
EF�CF: High Performance Smart Contract Fuzzing for Exploit Generation

Michael Rodler1, David Paaßen2, Wenting Li3, Lukas Bernhard4,
Thorsten Holz5, Ghassan Karame4, Lucas Davi2

1 Amazon Web Services, 2 University of Duisburg-Essen, 3 NEC Laboratories Europe,
4 Ruhr-University Bochum, 5 CISPA Helmholtz Center for Information Security

m@mrodler.eu, {david.paassen, lucas.davi}@uni-due.de, wenting.li@neclab.eu
{lukas.bernhard, ghassan.karame}@rub.de, holz@cispa.de

Abstract—Smart contracts are increasingly being used to
manage large numbers of high-value cryptocurrency ac-
counts. There is a strong demand for automated, efficient,
and comprehensive methods to detect security vulnerabilities
in a given contract. While the literature features a plethora
of analysis methods for smart contracts, the existing propos-
als do not address the increasing complexity of contracts.
Existing analysis tools suffer from false alarms and missed
bugs in today’s smart contracts that are increasingly defined
by complexity and interdependencies. To scale accurate
analysis to modern smart contracts, we introduce EF�CF,
a high-performance fuzzer for Ethereum smart contracts.
In contrast to previous work, EF�CF efficiently and accu-
rately models complex smart contract interactions, such as
reentrancy and cross-contract interactions, at a very high
fuzzing throughput rate. To achieve this, EF�CF transpiles
smart contract bytecode into native C++ code, thereby
enabling the reuse of existing, optimized fuzzing toolchains.
Furthermore, EF�CF increases fuzzing efficiency by employ-
ing a structure-aware mutation engine for smart contract
transaction sequences and using a contract’s ABI to generate
valid transaction inputs. In a comprehensive evaluation,
we show that EF�CF scales better—without compromising
accuracy—to complex contracts compared to state-of-the-
art approaches, including other fuzzers, symbolic/concolic
execution, and hybrid approaches. Moreover, we show that
EF�CF can automatically generate transaction sequences
that exploit reentrancy bugs to steal Ether.

1. Introduction

Ethereum is the most prominent blockchain platform
that supports smart contracts: Programs that are stored
and run as part of the blockchain protocol. Smart con-
tracts are the backbone of the emerging decentralized
finance (DeFi) industry. Due to its popularity, the security
of Ethereum and its smart contracts layer has received
considerable attention from the research community and
industry. Since the first high profile attack against “the
DAO” contract [28], the community has observed a con-
tinuous stream of attacks against smart contracts [54, 64].

Analyzing smart contract code is challenging due to
its stateful nature and the large number of potential bug
classes. Prior work on identifying vulnerabilities in smart

1 Work conducted at University of Duisburg-Essen before joining Ama-
zon.

contracts relied on various techniques, such as symbolic
execution [33, 35, 40], model checking [23, 31], and static
analysis [44, 56]. While these methods are promising,
many tools primarily identify potential bugs with heuris-
tics and do not give proof of exploitability, or they suffer
from scalability issues (e.g., due to state explosion). Fuzz
testing [10, 25, 27, 29, 39, 59] has emerged as a promising
method for detecting smart contract bugs. Fuzzing-based
approaches are able to generate the specific inputs that
allow a developer to trigger and analyze the identified
problem within a debugging environment. However, ex-
isting fuzzing approaches suffer from various drawbacks,
most notably: (1) They do not scale to complex contracts
that are used on the Ethereum blockchain today. We
identify a clear trend that smart contracts are becom-
ing more complex over time and therefore require more
complex transaction sequences for comprehensive analysis
(see Section 2). (2) They do not accurately model the
complex interactions that are possible in Ethereum, such
as reentrancy and cross-contract interactions. Especially
reentrancy attacks have emerged as one of the most critical
security issues, as demonstrated by multiple high-profile
incidents over the last years [5, 21, 28, 54]. However, ex-
isting analysis tools over-approximate reentrancy attacks,
leading to inaccurate analysis results (see Section 5.4).

In this paper, we tackle all of these challenges by
introducing Extremely Fast � Contract Fuzzer (EF�CF),
an optimized fuzzing framework and exploit generator.
Comprehensively analyzing smart contracts is challenging
because their behavior depends on their internal state,
which changes depending on the order and parameters
of called functions. Even for moderately complex con-
tracts, it is not feasible for an analysis tool to simply
execute all permutations of available functions. Using
high-throughput fuzzing guided by code coverage, EF�CF
efficiently searches the space of possible transaction se-
quences to identify those that expose a vulnerability. To
increase the fuzzing throughput, we propose to speed
up Ethereum smart contracts by translating the Ethereum
virtual machine (EVM) bytecode to equivalent C++ code
and using a high-performance coverage-guided fuzzer.

EF�CF utilizes a simple—yet powerful—bug oracle:
Ether gains. This allows EF�CF to effectively act as
an exploit generator for Ether stealing attacks. However,
Ether gains do not cover all current smart contract security
issues. In order to extend EF�CF to cover smart contract
specific bugs, EF�CF allows developers to define custom
bug oracles in their Solidity code.

449

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Michael Rodler. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00034

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
34

Besides these bug classes, reentrancy issues remain
one of the most challenging and critical vulnerabilities for
Ethereum smart contracts [8, 54]. Many existing analysis
tools attempt to detect potential reentrancy using over-
approximate analyses [10, 19, 38, 43, 53, 56]. In contrast,
EF�CF accurately detects reentrancy vulnerabilities. In-
stead of relying on heuristics, EF�CF simulates the behav-
ior of multiple attacker-controlled smart contracts. Each
test case generated by EF�CF not only specifies the trans-
actions, but also the behavior of the simulated attacker
contracts. This allows the coverage-guided fuzzing process
to explore the behavior of the attacker-controlled contracts
by attempting to execute reentrant calls and changing re-
turned data of callbacks. EF�CF does not need an explicit
bug oracle for reentrancy vulnerabilities and instead uses
the Ether gains bug oracle. This allows EF�CF to automat-
ically synthesize Solidity attack contracts that reproduce
the reentrancy attack on a live blockchain. Moreover,
EF�CF identifies compositional security issues [8] that
arise only when multiple contracts are combined. Before
deploying a certain combination of contracts, EF�CF can
fuzz the combination to detect compositional security
issues given a certain set of contracts.

We have performed a comprehensive evaluation of our
fuzzing approach. To this end, we instantiated EF�CF with
the AFL++ fuzzer [22]. We compare EF�CF to current
state-of-the-art analysis tools, such as Manticore [37],
Echidna [25], MAIAN [40], teEther [33], VeriSmart/S-
martTest [47, 48], and Smartian [10] with respect to
their time-to-bug. Overall, we spent more than 1300 CPU
days to evaluate and compare existing analysis tools and
EF�CF. We find that EF�CF is the only analysis tool ca-
pable of successfully analyzing all contracts in our bench-
mark and scales even to contracts requiring complex and
long transaction sequences to trigger a bug. In addition,
we compare the performance of EF�CF with the hybrid
fuzzers ILF [27] and ConFuzzius [53] with respect to code
coverage. Our experiments show that EF�CF outperforms
existing approaches when analyzing complex smart con-
tracts according to several code complexity metrics. We
show that EF�CF identifies 99.9 % of the access control
bugs that EthBMC [23] identified and that EF�CF finds
vulnerabilities in contracts that EthBMC could not ana-
lyze. In addition, we compare EF�CF with the symbolic
analyzer Sailfish [6] for reentrancy bugs, where we show
that EF�CF accurately detects those reentrancy issues that
are exploitable. Demonstrating the practicality of EF�CF,
we find that only 5 out of the 26 verified reentrancy bugs
of Sailfish are actually prone to reentrancy attacks that
allow the attacker to steal Ether. Finally, we show that
EF�CF is able to generate concrete transaction sequences
for the compositional reentrancy bugs in the contracts
used in the evaluation of the Serif [8] static analyzer
tool. Furthermore, EF�CF is the first analysis tool that
is capable of generating an exploit for the compositional
reentrancy attack against the Uniswap/IMBTC contracts.

Contributions In summary, our main contributions are:

• We show how to leverage conventional software
fuzzers to efficiently test smart contracts with
coverage-guided fuzzing, allowing the fuzzer to scale
to large and complex contracts. To achieve this, we
propose a transpilation approach to accelerate the

fuzzing of bytecode programs, such as the EVM.
Our approach removes the interpreter by directly
translating bytecode into native code, using C++ as
an intermediate language (Section 3). We augment
a conventional base fuzzer, such as AFL++, with a
custom mutator to implement smart contract specific
mutation operations.

• We efficiently model complex smart contract inter-
actions during fuzzing, including multiple attacker-
controlled smart contracts, reentrant calls, and cross-
contract interactions in a fuzzer. Using this ap-
proach, EF�CF can automatically generate sophisti-
cated reentrancy exploits (Section 4).

• We thoroughly evaluate the performance of EF�CF
against a large number of state-of-the-art analysis
tools (see Section 5): (a) EF�CF scales best to longer
transaction sequences when compared using time-to-
bug. (b) EF�CF achieves significantly better code
coverage than prior fuzzers on existing real-world
smart contracts, especially when considering various
code complexity metrics. (c) EF�CF is capable of
identifying access control and reentrancy bugs with
high accuracy and fewer false alarms than current
analysis tools.

To foster research on the security of smart contracts, we
release EF�CF along with all benchmarks and experiments
at https://github.com/uni-due-syssec/efcf-framework/.

2. Problem Statement

Ethereum Smart Contracts In Ethereum, each partici-
pant is identified by an address derived from cryptographic
key material. Each Ethereum account is defined by its
address and an associated balance of Ether, Ethereum’s
native cryptocurrency. Smart contract accounts are asso-
ciated with a code and program state (called storage).
An externally-owned account broadcasts a transaction to
the Ethereum network to interact with a smart contract.
Transactions are used to either transfer Ether to trigger
the execution of a smart contract or both. A transaction
consists of several fields, most importantly the destination
address, the Ether value, and the input. If the destination
address is a smart contract, Ethereum nodes execute the
smart contract with the provided input, and once a new
Ethereum block is generated, the state updates of the
transaction are included in the block and committed to
the blockchain.

Smart contracts are written in specialized pro-
gramming languages (e.g., Solidity) and compiled into
Ethereum Virtual Machine (EVM) bytecode. The EVM
bytecode is a dedicated bytecode format optimized for
small size, simplicity, and deterministic execution. Most
production-grade EVM implementations use a bytecode
interpreter to execute a smart contract. Ethereum smart
contracts only have a single entry point. The executed
high-level function is selected based on an identifier that is
provided as part of the input. The function parameters are
encoded according to the Ethereum ABI definition, which
is a de-facto standard to encode parameters to function
calls in the transaction input.

Challenges of Smart Contract Fuzzing When fuzzing
smart contracts, the goal is to identify a sequence of

450

250

500

ll
o

c

5

10

15

#
fu

n
c

25

50

#
co

m
p

2017 2018 2019 2020 2021 2022
Time

0

200

#
b

ra
n

ch

Figure 1: Increasing trend in smart contract complexity.
We measure the complexity of all unique contracts with
verified source code that appear in Ethereum until July
22, 2022.

transactions that exposes a software fault. The final trans-
action of the sequence triggers a software fault, while
the preceding transactions set up the state of the contract
such that the fault can be triggered. In this sense, testing
Ethereum smart contracts is a variant of testing stateful
software, a highly challenging problem [1, 11, 30, 52,
60]. In contrast to static analysis methods, generating
complete transaction sequences by means of fuzzing has
the advantage that it features a very low rate of false
alarms, and the result is easy to analyze: A developer or
security analyst can simply replay and debug the trans-
action sequence to determine the root cause and assess
whether the bug can be triggered in practice. However,
determining such a transaction sequence—or function call
sequence—is challenging since the search space is ex-
tremely large. There are two dimensions that must be
explored in parallel to reach high code coverage: (1) the
input to individual transactions and (2) the ordering of
the transactions. To efficiently cover this large search
space, we can exploit the fact that many of the possible
transaction sequences are redundant since they only exer-
cise the same error-handling paths over and over again.
Coverage-guided fuzzing can efficiently search the input
space of a given contract for inputs that trigger distinct
code coverage and was popularized by the success of the
American Fuzzy Lop (AFL) fuzzer [63] and many follow-
up works [22, 36]. In this context, test case throughput
emerges as an important design aspect for an effective
fuzzer. Intuitively, the greater the number of test cases
generated and executed, the greater the likelihood that a
fault will be triggered within a given time budget during
fuzzing, an inherently probabilistic process. Most fuzz
testing approaches for Ethereum smart contracts develop
new fuzzers from scratch [25, 27, 39, 53], which are
often not optimized for high throughput. For example, ILF
performs at a rate of 148 transactions per second [27],
while native code fuzzing with far more complex code
regularly achieves 10,000 or more test case executions
per second [61]. This low throughput effectively hampers
a fuzzer’s capability of analyzing complex smart contracts.

