
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024 2425

PRBFPT: A Practical Redactable Blockchain
Framework With a Public Trapdoor

Weiqi Dai , Member, IEEE, Jinkai Liu, Yang Zhou, Kim-Kwang Raymond Choo , Senior Member, IEEE,
Xia Xie, Deqing Zou , and Hai Jin , Fellow, IEEE

Abstract— While blockchain is known to support open and
transparent data exchange, partly due to its nontamperability
property, it can also be (ab)used to facilitate the spreading of fake
and misleading information or information that was subsequently
discredited. Hence, this paper proposes a practical, redactable
blockchain framework with a public trapdoor (hereafter referred
to as PRBFPT). PRBFPT comprises an editing scheme for
adding blocks using a new type of blockchain with a chameleon
hash. Specifically, PRBFPT is able to involve all nodes in the
blockchain in the editing operations by means of a public
trapdoor, without requiring additional trapdoor management by
predefined nodes or organizations. PRBFPT is also designed to
audit and record the content of each editing operation. In other
words, after editing and deleting the original data, PRBFPT
can still verify its legitimacy. We also propose a contract-based
locked voting scheme to better support voting. We then evaluate
the prototype implementation of PRBFPT, whose findings show
that the total time consumption of adding modules is at the
millisecond level, with a negligible impact on the performance of
the original system. In addition, the evaluation findings show that
the cost of initiating the special transactions is comparable to the
consumption of normal Ethereum transactions and is within a
manageable range.

Index Terms— Redactable blockchain, rumors, chameleon
hash, publicly trapdoor, smart contract.

Manuscript received 21 October 2022; revised 1 September 2023 and
7 December 2023; accepted 21 December 2023. Date of publication 4 January
2024; date of current version 11 January 2024. This work was supported
in part by the National Key Research and Development Program of China
under Grant 2020YFB1006000 and in part by the National Natural Science
Foundation of China under Grant 62072202 and Grant 62362023. The work
of Kim-Kwang Raymond Choo was supported by the Cloud Technology
Endowed Professorship. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Nils Ole Tippenhauer.
(Corresponding author: Xia Xie.)

Weiqi Dai, Jinkai Liu, Yang Zhou, and Deqing Zou are with the National
Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Laboratory, Hubei Key Laboratory of
Distributed System Security, Hubei Engineering Research Center on Big Data
Security, School of Cyber Science and Engineering, Huazhong University of
Science and Technology, Wuhan 430074, China (e-mail: wqdai@hust.edu.cn;
liujink@hust.edu.cn; zhouyang_cse@hust.edu.cn; deqingzou@hust.edu.cn).

Kim-Kwang Raymond Choo is with the Department of Information Systems
and Cyber Security, The University of Texas at San Antonio, San Antonio,
TX 78249 USA (e-mail: raymond.choo@fulbrightmail.org).

Xia Xie is with the School of Computer Science and Technology, Hainan
University, Haikou 570100, China (e-mail: shelicy@hainanu.edu.cn).

Hai Jin is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System Labo-
ratory, Cluster and Grid Computing Laboratory, School of Computer Science
and Technology, Huazhong University of Science and Technology, Wuhan
430074, China (e-mail: hjin@hust.edu.cn).

Digital Object Identifier 10.1109/TIFS.2024.3349855

I. INTRODUCTION

BLOCKCHAIN is known for its ability to ensure data
openness, transparency and distributed consistency [1],

[2], but these features can also be exploited to spread rumors,
including misleading and malicious information [3], [4], with
potentially devastating consequences (e.g., social panic). Due
to the tamper-evident nature of blockchain, we can quickly
locate the virtual identity of the originator of the rumor. How-
ever, rumors that have been recorded in the blockchain cannot
be removed. In response, conventional blockchain systems can
deploy a scheme similar to database version updates to delete
or overwrite data on the chain. Specifically, a new version
of the data is created and invalidated by pointing to the old
version when it is updated in the blockchain ledger. In practice,
the data are not deleted since they are still retrievable. Such
practices also do not comply with privacy legislation such
as the European Union’s General Data Protection Regulation
(GDPR), which states that

The data subject shall have the right to obtain from
the controller the erasure of personal data concerning
him or her without undue delay and the controller
shall have the obligation to erase personal data
without undue delay where one of the following
grounds applies [. . . ]1

This point reinforces the importance of designing
blockchain systems that are secure and auditable and yet have
the ability to completely delete data. In 2017, for example,
Ateniese et al. [5] proposed a redactable blockchain that
supports the deletion of data in the blockchain ledger directly
(rather than only supporting pseudodeletion, as in the case of
database update logs). The core building block of this approach
is the chameleon hash [6], [7], [8], [9], [10], [11], [12], which
is a hash function in which the hash is parameterized by the
public key hk. As long as the trapdoor (corresponding to the
key tk of hk) is not known, it is collision-resistant, as is the
normal hash function. In contrast, if the trapdoor tk is known,
then hash collisions can be easily created. Thus, nonleakable
trapdoors form the basis for the security of such redactable
blockchains. The chameleon hash has been widely used in
blockchain; for example, Kumar and Bhalaji [13] used the
chameleon hash to support data privacy protection.

1https://gdpr.eu/article-17-right-to-be-forgotten/, last accessed November
30, 2023

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0666-8231
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0001-8534-5048
https://orcid.org/0000-0002-3934-7605


2426 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Subsequent approaches improved the protection of trapdoors
at the algorithmic level and provided additional properties for
redactable blockchains. For example, redactable blockchains
built on the chameleon hash and attribute-based encryp-
tion [14], [15] proposed by Derler et al. [16] support
fine-grained modifications at the transaction level with a finer
granularity of editing. Duan et al. [17] considered adding
policies for the use of the chameleon hash to avoid misuse
and designed a policy-based chameleon hash with black-box
traceability. Policy-based approaches can be effective, but
policies may change over time and differ between situations.
Hence, Xu et al. [18] proposed a policy-revocable chameleon
hash scheme. Jia et al. [19] inserted the encoding of redacted
blocks into accumulators for more efficient edit traceability
and proposed a decentralized chameleon hash to guarantee that
redactability does not destroy the decentralized nature of the
blockchain. The security of the redacting scheme relies on the
privacy of the chameleon hash trapdoor. In [20], the approach
of [16] was enhanced with the ability to control trapdoor
permissions and allow auditing of the entity alleged to have
exploited the trapdoor to make changes to the data. In [21],
the authors combined zero-knowledge proofs [22], [23] with
the chameleon hash to enhance collision resistance while
reducing the size of chameleon hash functions. In [24], the
lattice signature [25] was combined with a chameleon hash to
enhance the quantum resistance of trapdoor protection. Li and
Liu [26] proposed a tagged chameleon hash for postquantum
security without zero-knowledge proofs and proved its security
under a standard model. Some schemes focus more on other
areas; e.g., Li et al. [27] decoupled the voting phase from the
consensus layer to achieve instantaneous redaction.

To perform trapdoor secrecy and management, however, the
redactable blockchains discussed in the preceding paragraphs
have complex algorithms that limit their deployment. For
example, Ateniese et al.’s approach [5] requires trapdoor
sharing among trusted groups using MPC techniques [28],
[29], [30], the approaches in both Derler et al. [16] and
Tian et al. [20] rely on trusted third parties for attribute
distribution to grant another entity permission to modify
the blockchain, and Wu et al.’s approach [24] also greatly
increases the complexity of the chameleon hash algorithm.
Moreover, these approaches always require one or more trusted
entities to edit the data, rather than allowing all users to
participate in the editing operation together. When messages
are deleted using these approaches, they hardly leave a trace
of the original data. These limitations are potential barriers to
implementation; for example, in the absence of the deliberate
retention of copies, if data need to be restored as evidence,
the entity redacting the data can fake its credibility by forging
the original data. In public chains (e.g., Bitcoin [31] and
Ethereum [32]), where nodes come and go arbitrarily, it is
difficult to elect such a group with the privileges of most users.

