client’s
secret key and current state. With this keyword search trap-
door, the server is able to retrieve corresponding ciphertexts,
which can be categorized into two types: one is for adding
some files, and the other one is for deleting some files. Then,
the server aggregates all found ciphertexts into one ciphertext.
During the aggregation process, the deleted files will be really
removed, and only the valid files will be contained in the
resulted ciphertext. Moreover, the essence of the aggregation
process is to compute the bi-bitmap indexes, that are contained
in all those found ciphertexts, according to the rule defined in
Equation 1. Hence, SR-DSSEa also guarantees the robustness
of DSSE.

D. Correctness and Security Analysis

Correctness: SR-DSSEa’s correctness depends on the fact
that hash functions H1 and H2 are collision-resistant. Briefly
speaking, upon searching an updated keyword w, the client
sends the current random string Rc, the hash function key Kw

and two counters c and c0 to the server. With these param-
eters, the server repeats computing hash value H1(Kw, Ri),
obtaining the distinct indexes and computing the previous
random string by computing Ci ⊕ H2(Kw, Ri) for i , which
is decreasing successively from c to c0. The uniqueness of
hash value H1 guarantees that all ciphertexts are indexed
by distinct values. Similarly, the uniqueness of hash value
H2 guarantees that the server can compute the specified
random string by XORing the hash value with the protected
mask. This process is always correct. Because all counters
used to generate w’s ciphertexts are distinct, regardless of
whether there are irrational update queries, i.e., the counter
is monotone increasing. Therefore, the server can correctly
find all unsearched encrypted bi-bitmaps of w from EDB.
Similarly, the uniqueness of Kw guarantees that the server
can correctly retrieve Vw from SS .

Next, the server evaluates the boolean circuit defined in
B.Eval over those retrieved bi-bitmaps. Specifically, according
to Table II that B.Eval is designed to implement, given a file
fi , an add update query (i.e., (Va[i],Vb[i]) = (1, 1)) always
maintains the existence of fi (i.e., the resulting bit is always
1), and a delete update query (i.e., (Va[i],Vb[i]) = (1, 0))
guarantees that fi is deleted (i.e., the resulting bit is always 0).
In the meanwhile, invalid update queries (i.e., (Va[i],Vb[i]) =
(0, 0) or (0, 1)) will not change the existence state of fi in
EDB (i.e., the resulting bit is always Vw[i]). Hence, whether

2376 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 2 Scheme SR-DSSEa

SR-DSSEa .Setup(λ, n)

1: Take λ and the maximum number n of files as inputs;
2: Choose two secure and independent hash functions H1 and

H2 both with the form {0, 1}λ × {0, 1}λ→ {0, 1}λ;
3: Choose a secure pseudorandom function P : {0, 1}λ ×

W→ {0, 1}λ, where W denote the keyword space;
4: Generate a pair of TFHE keys (sk, pk)← T .KeyGen(λ);

5: Choose a random secret key K6
$
← {0, 1}λ;

6: Generate an encrypted bitmap index V0 ←

B.Enc(sk, bs, n), where bs = 0n ;
7: Initialize three empty maps SC , SS , and EDB, where SC

and SS are used to store the states of the client and the
sever, respectively;

8: Store (pk,V0, SS, EDB) in the server;
9: Store (K6, sk, SC) in the client privately;
SR-DSSEa .Update((K6, sk), SC , op, (w,F);EDB)

Client:
1: Compute the secret key Kw of keyword w by running

Kw ← P(K6, w);
2: Retrieve the client state about keyword w by (c0, c, Rc)←

SC [w];
3: if SC [w] = NU L L then
4: Set c0 ← 0, c←−1, and Rc

$
← {0, 1}λ;

5: end if
6: Choose a random value Rc+1

$
← {0, 1}λ;

7: Compute I ← H1(Kw, Rc+1) and C ← H2(Kw, Rc+1)⊕

Rc;
8: Set a bi-bitmap (bsa, bsb) according to the inputted op

and F ;
9: Encrypt (bsa, bsb) by computing Va ← B.Enc(sk, bsa, n)

and Vb ← B.Enc(sk, bsb, n);
10: Send ciphertext (I, C, (Va,Vb)) to the server;
11: Finally, update the client state by setting SC [w] ← (c0, c+

1, Rc+1);
Server:

1: Set EDB[I] ← (C, (Va,Vb)) to store the received
ciphertext;

SR-DSSEa .Search((K6, sk), w, SC ; pk,V0, SS, EDB)

Client:
1: Compute the secret key Kw of keyword w by running

Kw ← P(K6, w);
2: Retrieve the client state about keyword w by (c0, c, Rc)←

SC [w];
3: if SC [w] = NU L L then
4: return ⊥;
5: end if
6: Send a search trapdoor (Kw, Rc, c0, c) to the server;
7: Update the client state by setting SC [w] ← (c+1, c, Rc);

Server:
1: if SS[Kw] = NU L L then
2: Set Vw ← V0;
3: else
4: Set Vw ← SS[Kw];
5: end if
6: Initialize an empty map E;
7: for i = c to c0 do
8: Compute I ← H1(Kw, Ri);
9: Retrieve ciphertext (C, (Va,Vb))← EDB[I];

10: Store the retrieved and encrypted bi-bitmap E[i−c0] ←

(Va,Vb);
11: Remove ciphertext EDB[I]
12: Set Ri−1 ← C ⊕ H2(Kw, Ri);
13: end for
14: for i = c0 to c do
15: Retrieve the encrypted bi-bitmap (Va,Vb)← E[i−c0];

16: Compute Vw ← B.Eval(pk, (Va,Vb),Vw, n);
17: end for
18: Update the server state by setting SS[Kw] ← Vw;
19: Send Vw to the client;
Client:

1: Decrypt the received Vw by running bsw ←

B.Dec(sk,Vw, n);
2: Parse bsw into file identifiers F ;
3: return F ;

fi appears in the search result only depends on the final valid
update queries (i.e., (Va[i],Vb[i]) = (1, 1) or (1, 0)). To sum
up, SR-DSSEa achieves the correctness property defined in
Definition 1.

Security: For security, the following theorem shows that
SR-DSSEa achieves the forward-and-Type-I−-backward secu-
rity, which is defined in 3. The detailed proof is moved to
Appendix A.