Support for Complex Smart Contracts Owing to their
increasing prevalence and ability to encode complex busi-
ness logic, smart contracts are becoming increasingly
more complex. In Figure 1, we measure how the com-

plexity of deployed contracts has evolved over time. We
analyzed 120,556 unique contracts with verified source
code that appeared in the Ethereum blockchain until July
22, 2022. For each contract, we measure the number of
logical lines of code, the number of state-changing public
functions, the number of comparison operators, and the
number of branches in the control flow. Our analysis con-
firms that contracts are becoming increasingly complex in
all aspects. For instance, among the unique smart contracts
created in 2022, we find an average of roughly 530 lines
of code and 16 state-changing public functions, while the
same metric was at 182 lines of code and 8 functions in
2017.

To exercise all code paths while testing increasingly
complex smart contracts, multiple consecutive transactions
are required to explore the internal states of a smart
contract. However, most prior studies are only limited to
rather short transaction sequences of length 3 [23, 33, 40]
or do not assess the ability to work with longer trans-
action sequences [25, 27, 53, 59]. Typically, more com-
plex contracts also require longer transaction sequences
to cover different states of the contract during testing. To
assess the ability of existing analysis tools to cope with
longer consecutive transaction sequences, we conducted
an experiment with a set of benchmark contracts with
artificial bugs. Our experiment, summarized in Table 1
and detailed in Section 5, shows that existing analysis
tools are not sufficient to analyze more complex contracts.
In particular, current fuzzing-based analysis tools [25, 53]
were unable to identify bugs that require a specifically
ordered sequence of six or more transactions. While sym-
bolic execution tools [33, 37, 40] are capable of producing
such sequences even up to ten transactions, they fail to
identify faults that require accumulation of internal state
over multiple transactions. Apart from this, none of the
analysis tools we tested are able to identify all bugs within
a generous time budget of 48 hours.

Support for Complex Smart Contract Interactions
Another challenge that we need to tackle is the frequent
interaction of smart contracts with each other. To precisely
model such an interaction, whenever a smart contract calls
another (potentially untrusted) smart contract, we must
assume that the smart contract under test can be reentered
at any function. So-called reentrancy attacks have had
devastating consequences in the past [28]. To faithfully
emulate the attacker’s capabilities with respect to reen-
trancy, we must simulate the following scenarios: At each
call to an untrusted and potentially attacker-controlled
contract, the target smart contract can be (1) reentered
at the same call depth multiple times, (2) reentered at
multiple functions, and (3) reentered by a call originating
from a different smart contract. Current analysis tools
mostly refrain from modelling arbitrary reentrant trans-
actions due to state explosion [31]; instead, most tools
utilize over-approximative detectors for reentrancy bugs
(i.e., state updates after calls [19, 53, 56]).

To better illustrate the challenge, consider the ex-
ample in Figure 2, which depicts a token-like contract
with standard transfer and allowance mechanisms that is
vulnerable to a reentrancy attack. If using the checks-
effects-interactions code pattern [50] is not possible, the
second best alternative to prevent reentrancy attacks is to

451

1 contract Bank {
2 mapping(address => uint256) balance;
3 mapping(address => bool) disableWithdraw;
4 mapping(address => mapping(address => uint256))

allow;↪→
5

6 modifier withdrawAllowed { // reentrancy locking
7 require(disableWithdraw[msg.sender] == false); _; }
8

9 function addAllowance(address other,
10 uint256 amnt)
11 { allow[msg.sender][other] += amnt; }
12

13 function transferFrom(address from,
14 uint256 amnt)
15 withdrawAllowed {
16 require(balance[from] >= amnt);
17 require(allow[from][msg.sender] >= amnt);
18 balance[from] -= amnt;
19 allow[from][msg.sender] -= amnt;
20 balance[msg.sender] += amnt; }
21

22 function withdrawBalance() withdrawAllowed {
23 // set lock
24 disableWithdraw[msg.sender] = true;
25 // reentrant calls possible here
26 msg.sender.call{value: balance[msg.sender]}("");
27 // release lock
28 disableWithdraw[msg.sender] = false;
29 balance[msg.sender] = 0; }
30 /* ... */ }

A1

A2

B.withdrawBalances()

B.addAllowance(A2, N)

A1

B.transferFrom(A1, N)

B.deposit()

A2

B.withdrawBalances()

Figure 2: A contract (Bank, B) with bypassable
reentrancy-locking. The attack, depicted below the source
code, requires two colluding attacker-controlled smart
contracts (A1, A2).

use locking mechanisms [49]. However, many analysis
tools [19, 53, 56] do not handle locking mechanisms
appropriately and simply report a potential reentrancy
issue in the withdrawBalance function for the locking
mechanism itself and the balance update. In the example
in Figure 2, the modifier withdrawAllowed prevents an at-
tacker from reentering the withdrawBalance function. This
gives the developer a false sense of security, thinking that
the userBalances variables are protected by the locking
mechanism and thus the contract must be secured against
reentrancy attacks. However, this assumes that an attack
follows the call chain A1 → B → A1 → B. Since the
attacker A1 has arbitrary control, they can transfer control
to a different colluding smart contract A2, which allows
to execute the call chain A1 → B → A1 → A2 → B.
Reentrant calls from the second contract A2 are not locked
as it has not yet interacted with the target contract B.
Therefore, the second attacker contract A2 can call into
the transferFrom function to move away the balance of
A1 before the call to withdrawBalance finishes and resets
the balance. Using this attack, it is possible to bypass
the reentrancy locking mechanism and withdraw twice the
balance that was initially invested.

3. Design of EF/CF

The design of our Extremely Fast � Contract Fuzzer
(EF�CF) is driven by two major features: optimizing
test case throughput and accurately modelling complex
interactions with smart contracts. To achieve the former,
EF�CF uses two explicit phases, a compile and a run time
phase (see Figure 3). At compile time, the EVM bytecode
of the smart contract is translated to C++ code with our
newly developed evm2cpp compiler and paired with a
fuzzing-optimized EVM runtime, facilitating fast smart
contract execution. To accurately model interactions with
smart contracts, we devise an approach to allow the fuzzer
to mutate the behavior of multiple simulated attacker-
controlled smart contracts. Each generated test case speci-
fies a sequence of transactions, which are executed by the
fuzzing harness. However, in contrast to prior work [23,
25, 33, 40, 53], this transaction sequence also specifies
the behavior of callbacks to attacker accounts, including
return values and further reentrant transactions. To detect
bugs, EF�CF features detectors that are directly built into
the EVM runtime and the fuzzing harness. Here EF�CF
supports a commonly featured Ether-based bug oracle that
attempts to gain Ether, but also custom bug oracles that are
specified by a developer in Solidity code. In what follows,
we discuss and explain our design choices in more detail.

3.1. Modelling Blockchain Interaction

To faithfully model complex (possibly adversarial)
interactions on the blockchain, we define an input for-
mat for Ethereum transaction sequences that supports
(a) fuzzing the blockchain environment, (b) fuzzing return
data, (c) reentrant transactions, and (d) targeting multiple
contracts.

Blockchain Environment EF�CF runs the smart contract
in a custom blockchain environment, which contains sev-
eral attacker-controlled accounts. A user of EF�CF can
also supply a custom initial blockchain state, e.g., to fuzz
smart contracts that rely on other smart contracts or expect
to be deployed at a certain address. EF�CF allows the
fuzzer to choose and mutate several environmental values
of the Ethereum environment. For example, the fuzzer
chooses the block number and timestamp at the beginning
of the transaction sequence and is allowed to advance
both at every transaction. This enables us to handle smart
contracts that expect a certain timespan to pass between
two consecutive transactions. Furthermore, the fuzzer can
increase the initial Ether balance of the target contract to
simulate prior Ether investment into the contract.

The blockchain state is reset before every executed
test case, which ensures that each generated transaction
sequence can be deterministically executed. This is nec-
essary to obtain reliable coverage measurements and eases
root-cause analysis since the developer can reliably replay
a transaction sequence. In many cases, the transaction
sequence can be directly utilized as an end-to-end exploit
against the deployed version of the contract.

Transaction Sequence Every test case in EF�CF consists
of a header specifying the initial environment followed by
a sequence of transactions. Similar to regular Ethereum

452

evm2cpp

AFL++
Instrumentation

Native Smart
Contract

LLVM
Compiler

Smart Contract
Bytecode

Fuzz Target

Compile Time Run Time

AFL++
Fuzzer ethmutator

Fuzzing
Dictionary

Transaction
Sequences

eEVM

Bug Oracles EVM Runtime

Fuzzing Harness

Smart Contract
ABI

Figure 3: Architecture of EF�CF.

transactions, each transaction consists of a sender, a re-
ceiver, a call value (i.e., transferred Ether), and associated
input data. However, for performance reasons, we restrict
the senders and receivers to a small set of accounts that
are set when the fuzzer is launched. In a typical single-
contract fuzzing setup, the set of receivers will include
only the target smart contract.

EF�CF simulates the behavior of arbitrary smart con-
tracts at the attacker-controlled accounts. To achieve this,
each transaction requires additional associated data be-
yond what a regular Ethereum transaction requires. This
includes fields that specify what to do if the target smart
contract calls back to an attacker-controlled address. Each
transaction can have multiple associated return-headers,
which specify (1) whether the call succeeded, (2) what
data to return, (3) and how many reentrant calls can be
performed. The fuzzer is then free to choose arbitrary
values for any of these parameters. However, we bound
the number of return headers per transaction to 255 and
we also bound the number of reentrant transactions to 255
in our implementation of EF�CF. If EF�CF encounters a
callback without an associated return-header, EF�CF will
simulate a failed call. This allows the fuzzing process to
explore a large variety of behaviors of attacker-controlled
smart contracts.

Reentrant Transactions Current dynamic analysis
tools [29, 33, 53] focus on generating lists of top-level
transactions that trigger an exploit. In contrast, EF�CF
simulates the behavior of a reentrancy-capable attacker.
We model the transaction sequences as a tree of transac-
tions. This enables EF�CF to explore various shapes of the
tree: reentering the same function repeatedly, reentering
the same function only once, reentering the same contract
in a different function, or reentering the same contract
multiple times at the same call-depth.

However, in practice, not all shapes of the tree are
possible for a certain contract. Only some of the functions
of a contract allow for callbacks to the attacker and
therefore further reentrant transactions. In general, it is
not possible to compute the shape of the tree in advance
for all contracts. Whether an external call to an attacker is
performed by the target smart contract generally depends
on the input and as such, cannot be determined before
executing the transaction.

EF�CF’s fuzzing harness dynamically builds a transac-
tion tree. All other components of EF�CF still operate on a
list of transactions. The harness uses the list of transaction
as a queue: when an external call is encountered, the
fuzzer can simulate a reentrancy with the next transaction
in the queue. If the transaction queue is empty no reentrant
call is performed. To mutate this ad-hoc tree structure, the

fuzzer can mutate a single field in the return header that
specifies how many reentrant transactions can be executed
when an external call is encountered. The fuzzing harness
ignores this field if the transaction does not trigger an
external call.