In a separate line of inquiry, Deuber et al. [33] proposed
using consensus voting to support transaction-level rewriting
and enhanced user awareness of editing operations. However,
such an approach can potentially cause a “chain break” in
the blockchain during the editing of blocks. Moreover, this
approach requires the collection of sufficient votes, and the

confirmation period for voting is too long (i.e., not suitable for
time-sensitive applications). The approach also expects miners
not to adopt a default strategy of voting yes or no.

A. Our Contributions

To address the challenges associated with secure and
auditable editing and chameleon hashing trapdoor manage-
ment on the blockchain, we propose a practical redactable
blockchain scheme based on a new block structure and vot-
ing with the benefits of no need for trapdoor management,
fine-grained redacting of transactions, and auditability. The
contributions of this paper are as follows:
• PRBFPT, a redactable blockchain scheme, is imple-

mented using a new block structure, smart contract voting
and a chameleon hash. We propose a new blockchain
structure that achieves editability based on this structure.
The redactable scheme has two steps, namely, voting
and editing. A new block header structure and insertion
block approach are used to implement editing operations
for transactions in a block. The editing operation is
performed by all nodes rather than selected nodes or other
groups. The editing operation is auditable and has the
option of deleting the original block data associated with
the edit operation. The length of the edited data is not lim-
ited by the length of the original transaction data. There
is no need for specific chameleon hashes or management
of their trapdoors throughout the implementation of the
scheme. The success of an editing operation is determined
by the results of the associated vote.

• To implement the scheme more efficiently, we also pro-
pose a voting scheme based on contractual locking, which
allows users associated with the content of the vote to
participate in the vote instead of all or specified users.

In the context of blockchain nodes, we design the
block editing process to be an operation that all nodes
must complete synchronously, similar to a normal
transaction.

Table I comparatively summarizes our solution with other
redactable blockchain solutions, and one can observe that
the most notable features of our designed solution are the
redesigned block structure and the use of voting protocols
to achieve a redactable blockchain. Unlike other studies that
focus on modifying the chameleon hash to avoid various
security issues, our redactable blockchain scheme has security
that reduces to the security of the blockchain itself. There-
fore, our scheme is not restricted to a specific chameleon
hash and can use any chameleon hash scheme with desired
properties, such as the quantum-secure chameleon hash, that
satisfies the definition of the chameleon hash in this paper.
In addition, there is no need for additional protection of
trapdoors; complex trapdoor protection methods are an impor-
tant reason for the inefficiency of a scheme. Some schemes
need to introduce third parties to satisfy their chameleon
hash properties, which potentially erodes the decentralized
nature of the blockchain. Editing operations can have a
significant impact on the blockchain, so auditability is also
a concern.



DAI et al.: PRBFPT: A PRACTICAL REDACTABLE BLOCKCHAIN FRAMEWORK WITH A PUBLIC TRAPDOOR 2427

TABLE I
DIFFERENCES BETWEEN PRBFPT AND OTHER APPROACHES

TABLE II
SUMMARY OF NOTATION

B. Outline

The rest of this paper is organized as follows. In the
next section, we will describe our changes to the blockchain
structure. The third section will describe the design of our
proposed approach. The fifth section will present our prototype
implementation on Ethereum, as well as the evaluation metrics
and findings. The last section concludes this paper.

II. SYSTEM DESIGN

In this section, we describe the core process of one edit
and some important changes to the basic structure of the
blockchain.

A summary of the notation used in this paper is outlined in
Table II.

A. Overview

As previously discussed, we aim to implement secure
editing of the blockchain without introducing any additional
entities (i.e., only the blockchain and its users are involved
in the system model). Our core idea is to first use the
blockchain to vote on the editing operation of the offending
data and then let all nodes execute the editing module of
the added block to ensure the consistency of the blockchain.
In our proposed new blockchain structure, the voting-based
approach can minimize the security risk after the exposure of
the chameleon hash algorithm trapdoor and make the editing
operation auditable. The workflow for content removal and
modification in PRBFPT is shown in Fig. 1 and explained
below.

• Vote to identify offending content. An initiator makes
a request to edit content τ and provides the edited
content τ ′. A voting process that can be recorded in
the blockchain determines whether the content should
be edited or not. Upon the conclusion of the process,
relevant records are left in the blockchain for the nodes
to authenticate the validity of the process.

• Permission validation with a block addition edit. After
receiving the validation transaction and successful veri-
fication of the validity of the voting process, all nodes
perform the ledger update separately according to the
predefined steps. First, a new block B∗ is made. Then,
B∗ replaces the offending data τ in the old block B with
data τ ′ that have been validated by voting. Other than that,
the data in the two blocks are not different. Subsequently,
the node will place B∗ before B and use chameleon
hashing so that the chain does not break. Finally, B will
be labeled. In this system, the block data of B are no
longer of any use other than for verification.

The block edit proposer and the voting participants can
be any users in the blockchain. The user who finds the
offending data can propose editing the blockchain and set the
corresponding range of voting participants according to the
modification requirements, which are by no means limited to
specific users.

From a practical perspective, our scheme assumes that an
adversary can eavesdrop on any message in the blockchain
network and can control multiple blockchain nodes but cannot
disrupt the normal consensus of the blockchain or force a fork
of the blockchain.

B. Chameleon Hash Function

We define the chameleon hash function CH as a tuple
(Cham Pre, Cham Hash, ChamV er, ChamCol). These
functions are used in PRBFPT for the chameleon hash
calculation of both the block header and transaction. The
definition is as follows:
• (hk, tk) ← Cham Pre(κ): The secret key (trapdoor)

generation algorithm takes a security parameter κ as input
and outputs a public key hk and a trapdoor secret key tk.
In PRBFPT, hk and tk are not changed. All nodes and
all blocks use the same hk and tk.

• h ← Cham HashCal(hk, (m, r)): The chameleon hash
computation algorithm takes a chameleon hash public key



2428 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 1. Workflow for a simplified repair.

hk, a chameleon hash trapdoor private key hk, a plaintext
string m, and a verified random number R as input
and outputs a chameleon hash value h. To simplify
the description, we use a representation such as h =
CH(m, r).

• {0, 1} = ChamV er(hk, (m, r), h): The chameleon hash
verification algorithm takes as input a chameleon hash
public key hk, a chameleon hash trapdoor private key
hk, a plaintext string m, a verified random number r and
a chameleon hash h. If the hash h is a pair of a plaintext
and a verified random number (m, r) of a valid hash, then
the algorithm will output 1 (otherwise, it will output 0).

• r ′← ChamCol(hk, tk, m′, (m, r)): The chameleon hash
collision generation algorithm takes as input a chameleon
hash trapdoor tk, a plaintext string m, a verified ran-
dom number r and a new plaintext string m′ and
outputs a verified random number r ′ that matches the
plaintext string m′, which verifies the random num-
ber r ′ by checking that ChamV er(hk, (m, r), h) =

ChamV er(hk, (m′, r ′), h) = 1. If the plaintext with the
verified random number (m, r) is invalid, then null will
be output.

C. New Block Structure

Changes to the block structure are necessary to eliminate
the security risks associated with exposed trapdoors. The block
structure necessary for PRBFPT is described below.