Theorem 1: Suppose that P is a secure and efficient PRF
function, H1 and H2 are two random oracles. We say
that the scheme SR-DSSEa achieves robustness with the
adaptive security of leakage functions LSetup(λ, n) =

(λ, n), LU pdate(op, (w,F)) = ∅, and LSearch(w) =

(1srch(w), 1rst (w), 1T ime(w)).

V. SR-DSSEb : OUR SECOND DSSE SCHEME

This section gives the construction of another robust
DSSE scheme SR-DSSEb, which also has the forward-and-
Type-I−-backward security but more efficient time-cost than
SR-DSSEa . The main difference SR-DSSEb and SR-DSSEa
is their aggregation process when searching a keyword.
In short, SR-DSSEa allows the server to achieve the aggrega-
tion process. But, to keep the confidentiality, the aggregation
process of SR-DSSEa must be executed in the scenario
of ciphertext. On the contrary, the aggregation process of
SR-DSSEb is achieved by the client in the scenario of plain-
text. Hence, it is clear that SR-DSSEb has a more efficient
time-cost than SR-DSSEa . Although SR-DSSEb takes more
round-trips when searching a keyword, it is more suitable for

DOU et al.: DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION WITH STRONG SECURITY AND ROBUSTNESS 2377

Algorithm 3 Protocols SR-DSSEb’s Setup and Update
SR-DSSEb.Setup(λ, n)

1: Take λ and the maximum number n of files as inputs;
2: Choose five secure and independent hash functions H1,

H2, H3 H4 and H5, among which H1, H2 are formed as
{0, 1}λ × {0, 1}λ → {0, 1}λ, H3, H4, H5 are formed as
{0, 1}λ × Z→ {0, 1}λ;

3: Choose a secure pseudorandom function P′ : {0, 1}λ ×
W → {0, 1}λ × {0, 1}λ, where W denote the keyword
space;

4: Initialize three empty maps SC , SS , and EDB, where SC
and SS are used to store the states of the client and the
sever, respectively;

5: Store (SS, EDB) in the server;
6: Store (K6, SC) in the client privately;
SR-DSSEb.Update(K6, SC , op, (w,F); EDB)
Client:

1: Compute the secret keys Kw and K ′w of keyword w by
running (Kw, K ′w)← P′(K6, w);

2: Retrieve the client state about keyword w by (c0, c, Rc)←

SC [w];
3: if SC [w] = NU L L then
4: Set c0 ← 0, c←−1, and Rc

$
← {0, 1}λ;

5: end if
6: Choose a random value Rc+1

$
← {0, 1}λ;

7: Compute I ← H1(Kw, Rc+1) and C ← H2(Kw, Rc+1)⊕

Rc;
8: Set a bi-bitmap (bsa, bsb) according to the inputted op

and F ;
9: Encrypt bsa and bsb by ea ← H3(K ′w, c + 1) ⊕ bsa and

eb ← H4(K ′w, c + 1)⊕ bsb, respectively;
10: Send (I, C, (ea, eb)) to the server
11: Finally, update the client state by setting SC [w] ← (c0, c+

1, Rc+1);
Server:

1: Set EDB[I] ← (C, (ea, eb)) to store the received cipher-
text;

the application in which the less search time-cost is a key
requirement.

A. Construction

When updating an entry (w,F), the client of SR-DSSEb
transforms the update type (add or delete) and the entry
into a bi-bitmap index as SR-DSSEa does, encrypts the
bi-bitmap index by normal encryption (here is different with
SR-DSSEa), and generates a searchable ciphertext of key-
word w. The client generates a corresponding trapdoor upon
searching a keyword w and sends it to the SR-DSSEb’s
server, which retrieves all matching ciphertexts by the trap-
door. These ciphertexts are returned back. Then, the client
makes the decryption of all bi-bitmap indexes. Next, the
plaintext bi-bitmap-indexes are aggregated into one bitmap
index according to the rule of Equation 1. The resulted
bi-bitmap index shows the matching-and-non-deleted files.

Algorithm 4 Protocol SR-DSSEb.Search
SR-DSSEb.Search(K6, w, SC ;SS, EDB)

Client:
1: Compute the secret keys Kw and K ′w of keyword w by

running (Kw, K ′w)← P′(K6, w);
2: Retrieve the client state about keyword w by (c0, c, Rc)←

SC [w];
3: if SC [w] = NU L L then
4: return ⊥;
5: end if
6: Send a search trapdoor (Kw, Rc, c0, c) to the server;

Server:
1: if SS[Kw] = NU L L then
2: Set ew ← 0n ;
3: else
4: Set ew ← SS[Kw];
5: end if
6: Initialize an empty map E;
7: for i = c to c0 do
8: Compute I ← H1(Kw, Ri);
9: Retrieve ciphertext (C, (ea, eb))← EDB[I];

10: Store the retrieved and encrypted bi-bitmap E[i−c0] ←

(ea, eb);
11: Remove ciphertext EDB[I];
12: Set Ri−1 ← C ⊕ H2(Kw, Ri);
13: end for
14: Send ew, E to the client;
Client:

1: Initialize an bitmap bsw ← 0n to record the matching
files;

2: if ew ̸= 0n then
3: Decrypt the files’ states by running: bsw ← ew ⊕

H5(K ′w, c0);
4: end if
5: for i = c0 to c do
6: Retrieve ciphertexts by running: (ea, eb)← E[i − c0];
7: Decrypt and get bi-bitmap-index by running:

(bsa, bsb) ← (ea ⊕ H3(K ′w, i), eb ⊕ H4(K ′w, i));

8: Compute the files’ states in plaintext version by run-
ning: bsw ← (bsa ∧ bsw)⊕ (bsa ∧ bsb);

9: end for
10: Update the client state by setting SC [w] ← (c+1, c, Rc);

11: Re-encrypt the files’ states by running: ew ← bsw ⊕

H5(K ′w, c + 1);
12: Send new encrypted states ew to the server;
13: Parse bsw into file identifiers F ;
14: return F ;
Server:

1: Update the server state by setting SS[Kw] ← ew;

Since the aggregation process of SR-DSSEb also satisfies
Equation 1, SR-DSSEb has the robustness. More explanations
are as follows.

2378 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

In protocol SR-DSSEb.Setup, the client initializes more
hash functions than SR-DSSEb.Setup, a pseudo-random func-
tion, a secret key, and some data structures to store the client’s
states and the server’s states, respectively. Hash functions are
implemented to encrypt the bi-bitmap index when updating
an entry. It is different with protocol SR-DSSEa .Setup that
protocol SR-DSSEb does not need the client to encrypt an
all-zero bi-bitmap index, since the aggregation process for
searching a keyword is achieved by the client not the server.