We show an example of chain of mutations and how
they affect the shape of a transaction tree in Figure 4. We
start with a flat sequence of three transactions that target
the functions f1, f2, and f3. All transactions have the reen-
ter flag set to 0. The fuzzer then probabilistically mutates
the reenter flag to modify the shape of the transaction
tree. In the first transaction it is set to 1. If the call to f1
triggers a callback to the attacker, EF�CF will perform a
reentrant call with the second transaction in the queue, i.e.,
a reentrant call to f2. The third transaction remains a top-
level transaction. With this simple mutation, EF�CF has
now generated a cross-function reentrancy attack. Setting
the reenter flag to 2 the produces a tree with two reentrant
transactions at the same call depth. However, if the reenter
flag on the second transaction is set to a positive value,
the third transaction becomes a reentrant transaction at
a deeper call depth. Since we do not have any more
transactions in the queue, there is no second reentrant
transaction at call depth 1.

This approach to defining the transaction tree in an ad-
hoc manner can model arbitrary tree shapes. However, we
introduce several limits in our implementation of EF�CF
because the shape of the transaction tree is bounded by
several factors in practice. Ethereum’s gas mechanism
limits the number of possible callbacks per transaction.
Therefore, in our implementation of EF�CF, we limit the
maximum number of callbacks to 255 and the number of
reentrant transactions per callback to 255. Similarly, we
stop execution when reaching the EVM defined maximum
call depth of 1024.

Compositional Security Modern smart contracts are in-
creasingly coupled with other smart contracts. For ex-
ample, token contracts are often tied to exchange con-
tracts, where the token can be traded for other tokens
or Ether. Beyond the security of contracts in isolation,
also the composition of multiple contracts must remain
secure against attacks (compositional security). Recently,
several attacks have been reported that were only possible
due to composition of multiple smart contracts that were
developed independently [5, 8, 21, 54]. For example, the
Uniswap reentrancy attack was only possible because the
Uniswap contract was combined with a new type of token
contract that would perform a callback to the attacker. The
Uniswap contract did not expect reentrancy to be possible
on an external call and is indeed safe when paired with
most token contracts.

453

TX2
input: f2()
reenter: 0

TX1
input: f1()
reenter: 0

TX1

input: f1()
reenter: 1

Mutate

input: f2()
reenter: 0

TX3 input: f3()
reenter: 0

TX2 input: f3()
reenter: 0

TX1

input: f1()
reenter: 2

Mutate

input: f2()
reenter: 0

input: f3()
reenter: 0

TX1

input: f1()
reenter: 2

Mutate

input: f2()
reenter: 1

input: f3()
reenter: 0

Figure 4: Mutating a transaction sequence to obtain reentrant transaction sequences with different shapes. The mutated
reenter field is highlighted in bold red.

A

A

V1

V1

(a) Single Contract.

A

A

V1

V1

(b) Single Contract Reentrancy.

A

A

V1

V2 V1

(c) Contract Composition.

A

A

V1

V2 V1

(d) Compositional Reentrancy.

Figure 5: Different settings illustrating the difference and similarities between reentrancy and compositional attacks.

The most prominent examples of compositional se-
curity issues were also reentrancy attacks [8]. However,
compositional attacks are not necessarily reentrancy at-
tacks. Figure 5 shows four different attack settings, where
the last (sub-)transaction triggers a bug in contract V1.
Figure 5a depicts a flat sequence of transactions: two
subsequent calls to contract V1. Figure 5b shows a simple
reentrancy attack, V1 call back into the attacker A, which
performs a reentrant call to V1. Figure 5c depicts a com-
positional attack, where a composition of two contracts
is vulnerable. The DoS attack against the Parity Multisig
Wallet is an example of such an attack [51]. The bug
can be triggered by setting up a vulnerable state and then
forcing V2 to call V1. Figure 5d depicts a compositional
reentrancy attack, where the call from V2 to V1 is a
reentrant call. The Uniswap attack is an example of such
a compositional reentrancy bug [8].

EF�CF’s design also allows for testing compositions
of smart contracts. First, EF�CF is designed such that it
can import parts of the blockchain state to set up a realistic
environment for the target smart contracts. For example,
developers could test the security of their deployed con-
tract compositions by setting up their initial state on a
local test chain and then running EF�CF to detect potential
issues. Second, EF�CF supports selecting the receiver of a
transaction, including reentrant transactions. A developer
or analyst just needs to configure the set of contracts to
be analyzed by EF�CF in composition.

3.2. Optimizing Test Case Throughput

Most state-of-the-art analysis tools [23, 25, 33, 37,
40, 53] develop or utilize custom EVM implementations
that offer the introspection and extension possibilities
necessary to perform dynamic smart contract analysis.
Similarly, as part of our high throughput fuzzing frame-
work, we develop an execution environment for smart
contracts that is optimized for fuzzing. Here, test case
throughput, i.e., both fast mutation/generation and fast
execution, emerge as one of the most important properties
of a fuzzer to achieve good results in practice.

Translating EVM to C++ Most widely used Ethereum
clients implement an interpreter to execute EVM smart

contracts. Typically, Ethereum nodes execute a large num-
ber of different smart contracts throughout their opera-
tion; in this case, it suffices to rely on an interpreter.
However, in a fuzzing setting, the same smart contract
is repeatedly executed. As a consequence, the overhead
of the interpreter adds up over time and causes significant
overhead over longer fuzzing periods. In EF�CF, we re-
move this overhead by performing additional translation
and optimization before starting the fuzzing campaign.
To remove the interpreter overhead, we develop evm2cpp,
a custom translation layer from EVM bytecode to C++,
and pair this with a customized EVM runtime optimized
for fuzzing. While this approach gives up the flexibility
of an interpreter or a just-in-time compiler, an ahead-
of-time compilation approach can utilize the full set of
optimization techniques in modern C++ compilers, such
as link-time optimization. Furthermore, evm2cpp performs
optimizations to remove costly EVM stack operations.
Note that ahead-of-time translation of bytecode targeting
a virtual machine to C++ [46, 57] or directly to native
code [2, 58] has been previously applied in various aca-
demic and industry settings to speed up execution time.
In EF�CF, we apply this technique to EVM bytecode for
the first time.

We discuss correctness of our translation approach in
Section 4.1. During all of our fuzzing campaigns and
experiments, we have not identified any bug or crash that
was caused by evm2cpp miscompilation. Furthermore, to
quantify the performance improvements of translation we
conduct an ablation study (see Section 5.2).

Optimizing the EVM runtime The smart contract that
is translated to C++ still requires an EVM runtime that
implements the opcode handlers and interaction with the
blockchain. We pair the C++ code generated by evm2cpp
with an EVM runtime, which we adapted and optimized
from the eEVM project [13]. We chose the eEVM project
because of its relatively simple codebase that can be
easily extended and adapted for fuzzing. This includes
omitting or simplifying several features required by a full
EVM implementation operating as part of an Ethereum
node. For example, our EVM runtime does not feature
instruction-accurate gas tracking. We do not need the gas
mechanism to limit execution time, since it is limited

454

per test case by the fuzzer. Detecting the majority of
vulnerabilities, such as access control or reentrancy, does
not require instruction-accurate gas tracking. However,
checking the gas budget is necessary to accurately execute
external calls.

Furthermore, we stop test case execution at the first
failing transaction. Since the failing transaction would be
rolled-back, this has no effect on subsequent transaction
executions. Instead of performing roll-backs after every
failing transaction, we stop execution of the current test
case, reset the state of the Ethereum blockchain to its
initial state, and let the fuzzer generate a new test case.
This approach nudges the fuzzer to generate transaction
sequences that only contain succeeding transactions. The
only exception is the last transaction in the sequence,
which is allowed to explore error handling paths. Further-
more, this approach increases the effectiveness of test case
splicing: When EF�CF combines two previously generated
test cases into one, it will very likely generate a new test
case containing only succeeding transactions.

Optimizing the Mutations At run time, the base fuzzer
launches the target smart contract with seed inputs, i.e.,
a seed with a single transaction without any input. The
fuzzing process is driven by a greybox fuzzing approach
that involves mutating inputs, executing the fuzz target,
and measuring the code coverage to find new interesting
transaction sequences. Note that the base fuzzer is un-
aware of the structure that is inherent to the test cases, i.e.,
the structure of the transaction sequence and the structure
of the individual transaction inputs. The base fuzzer’s mu-
tation strategies are not efficient in mutating the structure
of the input. Hence, we augment the base fuzzer with
a carefully engineered and optimized test case generator
and mutator that performs structure-aware mutations and
generations. Our custom mutator is called ethmutator and
performs both (1) mutations on the transaction inputs
according to the smart contract’s ABI and (2) structural
mutations on the transaction sequence.

3.3. Bug Oracles

Prior work on smart contract fuzzing attempted to ad-
dress two orthogonal problems at the same time: triggering
bugs and detecting bugs [10, 27, 29, 39, 53]. Bug oracles
are dynamic analyses that signal the fuzzer that a fault was
triggered. In this paper, we focus primarily on the aspect
of triggering faults by developing a high throughput fuzzer
to identify the right input to trigger a fault. We opt to
primarily use a simple—yet powerful—bug oracle: Ether
gains. This is in line with prior work on exploit generation
for smart contracts [23, 33, 40]. However, we also support
custom bug oracles defined in Solidity code by the smart
contract developer to cover contract-specific bug classes.

EF�CF defines an attack to satisfy one of the following
conditions: (a) The attacker is able to trigger a selfdestruct
to an arbitrary address, thereby allowing the attacker to
drain the funds of the contract and create a Denial-of-
Service scenario. (b) The attacker can redirect the control-
flow to an arbitrary address (using the DELEGATECALL
instruction), which would give the attacker control over
the target’s Ether. (c) The attacker is able to gain Ether by
interacting with the contract, i.e., the sum of the balances

1 contract SimpleEtherDrainOther {
2 function withdraw(address payable to) public {
3 require(msg.sender != to);
4 to.transfer(address(this).balance);
5 }
6 function deposit() public payable {} }

Figure 6: Contract that is not considered as vulnerable
by the leaking Ether bug oracles of Confuzzius [53] and
Smartian [10], but detected by EF�CF’s Ether gain bug
oracle.

of the attacker-controlled contracts must exceed the initial
sum of balances of these contracts. In contrast to other
bug oracles, this approach avoids a high number of false
alarms by design. For example, accurately detecting inte-
ger overflows [20] or reentrancy [43] without high-level
type information is challenging. However, it is comparably
straightforward to detect if a fuzzer generates a transaction
sequence exploiting an integer overflow or reentrancy to
gain Ether. Interestingly, we found that this type of bug
oracle is also more accurate than bug oracles implemented
in other analysis tools. For example, the contract depicted
in Figure 6 is not identified as vulnerable by either of
two state-of-the-art hybrid fuzzers, Confuzzius [53] and
Smartian [10]. EF�CF’s Ether-gains bug oracle turns out
to cover more cases such as this example.

However, an Ether-based bug oracle often does not
capture the semantics of some smart contract applications,
such as token contracts. To tackle such contracts, we
also implemented support for custom invariant checking
and assertion checking. Smart contract developers specify
invariants that the fuzzer tries to invalidate. We implement
support for mechanisms that are also utilized in other
analysis tools, such as Echidna [25] and Mythril [38] (see
also Appendix A). Developers that already utilize one of
these tools can directly reuse their custom invariants and
assertions with EF�CF.

4. EF/CF Implementation

We now present an overview of the implementation
of EF�CF. We release our implementation as open source
at https://github.com/uni-due-syssec/efcf-framework/. We
discuss further minor technical details in Appendix A.

4.1. EVM to C++ Translation

The evm2cpp component is a custom compiler that
translates EVM bytecode to C++, implemented in roughly
2500 lines of Rust code. First, we perform a linear
pass over the EVM bytecode to build the set of all
basic blocks. In EVM bytecode, all jump destinations
are marked with JUMPDEST instructions. We use these
to identify the boundaries of basic blocks by looking
for branching instructions and jump destination markers.
We do not construct a full control-flow graph, avoiding
costly and error-prone analysis. Instead, we perform local
analysis and optimization at the EVM basic block level.
We emulate basic blocks in isolation using abstract values
as placeholders for non-constants to perform data-flow
analysis and constant propagation with respect to the EVM
stack. Contrary to full abstract interpretation, we stop

455

1 pc_5a : {
2 /* JUMPDEST */
3 /* CALLVALUE */
4 const uint256_t v_1_0 = callvalue_v();
5 /* DUP1 */
6 /* ISZERO */
7 const uint256_t v_3_0 = iszero_v(v_1_0);
8 /* PUSH2 0x66 */
9 /* JUMPI */

10 if (v_3_0) {
11 ctxt->s.push(v_1_0);
12 goto pc_66;
13 }
14 ctxt->s.push(v_1_0);
15 goto pc_62;
16 }

Figure 7: Example for basic block translated by evm2cpp.
The comments show the original instructions; some stack-
related opcodes have no direct counterpart in the emitted
C++ code.

emulation at the end of a basic block and therefore do
not need to handle control-flow instructions.