1) New Block Header Field: To easily obtain the newly
added blocks and old blocks related to editing operations,
as well as to maintain the connectivity of the blockchain even
after the addition of blocks, we added the following fields to
the block header structure:
• PreBlock, Next Block. These are the indices that are

used to find the previous block and the next block of the
current block. After inserting a block by adding a block

at the end of the ledger, the order of the blocks is not
the same as the order in the ledger. When performing
block validation, using the index makes it easy to find
the desired block.

• RHeader. This is a required field for the block header
hash calculation. PRBFPT specifies that the value of
RHeader is 0 when a new block is generated. In other
words, if the RHeader of a block is not 0 (only the method
ChamCol can generate a new RHeader), this proves that
it has been edited. In PRBFPT, its data are treated as
invalid, and it can only be used to verify the validity of
adding blocks.

• Cham Param(hk, tk). This is the set of public and
private key parameters for the chameleon hash function.
It includes the chameleon-hash public key hk and the
trapdoor tk. The specific generation algorithm and the
process involved in the computation will be described
in detail in the Hash Calculation section. RHeader and
PreC Hash are necessary fields for this operation.

• PreC Hash. The PreC Hash is the key to main-
taining the connectivity of the blockchain. It is the
result of a calculation using the method ChamHash-
Cal, the hash result of the previous block PreHash and
RHeader. The calculation equation is PreC Hash ←
Cham HashCal(hk, (PreHash, RHeader)). To obtain
the PreHash of a new block, the result of PreC Hash
will not change by updating RHeader via the function
ChamCol. This allows a new block to be inserted before
a block without breaking the chain connectivity.

2) New Transaction Fields: To implement transaction-level
data editing, we modified the Merkle Hash generation scheme.
The following are the necessary additions to the transaction
fields:
• RTrans. This is the key field used for the Merkle hash

calculation. PRBFPT specifies that the value of RTrans
is 0 when new transaction data are generated. In other



DAI et al.: PRBFPT: A PRACTICAL REDACTABLE BLOCKCHAIN FRAMEWORK WITH A PUBLIC TRAPDOOR 2429

words, if the RTrans of a transaction is not 0 (only the
function ChamCol can generate a new RTrans), it is
proven to have been edited. In PRBFPT, this type of
transaction usually has no data. If it has data, these data
can only be treated as a sample of preedited data and
used for auditing.

• SigTrans. This is the flag of the transaction. It is used to
distinguish edited transactions from normal transactions.
It can be used to identify malicious modifications by
nodes with the algorithm 2.

D. Hash Calculation

1) Merkel Hash Calculation: T x Root ← MerkelCal(τa,

τb, τc, . . .). This is the new Merkle hash calculated according
to the traditional Merkle hash calculation method. SHA-256
is generally used as the main function for the calculation,
followed by the use of H(m) to stand in for the SHA-256 com-
putation on string m. Unlike the traditional Merkle hash, which
is directly calculated by using the transaction hash, PRBFPT
uses the chameleon hash of the transaction hash for the
Merkle hash calculation. This enables transaction-level block
data editing. Suppose the data of transaction τa are τa .Data
and the number of transaction validations is τa .RT rans.
Then, the chameleon hash calculation equation for A is
A ← CH(hk, H(τa .Data), τa .RT rans). The RTrans values
of transactions that are not edited are 0. hk and tk are fixed.
Therefore, A can only be computed by τa .Data. Obviously,
for transactions that have not been edited, the security of the
new Merkle hash is no different from that of the traditional
blockchain. The specific calculation is shown in Fig. 2.

2) Block Header Hash Calculation: Header Hash ←
HeaderCal(T x Root, PreC Hash, Nonce, . . .). This is the
hash calculation algorithm, whose calculation process is con-
sistent with the traditional block header hash calculation.
Slightly different from the traditional calculation, PRBFPT
calculates PreC Hash first and then uses PreC Hash for the
block header hash calculation. For blocks that are not edited,
RHeader is 0, and the Cham Param(hk, tk) values associ-
ated with the computation process are public and consistent.
Therefore, the result of the chameleon computation does not
change due to trapdoor exposure. This means that for blocks
where RHeader is 0, the security is no different from that of
traditional blocks.

III. BLOCK EDITING SCHEME WITH A PUBLIC TRAPDOOR

In this section, we explain PRBFPT’s design in terms of
voting to identify the offending content and the editing scheme
for adding blocks. We also provide a validation algorithm to
verify the edited blocks. The final part of the section discusses
PRBFPT’s improvements to trapdoor management, features of
editing operations, and some possible security risks.

A. Block and Transaction Type Definitions

To facilitate the understanding of PRBFPT, we give some
definitions.
• Secure block, secure transaction. A secure block or secure

transaction is a block or transaction that has not been

edited. The value of RHeader in the block header of a
secure block is initially set and unaltered, indicating that
it is unedited. It can be inferred from the two algorithms
of the block header hash calculation and Merkle hash
calculation that its security is consistent with that of
traditional blocks. The function of the secure block is
consistent with that of the traditional block. The RTrans
of secure transactions is identical to the RHeader of
secure blocks, and the security and functionality are also
equivalent to those of traditional blockchain.

• Invalid block, invalid transaction. If the RHeader of a
block is not the initial value, we consider it to be an
invalid block. The RTrans of an invalid transaction is the
same as the RHeader of an invalid block. The contents
of the invalid block are only used for the validation of
unedited transactions. Invalid transactions are only used
for validation of the original transaction copy. Invalid
blocks are generated only by edit operations, and invalid
transactions exist only in invalid blocks.

The two transactions introduced in the framework are
described next.
• VotingRes. VotingRes is the validation result generated by

the voting policy when an edit proposal passes the voting
policy. This result is recorded in the blockchain and used
for the validation of the edit operation.

• ModifiedTrans. After VotingRes is recorded in the
blockchain ledger, the originator of the edit proposal
sends a modification request transaction ModifiedTrans.
This transaction is used by the node to automate the edit-
ing of the ledger and contains the necessary information,
such as the on-chain index of the offending content and
the edited content.

B. Vote to Determine the Content of the Violation

The identification of the offending content is actually
entirely dependent on the requirements of the application.
We will not set the requirements for specific content here but
will only analyze how to make the determination. We will
discuss this for three types of blockchains (private, consortium
and public). Finally, we will give a violation content iden-
tification procedure, called the contract-based locked voting
scheme. The details are discussed below.
• Private blockchain. The bookkeeping permissions of pri-

vate blockchains are often held by a central authority,
so the determination of editing content can also be given
to this authority.

• Consortium blockchain. The bookkeeping permissions of
consortium blockchains (e.g., Fabric [34]) are held by
a set of already determined nodes, so the determination
of the editorial content is simply left to such nodes for
voting. Of course, it is also possible to adopt the voting
scheme using contracts that we proposed in the public
chain section for editorial content determination.

• Public blockchain. The uplinking authority of the public
blockchain is mastered by all the nodes involved in the
public blockchain, and there are already some options,
which we will discuss later.



2430 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. Comparison of data computations for the block header.

Fig. 3. Editing scheme for adding blocks.

– Voting by all nodes in the public blockchain. A per-
mission determination mechanism whereby miners
vote when packing blocks is described in Deu-
ber et al.’s paper, and a block editing function
is implemented based on this vote. In this work,
no chameleon hash is used, and the blockchain
will “break” when editing the blocks. Moreover,
the scheme requires every miner to participate in
voting. In practice, most miners may not care about
editing content and tend to adopt a default yes or no
strategy. This can make the usability of the scheme

questionable. However, it is certainly an excellent
solution in terms of design ideas and can be well
integrated with our design.