The main idea of protocol SR-DSSEb.Update is similar
with protocol SR-DSSEa .Update. Their main difference is the
method to encrypt a bi-bitmap index. After transforming the
chosen update type (add or delete) and the updated entry
(w,F) into a bi-bitmap index, protocol SR-DSSEb.Update
encrypts the resulted bi-bitmap index by some hash functions
not function B.Enc. This encryption method is a simple one.
When searching a keyword in protocol SR-DSSEb.Search,
the client can decrypt all matching ciphertexts from the server
efficiently by the simple encryption method. The details are
shown in the following.

In SR-DSSEb.Search, a search trapdoor for the searched
keyword w is generated locally. The generation of the trapdoor
depends on the client’s secret key and the current state of
the queried keyword. When the keyword search trapdoor is
received by the server, it is utilized to search corresponding
ciphertexts. With the encryption of last aggregated bitmap
index, retrieved ciphertexts are returned to the client. Note that
the last aggregated bitmap index is 0n if it is the first time to
search a keyword. Then, the client decrypts several bi-bitmap
indexes and a bitmap index from all received ciphertexts and
aggregate these indexes into one bitmap index according to
Equation 1. The resulted bitmap index tells the client which
files match the search query and are non-deleted. Finally, the
bitmap index are re-encrypted as the ciphertext and stored in
the server.

Scalability: In both SR-DSSEa and SR-DSSEb, the length
of the bi-bitmap index, which also indicates the number of
maximum files, is fixed at the setup phase. One may worry that
this makes the proposed schemes lack scalability to manage
constantly growing large datasets. Fortunately, we can apply
the following steps to extend the proposed schemes to improve
their scalability:

1) Select fair parameters according to the dataset so that the
length of the bi-bitmap index is not so small.

2) As the dataset grows, if the current scheme instance
cannot accommodate more files, the client can then
download the encrypted database from the server and
use secret key to extract plaintext data. Then the client
select setups a new instance of the scheme where the
length of the bi-bitmap index are fixed to a larger
number. Finally, the client embeds the extracted plaintext
data to the new instance and uploads the newly gener-
ated encrypted database to the server. This approach is
solely the technique that transfers static SSE schemes
to dynamic ones [16]. In this step, all the decryption
is performed on the client side. Hence there is no extra
leakage except the number of distinct keywords currently
in the database and the new length of the bi-bitmap index.

The above steps can effectively tackle the scalability problem
of the proposed schemes, at the cost of amortized O(|W|)
computation and communication overhead.

B. Correctness and Security Analysis

Correctness: For correctness, the way that SR-DSSEb finds
and aggregates matching ciphertexts is essentially the same
as that of SR-DSSEa , except that SR-DSSEb decrypts and
aggregates the matching ciphertexts on the client side. It is
easy to find that SR-DSSEb also satisfies the correctness prop-
erty defined in Definition 1. Hence, we omit the correctness
proof of SR-DSSEb here.

Security: For security, the following theorem shows that
SR-DSSEb achieves the forward-and-Type-I−-backward secu-
rity, which is defined in Definition 3. The detailed proof is
moved to Appendix B.

Theorem 2: Suppose that P′ is a secure and efficient PRF
function, H1, H2, H3, H4 and H5 are random oracles.
We say that the scheme SR-DSSEb achieves robustness with
the adaptive security of leakage functions LSetup(λ, n) =

(λ, n), LU pdate(op, (w,F)) = ∅, and LSearch(w) =

(1srch(w), 1rst (w), 1T ime(w)).

VI. EXPERIMENT ANALYSIS

In this section, we empirically evaluate SR-DSSEa and
SR-DSSEb and compare their performance with FB-DSSE
and IM-DSSEI+II. FB-DSSE is the only state-of-the-art
DSSE scheme of forward-and-Type-I−-backward security.
IM-DSSEI+II is quite performant and is selected as the base-
line. All the evaluated schemes employ a bitmap-based index.
In a nutshell, the baseline scheme IM-DSSEI+II outperforms
SR-DSSEa , SR-DSSEb, and FB-DSSE, and SR-DSSEa
achieves close client search overhead to IM-DSSEI+II.
SR-DSSEa is advantageous in saving the client’s search
time and communication bandwidth, and SR-DSSEb costs the
least time to complete the search. Meanwhile, these two
schemes can be accelerated with hardware-based accelerating
techniques to gain higher search performance.

A. Experiment Setup

1) Hardware Platform: We perform all experiments on a
workstation with an AMD 5950X processor, an NVIDIA RTX
2080Ti, 128GB RAM, and 64-bit Ubuntu 20.04 operating
system.

2) Programming Environment: We implement all schemes
with C++. Specifically, we use the GMP [17] big integer data
structure to represent bi-bitmap-index. The storage structures
SS , SC , and EDB are implemented with the container class
unordered map provided by the C++ STL library to
eliminate the extra overheads caused by disk I/O.

3) Cryptographic Primitives: We use OpenSSL
library [18] to instantiate most of the cryptographic functions.
For example, PRF functions P and P′ are implemented by
hmac-md5 and hash functions H1, H2 are implemented
by hmac-sha family. Hash functions H3, H4, and H5 are
implemented by shake128 hash function.3 Finally, we adopt

3We refer the source code from https://github.com/MockingHawk/shake128.

DOU et al.: DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION WITH STRONG SECURITY AND ROBUSTNESS 2379

TABLE III
SELECTED KEYWORDS AND FREQUENCIES

Fig. 2. Client Search time cost of SR-DSSEa , SR-DSSEb and FB-DSSE.

TFHE lib [19] to implement TFHE and set its parameters as
the developers recommend. We opened the source code of
the evaluated schemes on Github.4

4) Dataset: We leverage English Wikimedia5 as the main
dataset. Specifically, we use WikiExtractor [20] to convert it
into JSON documents and then extract keywords from them.
Since the entire dataset is too large, we select two smaller
subsets of it as our test datasets. We name those two datasets
Dataset I and Dataset II. Dataset I contains 714 files and
Dataset II is comprised of 840,499 files. In the following
experiments, we set the number of files that the corresponding
dataset contains as the maximum files the system supports,
that is the length of bitmap index n. Each dataset contains
10 randomly selected keywords. Table.III shows the details of
the two datasets.