The code generation procedure translates each EVM
basic block to a C++ lexical block. If we can infer
the jump target at the end of a basic block with our
constant propagation, we directly emit a goto statement
to the target C++ lexical block. Otherwise, we have to
fall back to using a large jump table via the computed
goto feature. In both cases the C++ goto is translated
into a jump instruction by the C++ compiler. The gotos
between translated basic blocks are then instrumented by
the coverage-instrumentation pass of the fuzzer.

Within a basic block, each opcode is translated to a
call to the respective opcode handler function in the EVM
runtime. We translate the stack-based EVM opcodes into
a lightweight register-based form, where each register is
translated to a C++ local variable and no register is reused
(similar to single-static assignment form, albeit without
the need for the φ instruction). At the beginning and the
end of each translated basic block, we ensure that the stack
effects of the register-based form and the original EVM
opcodes are the same. Essentially, we use the EVM stack
exclusively to pass parameters between translated basic
blocks. This enables us to eliminate a number of costly
EVM stack operations and emit C++ code that can be well
optimized by recent clang versions (we tested clang ≥ 13).

Figure 7 shows an example of a translated basic block.
Here, the DUP1 opcode is eliminated, which duplicates
a value on the EVM stack. Furthermore, we eliminate
the PUSH2 instruction, which pushes a constant to the
stack. Owing to the constant propagation pass we perform,
we can infer that this constant is used as a jump target
later. Instead of dispatching the jump via the EVM stack,
we emit a goto statement that directly targets the desired
block. Before the jump, we fix up the EVM stack effects
of the basic block by pushing the right values to the stack.
With respect to the EVM stack, the original bytecode
performs three pushes, two pops, and one replacement of
the top element. In contrast, the generated C++ code uses
only a single stack push.

Performance Improvements The translation approach
allows for two major optimizations that result in execution
speed-ups: (1) removal of the interpreter loop, and (2) re-
moval of EVM stack operations. The former allows us to

remove many repeated lookups of the opcode handlers
and indirect dispatching. Because there is no indirect
dispatch to opcode handlers, the C++ compiler is now
able to inline opcode handlers in the emitted native code
to avoid the overheads of calls. The EVM stack is typically
implemented as a high-level data structure that resides on
the native-code heap, e.g., a C++ vector. Accessing the
EVM stack requires bounds and stack-overflow checking,
resulting in significant overhead. The optimizations in
evm2cpp remove many stack operations, resulting in faster
execution. We present an ablation study in Section 5.2 to
quantify the performance improvements due to evm2cpp.

Correctness Correctness of our compiler is paramount
for EF�CF. Our compilation approach is designed with
minimum error potential. We utilize the EVM stack to
pass data between translated basic blocks in the translated
bytecode. Optimizations are performed within a basic
block, allowing us to avoid error-prone and costly in-
direct jump target analysis. Nevertheless, our translation
approach intentionally diverts from the EVM specification
to enable optimizations. For example, due to the removal
of EVM stack operations during compilation, a translated
contract could temporarily exceed the maximum stack size
imposed by the EVM specification. However, this does not
raise any problems for EF�CF as it must not be able to
execute potentially malicious bytecode.

To detect inconsistencies early in development, we
tested evm2cpp using a differential fuzzing approach. We
execute both the original eEVM interpreter and evm2cpp
code and check whether they behave the same. In all of
our experiments (see Section 5), we did not encounter any
issues that were caused by a miscompilation by evm2cpp.

EVM-level Auto-dictionary To increase fuzzing effi-
ciency, many fuzzers scan the code for constants and
create a dictionary of potentially interesting values (e.g.,
file format header magic values). However, they typically
scan for up to 64 bit constants or null-terminated C strings
and thus do not properly handle the 256 bit EVM words
or 160 bit Ethereum addresses. Hence, we generate a dic-
tionary of values based on the constants discovered during
the constant propagation pass. This includes computed
quasi-constants that are often found in EVM bytecode.

Dynamic Contract Creation EF�CF executes contract
constructors in the interpreter once before the start of
the fuzzing run and fully supports common patterns such
as proxy contracts. However, EF�CF does not support
fuzzing contracts that create other contracts at runtime,
as EF�CF would have to execute previously unknown
EVM bytecode, which is not possible in the current ahead-
of-time compilation model. When EF�CF encounters an
instruction that creates a new contract, EF�CF will stop
executing the current transaction sequence. However, we
only encountered a single contract that creates a new
contract at runtime during our evaluation. We believe that
these cases are sufficiently rare to leave exploring this as
future work.

4.2. Fuzzing Harness

We opted for a lightweight EVM implementation as
the base for our fuzzing-optimized EVM runtime. To this

456

end, we adapted the open-source eEVM project [13] such
that it fits the code-generation of evm2cpp and added an
implementation of several newer EVM opcodes, missing
features, and various minor fixes.

Input Format Within the eEVM project, we created a
libfuzzer-compatible fuzzing harness. The bug oracles are
directly integrated into the fuzzing harness and runtime
support code of the eEVM project. The fuzzing harness
features a parser for a custom input format we developed.
This format can be quickly parsed without ever failing,
i.e., any unneeded data is discarded by the harness; for
any missing data fields, default values are assumed. This
robust parsing approach allows the use of standard bit-
flipping mutations [22] that are unaware of the input struc-
ture. The input format consists of an initial header defining
the initial environment, followed by a sequence of trans-
actions. Each transaction is represented as a header and
the transaction input. Mutating the header for a transaction
allows the fuzzer to select transaction-specific parameters,
such as the sender account, the call value, and the number
of allowed reentrant transactions. For the input data, the
parser simply consumes bytes from the fuzzer-provided
data according to the input length specified in the header
until the end of the fuzzer-provided data. Figure 16 in
the Appendix shows an example for a test case generated
by EF�CF to exploit the contract depicted in Figure 2.
We designed the input format such that it enables high
throughput fuzzing, while being expressive enough to
model complex smart contract interactions. Furthermore,
we use the input format as a template to synthesize
Solidity attack smart contracts that exploit the target. For
each attacker-controlled account, we synthesize a Solidity
contract that implements the behavior as specified by the
generated test case.

Fuzzer and Harness Integration While the fuzzing
harness itself is mostly oblivious to the used fuzzer,
we opted to rely on AFL++ [22] as one of the most
advanced general-purpose fuzzers. AFL++ supports var-
ious modern fuzzing techniques, such as collision-free
coverage bitmaps, a Redqueen [4] implementation called
cmplog, and support for custom mutators. Due to our
transpilation approach, we are able to directly leverage
the instrumentation of AFL++ for smart contract code.
We built the fuzzing harness with clang, with the high-
est optimization setting and link-time optimization (LTO)
enabled, instrumenting the harness with AFL++’s LTO-
based collision-free code coverage instrumentation. Since
we have translated the EVM bytecode to C++ code, we
can utilize AFL++’s coverage instrumentation to instru-
ment the combination of harness and transpiled smart
contracts.

However, we noticed a problem with AFL++’s im-
plementation of the Redqueen mutations [4]. By default,
the optimized big integer library used by eEVM uses
branchless code when comparing the four 64 bit words
that make up a single 256 bit value. AFL++’s cmplog
does not detect when only one of the four words matches,
as no new code coverage can be observed. As a conse-
quence, it fails to incrementally solve comparisons with
large constants. However, this issue is only relevant for
bypassing comparisons and not during other arithmetic
operations. We opted to manually adapt the relevant func-

tions in the EVM codebase to provide explicit coverage
feedback to AFL++. This allows AFL++’s cmplog to solve
a considerable number of fuzzing roadblocks caused by
integer comparisons. To further increase fuzzing efficiency
when applying structural mutations in the custom mutator,
we added a lightweight tracing mode for certain opcodes
(comparisons and returns) to the codebase. This enables us
to identify quasi-constants and add them to the dictionary
of our custom mutator at runtime.

When fuzzing for reentrancy attacks, we found it bene-
ficial to notify the fuzzer about the call depth of the current
execution. To this end we introduce a call-depth-sensitive
coverage reporting in the fuzzing harness. Whenever a
new basic block is executed, we record the current call
depth in AFL++’s coverage map. This allows AFL++ to
distinguish executions of the same contract at different
call depths. Since, AFL++ receives a new coverage signal
when a transaction is executed in a reentrant manner, the
test case will be stored in the queue. In turn, this increases
the probability of finding reentrancy attacks.

4.3. Custom Mutator

We implemented a mutator library, called ethmutator,
in roughly 10 kloc of Rust to efficiently generate and
mutate: (1) the structured transaction input expected by
the smart contract code, and (2) the transaction sequence
input format parsed by the fuzzing harness. The mutator
library features a parser and emitter for the binary input
format accepted by the harness code. Based on this library,
we implement several related tools, such as a structured
test case minimizer and an AFL++ custom mutator. The
mutator is carefully engineered with high performance
in mind. We reduce the number of required allocations
and copy operations by applying copy-on-write semantics
while performing mutations on a transaction sequence. We
also use mimalloc [34] to increase the performance of the
mutator by a factor of four.

In Ethereum, a transaction is associated with an input
field, which is simply a variable-length byte string. Smart
contracts use a de-facto standardized ABI format, which
specifies how function calls with parameters of complex
types are encoded. To enhance the efficiency, we use the
ABI information in the ethmutator to perform mutations
according to the ABI. Unlike existing general-purpose
fuzzers, our custom mutator can handle the complexity
of the ABI format by acting as a grammar fuzzer for the
given ABI and generating structurally-valid inputs based
on it. When choosing the values for primitive types, we
rely on a fuzzing dictionary built into the custom mutator.
Recall that this dictionary is seeded with the constants
that are discovered during the analysis pass of evm2cpp.
In addition, we extend the dictionary with “interesting”
values that are likely to trigger bugs (e.g., the dictionary
contains the maximum value for every integer type sup-
ported by Solidity to make it more likely to trigger integer
overflows). When no ABI is available, we exploit the
fact that ABI-encoded data is always similarly structured
for efficient mutations. For example, when appending a
new transaction, we first select a 4 byte constant from
the dictionary as a prefix for the input. Since the basic
unit of the ABI is a 256 bit EVM word, most of the input
mutations operate on this word size if no ABI is available.

457

Another task of the custom mutator is to apply struc-
tured mutations to the transaction sequence. We imple-
mented several mutations such as adding, duplicating,
or dropping transactions. Furthermore, we implemented
more involved mutators such as test case splicing or
value propagation between transactions in a sequence.
Whenever the base fuzzer adds a test case to its queue,
the custom mutator parses this test case and keeps the
transaction sequence in memory. The structured splicing
mutation then replaces a randomly selected transaction
sub-sequence with a sub-sequence obtained from a pre-
vious test case. The intuition here is that transaction
sequences from prior test cases contain valid transaction
combinations. Combining two valid transaction sequences
is more likely to result in a new valid transaction sequence.
We also propagate values from earlier transactions to
later transactions. Hence, with some probability, values
in the transaction input will be replaced with values that
occurred as parameters in the input of earlier transactions.
Similarly, we set the value of address types in the ABI to
the address of attacker-controlled accounts that previously
already sent a transaction. Similar to AFL [63], the custom
mutator has multiple stages and a fixed set of mutations
that is applied to every test case. Subsequently, random
mutations are applied (similar to the havoc phase in AFL).
The custom mutator also uses stacked mutations, where
different random mutation operations are combined.

5. Evaluation

In this section, we evaluate various aspects of EF�CF
and compare them to the current state-of-the-art in fuzzing
and symbolic execution. We evaluate EF�CF with respect
to scalability to longer transaction sequences, the test case
throughput, and its bug detection capabilities.