– Voting by the identified partial nodes in the public
blockchain or introducing trusted third parties. A
paper by Ateniese et al. [5] mentions selecting trusted
partial nodes in the public blockchain and granting
editing privileges; a trusted third party can also be
used to grant editing privileges, as in the work of
Deler et al. Obviously, these approaches have some
limitations for use in public blockchains.



DAI et al.: PRBFPT: A PRACTICAL REDACTABLE BLOCKCHAIN FRAMEWORK WITH A PUBLIC TRAPDOOR 2431

Contract-Based Locked Voting Scheme: Based on the exist-
ing schemes, we consider that editorial content determination
should be proposed by content stakeholders. We propose a
contract-based locked voting scheme with the help of smart
contracts [35] and transaction identifier (TXID) technology
(the TXID can be used to index the corresponding transaction
in the blockchain). The results of this scheme can be easily
authenticated by nodes and can be easily made compatible
with blockchains that have smart contract functionality. Then,
the default voting scheme used is this scheme.
• Member record. When each member uses the contract for

the first time, the contract records the member’s address
and adds it to the member set AddSet. The contract
records the number of times the member invokes the
contract and the total number of invocations. We evaluate
the member’s activity according to these numbers.

• Set the voting period and strategy. Voting cannot be
conducted endlessly. Referring to the concurrency speed
of Ethereum2 and assuming the minimum time that a
voting event may be noticed as a hotspot [36], [37],
we generally set the voting period (the time limit of one
vote) to two or three days. The setting of the voting
strategy depends on the specific application. For example,
voting success can be defined as the number of supporters
outweighing the number of opponents.

• Voting stage. When a vote is initiated, we lock the current
AddSet and sort it in descending order of member activity.
A new set VoterSet is formed by selecting highly active
users whose cumulative activity is more than half of
the total activity. Only the members in VoterSet corre-
sponding to each voting event can vote on that event.
We use the contract for voting and have a voting period
predefined in the contract. After a certain number of
members agree to vote in a period, we will obtain a tuple
VotingRes(OldHash,NewDataHash,Type,Res) recorded on
the chain. OldHash represents the hash of the transaction
to be modified. NewDataHash denotes the edited data
hash. T ype denotes the type of editing, such as delete,
modify, etc. Res indicates the result of the vote. This
result has a value of true when the voting policy is
satisfied; otherwise, it is false. VotingRes is typically
generated automatically by the contract or by a validation
request. We specify that none of the VotingRes values can
be edited, which can be easily verified. The meta-ancestor
can be found in the blockchain via the TXID of VotingRes
(TxidVres).

• VotingResults. A node indexed by TxidVres to the valida-
tion result VotingRes generated during the voting phase.
This confirms that VotingRes has not been edited. The
node verifies that the accepted NewData, T ype is cor-
rect and Res is true to determine the validity of the vote.

C. Editing Scheme for Adding Blocks

We designed a ledger editing process that is executed by
all nodes. The nodes execute this process automatically after
the voting result VotingRes above is uploaded and the node

2https://ethereum.org/en/developers/docs/blocks/

receives the modification request transaction ModifiedTrans.
The scenario described below is a one-time edit process for a
particular violation record.

To facilitate understanding, we add some definitions.
• Bi is the block containing the transaction that needs to

be edited, and Bi−1 is the block that precedes it.
• τ is the original transaction that will be edited, which is

recorded in Bi . τ ′ is the edited transaction.
• ModifiedTrans(NewData,Type,TxidVres). This is the mod-

ification request transaction sent by the editor. NewData
represents the edited data, T ype represents the edit type,
and TxidVres is used to index the voting result corre-
sponding to NewData.

The details of the process are explained below.
• Verify VotingRes. After the node receives ModifiedTrans,

it finds the voting result VotingRes according to TxidVres
and verifies that NewData, T ype matches the record in
VotingRes.

• Create new block data. Create a new block B∗i whose
block data contain all the transactions in Bi ’s data except
τ and τ ′. In other words, the data of B∗i are the data of
Bi that have been replaced by τ .

• Fill in a new block header. Fill in the block header of B∗i
based on the block header of Bi and the block data of
B∗i . Compute the hash H(B∗i ) of B∗i .

• Insert new block. Insert block B∗i before Bi , remove the
information about transaction τ from Bi , and compute
the hash collision of transaction τ (compute RTrans) to
ensure that the Merkle hash of Bi remains unchanged.
After this, populate H(B∗i ) with the previous block hash
field in the Bi block header and recompute the hash
collision of Bi (compute RHeader) to ensure that the hash
H(Bi ) computed by Bi remains unchanged. Eventually,
fields such as the front and back indices of blocks
Bi−1,B∗i ,Bi are modified. At this point, Bi is marked
as an invalid block. Fig. 3 shows the change in the block
header fields in block (Bi−1,B∗i ,Bi ) after inserting the
new block.

• Update ledger. Write the constructed new block to the
ledger as an add. After that, construct block S by
following the normal block construction process for Mod-
ifiedTrans and the transactions packaged with it. It is
placed at the very end of the ledger in the same way
as the additions. At this point, from the perspective of
the ledger, the blocks (Bi−1,B∗i ,Bi , . . . ,S) are placed
in the order of (Bi−1,Bi , . . . ,B∗i ,S). Fig. 4 shows the
relationship between the positions of these blocks in the
ledger.

D. Transaction Validation Algorithm

Before introducing the transaction validation algorithm, the
following definitions are added to facilitate the understanding
of the flow of algorithm execution.
• ModifiedTrans(NewData,TxidVres): This is the modified

request transaction, where NewData represents the edited
data and TxidVres is used to locate the voting results
corresponding to NewData.



2432 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 4. Changes to the ledger after adding blocks.

• VotingRes(OldHash,NewDataHash,Res): This is the vot-
ing result validation transaction, where OldHash rep-
resents the data hash of the transaction to be edited.
NewDataHash denotes the edited data hash. Res denotes
the result of the vote. This result has the value true when
the voting policy is satisfied; otherwise, it is false.

• τ(Data,SigTrans,RTrans): The structure of a transaction.
Data is the data for the transaction. The Data of a partic-
ular transaction can be transformed into structures such
as ModifiedTrans and VotingRes. SigTrans for ordinary
and voting transactions is false, and SigTrans for edited
transactions is true. RTrans is the random number of
transactions used to compute the Merkle hash. The value
of RTrans for regular transactions is 0, and RTrans for
postediting transactions is computed by the ChamCol
function.

• BN (PreBlock, Next Block, Cham Param(hk, tk),

RHeader, PreHash, Cham PreHash, T x Root):
The block BN where the transaction τ is located.
PreBlock,NextBlock is the index of BN ’s previous block
BN−1 and next block BN+1. ChamParam(hk,tk) is the
parameter needed to compute the chameleon hash.
PreHash is the hash obtained from the block header of
BN−1 after the block header hash calculation function
HeaderCal. ChamPreHash is the hash computed by the
chameleon hash calculation function ChamHashCal with
PreHash, hk and RHeader as parameters.

• {true, f alse} ← V alidateBlock(BN ): This function is
used to verify whether the block is legal. The input
to the function is a block, including the block header
and the block data. RTrans and SigTrans are validated
for each transaction using the Merkle hash calculation
(MerkelCal). RHeader in the block header is verified
using the block header hash calculation (HeaderCal).
If the computations all match those recorded in block
BN , then output true (otherwise, output false).