5) Evaluated Metrics: Our experiments focus on the per-
formance metrics of the search process, namely, search
bandwidth and search time costs. Specifically, search
bandwidth cost counts the total size of data exchanged when
the client and the server execute the search protocol. The
search time cost is computed by the addition of the client’s
token generation time, the server’s search time, and the client’s
decryption and re-update time. We do not evaluate and report
the update performance since, in practice, the search perfor-
mance is more important, especially when the client manages
a large-scale database.

B. Experimental Results
1) Client Search Time Cost: This experiment is performed

over Dataset I, and the result is reported in Figure 2. The result
shows that IM-DSSEI+II outperforms other three evaluated
schemes. SR-DSSEa outperforms FB-DSSE and SR-DSSEb
on the client side during the search. For example, when

4https://github.com/HustSecurityLab/SR-DSSE
5https://dumps.wikimedia.org/enwiki/20210501/

TABLE IV
SEARCH BANDWIDTH OF SR-DSSEa , SR-DSSEb AND FB-DSSE

Fig. 3. Total search time cost of SR-DSSEa on CPU and GPU.

searching for keyword “presid”, SR-DSSEa only takes the
client 0.3 milliseconds, 11× and 6× faster than FB-DSSE
and SR-DSSEb, respectively. On the other hand, SR-DSSEa
achieves the closest client search performance to other
schemes. For example, the average client search time cost to
find one matching file of IM-DSSEI+II is 0.011 milliseconds,
while those of SR-DSSEa , SR-DSSEb, and FB-DSSE are
0.025, 0.216, and 0.115 milliseconds, respectively.

2) Search Bandwidth Cost: Table IV lists the search
bandwidth costs of the evaluated schemes. SR-DSSEa ,
IM-DSSEI+II, and FB-DSSE achieve the optimal search
roundtrip, while SR-DSSEb introduces one more search
roundtrip. Although, the search roundtrip of SR-DSSEb
is still constant and practical. FB-DSSE consumes the least
bandwidth, namely, 215 Bytes. IM-DSSEI+II costs the second
least bandwidth. Although SR-DSSEa consumes more band-
width to complete the search, its cost is totally acceptable
in practice (only 1,768 KB, about 1.73 MB). In terms of
SR-DSSEb, its search bandwidth depends on how many
historical updates related to the queried keyword w (denoted
as aw) are inserted before the search query. When the
historical updates of w is less than 4,210, SR-DSSEb saves
bandwidth compared to SR-DSSEa . Otherwise, SR-DSSEb
will cost more bandwidth. Actually, the search bandwidth
of SR-DSSEb is still practical and efficient. For example, sup-
pose aw =10,000, the total bandwidth is only about 4.1 MB.
Hence, we can conclude that both SR-DSSEa and SR-DSSEb
achieve practical search bandwidth performance.

3) Total Search Time Cost: SR-DSSEa is based on TFHE.
Hence, it is feasible to accelerate the search process of
SR-DSSEa by adopting the optimizations used in TFHE, e.g.,
Compute Unified Device Architecture (CUDA) [21], [22].
Hence, in this part, we evaluate and compare SR-DSSEa’s
search performance on CPU and GPU platforms.

Figure 3 reports the result. In the figure, ttSR-DSSEa
denotes the CPU version while SR-DSSEa-GPU denotes
the GPU version that is implemented with CuFHE.6 The

6https://github.com/vernamlab/cuFHE

2380 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 4. Total search time cost of SR-DSSEb and FB-DSSE.

numerical results show that the GPU version achieves
about 350× acceleration compared to the CPU version. For
example, when searching for keyword “king”, SR-DSSEa
takes 3,149.4 seconds to complete the search, while
SR-DSSEa-GPU only needs 9.1 seconds, saving about
3,140.3 seconds. Considering that GPU has been commonly
deployed in data centers nowadays, and TFHE is also actively
developing [23], the total search time cost of SR-DSSEa is
practical and acceptable.

To show the high efficiency of SR-DSSEb, we evaluate
it over Dataset II and compare the results with FB-DSSE.
An important property of SR-DSSEb is that its search
performance will increase with historical search queries.
To show this property, this part of experiment contains three
rounds of search. For example, the search process of key-
word “sauna” can be described as: (1) in the first round,
we issue 36 insertion queries and then run search, (2) in
the second round, we issue another 36 insertion queries and
then run search, and (3) in the last round, we execute
final 37 insertion queries and then execute search. Figure 4
shows the result. IM-DSSEI+II keeps its advantages in per-
formace. It is about four magnitudes faster than SR-DSSEb
and FB-DSSE. With the increase of search times, the
search performance of SR-DSSEb is improving. Take key-
word “backpack” as an example. In the first round, SR-DSSEb
needs to take 4.7 seconds to complete the search, while
in the third round the time cost is 4.8 seconds. In the
third round, SR-DSSEb outperforms FB-DSSE. For example,
to complete the search of keyword “backpack”, FB-DSSE
needs 6.9 seconds, incurring extra 2.1 seconds compared to
SR-DSSEb. In practice, it is common for a client to search for
a keyword many times. Hence, SR-DSSEb is more practical
in real-world applications.
SR-DSSEb can also be accelerated via hardware-based

techniques. Different from SR-DSSEa , SR-DSSEb mainly
leverages the CPU-based technique to accelerate, i.e., the
multi-threading technique. Figure 5 shows the performance
of accelerating SR-DSSEb using OpenMP7 with the different
number of threads. The results of the experiment indicate
that the multi-threading technique significantly improves the
search performance of SR-DSSEb. For example, when
searching for keyword “unravel” with 16 threads, it takes only

7https://www.openmp.org/

Fig. 5. Time cost with different threads.

1.2 seconds, saving 1,092% time compared to the case using
only a single thread.

In conclusion, the above experiments show that, although
both SR-DSSEa and SR-DSSEb are inferior to IM-DSSEI+II,
considering they are robust and achieve stronger backward
security, they are still practical and efficient. Specifically,
SR-DSSEa has advantages in saving the client time and
SR-DSSEb’s whole search process is faster. Notably, with
the increase of search times, SR-DSSEb achieves higher
search efficiency compared to FB-DSSE.

However, compared with FB-DSSE and IM-DSSEI+II, the
proposed schemes trade the communication overhead (i.e.,
roundtrips or bandwidth) for robustness. Although the extra
communication overhead is acceptable in practice, one may
wonder whether we can eliminate it. Fortunately, with the help
of the Trusted Execution Environment, like SGX, we can avoid
that overhead. More concretely, we can evaluate ii-bitmap
index inside the Trusted Execution Environment. There have
been many DSSE works showing how the Trusted Execution
Environment helps improve efficiency while maintaining high
security [24], [25], [26], [27], [28]. We leave the detailed
construction as an open problem to interested readers.