5.1. Scalability Benchmarks

We start with an evaluation of the effectiveness of
analysis tools in dealing with an increasing length of trans-
action sequences. To this end, we created a benchmark
consisting of three types of contracts (multi, complex,
and justlen), which model different code structures and
roadblocks (that hinder analysis) typically found in smart
contracts. For each type of contract, we devise several
variants (9 for multi, 3 for complex, and 4 for justlen)
that require an increasing number of transactions to reach
an exploitable state plus another transaction to trigger a
vulnerability (see Table 1 for a summary). Note that we
cannot use real-world contracts here, as they do not allow

Table 1: Capability of analysis tools to identify bugs with
increasing transaction sequence length. � bug can be
found, × bug never found within 48 h. Type: S symbolic
execution, F fuzzer, H hybrid fuzzer.

Tool Type multi complex justlen
2 3-7 8 9 10 5 7 9 8 64 128 256

teEther [33] S � � × × × � × × × × × ×
MAIAN [40] S � � � � � � � × � × × ×
EthBMC [23] S � × × × × × × × � × × ×
Manticore [37] S � � × × × × × × × × × ×
ConFuzzius [53] H � � × × × × × × � � � �
Echidna [25] F � � � × × × × × � � � �
VeriSmart [47] S � � � � � � � × � × × ×
Smartian [10] H � � × × × × × × � � � �
EF�CF F � � � � � � � � � � � �

us to scale the required number of transactions to trigger
a bug. Each variant of multi and complex contracts is
parameterized given the number of transactions that are
needed to trigger the bug. For instance, contract multi10
requires 10 transactions (or sequential function calls) to
reach an exploitable state. The justlen example is adapted
from Groce et al. [26] and is parameterized over the length
of an array that must be reached using operations such
as push and pop. We chose to insert a vulnerability in a
function that simply triggers selfdestruct of the contract
when the exploitable state is reached. This type of bug is
widely supported by analysis tools and allows us to com-
pare various tools according to the analysis time required
to identify the bug. The benchmarks are constructed to
exercise the capability of solving constraints on the inputs
(multi, complex) and the capability of moving a target
into a certain internal state (justlen). Both capabilities
are necessary for analyzing current smart contracts. We
provide more details on these benchmark contracts in
Appendix C.

We chose several state-of-the-art analysis tools that
utilize different approaches to analysis, covering a large
spectrum of analysis techniques (fuzzing, symbolic and
concolic execution, and hybrids) and implementations.
More concretely, we compare EF�CF with tEther [33],
MAIAN [40], EthBMC [23], Manticore [37], VeriSmart
(SmarTest) [47, 48], Confuzzius [53], and Echidna [25,
26]. We analyze our benchmark contracts with all these
tools and measure the time until the bug is discovered
with a global timeout of 48 h. We run all analysis tools
within Docker containers on an Intel Xeon Gold 6230
CPU clocked at 2.10 GHz with 188 Gbyte RAM. We
run the tools in parallel, keeping all physical CPU cores
fully occupied, but do not utilize hyperthreaded cores. All
tools were executed on a single core, except those tools
that support multi-core analysis, which we also run on 4
cores. To run this experiment, we had to patch the tools
tEther [33], MAIAN [40], and ConFuzzius [53] such that
they support longer transaction sequences. We excluded
EthBMC [23] from most of our experiments since we
were not able to patch the bug that causes it to not report
any vulnerabilities with transaction sequences longer than
3. Moreover, we excluded ILF [27] because a machine
learning-based fuzzer is unlikely to produce the 256 bit
magic value constants used in the synthesized contracts.
We bound the number of transactions to consider by 32
to ensure that all tools execute at a reasonable pace while
leaving enough room for failing/duplicated transactions.
For the Python-based tools, we utilize the PyPy JIT-
compiler if we observe a speed-up during analysis (for
MAIAN and teEther). We perform 3 trials for all symbolic
execution tools (where randomness does not play a big
role) and at least 10 trials for all fuzzers. In total, we spent
approximately 1300 days of CPU time on this experiment.

Our results are summarized in Table 1 and in the plots
in Figure 8. The plots show the log-scaled time required to
solve the benchmark contracts with an increasing number
of required transactions. We omit those tools/results from
the plots where all runs fail to identify a bug. EF�CF
is the only analysis tool capable of solving all of the
contracts in this benchmark dataset. By adapting state-
of-the-art fuzzing techniques, the performance of EF�CF
is comparable to symbolic execution when it comes to

458

2 3 4 5 6 7 8 9 10
Required TX Sequence Length

0.01

0.05
0.1

0.25
0.5

1
3
6

12
24
48

A
n
al

y
si

s
T

im
e

(h
o
u
rs

u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

efcf
efcf.c4
confuzzius
teether

echidna2
maian
manticore

manticore.c4
smartian
verismart

(a) multi

5 7 9

Required TX Sequence Length

0.1

0.25

0.5

1

2

4

8

A
n
al

y
si

s
T

im
e

(h
o
u
rs

u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

efcf
efcf.c4

teether
maian

verismart

(b) complex

8 64 128 256
Required Array Length

0.5
1
2
4

10
20
50

100

500

2000

A
n
al

y
si

s
T

im
e

(m
in

u
te

s
u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

efcf
efcf.c4
echidna2

confuzzius
maian
ethbmc

verismart
smartian

(c) justlen

Figure 8: Results of scalability experiments showing the analysis time required over the length of transaction sequences.
Tools with the postfix c4 were run in parallel on 4 cores.

overcoming integer constraints. EF�CF performs better in
the case of path-explosion-inducing code structures, such
as loops or array handling.

Symbolic and concolic tools perform very well on
the multi benchmark because they explore the transaction
ordering in a structured manner and can easily solve
the integer-based path constraints using SMT solving.
However, we observe that most symbolic or concolic tools
have trouble coping with the input-dependent loops in the
complex and justlen benchmarks.

Classic fuzzing, as is performed by Echidna, fails
to overcome the complex integer path constraints in
multi and complex, but can generate long transaction
sequences easily (e.g., on the justlen benchmark). Con-
fuzzius and Smartian adopt a hybrid symbolic/fuzzing
approach, where the analysis is driven by fuzzing, but
inputs are also generated with symbolic constraint solving.
We believe that these tools perform poorly because they
inherit the slow input generation from symbolic execution
but perform probabilistic fuzzing of transaction sequences.
We also run a version of the multi10 contract without
any inputs/constraints. It takes Confuzzius and Smartian,
a mean of 2827 and 266 minutes, respectively, to find the
correctly ordered transaction sequence. In this experiment,
it takes EF�CF only about 2 minutes.

5.2. Performance Ablation Study

To evaluate the performance impact of various com-
ponents of EF�CF, such as our evm2cpp compiler, we
perform an ablation study concerning test case throughput
and achieved code coverage. We leverage a set of contracts
consisting of a mix of real-world contracts and one of our
benchmark contracts: the contracts Crowdsale [27] and
the synthetic multi10 represent simpler contracts, while the
IMBTC [18], SpankChain [16], CryptoBets, and PackSale

Table 2: Throughput measurements in average test case
executions per second and mean code coverage. Best
coverage is underlined.

Interp AFL EM Full
Contract LOC exec/s cov % exec/s cov % exec/s cov % exec/s cov %

Crowdsale 41 13,042 79.5 29,688 76.1 19,868 80.6 25,858 87.3
multi9 150 12,814 43.7 43,053 40.8 20,641 75.7 25,817 52.5
IMBTC 664 6880 36.6 28,372 52.6 18,444 36.4 34,510 52.9
PackSale 730 7146 65.0 32,215 67.5 11,952 60.2 24,672 75.2
Spankchain 1048 6574 26.9 19,837 47.0 17,245 50.5 22,698 41.7
CryptoBets 1142 3174 30.8 25,122 35.0 10,256 45.0 12,246 40.5

contracts are more complex real-world contracts. We run
each fuzzing configuration 20 times for 10 minutes and
record the average test case executions per second along
with the EVM basic block coverage. Our evaluation results
are summarized in Table 2. We provide further exper-
iments with the multi, complex, and justlen benchmark
contracts in Appendix D.

When we disable evm2cpp and run the smart contract
in the EVM interpreter provided by the eEVM project
(labeled Interp in Table 2), we observe significantly lower
test case throughput. This directly translates to achiev-
ing less code coverage with the fuzzer, highlighting the
importance of evm2cpp in our design. For the AFL con-
figuration, we disable the custom mutator and for the
EM configuration we disable AFL’s mutations. While
the lightweight mutations performed by AFL++ result
in the highest throughput, they are not aware of the
input structure and often achieve worse code coverage.
We noticed that AFL++ alone fails to create combina-
tions of transactions (see Appendix D) because it lacks
structural mutations. In this case, basic block coverage is
not a good metric since it does not account for different
combinations of transactions. The custom mutator alone
sometimes cannot discover all interesting code paths due
to worse throughput and the lack of AFL++’s advanced
mutations. Since fuzzing campaigns utilize multiple cores
in practice, we take inspiration from ensemble fuzzing [9]
and automatically launch different fuzzer configurations
in parallel if multiple cores are available to EF�CF (see
Appendix A).

Comparison with other fuzzers We compare the test
case throughput of other fuzzers with the throughput
of EF�CF. Our measurement results show that the test
case throughput of EF�CF is larger by an order of mag-
nitude when compared with other fuzzers. Within our
throughput benchmark set, EF�CF has a mean throughput
of 24,301 exec/s (σ = 7154). Echidna [25] achieves a
throughput of 189 (σ = 183) and a maximum throughput
of 497 test cases per second. Confuzzius [53] has a mean
throughput of 78 transactions per second (σ = 25). Notice
that the transaction throughput is always higher or equal to
the test case throughput since test cases typically consist
of multiple transactions.

459

5.3. Code Coverage Comparison

We compare EF�CF with the fuzzers ILF [27] and
Confuzzius [53] on a set of real-world smart contracts.
We cannot compare the fuzzers according to their time-
to-bug, since (1) there are no datasets available with
both ground truth and realistically complex contracts,
and (2) the fuzzers’ bug oracles differ too much to be
comparable. Instead, we focus on the fuzzers’ capability
of achieving code coverage, which is a necessary but not a
sufficient condition to discover bugs. We were not able to
find a way to report basic block coverage in Echidna [25],
which we exclude from the comparison. We utilize a set of
real-world smart contracts, extracted from the smartbugs-
wild dataset, which are supported by all fuzzers (see
Appendix C for more details).

We configure all fuzzers such that they behave reason-
ably similarly and offer comparable results. Confuzzius
achieves better code coverage when a smart contract
contains hard-coded addresses. Only Confuzzius generates
transactions originating from those hard-coded addresses.
While this behavior does lead to good code coverage, the
generated transaction sequences cannot actually be per-
formed on the blockchain, as an arbitrary address cannot
be impersonated. For this reason, we disabled marking the
caller, i.e., the origin of a transaction, as an unconstrained
symbolic value in Confuzzius. Additionally, we had to
patch Confuzzius’s coverage reporting to take bytecode as
input instead of source code. We patched ILF to improve
the reporting of code coverage and transaction inputs and
replaced the existing threshold on the number of generated
inputs with a time-based limit. For EF�CF, we enabled an
over-approximating mode, where the data returned by all
external calls is fuzzed and allow EF�CF to generate calls
originating from the contract creator.

To compare EF�CF with the other fuzzers, we follow
state-of-the-art recommendations for fuzzer evaluation [3,
32]. We repeat every experiment 30 times to account for
the randomness in the fuzzing process and limit the run-
time to five minutes for each target. We use the SENF [41]
framework to calculate the required statistical evaluation
metrics. We find that EF�CF performs better with sta-
tistical significance on 141 targets when compared with
Confuzzius and 120 targets when we compare it with ILF.
In contrast, Confuzzius and ILF perform better on 83 and
112 of the target contracts, respectively (see Appendix E
for more details). We conduct an additional evaluation
on the top 100 most complex targets with respect to the
number of logical lines of code, functions, comparisons,
and branches. As shown in Table 3, EF�CF outperforms
Confuzzius and ILF on the majority of contracts across all
complexity properties. Thus, we conclude that EF�CF can
handle increasingly complex Ethereum smart contracts
better than existing fuzzers.