• (I nvBlock)← Get I nvBlocks(Next Block): This func-
tion is used to obtain invalid blocks. The next block
BN+1 of block BN is searched by index. In addition, it is
determined whether BN+1 is an invalid block according
to BN+1(RHeader). If BN+1 is an invalid block and the
return value of V alidateBlock(BN+1) is true, then the
function returns BN+1. Otherwise, it returns null.

Algorithm 1 Ordinary Transaction Validation
ORDTRANSVED(BN , τ )

if V alidateBlock(BN ) ̸= true then return f alse
select Next Block ∈ BN

(InvBlock) < −Get I nvBlocks(Next Block)

if InvBlock = null then return true
VerT < −I nvBlock(τ ′)

if VerT ̸= τ then return f alse
return true

• (M Block, V Block) ← Get EditV er I n f (BN , τ ): This
function is used to obtain the block MBlock where
ModifiedTrans is located and the block V Block where
VotingRes is located associated with the edited trans-
action. MBlock is obtained based on BN (it is the
block where MBlock is 1 greater than the BN block
number). The ModifiedTrans in that block is obtained.
VotingRes and the block V Block in which it is located
are obtained by the index of VotingRes (T xidV res ∈
Modi f iedT rans).

b ← OrdT ransV ed(BN , τ ): This validates the ordinary
transaction τ . The input block BN is a valid block, and the
transaction τ is an ordinary transaction in it. If validation
is successful, true is output (otherwise, false is output).
First, V alidateBlock(BN ) is computed to verify the data
authenticity of τ . Then, the invalid block (InvBlock) of BN
is obtained by the function InvBlocks and the index of the
next block (Next Block ∈ BN ). If no InvBlock is obtained,
then the transaction is validated successfully. If InvBlock is
obtained, the transaction τ ′ in the invalid block that matches
the transaction τ is compared. The comparison includes all
relevant fields of the two transactions and the data hash
of the transaction. If the comparison results all agree, the
transaction is verified successfully (if the results do not agree,
the verification fails).
{true, f alse} ← EditedT ransV ed(BN , τ ): This validates

the edited transaction τ . Input block BN is a valid block, and
transaction τ is the edited transaction in it. If validation is
successful, true is output (otherwise, false is output). First,
the legitimacy of the current block is verified. Then, function
GetEditVerInf is used to obtain the blocks where VotingRes
and ModifiedTrans are located. VotingRes and ModifiedTrans
are verified by using the algorithm OrdTransVed to ensure
they have not been edited. Finally, the hash of τ is compared
with the hash recorded in VotingRes, and the data of τ are
compared with the data recorded in ModifiedTrans. If all the
values match, validation is successful (otherwise, validation
fails).

E. Discussion

There is a trapdoor management problem in redactable
blockchains implemented based on the chameleon hash.
Because trapdoor exposure results in any node having the
ability to forge blocks, users will question the trustworthiness
of the content of transactions in the blockchain. Traditional
solutions aim to keep trapdoors from being exposed as well



DAI et al.: PRBFPT: A PRACTICAL REDACTABLE BLOCKCHAIN FRAMEWORK WITH A PUBLIC TRAPDOOR 2433

Algorithm 2 Edited Transaction Validation
EDITEDTRANSVED(BN , τ )

if V alidateBlock(BN ) ̸= true then return f alse
(M Block, V Block) < −Get EditV er I n f (BN , τ )

select Modi f iedT rans ∈ M Block
select V otingRes ∈ V Block

b1 = OrdT ransV ed(M Block, Modi f iedT rans)
b2 = OrdT ransV ed(V Block, V otingRes)

if b1 ̸= true∥b2 ̸= true then return f alse
select Data ∈ τ

T Hash = H(Data)

select NewData ∈ Modi f iedT rans
select NewDataHash ∈ V otingRes
if Data ̸= NewData∥T Hash ̸= NewDataHash
then return false
return true

as possible. PRBFPT circumvents this problem by directly
exposing trapdoors. Next, some features of public trapdoors
and PRBFPT are discussed.

1) Public Trapdoor: The trapdoor secret key of PRBFPT is
consistent across all nodes, and the corresponding information
is publicly recorded in the block header. This means that the
trapdoor of the chameleon hash is directly made public to
everyone. The verification process of the chameleon hash is
automated by all nodes and is no different from verifying
SHA256 in the blockchain. The editing involved in PRBFPT
consists of two parts: editing the content of the transaction
data and modifying the block order of an invalid block when
inserting the block. Later, we will show that forging data is
not feasible with these two features.

Forging transaction data is not feasible because only the
data in the secure block are valid in PRBFPT. We only discuss
forging the data in a secure block. The method of verifying
the transaction data is to first compute the chameleon hash of
the transaction and then compute the Merkle hash. The Merkle
hash is generally computed using SHA-256, and creating hash
collisions is almost impossible. Using the chameleon hash of
a transaction to create a hash collision requires modifying the
random transaction validation number. With the requirement
that the initial value of the random transaction validation
number is 0 in all secure blocks, forging transaction data is
not feasible.

Modifying the block order is not feasible. Suppose an
adversary forges a secure block and modifies the block order
so that the forged block is valid. The verification function
of PRBFPT can easily detect this. The validity of an edit
operation requires first verifying the validity of the vote result.
The vote result cannot be edited, which means that its security
is consistent with the security of the blockchain consensus.
An adversary can only generate the voting result by a 51%
attack to falsify the data. Therefore, it is not feasible to modify
the block order.

In summary, PRBFPT addresses the vulnerability of block
content due to disclosing trapdoors. Thus, it is able to use
alternative chameleon hash algorithms, and there is no need
for trapdoor management.

2) Features of PRBFPT:
a) The length of the edited content is not limited:

The editing process of PRBFPT adds new block data at the
end of the ledger and modifies the index of the original
block, changing the block order. There is no problem of
operating directly on the original block data. For example,
when the modified data are longer than the original data, the
edit operation will overwrite the next data, causing it to be
unexecutable. Obviously, in contrast to this method of editing,
PRBFPT is not limited in terms of editing length.

b) Multiple edits can be made to the same block: The
currently given algorithm illustrates only one edit implementa-
tion. The principle of multiple edits is the same as that of one
edit. It is only necessary to perform another edit operation with
the block of the previous edit as the object. Accordingly, the
validation algorithm needs to obtain all the historical blocks
of one edit operation for validation.

c) Auditable editing operations: Regarding the auditabil-
ity of edit permission determination, PRBFPT performs edit
permission determination by voting and requires that the result
of the voting be recorded on the chain and can be verified by
node automation. Users can retrieve the whole voting process
on the chain. Second, from the perspective of the auditability
of edited content, PRBFPT requires that the edited transactions
be marked. Users can easily verify their validity.

d) Flexible deletion of raw data: PRBFPT is very flex-
ible in this respect, depending entirely on the needs of the
application. Users can choose to delete the raw data by default,
not to delete it, or delete it after a limited number of blocks.

F. Security Analysis

Theorem 1: If H(·) is a collision-resistant cryptographic
hash function and the number of malicious users participating
in the voting does not exceed a certain threshold, then an
adversary cannot perform improper editing. In other words,
the redaction scheme is secure.