VII. RELATED WORKS

A. Forward and Backward Private DSSE
DSSE and its adaptive security were first formulated by

Kamara et al. in 2012 [1]. Stefanov et al. gave the introduction
and explaination of a series of DSSE forward and backward

DOU et al.: DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION WITH STRONG SECURITY AND ROBUSTNESS 2381

privacy concepts in 2014 [3]. Specifically, with leakage func-
tions, a formal definition of forward privacy was proposed
and accepted. However, in fact, it is Chang and Mitzen-
macher who proposed the earliest prototype of DSSE schemes
trying to achieve forward privacy in 2005 [29]. In 2016,
Bost constructed an optimized forward-private DSSE scheme
with trapdoor permutation [30]. In the meanwhile, by the
implementation of TWORAM [31], Garg et al. succeeded to
give a forward-private DSSE scheme. Their scheme traded
much performance for security. In 2017, Xu et al. proposed
a DSSE scheme combining logical and physical deletions to
reduce information leakage during update phases [32].

In 2017, Bost et al. firstly proposed definitions of back-
ward privacy with leakage functions [4]. They categorized
backward privacy into three types: Type-I, II, and III,
among which Type-I is the strongest and Type-III is the
weakest. With these new definitions, they constructed some
DSSE schemes achieving different strength of backward
security. Later, Sun et al. [33], [34], Chamani et al. [7], [35],
Demertzis et al. [16], and Wang and Chow [36] proposed
various DSSE schemes to achieve non-interactive search, high
theoretic search performance, constant client storage, and
range queries etc. In 2019, Zuo et al. introduced the definition
of first Type-I− backward privacy and gave the construction
of a corresponding DSSE scheme [5]. However, none of
the aforementioned works found or addressed the robustness
problem in DSSE.

Besides the forward and backward security, there are also
many DSSE works diving into higher security to eliminate
harmful information leakage [37] and mitigate attacks [38],
[39], [40]. Among those works, there is an important research
line that leverage real-world security techniques to achieve the
security goal. For example, aforementioned Trusted Execution
Environment and distributed trust [41], [42], [43]. There are
also other research works exploring to equip DSSE with
additional properties, such as shareability [44] and post-
compromise security [45].

B. Robust DSSE

In 2022, Xu et al. formally defined the robustness of
DSSE [8]. In the context of robustness, a DSSE client may
issue rational update queries (e.g., duplicate add queries or
deletion queries of non-existent ciphertexts). A robust DSSE
scheme must guarantee the desired correctness and claimed
security when the client issues irrational update queries.
Unfortunately, up to now, besides the scheme ROSE proposed
by Xu et al., only MONETA [4] and Bestie [46] achieve
robustness. However, those robust DSSE schemes fail to
achieve Type-I− backward privacy.

VIII. CONCLUSION

In this work, we identify the robustness problem exist-
ing in forward-and-Type-I−-backward private DSSE schemes.
To solve this problem, the definition of Type-I− backward
security is extended. With the new definitions, we constructed
two novel robust DSSE schemes, both of which achieves the
security aim of forward and Type-I− backward privacy, i.e.,

SR-DSSEa and SR-DSSEb. The constructions of these two
schemes leverage our newly proposed Bi-bitmap-index data
structure and a boolean circuit evaluation method. The exper-
imental results show that SR-DSSEa is client-friendly and
SR-DSSEb has higher search performance. The experiments
show that SR-DSSEa and SR-DSSEb are not as performant
as IM-DSSEI+II, thereby, may not be very suitable for some
performance-intensive scenarios. Fortunately, their practical
performance can be further improved with the hardware-based
acceleration technique, which makes the proposed schemes
quite suitable for managing real databases. Additionally, their
robustness can tolerate irrational client update queries. Hence,
we recommend SR-DSSEa and SR-DSSEb for real-world
deployment.

APPENDIX

A. Security Proof of SR-DSSEa

Proof: In the security proof of SR-DSSEa , we build of
a simulator S with the input of the protocols’ leakage. That
are, LSetup(λ, n) = (λ, n), LU pdate(op, (w,F)) = ∅, and
LSearch(w) = (1srch(w), 1rst (w), 1T ime(w)). Then, S can
simulate SR-DSSEa’s three protocols respectively. We will
prove that the ideal SR-DSSEa is indistinguishable from the
real one under the adaptive attack and describe the simulator
in Algorithm 5. Concretely speaking, the simulator S contains
the following three phases.

Setup Phase: The simulator S takes the function
LSetup(λ, n) = (λ, n) as inputs and initializes three maps
RandomStrList, CipherList, and EDB. EDB is sent to the
server as the real game does, and the client keeps the other
two maps as the internal states. RandomStrList records
each update’s random string. CipherList records ciphertexts
generated by S. Clearly, it is hard for the adversary A to
distinguish the simulated Setup phase and the real one.

Update Phase: When the adversary A issues an update
query with the input of op, (w,F), the simulator S takes the
leakage function LU pdate(op, (w,F)) as the input, computes
a timestamp u, picks some randomly chosen string R, index
I , a protected mask C , and a bi-bitmap index (bsa, bsb), and
encrypts this bi-bitmap index. According to the randomness
of oracles H1 and H2 and the security of T , the simulated
(R, I, C, (Va,Vb)) have the same distribution as the real one
generated by SR-DSSEa .Update in the RO model. Hence,
it is hard for the adversary A to distinguish the simulated
Update phase and the real one.