Table 3: Number of targets, where EF�CF statistically
significantly outperforms ConFuzzius/ILF and vice versa
on the top 100 targets in various complexity properties

#LLOC #funcs #comp #branch

EF�CF : ConFuzzius 73 : 17 66 : 22 60 : 28 77 : 15
EF�CF : ILF 55 : 37 46 : 42 66 : 26 54 : 37

5.4. Bug Detection Capabilities

To assess the bug detection capability of EF�CF, we
tested several real-world contracts obtained from prior
studies [6, 8, 23, 64]. Note that after initial testing, we
concluded that existing benchmark datasets with ground
truth for Solidity/Ethereum analysis tools [12, 24] are not
suitable for testing/comparing dynamic analysis tools such
as fuzzers. Existing benchmark datasets consist mostly
of rather simple and very similar contracts. For exam-
ple, the curated reentrancy dataset of Durieux et al. [12]
features mostly honeypot contracts designed to be easily
analyzed [55]. Similarly, the reentrancy bugs injected by
Ghaleb et al. [24] are too simplistic: Many of the in-
jected bugs cannot be triggered by dynamic analysis tools
(dead code) or are trivially exploitable (see Appendix B).
For this reason, we rely on prior studies on real-world
contracts for evaluating the bug detection capabilities of
EF�CF.

Access Control Vulnerabilities Access control bugs such
as an unprotected selfdestruct have been widely investi-
gated [23, 33, 40]. We obtained a list of 2856 contracts
that are vulnerable according to EthBMC [23]. We export
the blockchain state of the contracts at block number
9,069,000, import the state into EF�CF, and fuzz all
contracts until the bug is discovered (with a timeout of
20 min). In total, EF�CF detects a vulnerability in 2825
out of 2856 contracts. On average it takes EF�CF 28.5 s
(σ = 111.4) until the bug is discovered. For 18 contracts,
EF�CF detected no bug in our first run. The remaining
contracts had issues due to errors during state export.
Among the 18 contracts, we find that 5 are not vulnerable
and have been mistakenly marked as vulnerable. We run
with a slightly earlier blockchain state and find that EF�CF
identifies another 4 vulnerable contracts. The remaining
12 contracts contain bugs missed by EF�CF caused by
inefficiency when fuzzing without ABI information.

We also applied EF�CF on 10,356 contracts which
EthBMC was unable to analyze because of timeouts af-
ter 30 min, i.e., contracts that cannot be analyzed with
bounded model checking. In contrast, EF�CF successfully
processed all these contracts and achieves an average code
coverage of 72.4 % (σ = 17.9). Furthermore, EF�CF
detected 85 vulnerable contracts in this set, of which we
manually checked 18 contracts with verified source code
and found 7 true vulnerabilities. For the remaining 11 con-
tracts, EF�CF correctly identifies a transaction sequence
to gain Ether. However, these contracts intentionally im-
plement features that allow any user to obtain Ether. This
is common for gambling contracts or contracts that pay
out dividends (see Section 6).

Reentrancy Vulnerabilities We evaluated EF�CF using
a set of contracts vulnerable to reentrancy according to
prior studies [6, 8, 43, 64]. Furthermore, to give an intu-
ition about detection capabilities we also provide results
for Confuzzius [53] and the static source code analyzer
Slither [19] in Table 4. In contrast to EF�CF, which gen-
erates reentrancy exploits, Confuzzius and Slither feature
a heuristic detection of reentrancy issues. Slither defines
any state update after an external call to be a potential
reentrancy bug. Similarly, Confuzzius defines a reentrancy
bug as an external call, where some state variable is read

460

before the call and written after the call. Confuzzius does
not actually generate transaction sequences that contain
reentrant transactions. We filter out wrongly detected reen-
trancy bugs by manually analyzing the reported contracts
from prior studies [43, 64]. Furthermore, many cases are
trivial reentrancy bugs, summarized as Trivial-RE in Ta-
ble 4, which includes reentrancy honeypot contracts [55]
(see Appendix F).

EF�CF is highly effective in discovering all known
reentrancy issues. However, the prototype implementation
of EF�CF does not yet support contract creation at runtime
(see Section 4.1). We noticed dynamic contract creation
for “the DAO” contract, which is the reason EF�CF does
not detect the DAO reentrancy. The HODLWallet contract
requires special attention: While this contract is vulnerable
to a reentrancy bug, it cannot be exploited to gain Ether.
According to our analysis, this contract allows users to
invest Ether into the contract, but the contract never re-
turns all the invested Ether. However, a reentrancy bug in
the contract can be exploited to withdraw all previously
invested Ether. EF�CF’s bug oracle does not identify this
as a reentrancy bug since no Ether can actually be gained.
For the InstaDice contract, Confuzzius reports many addi-
tional reentrancy issues even when the contract calls into
other trusted contracts instead. EF�CF, on the other hand,
executes trusted contracts exported from the Ethereum
node and produces a fully working exploit for the reen-
trancy bug without reporting false alarms. Remarkably,
EF�CF is the only dynamic analysis tool that is able to
accurately identify real-world reentrancy issues such as
the reentrancy bugs in the SpankChain and DSEthToken
contracts.

We also evaluated against the reentrancy bugs recently
discovered by Bose et al. [6] with the SAILFISH tool. The
study reports 26 contracts with true reentrancy bugs in
the dataset. However, we were able to confirm only 5
of these contracts to be vulnerable to Ether stealing with
EF�CF. Our (manual) analysis on the remaining 21 con-
tracts reveals that, while the contracts can be reentered in
theory, all but one cannot be exploited (see Appendix G).
We also identified one contract in this set that can be
exploited because of an access control bug, not because
of reentrancy. This shows that accurate bug oracles, such
as those used by EF�CF, are less likely to produce false
alarms and therefore give better feedback to smart contract
developers by providing concrete transaction sequences
that trigger the reentrancy bug.

Compositional Security We follow the evaluation of
the Serif static analyzer [8] to show the feasibility of
detecting compositional security violations with EF�CF.

Table 4: Results for reentrancy issues for various analysis
tools: False Alarms (∼), True Alarms (�), not applica-
ble/incompatible (N/A), or as Missed Bug (×).

Contract EF�CF Confuzzius Slither

Example Figure 2 � ∼ ∼

SpankChain [16] � × �
DSEthToken [43] � � N/A
TheDAO [43] N/A � N/A
HODLWallet [14, 64] × � �
SysEscrow [17, 64] � × �
InstaDice [15, 64] � ∼ �
Trivial-RE [55] � � �

We adapted the contracts from Serif’s evaluation set such
that they are deployable and exploitable in a realistic
setting. Where Serif relies on manual annotations to de-
tect potential problems, we augment the contracts with
assertions that are picked up by EF�CF to detect vulner-
abilities beyond Ether-stealing. EF�CF accurately gener-
ates a reentrancy attack for the Uniswap and Multi-DAO
contracts in this dataset. Furthermore, EF�CF generates
transactions that violate the assertions for the KV-Store
and TownCrier contracts using reentrant transactions. To
evaluate EF�CF’s capabilities on a real-world example,
we also fuzz the composition of Uniswap and IMBTC,
which are exploitable due to a reentrancy bug [54]. We
supply EF�CF with the addresses of three contracts that
should receive transactions (Uniswap, IMBTC and the
ERC1820Registry) and export the state of these contracts
at block number 9,600,000, shortly before the first known
attack. We then fuzz this composition on 40 cores for a
maximum of 48 h. We repeated the experiment 10 times
and find that EF�CF on average requires 1 h and 49 min
(σ ≈ 14 h35 min, geomean 6 h55 min) to generate a
reentrancy exploit that (1) registers an attacker contract in
the ERC1820Registry to allow ERC777 callbacks, (2) buys
IMBTC tokens via the Uniswap contract, and (3) finally
exploits the reentrancy to sell them again with a profit.

6. Discussion / Related Work

Fuzzing Structured Input On the protocol level, inputs
for smart contracts are a byte string encoded according
to the ABI definition. A fuzzer must provide inputs that
are valid according to the ABI or the contract will stop
execution early. Symbolic execution tools handle this by
utilizing the SMT solver to identify valid input data. Most
smart contract fuzzers [25, 27, 39] use an approach akin to
grammar-fuzzing [7, 62] to generate inputs with the ABI.
While EF�CF also utilizes the ABI to efficiently mutate
transaction inputs, it does not solely rely on the ABI.
EF�CF leverages the lightweight mutations of its base
fuzzer to mutate raw input. Using the coverage feedback,
EF�CF discovers structurally valid inputs even without
the ABI. This allows EF�CF to fuzz contracts where no
source code or only an incomplete ABI is available. For
example, EF�CF can fuzz inputs that contain byte strings
that are further decoded elsewhere, e.g., because the data
is forwarded to another smart contract. EF�CF also fuzzes
the return data of external calls, which is ABI-encoded
but not included in a contract’s ABI. However, fuzzing
without ABI information is currently less well-optimized
in EF�CF (see Appendix D).

Bug Oracles There is a wide spectrum of bug oracles
in smart contracts. Analysis tools define their own bug
oracles, sometimes with slightly different definitions of
the same bug classes. Many analysis tools [6, 20, 27,
35, 53] feature bug oracles that indicate issues, but not
necessarily a security vulnerability. For example, detecting
a data dependency on the block timestamp might be a sign
of a bad attempt at using randomness, or it might be a
legitimate use to implement a time-limited sale. While
such oracles also result in a larger number of alarms,
they have the advantage that they can uncover a larger set
of issues. Developers can use these findings to improve

461

code quality. Other analysis tools implement Ether-based
bug oracles for exploit generation [23, 33, 40] with few
false alarms. EF�CF also utilizes such a bug oracle but
also covers complex interactions (e.g., reentrancy). The
downside is that token-related vulnerabilities cannot be
directly detected using this bug oracle. However, similar
to Echidna [25], EF�CF supports using developer anno-
tations as bug oracles, allowing EF�CF to identify token-
related bugs and other logic bugs.

Simulating Benign Interactions An important property
of a fuzzer is whether it simulates the behavior of benign
users, i.e., whether the fuzzer can generate transaction
sequences of the form (tu, ta, t′

u, t′
a, . . .), where tu and t′

u
are from a benign user, and ta and t′

a are from an attacker.
For example, many smart contracts implement the Owned
pattern: There is one Ethereum account that has special
privileges for the contract. If the fuzzer aims for optimal
code coverage, then simulating arbitrary addresses is bene-
ficial to reach code paths guarded by access control checks
(e.g., implemented in Confuzzius [53] and ILF [27]).
While this approach leads to good code coverage, it also
entails more false alarms. For example, in contracts with
transferable ownership, the fuzzer will make the simulated
owner transfer the ownership to an attacker account. In
turn, this would allow the attacker to drain the funds of
the contract. This is a false alarm since the real owner
would never transfer ownership to an attacker. However,
this Owned pattern is prevalent in smart contracts, making
existing fuzzers that adopt this behavior produce false
alarms. We therefore opted to disable the simulation of
any non-attacker-controlled accounts in EF�CF.

EF�CF only fuzzes return data that is attacker-
controlled, i.e., data returned by callbacks. By default,
EF�CF stops execution if an unknown contract is called.
EF�CF requires all contract dependencies to be set up us-
ing a custom blockchain state. Optionally, EF�CF supports
a mode that mutates data returned by any external call,
similar to e.g., Confuzzius [53]. However, this mode is
disabled by default to minimize false alarms. For example,
we observed that when testing a contract that relies on
a token contract to manage user balances, mutating all
returned data would result in impossible paths being exe-
cuted, e.g., two subsequent calls to getBalance returning
different values.

False Alarms and Missed Bugs Like any fuzzer, EF�CF
provides neither sound nor complete analysis. However,
we designed EF�CF as an exploit generator with few false
alarms at the cost of missing some bugs. Other analysis
tools [6, 53] focus on detecting reentrancy patterns, but
do not generate an exploit. As such, it is not clear whether
their reported findings are true vulnerabilities, and often
they are not (e.g., see our comparison with Sailfish in
Section 5.4 and Appendix G). In contrast, EF�CF only
reports reentrancy attacks that are exploitable, leading to
fewer false alarms compared to prior work. The downside
of EF�CF’s approach to reeentrancy is that it misses bugs
that are not covered by the Ether-gains oracle or custom
assertions.