Proof: Clearly, this process is consistent with the security
of voting using smart contracts if subsequent modification
behavior is not considered, relying on the fact that the number
of malicious voting participants is small and does not exceed
the threshold for security. Since the trapdoor of CH is public,
any user with doubts about the original transaction τ can pro-
pose an alternative transaction τ ′ and easily find r ′ satisfying
CH(H(τ.Data), r) = CH(H(τ ′.Data), r ′). The voting partic-
ipant then considers the plausibility of the new transaction
τ ′ replacing the old transaction τ . An adversary can propose
τ̂ that satisfies CH(H(τ̂ .Data), r) = CH(H(τ.Data), r) to
challenge the reasonableness of the modification operation or
CH(H(τ̂ .Data), r ′) = CH(H(τ ′.Data), r ′) to tamper with the
modified new transaction. Since the adversary did not initiate
the voting contract, the voting result and the newly generated
block on the chain will not be changed in any way, and r
and r ′ cannot be modified. Therefore, the attack can only
succeed if the adversary proposes a transaction τ̂ that satisfies
H(τ̂ .Data) = H(τ.Data) or H(τ̂ .Data) = H(τ ′.Data).
Then, a successful adversary can break the collision resistance
of H(·). If the adversary is able to manipulate the consensus
of the blockchain to control the voting result, it will lead to



2434 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

a failure of the security of the whole blockchain. An editable
blockchain with a secure voting process is a secure editing
method. □

Furthermore, from this, we can deduce that trapdoors in
the chameleon hash are not directly related to the security of
blockchain editing operations and that trapdoor disclosure does
not affect the security of the data. This enables our scheme
to apply various chameleon hash algorithms with different
characteristics.

Theorem 2: If the blockchain is consistent before editing,
then the editing operation will not cause blockchain consis-
tency to fail; that is, it will not cause a fork to arise.

Proof: Modules such as data repair that need to be
added to the blockchain client are based entirely on functions
that come with the nodes (participants) themselves, so there
is no need to consider the problem that each node’s block
number may be different during synchronization. Therefore,
only the case in which all nodes have exactly the same block
data is discussed. The process of the modification scheme is
as follows: (1) submitting an exception in the blockchain;
(2) voting using the blockchain; (3) broadcasting a request
for modifying the transaction in the blockchain based on the
voting result; and (4) each node modifying the transaction
based on the modification request by utilizing the modifica-
tion module embedded in the node. (4) is automatically and
consistently executed by all nodes only after the transactions
of (1), (2), and (3) are verified on the blockchain. It can be
seen that these operations are recorded and executed on the
blockchain, which means that they are synchronized by all
nodes; otherwise, a fork will occur. Forking is something that
needs to be addressed and avoided in the original blockchain
scheme, so it is not within the scope of this scheme. Therefore,
if the blockchain is consistent before the modification, then
performing the modification will not cause the blockchain
consistency to fail. □

In addition, this scheme has other security properties.

a) Attack to forge the ledger: If the adversary bypasses
the voting operation in the modification process, it is not
possible to implement the modification by directly placing a
modified block on the blockchain. The validation process of
the modification operation first needs to verify the validity of
the voting result using the designed verification algorithms 1
and 2. The block involved in the voting and the voting result
cannot be modified by default, and the modification operation
does not support modification of this part. This means that
an adversary cannot bypass the voting operation to initiate an
attack, and the difficulty of faking the voting process is the
same as the difficulty of breaking the underlying consensus
security of the blockchain.

b) Replay attack: If bypassing the vote is not possible,
then an adversary may replay the results of the vote to modify
the blockchain multiple times, but again, this is not a success-
ful attack. PRBFPT requires that the vote for modification
be accompanied by a hash of the modified data. That is, the
adversary succeeds if and only if the hash of the data is the
same when edited multiple times, which violates the collision
resistance of the hash.

TABLE III
PRBFPT’S VALIDATION MODULE AND OPERATIONS

IV. IMPLEMENTATION

A. Modification of Ethereum

1) Chameleon Hash Selection: We choose to implement the
chameleon hash calculation based on the simplest primitive
algorithm [6]. Since trapdoors can be made public, they can
be used to accelerate hash operations.
• (g, x, y, p, q) ← Cham Pre(κ): The secret key genera-

tion algorithm takes a security parameter κ as input and
outputs the public key g, p = kq+1, a trapdoor secret key
x , and a computationally convenient y(y = x−1 mod q).
All Ethereum nodes store the parameters g, p, x, y, q
needed for consistent chameleon hash computations.

• h ← Cham Hash(g, x, m, r): The chameleon hash com-
putation algorithm takes a chameleon hash public key
g, a trapdoor secret key x , a plaintext string m, and
a verified random number R as input and outputs a
chameleon hash value h. m is actually the hash value of
a transaction, i.e., m = H(τ.Data). The specific formula
is g(PreHash+x ·r mod q) mod p.

• {0, 1} = ChamV er(g, x, (m, r), h): The chameleon
hash verification algorithm takes a chameleon hash pub-
lic key g, a plaintext string m, a verified random
number r and a chameleon hash value h as input.
Cham Hash(g, x, (m, r)) is computed to obtain h′, and
it is compared with h. If the hashes h and h′ are equal,
then it will output 1 (otherwise, it will output 0).

• r ′ ← ChamCol(x, m′, (m, r)): The chameleon hash
collision generation algorithm takes a chameleon
hash public key hk, a plaintext string m, a verified
random number r and a new plaintext string m′ as
input and outputs a verified random number r ′ that
matches the plaintext string m′; this verified random
number r ′ will satisfy ChamV er(hk, (m, r), h) =

ChamV er(hk, (m′, r ′), h) = 1. If the plaintext
with the verified random number (m, r) is invalid,
then null will be output. The specific formula is
r ′ ≡ (m − m′) · y − r mod q .

2) Additions to Block Header Field: The relevant index and
random number are added to the block header of the Ethereum
block, and the relevant functions for serializing the block are
rewritten. The initial value of the random number is set to 0 in
the function that generates the block, and if this initial value
is not 0, the block is invalid.

3) Additions to Transaction Field: A random number and
vote verification address are added to the transaction field in
Ethereum. When a voting verification address exists in the
transaction field, it is proven to be an edited transaction.

4) Additions to the Block Editing Module and Detection
Module: The block editing module and the module for detect-
ing modified transactions are added when the Ethereum blocks



DAI et al.: PRBFPT: A PRACTICAL REDACTABLE BLOCKCHAIN FRAMEWORK WITH A PUBLIC TRAPDOOR 2435

are uploaded to the chain, which implements the one-time
edit and delete function in the design and directly deletes the
original data by default. The performance loss of adding the
module will be explained later.

B. Contract Design and Implementation

A contract mig is used to implement data uploading. The
user calls mig to upload data. When a user uploads data for
the first time, mig records the user’s address. Each time a user
invokes this contract, that user’s activity and the total activity
are increased by 1.

The initiator calls the repair initiation function in mig with
the input parameter being the hash of the repair command.
A structure is generated by mig to record this behavior, and
votes for addresses recorded in the contract are recorded by
this structure. We calculate cumulative activity in descending
order of user activity ranking. Highly active users whose
cumulative activity exceeds half of the total activity are
selected for voting. Only if more than half of the addresses
vote will the editorial proposal be approved.

The initiator obtains the voting result through the response
function and initiates an ordinary transfer transaction based on
the result. The information accompanying this transaction is
the repair command constructed by the initiator, the hash of
the repair-initiated transaction, and the hash of the transaction
in response to the result.

C. Functional Test

To verify that PRBFPT is feasible, some code modules are
added to some functions of Ethereum (such as those related
to data upload) to implement the one-time editing scheme in
the design, and a functional test is conducted.

1) Test Process: Common transactions are uploaded
through the contract. Voting is conducted through the contract
before each edit. We choose to test the overall additional
increase in performance metrics for the functions that are
modified during the modify and delete operations and the
validation of each transaction. The degree of difference of
the modified system relative to the existing Ethereum system
is evaluated. Finally, we compare the gas loss of sending a
normal Ethereum transaction [38], [39], [40] with a special
transaction that initiates an edit operation as necessary.