Search Phase: When the adversary A issues a search query
with the input of keyword w, the simulator S takes the function
LSearch(w) = (1srch(w), 1rst (w), 1T ime(w)) as the input.
To begin with, it checks the historical update queries about w

and aborts if there is no updates previously (refer to Step 4).
Next, the simulator must program the two random oracles
H1 and H2, so that the computations of search trapdoors are
valid in the view of the adversary A (refer to Steps 5 to 11).
The core work is to guarantee that all simulated ciphertexts
of keyword w can be retrieved by the server with a randomly
generated search trapdoor. Hence, from the latest to the earliest
query (refer to Step 6), the simulator S programs H1 and

2382 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Algorithm 5 Simulator of Ideal SR-DSSEa

Setup(LSetup(λ, n))

1: Initialize three empty map structures: EDB, Random-
StrList, CipherList. Send EDB to the server and keep
others locally;

2: Initialize a timestamp parameter u ←−1;
Update(LU pdate(op, (w,F)))

1: Add one time to the total timestamp by u ← u + 1;
2: Randomly generate the string R

$
← {0, 1}λ, the index I

$
←

{0, 1}λ and the protected mask C
$
← {0, 1}λ;

3: Randomly generate a bi-bitmap index (bsa, bsb) and
encrypt it into the ciphertext (Va,Vb);

4: Record R by RandomStrList[u] ← R; Record I , C and
(Va,Vb) by CipherList[u] ← (I, C, (Va,Vb));

5: Send I , C and (Va,Vb) to the server for saving;
Search(LSearch(w) = (1srch(w), 1rst (w), 1T ime(w)))

1: Add one time to the total timestamp by u ← u + 1;
2: Obtain the timestamp us of the last search query from

1srch(w), where us = −1 if sp(w) = ∅;
3: Obtain all timestamps us+1, . . . , ut between us and u from
Time(w), where ui < u j if i < j ;

4: Abort if t = −1 and us = −1 (that is, there are no
historical update queries for keyword w);

5: Choose a key Kw
$
← {0, 1}λ for the searched keyword w;

6: for i = t to s + 1 do
7: Retrieve the simulated ciphertext (Iui , Cui , (Va,Vb))←

CiphertextList[ui];
8: Retrieve two consecutive random strings Rui ←

RandomStrList[ui], Rui−1 ← RandomStrList[ui−1];
9: Program oracle H1 such that H1(Kw, Rui) = Iui ;

10: Program oracle H2 such that H2(Kw, Rui) = Cui ⊕

Rui−1 ;
11: end for
12: Send a search trapdoor (Kw, Rt , s, t) to the server
13: return the file identifiers contained in 1rst (w) when the

client receives the server’s response

H2 according to the real SR-DSSEa .Update. In the end,
a randomly generated search trapdoor is sent to the server.
Hence, it is hard for the adversary A to distinguish the
simulated Search phase and the real one.

To summarize, we can construct a simulator S to simulate
SR-DSSEa with the given leakage functions. And the simu-
lated SR-DSSEa is indistinguishable from the real one. Thus,
Theorem 1 is true. □

B. Security Proof of SR-DSSEb

Proof: In the security proof of SR-DSSEb, we build
a simulator S with the input of the protocols’ leakage.
That are LSetup(λ, n) = (λ, n), LU pdate(op, (w,F)) = ∅,
and LSearch(w) = (1srch(w), 1rst (w), 1T ime(w)). Then,
the simulator S can simulate SR-DSSEb’s three protocols,
respectively. We will prove that the ideal SR-DSSEb is

Algorithm 6 Simulator of Ideal SR-DSSEb

Setup(LSetup(λ, n))

1: Initialize four empty map structures: EDB, Random-
StrList, CipherList, BiKeyList. Send EDB to the server
and keep others locally;

2: Initialize a timestamp parameter u ←−1;
Update(LU pdate(op, (w,F)))

1: Add one time to the total timestamp by u ← u + 1;
2: Randomly generate the string R

$
← {0, 1}λ, the index I

$
←

{0, 1}λ and the protected mask C
$
← {0, 1}λ;

3: Randomly choose two keys ska
$
← {0, 1}λ and skb

$
←

{0, 1}λ and a bi-bitmap index (bsa, bsb); Encrypt the
chosen bi-bitmap index into the ciphertext by (ea, eb)←

(bsa ⊕ ska, bsb ⊕ skb);
4: Record R by RandomStrList[u] ← R; Record I , C

and (ea, eb) by CipherList[u] ← (I, C, (ea, eb)); Record
(ska, skb) by BiKeyList[u] ← (ska, skb);

5: Send I , C and (ea, eb) to the server for saving;
Search(LSearch(w) = (1srch(w), 1rst (w), 1T ime(w)))

1: Accumulate the timestamp parameter by u ← u + 1;
2: Obtain the timestamp us of the last search query from

1srch(w), where us = −1 if sp(w) = ∅;
3: Obtain all timestamps us+1, . . . , ut between us and u from

1T ime(w), where ui < u j if i < j ;
4: Abort if t = −1 and us = −1 (that is, there are no

historical update queries for keyword w);
5: Randomly choose two keys Kw

$
← {0, 1}λ, K ′w

$
← {0, 1}λ

for the searched keyword w;
6: for i = t to s + 1 do
7: Retrieve the simulated ciphertext (Iui , Cui , (Va,Vb))←

CiphertextList[ui];
8: Retrieve two consecutive random strings Rui ←

RandomStrList[ui], Rui−1 ← RandomStrList[ui−1];
9: Retrieve two keys (ska, skb)← BiKeyList[ui]

10: Program oracle H1 such that H1(Kw, Rui) = Iui ;
11: Program oracle H2 such that H2(Kw, Rui) = Cui ⊕

Rui−1 ;
12: Program oracle H3 such that H3(K ′w, i) = ska ;
13: Program oracle H4 such that H4(K ′w, i) = skb;
14: end for
15: Randomly choose a key sk

$
← {0, 1}λ and program oracle

H5 such that H5(K ′w, t) = sk if s < t (namely, there are
update queries between the two search queries);

16: Send a search trapdoor (Kw, Rt , s, t) to the server
17: return the file identifiers contained in 1rst (w) when the

client receives the server’s response
%endmulticols

indistinguishable from the real one under the adaptive attack
and describe the simulator in Algorithm 6. It is similar to the
security proof of SR-DSSEa that the simulator S contains the
following three phases, and we omit the duplicate details in
the description.

Setup Phase: The simulator S takes the leakage func-
tion LSetup(λ, n) = (λ, n) as the input. The simulator S

DOU et al.: DYNAMIC SEARCHABLE SYMMETRIC ENCRYPTION WITH STRONG SECURITY AND ROBUSTNESS 2383

additionally initializes a map BiKeyList for recording the
bi-bitmap-index encryption keys and keeps the map as one
of the internal states. Clearly, it is hard for the adversary A
to distinguish the simulated Setup phase and the real one.