The Ether-gains bug oracle does report false alarms in
some edge cases. In our evaluation, we identified several
types of contracts that repeatedly lead to false alarms.
(1) Gambling contracts, where EF�CF identifies the right

blockchain state and input such that the attacker always
wins. (2) Token airdrops, where EF�CF deterministically
triggers the airdrop, which often results in Ether gains by
selling the airdropped tokens again. (3) Interest pay-outs,
where EF�CF flags interest or dividends that are paid out
over time. In all these scenarios, there is a way to gain
Ether from those contracts, which EF/CF correctly reports.
However, these are not considered vulnerabilities, as the
contracts are intended to give out Ether.

We identified two major reasons for EF�CF missing
bugs: (1) The bug cannot be uncovered by the Ether-gains
bug oracle. (2) The vulnerable state is not reachable within
EF�CF’s EVM environment because some prerequisite is
missing. For example, the target depends on a second
contract not available to EF�CF, or the contract requires
additional state setup by the contract’s owner (e.g., the
Pausable pattern).

Testing Multi-Contract Setups Smart contracts increas-
ingly feature dependencies on third-party contracts. Vari-
ous recent incidents [5, 21, 54] show that multi-contract
analysis is required for automatic analysis of complex
DeFI applications that consist of compositions of smart
contracts that have been independently developed. Here,
compositional security is an important security prop-
erty [8]. We show that EF�CF can handle complex inputs
and dependencies between transactions. Similar to anal-
ysis tools [23, 25], EF�CF fully supports calling other
contracts that act as dependencies. Recently, Echidna [25]
introduced a multi-abi mode, where the fuzzer is allowed
to call functions on multiple smart contracts. Similarly,
EF�CF supports generating transactions targeting multi-
ple different smart contracts to identify issues due to
unsuspected state changes in a contract’s dependencies.
In contrast to Echidna, EF�CF also supports reentrant
transactions to different contracts, allowing it to detect
compositional reentrancy such as the Uniswap/IMBTC
issue.

7. Conclusion

There is a demand for developing efficient and scal-
able techniques for security testing of smart contracts,
which are being increasingly used to encode complex
business logic on blockchain platforms. We show that
high-throughput fuzzing, as implemented in EF�CF, im-
proves on prior analysis tools, including increased code
coverage, reduced time to discover bugs, the capability to
model complex interactions (such as reentrancy), and the
capability to analyze even complex contracts and compo-
sitions of contracts. We show that several optimizations
facilitate the high fuzzing throughput: translating contract
bytecode to native code and employing efficient structural
mutations on transaction sequences and the associated
transaction inputs. EF�CF has comparable capabilities in
solving complex input constraints as symbolic execution
tools, while gracefully handling contracts that induce
path explosion. We release EF�CF along with all of our
benchmarks as open-source software. We hope that this
allows efficient automated testing of contracts and fosters
additional research in smart contract security.

462

Acknowledgment

Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972,
the German Federal Ministry of Education and Research
(BMBF, project iBlockchain – 16KIS0901K), and the
European Union (ERC, CONSEC, No. 101042266). Views
and opinions expressed are however those of the authors
only and do not necessarily reflect those of the Euro-
pean Union or the European Research Council Executive
Agency. Neither the European Union nor the granting
authority can be held responsible for them. The authors
would like to thank Alexander Meyring, Justin Nobles,
and Simon Janzon for their contributions to the implemen-
tation of EF�CF as part of their project group at University
of Duisburg-Essen.

References

[1] Dave Aitel. The advantages of block-based protocol analysis for
security testing. Tech. rep. 2002. URL: http://www.immunityinc.
com/downloads/advantages_of_block_based_analysis.pdf (cit.
on p. 3).

[2] Android Runtime (ART) and Dalvik. URL: https://source.android.
com/docs/core/runtime (visited on 10/24/2022) (cit. on p. 6).

[3] Andrea Arcuri and Lionel Briand. “A Hitchhiker’s guide to
statistical tests for assessing randomized algorithms in software
engineering”. In: Software Testing, Verification and Reliability
(2014). DOI: 10.1002/stvr.1486 (cit. on p. 12).

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert
Gawlik, and Thorsten Holz. “REDQUEEN: Fuzzing with Input-
to-State Correspondence”. In: Proceedings 2019 Network and
Distributed System Security Symposium. NDSS. Internet Society,
2019. DOI: 10.14722/ndss.2019.23371 (cit. on pp. 9, 17, 20).

[5] BlockSec. Revest Finance Vulnerabilities: More than Re-
entrancy. Mar. 2022. URL: https : / / blocksecteam . medium .
com / revest - finance - vulnerabilities - more - than - re - entrancy -
1609957b742f (visited on 06/07/2022) (cit. on pp. 1, 5, 14).

[6] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christo-
pher Kruegel, and Giovanni Vigna. “SAILFISH: Vetting Smart
Contract State-Inconsistency Bugs in Seconds”. In: 43rd IEEE
Symposium on Security and Privacy. S&P. IEEE, 2022. DOI:
10.1109/SP46214.2022.9833721 (cit. on pp. 2, 12–14, 22).

[7] W H Burkhardt. “Generating test programs from syntax”. In:
(Mar. 1967). DOI: 10.1007/BF02235512 (cit. on p. 13).

[8] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers.
“Compositional Security for Reentrant Applications”. In: 42nd
IEEE Symposium on Security and Privacy. S&P. IEEE, 2021.
DOI: 10.1109/SP40001.2021.00084 (cit. on pp. 2, 5, 6, 12–14).

[9] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe
Wang, Chijin Zhou, Xun Jiao, and Zhuo Su. “EnFuzz: Ensemble
Fuzzing with Seed Synchronization among Diverse Fuzzers”. In:
28th USENIX Security Symposium. 2019. URL: https : / /www.
usenix . org / conference / usenixsecurity19 / presentation / chen -
yuanliang (cit. on p. 11).

[10] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco,
Alex Groce, and Sang Kil Cha. “SMARTIAN: Enhancing Smart
Contract Fuzzing with Static and Dynamic Data-Flow Anal-
yses”. In: 36th IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE. IEEE, 2021. DOI: 10.1109/
ASE51524.2021.9678888 (cit. on pp. 1, 2, 7, 10, 18).

[11] Koen Claessen and John Hughes. “QuickCheck: a lightweight
tool for random testing of Haskell programs”. In: Proceedings
of the Fifth ACM SIGPLAN International Conference on Func-
tional Programming. ICFP. 2000. DOI: 10.1145/351240.351266
(cit. on p. 3).

[12] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro
Cruz. “Empirical review of automated analysis tools on 47,587
Ethereum smart contracts”. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. ICSE.
2020. DOI: 10.1145/3377811.3380364 (cit. on pp. 12, 19, 20,
22).

[13] Microsoft. Enclave EVM. URL: https: / /github.com/microsoft /
eEVM (cit. on pp. 6, 9, 17).

[14] etherscan.io: HODLWallet. URL: https : / / etherscan . io /
address / 0x4a8d3a662e0fd6a8bd39ed0f91e4c1b729c81a38 (vis-
ited on 12/12/2021) (cit. on p. 13).

[15] etherscan.io: InstaDice. URL: https : / / etherscan . io /
address / 0xfe1b613f17f984e27239b0b2dccfb1778888dfae (vis-
ited on 12/12/2021) (cit. on p. 13).

[16] etherscan.io: LedgerChannel (SpankChain).
URL: https : / / etherscan . io / address /
0xf91546835f756da0c10cfa0cda95b15577b84aa7 (visited
on 12/12/2021) (cit. on pp. 11, 13).

[17] etherscan.io: SysEscrow. URL: https : / / etherscan . io /
address / 0x903643251af408a3c5269c836b9a2a4a1f04d1cf (vis-
ited on 12/12/2021) (cit. on p. 13).

[18] etherscan.io: The Tokenized Bitcoin (imBTC).
URL: https : / / etherscan . io / address /
0x3212b29E33587A00FB1C83346f5dBFA69A458923 (visited
on 12/12/2021) (cit. on p. 11).

[19] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: a static
analysis framework for smart contracts”. In: Proceedings of the
2nd International Workshop on Emerging Trends in Software En-
gineering for Blockchain. WETSEB@ICSE. IEEE, 2019. DOI:
10.1109/WETSEB.2019.00008 (cit. on pp. 2–4, 12).

[20] Christof Ferreira-Torres, Julian Schütte, and Radu State. “Osiris:
Hunting for Integer Bugs in Ethereum Smart Contracts”. In:
Proceedings of the 34th Annual Computer Security Applications
Conference. ACSAC. 2018. DOI: 10 . 1145 / 3274694 . 3274737
(cit. on pp. 7, 13).

[21] C. R. E. A. M Finance. C.R.E.A.M. Finance Post Mortem: AMP
Exploit. Sept. 2021. URL: https://medium.com/cream-finance/c-
r - e - a - m - finance - post - mortem - amp - exploit - 6ceb20a630c5
(visited on 06/07/2022) (cit. on pp. 1, 5, 14).

[22] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc
Heuse. “AFL++: Combining incremental steps of fuzzing re-
search”. In: 14th USENIX Workshop on Offensive Technologies.
WOOT. 2020 (cit. on pp. 2, 3, 9, 17).

[23] Joel Frank, Cornelius Aschermann, and Thorsten Holz.
“ETHBMC: A Bounded Model Checker for Smart Contracts”.
In: 29th USENIX Security Symposium. USENIX Associa-
tion, 2020. URL: https : / / www . usenix . org / conference /
usenixsecurity20/presentation/frank (cit. on pp. 1–4, 6, 7, 10,
12, 14).

[24] Asem Ghaleb and Karthik Pattabiraman. “How Effective Are
Smart Contract Analysis Tools? Evaluating Smart Contract
Static Analysis Tools Using Bug Injection”. In: Proceedings of
the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA. 2020 (cit. on pp. 12, 19).

[25] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and
Alex Groce. “Echidna: effective, usable, and fast fuzzing for
smart contracts”. In: 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ISSTA. ACM, 2020.
DOI: 10.1145/3395363.3404366 (cit. on pp. 1–4, 6, 7, 10–14,
18).

[26] Alex Groce and Gustavo Grieco. “echidna-parade: a tool for
diverse multicore smart contract fuzzing”. In: Proceedings of
the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA. 2021. DOI: 10 . 1145 / 3460319 .
3469076 (cit. on pp. 10, 21).

[27] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar
Tsankov, and Martin T. Vechev. “Learning to Fuzz from Sym-
bolic Execution with Application to Smart Contracts”. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. CCS. ACM, 2019. DOI: 10.1145/
3319535.3363230 (cit. on pp. 1–3, 7, 10–14, 18).

[28] Christoph Jentzsch. The History of the DAO and Lessons
Learned. URL: https : / /blog .slock. it / the- history- of- the- dao-
and-lessons-learned-d06740f8cfa5 (cit. on pp. 1, 3).

[29] Bo Jiang, Ye Liu, and W. K. Chan. “ContractFuzzer: fuzzing
smart contracts for vulnerability detection”. In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated
Software Engineering. Ed. by Marianne Huchard, Christian
Kästner, and Gordon Fraser. ASE. ACM, 2018. DOI: 10.1145/
3238147.3238177 (cit. on pp. 1, 5, 7).

[30] Rauli Kaksonen, Marko Laakso, and Ari Takanen. “Software
Security Assessment through Specification Mutations and Fault
Injection”. In: Communications and Multimedia Security Issues
of the New Century: IFIP TC6 / TC11 Fifth Joint Working Con-

463

ference on Communications and Multimedia Security (CMS’01).
2001. DOI: 10.1007/978-0-387-35413-2_16 (cit. on p. 3).

[31] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma.
“ZEUS: Analyzing Safety of Smart Contracts”. In: 25th Annual
Network and Distributed System Security Symposium. NDSS.
The Internet Society, 2018 (cit. on pp. 1, 3).