2) Test Sample: The number of transactions in a block
is experimentally set to have a maximum of 50 transactions
in a block. The test condition uses a block with only one
special transaction in a repair or delete operation, and together
with the verification module, the time of the operation on
the underlying ledger is recorded. All results are obtained by
averaging 1000 tests.

3) Experimental Conditions: The machine used for the
experiments is an Ubuntu 18.04 virtual machine. The software
platform is VMware Workstation Pro 16.1.2, and the virtual
machine has 8G of RAM. The host configuration is an Intel(R)
Core(TM) i5-10400 CPU with 16G of RAM.

4) Analysis of the Experimental Results: From the perfor-
mance loss of the native functions of Ether and the functions
of PRBFPT, the extra overhead is at the microsecond level and

TABLE IV
PRBFPT’S SPECIAL TRANSACTIONS AND ORDINARY TRANSACTIONS IN

TERMS OF GAS

will only reach the millisecond level at most, which is com-
pletely negligible compared to the second-level confirmation
time of Ethereum. In terms of the consumption of gas for both
transactions, the gas needed for PRBFPT transactions is not
much larger than the amount of gas for ordinary transactions
in Ethereum, and it is feasible on the public chain.

V. CONCLUSION

We have described our proposed practical redactable
blockchain scheme (PRBFPT). It consists of two parts, namely,
voting to identify the offending content and editing block
additions. PRBFPT can be implemented using any chameleon-
hash algorithm, and the trapdoor of the algorithm is public
knowledge. There is flexibility in choosing whether to delete
the original block data associated with the edit operation, and
the length of the edited data is not limited by the length
of the original block data. We also presented our proposed
contract-based locked voting scheme, and PRBFPT is not
limited to this voting scheme. The proposed contract-based
locked voting scheme can be incorporated into any voting
scheme and adapted to different blockchains, as long as the
final result of the voting scheme can be automatically validated
by the nodes. The findings from the evaluation of our PRBFPT
implementation on Ethereum demonstrated that the overhead
of the additional modules will be at most at the millisecond
level, which is negligible in practice.

REFERENCES

[1] J. Golosova and A. Romanovs, “The advantages and disadvantages of the
blockchain technology,” in Proc. IEEE 6th Workshop Adv. Inf., Electron.
Electr. Eng. (AIEEE), Nov. 2018, pp. 1–6.

[2] X. Fu, H. Wang, and P. Shi, “A survey of blockchain consensus
algorithms: Mechanism, design and applications,” Sci. China Inf. Sci.,
vol. 64, no. 2, pp. 1–15, Feb. 2021.

[3] R. Matzutt et al., “A quantitative analysis of the impact of arbitrary
blockchain content on Bitcoin,” in Proc. FC, vol. 10957. Nieuwpoort,
Belgium, 2018, pp. 420–438.

[4] C. Hopkins. If You Own Bitcoin, You Also Own Links to Child Porn.
Accessed: Jun. 21, 2021. [Online]. Available: https://www.dailydot.com/
debug/bitcoin-child-porn-transaction-code/

[5] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable
blockchain—Or—Rewriting history in Bitcoin and friends,” in Proc.
IEEE Eur. Symp. Secur. Privacy, Paris, France, Apr. 2017, pp. 111–126.

[6] H. Krawczyk and T. Rabin, “Chameleon signatures,” in Proc. 7th Netw.
Distrib. Syst. Secur. Symp., San Diego, CA, USA, 2000, pp. 1–12.

[7] G. Ateniese and B. de Medeiros, “Identity-based chameleon hash and
applications,” in Proc. FC, vol. 3110. Key West, FL, USA, 2004,
pp. 164–180.

[8] X. Chen, F. Zhang, and K. Kim, “Chameleon hashing without key
exposure,” in Proc. 7th Int. Conf. Inf. Secur., Palo Alto, CA, USA,
vol. 3225, Sep. 2004, pp. 87–98.

[9] G. Ateniese, D. H. Chou, B. de Medeiros, and G. Tsudik, “Sanitizable
signatures,” in Proc. 10th Eur. Symp. Res. Comput. Secur., Milan, Italy,
vol. 3679, Sep. 2005, pp. 159–177.

[10] W. Gao, F. Li, and X. Wang, “Chameleon hash without key exposure
based on Schnorr signature,” Comput. Standards Interface, vol. 31, no. 2,
pp. 282–285, Feb. 2009.



2436 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

[11] F. Bao, R. H. Deng, X. Ding, J. Lai, and Y. Zhao, “Hierarchical identity-
based chameleon hash and its applications,” in Proc. ACNS, vol. 6715.
Nerja, Spain, 2011, pp. 201–219.

[12] X. Chen, F. Zhang, W. Susilo, H. Tian, J. Li, and K. Kim, “Identity-based
chameleon hash scheme without key exposure,” in Proc. 15th Australas.
Conf. Inf. Secur. Privacy, Sydney, NSW, Australia, vol. 6168, Jul. 2010,
pp. 200–215.

[13] M. V. Ranjith Kumar and N. Bhalaji, “Blockchain based chameleon
hashing technique for privacy preservation in E-governance system,”
Wireless Pers. Commun., vol. 117, no. 2, pp. 987–1006, Mar. 2021.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. 13th
ACM Conf. Comput. Commun. Secur., Alexandria, VA, USA, Oct. 2006,
pp. 89–98.

[15] U. C. Yadav and S. T. Ali, “Ciphertext policy-hiding attribute-based
encryption,” in Proc. Int. Conf. Adv. Comput., Commun. Informat.
(ICACCI), Oakland, CA, USA, Aug. 2015, pp. 2067–2071.

[16] D. Derler, K. Samelin, D. Slamanig, and C. Striecks, “Fine-grained and
controlled rewriting in blockchains: Chameleon-hashing gone attribute-
based,” in Proc. Netw. Distrib. Syst. Secur. Symp., San Diego, CA,
USA, 2019, pp. 1–15.

[17] P. Duan, J. Wang, Y. Zhang, Z. Ma, and S. Luo, “Policy-based chameleon
hash with black-box traceability for redactable blockchain in IoT,”
Electronics, vol. 12, no. 7, p. 1646, Mar. 2023.

[18] S. Xu, J. Ning, J. Ma, G. Xu, J. Yuan, and R. H. Deng, “Revocable
policy-based chameleon hash,” in Proc. ESORICS, vol. 12972. Darm-
stadt, Germany, 2021, pp. 327–347.

[19] M. Jia et al., “Redactable blockchain from decentralized chameleon
hash functions,” IEEE Trans. Inf. Forensics Security, vol. 17,
pp. 2771–2783, 2022.

[20] Y. Tian, N. Li, Y. Li, P. Szalachowski, and J. Zhou, “Policy-based
chameleon hash for blockchain rewriting with black-box accountability,”
in Proc. Annu. Comput. Secur. Appl. Conf., Austin, TX, USA, Dec. 2020,
pp. 813–828.

[21] M. Khalili, M. Dakhilalian, and W. Susilo, “Efficient chameleon hash
functions in the enhanced collision resistant model,” Inf. Sci., vol. 510,
pp. 155–164, Feb. 2020.

[22] J. Groth, “Short pairing-based non-interactive zero-knowledge argu-
ments,” in Proc. 16th Int. Conf. Theor. Appl. Cryptol. Inf. Secur.,
Singapore, vol. 6477, Dec. 2010, pp. 321–340.

[23] J. Groth and M. Maller, “Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs,” in Proc. 37th Annu.
Int. Cryptol. Conf., vol. 10402. Santa Barbara, CA, USA, Aug. 2017,
pp. 581–612.