Update Phase: When an update query with the input
of op, (w,F) is issued, the simulator S takes the leakage
function LU pdate(op, (w,F)) as the input. Besides picking
a randomly generated trapdoor and ciphertexts, the simulator
S also randomly picks two randomly chosen keys ska and
skb and records them into BiKeyList[u]. In the same way,
the distribution of simulated (R, I, C, (ea, eb)) is the same
as the real one, which is generated by SR-DSSEb.Update in
the scenario of the RO model. Therefore, it is hard for the
adversary A to distinguish the simulated Update phase and
the real one..

Search Phase: When a search query with the input of
keyword w is issued, the simulator S takes the leakage
function LSearch(w) = (1srch(w), 1rst (w), 1T ime(w)) as
the input. Before programming the oracles, the simulator S
chooses two random keys Kw and K ′w (refer to Step 5). Then,
during the programming, the simulator S programs oracles
H3 and H4 with the input of K ′w (refer to Steps 12 to 13).
In addition, if there are some update queries between the
two search queries, a random key sk is generated and
programmed to oracle H5 for re-encrypting the new result
(refer to Step 15). Hence, it is hard for the adversary A to
distinguish the simulated Search phase and the real one.

In summary, with the input of the given leakage functions,
we are able to give the construction of a simulator S to
simulate SR-DSSEb. And the simulated SR-DSSEb is indis-
tinguishable from the real one. Thus, Theorem 2 is true. □

ACKNOWLEDGMENT

The authors would like to express their grateful appreciation
to the associate editor and the anonymous reviewers for their
valuable efforts in greatly improving this article.

REFERENCES

[1] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. Comput. Commun. Secur.,
Oct. 2012, pp. 965–976.

[2] S. Lu, J. Zheng, Z. Cao, Y. Wang, and C. Gu, “A survey on cryptographic
techniques for protecting big data security: Present and forthcoming,”
Sci. China Inf. Sci., vol. 65, no. 10, pp. 1–34, Oct. 2022.

[3] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
encryption with small leakage,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2014, pp. 1–15.

[4] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward pri-
vate searchable encryption from constrained cryptographic primitives,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 1465–1482.

[5] C. Zuo, S. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable
symmetric encryption with forward and stronger backward privacy,” in
Proc. ESORICS. Cham, Switzerland: Springer, 2019, pp. 283–303.

[6] T. Hoang, A. A. Yavuz, and J. Guajardo, “A secure searchable encryption
framework for privacy-critical cloud storage services,” IEEE Trans.
Services Comput., vol. 14, no. 6, pp. 1675–1689, Nov. 2021.

[7] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New
constructions for forward and backward private symmetric searchable
encryption,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2018, pp. 1038–1055.

[8] P. Xu et al., “ROSE: Robust searchable encryption with forward
and backward security,” IEEE Trans. Inf. Forensics Security, vol. 17,
pp. 1115–1130, 2022.

[9] C. Zuo, S. Sun, J. K. Liu, J. Shao, J. Pieprzyk, and G. Wei, “Forward
and backward private dynamic searchable symmetric encryption for
conjunctive queries,” IACR Cryptol. ePrint Arch., p. 1357, Oct. 2020.

[10] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, J. Pieprzyk, and L. Xu, “Forward
and backward private DSSE for range queries,” IEEE Trans. Dependable
Secure Comput., vol. 19, no. 1, pp. 328–338, Jan. 2022.

[11] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,” in
Proc. ASIACRYPT. Berlin, Germany: Springer, 2016, pp. 3–33.

[12] M. Karnaugh, “The map method for synthesis of combinational logic
circuits,” Trans. Amer. Inst. Electr. Eng., I, Commun. Electron., vol. 72,
no. 5, pp. 593–599, Nov. 1953.

[13] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, pp. 1–40, Sep. 2009.

[14] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” J. ACM, vol. 60, no. 6, pp. 1–35,
Nov. 2013.

[15] K. Matsuoka, R. Banno, N. Matsumoto, T. Sato, and S. Bian, “Virtual
secure platform: A five-stage pipeline processor over TFHE,” in Proc.
USENIX Secur., 2021, pp. 4007–4024.

[16] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou,
“Dynamic searchable encryption with small client storage,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2020, pp. 1–18.

[17] Free Software Foundation. The GNU MP Bignum Library. Accessed:
Jun. 11, 2021. [Online]. Available: https://gmplib.org/

[18] Open Software Foundation. OpenSSL. Accessed: Jun. 11, 2021. [Online].
Available: https://www.openssl.org/

[19] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. (Aug. 2016).
TFHE: Fast Fully Homomorphic Encryption Library. [Online]. Avail-
able: https://tfhe.github.io/tfhe/

[20] G. Attardi. (2015). Wikiextractor. [Online]. Available: https://github.
com/attardi/wikiextractor

[21] W. Wang, Z. Chen, and X. Huang, “Accelerating leveled fully homo-
morphic encryption using GPU,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Jun. 2014, pp. 2800–2803.

[22] W. Dai and B. Sunar, “cuHE: A homomorphic encryption accelerator
library,” in Proc. BalkanCryptSec. Cham, Switzerland: Springer, 2015,
pp. 169–186.

[23] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster packed
homomorphic operations and efficient circuit bootstrapping for TFHE,”
in Proc. ASIACRYPT. Cham, Switzerland: Springer, 2017, pp. 377–408.

[24] G. Amjad, S. Kamara, and T. Moataz, “Forward and backward private
searchable encryption with SGX,” in Proc. 12th Eur. Workshop Syst.
Secur., Mar. 2019, pp. 4:1–4:6.

[25] V. Vo, S. Lai, X. Yuan, S. Nepal, and J. K. Liu, “Towards efficient and
strong backward private searchable encryption with secure enclaves,” in
Proc. ACNS. Cham, Switzerland: Springer, 2021, pp. 50–75.

[26] T. Hoang, M. O. Ozmen, Y. Jang, and A. A. Yavuz, “Hardware-
supported ORAM in effect: Practical oblivious search and update on
very large dataset,” Proc. Privacy Enhancing Technol., vol. 2019, no. 1,
pp. 172–191, Jan. 2019.

[27] T. Hoang, R. Behnia, Y. Jang, and A. A. Yavuz, “MOSE: Practical multi-
user oblivious storage via secure enclaves,” in Proc. 10th ACM Conf.
Data Appl. Secur. Privacy, Mar. 2020, pp. 17–28.

[28] Y. Huang et al., “Cetus: An efficient symmetric searchable encryption
against file-injection attack with SGX,” Sci. China Inf. Sci., vol. 64,
no. 8, pp. 1–18, Aug. 2021.

[29] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in Proc. ACNS. Berlin, Germany: Springer,
2005, pp. 442–455.

[30] R. Bost, “
∑

oϕoς : Forward secure searchable encryption,” in Proc. ACM
CCS, 2016, pp. 1143–1154.

[31] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient obliv-
ious RAM in two rounds with applications to searchable encryption,” in
Proc. CRYPTO. Berlin, Germany: Springer, 2016, pp. 563–592.

[32] P. Xu, S. Liang, W. Wang, W. Susilo, Q. Wu, and H. Jin, “Dynamic
searchable symmetric encryption with physical deletion and small leak-
age,” in Proc. ACISP. Cham, Switzerland: Springer, 2017, pp. 207–226.

[33] S.-F. Sun et al., “Practical backward-secure searchable encryption from
symmetric puncturable encryption,” in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., Oct. 2018, pp. 763–780.

[34] S.-F. Sun et al., “Practical non-interactive searchable encryption with
forward and backward privacy,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2021, pp. 1–18.

2384 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

[35] J. G. Chamani, D. Papadopoulos, M. Karbasforushan, and I. Demertzis,
“Dynamic searchable encryption with optimal search in the presence of
deletions,” in Proc. USENIX Secur., 2022, pp. 2425–2442.

[36] J. Wang and S. S. M. Chow, “Forward and backward-secure range-
searchable symmetric encryption,” Proc. Privacy Enhancing Technol.,
vol. 2022, no. 1, pp. 28–48, Jan. 2022.

[37] E. M. Kornaropoulos, N. Moyer, C. Papamanthou, and A. Psomas,
“Leakage inversion: Towards quantifying privacy in searchable encryp-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2022,
pp. 1829–1842.

[38] S. Oya and F. Kerschbaum, “Hiding the access pattern is not enough:
Exploiting search pattern leakage in searchable encryption,” in Proc.
USENIX Secur., 2021, pp. 127–142.

[39] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “Response-
hiding encrypted ranges: Revisiting security via parametrized leakage-
abuse attacks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 1502–1519.

[40] X. Zhang, W. Wang, P. Xu, L. T. Yang, and K. Liang, “High recovery
with fewer injections: Practical binary volumetric injection attacks
against dynamic searchable encryption,” in Proc. USENIX Secur., 2023,
pp. 5953–5970.

[41] T. Hoang, A. A. Yavuz, F. B. Durak, and J. Guajardo, “Oblivious
dynamic searchable encryption on distributed cloud systems,” in Proc.
IFIP Annu. Conf. Data Appl. Secur. Privacy, 2018, pp. 113–130.

[42] T. Hoang, A. A. Yavuz, F. B. Durak, and J. Guajardo, “A multi-server
oblivious dynamic searchable encryption framework,” J. Comput. Secur.,
vol. 27, no. 6, pp. 649–676, Oct. 2019.

[43] E. Dauterman, E. Feng, E. Luo, R. A. Popa, and I. Stoica, “DORY:
An encrypted search system with distributed trust,” in Proc. USENIX
OSDI, 2020, pp. 1101–1119.

[44] W. Wang, D. Liu, P. Xu, L. T. Yang, and K. Liang, “Keyword search
shareable encryption for fast and secure data replication,” IEEE Trans.
Inf. Forensics Security, vol. 18, pp. 5537–5552, 2023.

[45] T. Chen et al., “The power of bamboo: On the post-compromise security
for searchable symmetric encryption,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 2023, pp. 1–18.

[46] T. Chen, P. Xu, W. Wang, Y. Zheng, W. Susilo, and H. Jin, “Bestie: Very
practical searchable encryption with forward and backward security,” in
Proc. ESORICS. Cham, Switzerland: Springer, 2021, pp. 3–23.

Haochen Dou received the B.E. degree in informa-
tion security from Xidian University, Xi’an, China,
in 2020. He is currently pursuing the master’s
degree in cyberspace security with the Huazhong
University of Science and Technology. His research
interests include applied cryptography and post-
quantum cryptography.

Zhenwu Dan received the B.S. degree in mathe-
matics and applied mathematics from the Huazhong
University of Science and Technology, Wuhan,
China, in 2020, where he is currently pursuing
the master’s degree in cyberspace security. His
research interests include cryptography and search-
able encryption.

Peng Xu (Member, IEEE) received the Ph.D. degree
in computer science from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2010. He was a Post-Doctoral Researcher with
the Huazhong University of Science and Technol-
ogy from 2010 to 2013. He was an Associate
Research Fellow with the University of Wollongong,
Australia, from 2018 to 2019. He is currently a Full
Professor with the Huazhong University of Science
and Technology. He has authored over 30 research
articles, 19 patents, and two books. He was the PI

of 20 grants, including three NSF projects. His research interests include the
field of cryptography.

Wei Wang (Member, IEEE) received the B.E.
and Ph.D. degrees in electronic and communication
engineering from the Huazhong University of Sci-
ence and Technology, Wuhan, China, in 2006 and
2011, respectively. Currently, she was a Researcher
with the Cyber-Physical-Social Systems Laboratory,
Huazhong University of Science and Technology.
She has authored more than 20 papers in inter-
national journals and conferences. Her research
interests include cloud security, network coding, and
multimedia transmission.

Shuning Xu received the B.E. degree in information
security from Zhengzhou University, China, in 2021.
She is currently pursuing the master’s degree in
cyberspace security with the Huazhong University
of Science and Technology. Her research interests
include encrypted search and cryptography.

Tianyang Chen received the B.E. degree in infor-
mation security from the Huazhong University of
Science and Technology, Wuhan, China, in 2017,
where he is currently pursuing the Ph.D. degree in
cyberspace security. His research interests include
cryptography and the IoT.

Hai Jin (Fellow, IEEE) received the Ph.D. degree in
computer engineering from the Huazhong University
of Science and Technology in 1994. He received
the German Academic Exchange Service Fellowship
to visit the Technical University of Chemnitz,
Germany, in 1996. He worked at The University of
Hong Kong from 1998 to 2000. He was a Visiting
Scholar with the University of Southern California
from 1999 to 2000. He received the Excellent Youth
Award from the National Science Foundation of
China in 2001. He is a Cheung Kung Scholars Chair

Professor of computer science and engineering with the Huazhong University
of Science and Technology. He has coauthored 22 books and published over
800 research articles. His research interests include computer architecture,
virtualization technology, cluster computing and cloud computing, peer-to-
peer computing, network storage, and network security. He is a fellow of
CCF and a member of ACM.