[24] C. Wu, L. Ke, and Y. Du, “Quantum resistant key-exposure free
chameleon hash and applications in redactable blockchain,” Inf. Sci.,
vol. 548, pp. 438–449, Feb. 2021.

[25] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
signatures and bimodal Gaussians,” in Proc. 33rd Annu. Int. Cryptol.
Conf., Santa Barbara, CA, USA, vol. 8042, Aug. 2013, pp. 40–56.

[26] Y. Li and S. Liu, “Tagged chameleon hash from lattice and application
to redactable blockchain,” IACR Cryptol. ePrint Arch., vol. 2023, p. 774,
May 2023.

[27] X.-Y. Li, J. Xu, L.-Y. Yin, Y. Lu, Q. Tang, and Z.-F. Zhang, “Escaping
from consensus: Instantly redactable blockchain protocols in permis-
sionless setting,” IEEE Trans. Depend. Sec. Comput., vol. 20, no. 5,
pp. 3699–3715, Feb. 2023.

[28] G. Asharov and Y. Lindell, “A full proof of the BGW protocol for
perfectly secure multiparty computation,” J. Cryptol., vol. 30, no. 1,
pp. 58–151, Jan. 2017.

[29] M. Ben-Or and A. Wigderson, “Completeness theorems for non-
cryptographic fault-tolerant distributed computation,” in Proc. 20th
Annu. ACM Symp. Theory Comput., Chicago, IL, USA, 1988, pp. 1–10.

[30] Z. Chen, Y. Tian, and C. Peng, “An incentive-compatible rational secret
sharing scheme using blockchain and smart contract,” Sci. China Inf.
Sci., vol. 64, no. 10, pp. 1–21, Oct. 2021.

[31] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Bus. Rev., p. 21260, Oct. 2008.

[32] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014.

[33] D. Deuber, B. Magri, and S. A. K. Thyagarajan, “Redactable blockchain
in the permissionless setting,” in Proc. IEEE Symp. Secur. Privacy (SP),
San Francisco, CA, USA, May 2019, pp. 124–138.

[34] E. Androulaki et al., “Hyperledger fabric: A distributed operating system
for permissioned blockchains,” in Proc. 13th EuroSys Conf., Porto,
Portugal, Apr. 2018, pp. 30:1–30:15.

[35] M. Alharby and A. van Moorsel, “Blockchain-based smart contracts:
A systematic mapping study,” 2017, arXiv:1710.06372.

[36] J. Neylon. How Many Tweets Does it Take to Trend? Accessed:
Oct. 13, 2021. [Online]. Available: https://jungle.marketing/news/how-
many-tweets-does-it-take-to-trend/

[37] M. F. Service. The Mathematical Formula for How Celebrity Gossip
Spreads on the Internet. Accessed: Oct. 10, 2021. [Online]. Available:
https://www.dailymail.co.uk/sciencetech/article-1262611/The-mathemat
ical-formula-gossip-spreads-internet.html

[38] J. Barragan. What is Ethereum Transaction Gas Limit? Accessed:
Jun. 22, 2022. [Online]. Available: https://www.blocknative.com/blog/
ethereum-transaction-gas-limit

[39] M. Garreau. Ethereum 101: How Are Transactions Included in a Block?
Accessed: Aug. 5, 2021. [Online]. Available: https://medium.com/
ethereum-grid/ethereum-101-how-are-transactions-included-in-a-block-
9ae5f491853f

[40] J. Hendy. How Long Does it Take to Transfer Ethereum (ETH).
Accessed: May 16, 2022. [Online]. Available: https://www.hedgewith
crypto.com/how-long-transfer-ethereum/

Weiqi Dai (Member, IEEE) received the Ph.D.
degree in computer science and technology from
the Huazhong University of Science and Technology
(HUST). He is currently an Associate Professor
of cyber science and engineering with HUST. His
expertise and research interests include blockchain,
data privacy, cloud computing security, trusted com-
puting, and virtualization technology.

Jinkai Liu received the M.S. degree in cyber science
and engineering from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2023. His research interests include security in
blockchain and data privacy.

Yang Zhou received the master’s degree from the
School of Computer Science and Artificial Intelli-
gence, Wuhan University of Technology, in 2022.
He is currently pursuing the Ph.D. degree with
the School of Cyber Science and Engineering,
Huazhong University of Science and Technology.
His research interests include security in blockchain
and data privacy.



DAI et al.: PRBFPT: A PRACTICAL REDACTABLE BLOCKCHAIN FRAMEWORK WITH A PUBLIC TRAPDOOR 2437

Kim-Kwang Raymond Choo (Senior Member,
IEEE) received the Ph.D. degree in information
security from the Queensland University of Tech-
nology, Australia, in 2006. He currently holds the
Cloud Technology Endowed Professorship with The
University of Texas at San Antonio. He was a
recipient of the 2022 IEEE Hyper-Intelligence Tech-
nical Committee (TC) Award for Excellence in
Hyper-Intelligence Systems (Technical Achievement
award), the 2022 IEEE TC on Homeland Security
Research and Innovation Award, the 2022 IEEE

TC on Secure and Dependable Measurement Mid-Career Award, and
the 2019 IEEE TC on Scalable Computing Award for Excellence in Scalable
Computing (Middle Career Researcher). He is the Founding Chair of the
IEEE Technology and Engineering Management Society TC on Blockchain
and Distributed Ledger Technologies. He is the Founding Co-Editor-in-Chief
of Distributed Ledger Technologies: Research and Practice (ACM).

Xia Xie received the Ph.D. degree in computer
architecture from the Huazhong University of Sci-
ence and Technology in 2006. She is currently a
Professor with the School of Computer Science and
Technology, Hainan University, China. Her research
interests include knowledge graph and data mining.

Deqing Zou received the Ph.D. degree from HUST
in 2004. He is currently a Professor of computer sci-
ence with HUST. He has applied almost 20 patents,
published two books (one is entitled “Xen Virtualiza-
tion Technologies” and the other is entitled “Trusted
Computing Technologies and Principles”) and more
than 50 high-quality papers, including papers pub-
lished by IEEE TRANSACTIONS ON DEPENDABLE
AND SECURE COMPUTING and IEEE Symposium
on Reliable Distributed Systems. He has been the
Leader of one “863” project of China and three

National Natural Science Foundation of China (NSFC) projects and a core
member of several important national projects, such as National 973 Basic
Research Program of China. His main research interests include system
security, trusted computing, virtualization, and cloud security. He served as
a reviewer for several prestigious journals, such as IEEE TRANSACTIONS
ON PARALLEL AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON
COMPUTERS, IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COM-
PUTING, and IEEE TRANSACTIONS ON CLOUD COMPUTING. He is on the
editorial boards of four international journals and served as the PC chair/a PC
member for more than 40 international conferences.

Hai Jin (Fellow, IEEE) received the Ph.D. degree
in computer engineering from the Huazhong Uni-
versity of Science and Technology in 1994. He was
with The University of Hong Kong from 1998 to
2000 and a Visiting Scholar with the University
of Southern California from 1999 to 2000. He is
currently the Chair Professor of computer science
and engineering with the Huazhong University of
Science and Technology (HUST), China. He has
coauthored more than 20 books and published over
900 research articles. His research interests include

computer architecture, parallel and distributed computing, big data processing,
data storage, and system security. He is a fellow of CCF and a Life
Member of ACM. In 1996, he was awarded the German Academic Exchange
Service Fellowship to visit the Technical University of Chemnitz, Germany.
He received the Excellent Youth Award from the National Science Foundation
of China in 2001.