[32] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and
Michael Hicks. “Evaluating Fuzz Testing”. In: ACM Conference
on Computer and Communications Security (CCS). 2018. DOI:
10.1145/3243734.3243804 (cit. on p. 12).

[33] Johannes Krupp and Christian Rossow. “teEther: Gnawing at
Ethereum to Automatically Exploit Smart Contracts”. In: 27th
USENIX Security Symposium. USENIX Association, 2018. URL:
https : / / www . usenix . org / conference / usenixsecurity18 /
presentation/krupp (cit. on pp. 1–7, 10, 12, 14).

[34] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. “Mimal-
loc: Free List Sharding in Action”. In: Programming Languages
and Systems - 17th Asian Symposium. APLAS. 2019. DOI: 10.
1007/978-3-030-34175-6_13 (cit. on pp. 9, 17).

[35] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and
Aquinas Hobor. “Making Smart Contracts Smarter”. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS. ACM, 2016 (cit. on pp. 1,
13, 18).

[36] Valentin J M Manes, Hyungseok Han, Choongwoo Han, Sang
Kil Cha, Manuel Egele, Edward J Schwartz, and Maverick Woo.
“The art, science, and engineering of fuzzing: A survey”. In:
IEEE Trans. Software Eng. 47.11 (Nov. 2021), pp. 2312–2331.
ISSN: 0098-5589, 1939-3520. DOI: 10.1109/tse.2019.2946563
(cit. on p. 3).

[37] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex
Groce, Gustavo Grieco, Josselin Feist, Trent Brunson, and
Artem Dinaburg. “Manticore: A User-Friendly Symbolic Exe-
cution Framework for Binaries and Smart Contracts”. In: 34th
IEEE/ACM International Conference on Automated Software
Engineering. ASE. IEEE, 2019. DOI: 10.1109/ASE.2019.00133
(cit. on pp. 2, 3, 6, 10).

[38] ConsenSys. Mythril v0.22.1. URL: https : / / github . com /
ConsenSys/mythril (cit. on pp. 2, 7, 18).

[39] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang
Tran Minh. “sFuzz: an efficient adaptive fuzzer for solidity
smart contracts”. In: ICSE ’20: 42nd International Conference
on Software Engineering. Ed. by Gregg Rothermel and Doo-
Hwan Bae. ACM, 2020. DOI: 10.1145/3377811.3380334 (cit. on
pp. 1, 3, 7, 13).

[40] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and
Aquinas Hobor. “Finding The Greedy, Prodigal, and Suicidal
Contracts at Scale”. In: Proceedings of the 34th Annual Com-
puter Security Applications Conference. ACSAC. 2018. DOI:
10.1145/3274694.3274743 (cit. on pp. 1–4, 6, 7, 10, 12, 14,
18, 19).

[41] David Paaßen, Sebastian Surminski, Michael Rodler, and Lucas
Davi. “My Fuzzer Beats Them All! Developing a Framework for
Fair Evaluation and Comparison of Fuzzers”. In: Proc. of Euro-
pean Symposium on Research in Computer Security. ESORICS.
Springer International Publishing, 2021. DOI: 10.1007/978- 3-
030-88418-5_9 (cit. on p. 12).

[42] Gregory Popovitch. The Parallel Hashmap. Mar. 2019. URL:
https : / / greg7mdp . github . io / parallel - hashmap/ (visited on
04/22/2022) (cit. on p. 17).

[43] Michael Rodler, Wenting Li, Ghassan Karame, and Lucas
Davi. “Sereum: Protecting Existing Smart Contracts Against Re-
Entrancy Attacks”. In: Proceedings of the Network and Dis-
tributed System Security Symposium. NDSS. 2019. URL: https:
/ /www.ndss - symposium.org /ndss - paper / sereum- protecting -
existing- smart- contracts- against- re- entrancy- attacks/ (cit. on
pp. 2, 7, 12, 13, 19).

[44] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and
Matteo Maffei. “eThor: Practical and Provably Sound Static
Analysis of Ethereum Smart Contracts”. In: ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2020. DOI: 10.1145/3372297.3417250 (cit. on p. 1).

[45] Clara Schneidewind, Markus Scherer, and Matteo Maffei. “The
Good, The Bad and The Ugly: Pitfalls and Best Practices in Au-
tomated Sound Static Analysis of Ethereum Smart Contracts”.
In: Leveraging Applications of Formal Methods, Verification
and Validation: Applications. Springer International Publishing,
2020. DOI: 10.1007/978-3-030-61467-6_14 (cit. on p. 22).

[46] Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till West-
mann. “On fast large-scale program analysis in Datalog”. In:
Proceedings of the 25th International Conference on Compiler
Construction. CC. 2016. DOI: 10.1145/2892208.2892226 (cit. on
p. 6).

[47] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. “SmarTest:
Effectively Hunting Vulnerable Transaction Sequences in Smart
Contracts through Language Model-Guided Symbolic Execu-
tion”. In: 30th USENIX Security Symposium. Ed. by Michael
Bailey and Rachel Greenstadt. USENIX Association, 2021.
URL: https : / / www. usenix . org / conference / usenixsecurity21 /
presentation/so (cit. on pp. 2, 10).

[48] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo
Oh. “VERISMART: A Highly Precise Safety Verifier for
Ethereum Smart Contracts”. In: 2020 IEEE Symposium on Se-
curity and Privacy. SP. IEEE, 2020. DOI: 10.1109/SP40000.
2020.00032 (cit. on pp. 2, 10).

[49] Solidity by Example: Re-Entrancy. URL: https : / / solidity - by -
example.org/hacks/re-entrancy/ (visited on 12/12/2021) (cit. on
p. 4).

[50] Solidity: Security Considerations - Use the Checks-Effects-
Interactions Pattern. URL: https : / / docs . soliditylang . org / en /
v0.8.7/security- considerations.html#use- the- checks- effects-
interactions-pattern (visited on 09/09/2021) (cit. on p. 3).

[51] Parity Technologies. A Postmortem on the Parity Multi-Sig Li-
brary Self-Destruct. Nov. 2017. URL: http : / / paritytech . io / a -
postmortem - on - the - parity - multi - sig - library - self - destruct
(visited on 06/03/2020) (cit. on p. 6).

[52] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan
de Halleux, and Zhendong Su. “Synthesizing method sequences
for high-coverage testing”. In: Proceedings of the 26th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. OOPSLA. 2011. DOI:
10.1145/2048066.2048083 (cit. on p. 3).

[53] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais,
and Radu State. “ConFuzzius: A Data Dependency-Aware Hy-
brid Fuzzer for Smart Contracts”. In: IEEE European Symposium
on Security and Privacy. EuroS&P. IEEE, 2021. DOI: 10.1109/
EuroSP51992.2021.00018 (cit. on pp. 2–7, 10–14, 18).

[54] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais,
and Radu State. “The Eye of Horus: Spotting and Analyzing
Attacks on Ethereum Smart Contracts”. In: Financial Cryptog-
raphy and Data Security - 25th International Conference. FC.
Springer, 2021. DOI: 10.1007/978-3-662-64322-8_2 (cit. on
pp. 1, 2, 5, 13, 14, 22).

[55] Christof Ferreira Torres, Mathis Steichen, and Radu State.
“The Art of The Scam: Demystifying Honeypots in Ethereum
Smart Contracts”. In: 28th USENIX Security Symposium. 2019.
URL: https : / / www. usenix . org / conference / usenixsecurity19 /
presentation/ferreira (cit. on pp. 12, 13, 22).

[56] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen,
Arthur Gervais, Florian Bünzli, and Martin T. Vechev. “Securify:
Practical security analysis of smart contracts”. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS. ACM, 2018 (cit. on pp. 1–4).

[57] Unity Documentation: IL2CPP Overview. URL: https : / / docs .
unity3d.com/Manual/IL2CPP.html (visited on 09/14/2021) (cit.
on p. 6).

[58] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic,
Paul Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas
Würthinger. “Initialize once, start fast: application initialization
at build time”. In: Proc. ACM Program. Lang. 3.OOPSLA
(2019). DOI: 10.1145/3360610 (cit. on p. 6).

[59] Valentin Wüstholz and Maria Christakis. “Harvey: a greybox
fuzzer for smart contracts”. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2020. ACM, Nov. 2020. DOI: 10 . 1145 / 3368089 .
3417064 (cit. on pp. 1, 3, 18).

[60] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin.
“Symstra: A Framework for Generating Object-Oriented Unit
Tests Using Symbolic Execution”. In: Tools and Algorithms for
the Construction and Analysis of Systems, 11th International
Conference. TACAS. 2005. DOI: 10.1007/978- 3- 540- 31980-
1_24 (cit. on p. 3).

[61] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.
“Designing New Operating Primitives to Improve Fuzzing Per-
formance”. In: Proceedings of the 2017 ACM SIGSAC Confer-

464

ence on Computer and Communications Security. CCS. 2017.
DOI: 10.1145/3133956.3134046 (cit. on p. 3).

[62] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding
and understanding bugs in C compilers”. In: Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). Association for Computing
Machinery, June 2011. DOI: 10.1145/1993498.1993532 (cit. on
p. 13).

[63] Michal Zalewski. American Fuzzy Lop. URL: https : / / lcamtuf .
coredump.cx/afl/ (visited on 04/28/2022) (cit. on pp. 3, 10).

[64] Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao, Min Yang,
and Yuan Zhang. “An Ever-evolving Game: Evaluation of Real-
world Attacks and Defenses in Ethereum Ecosystem”. In: 29th
USENIX Security Symposium. USENIX Association, 2020 (cit.
on pp. 1, 12, 13).

A. Implementation Details

EVM Changes Similar to many dynamic analysis tools
we use a custom Ethereum virtual machine (EVM) en-
vironment. This allows us to optimize the EVM for
fuzzing by adding instrumentation and bug oracles. We
used the open-source eEVM project [13] as the base for
our EVM environment. We added an implementation of
several newer EVM opcodes, missing features, and various
minor fixes. Furthermore, we replaced the usage of C++
exceptions with return values in hot code paths. This
results in considerably better performance since fuzzing
tends to frequently exercise the error handling paths of the
smart contract code. We also switched to a more optimized
hashmap implementation [42] and use mimalloc [34] as
the default allocator.

Test Case Format Figure 16 depicts an example of the
test case format used by EF�CF. During fuzzing EF�CF
utilizes a custom binary format that can be mutated by the
base fuzzer using normal bit-flipping mutations without
inducing parsing failures. However, for introspection we
convert the test cases to a yaml-based textual representa-
tion, which is shown in Figure 16. Here the transactions
are depicted as a sequence of transactions. However, the
second transaction specifies a return header with the reen-
ter flag set to two. This means that the following two
transactions are executed as reentrant calls.

In EF�CF, every transaction has up to 255 associated
return-headers. Each return header specifies what the sim-
ulated attacker contracts do when they are called by the
target contract, i.e., a callback. The return header contains
the return value, the return data, and the reenter field.
Mutating the reenter field allows the fuzzer to explore
different shapes of call trees that represent different kinds
of reentrancy attacks. Figure 4 depicts several examples
of call-trees that EF�CF is capable of generating.

AFL++ Integration We patched AFL++ for optimal in-
tegration with our custom mutator. Our patches make
AFL++ report an internal performance score to our custom
mutator. The custom mutator can then select the number
of fuzzing rounds for a given test case based on this score.
Depending on the size and complexity of the test case, we
apply different types of mutations and a different number
of fuzzing rounds in the custom mutator.

We ensure that AFL++ extensively uses the structured
trimming provided by our custom mutator. We found that
structured trimming is beneficial to the fuzzing process
in EF�CF. Additionally, we utilize the trimming step of

AFL++ to update the internal test case queue of our
custom mutator. This allows us to only add trimmed test
cases to the internal queue. In contrast to AFL++’s queue,
we keep the complete internal queue in memory and use
it for efficient structural splicing operations.

We also extend AFL++ with an additional manual
feedback API with a function that allows to reserve a
larger part of AFL++’s coverage map for direct feedback.
This is used by our modifications to the eEVM runtime to
provide explicit feedback on two properties of the execu-
tion. First, we provide explicit feedback on the progress
of solving comparison operators. For example, for the EQ
opcode we provide explicit coverage feedback to AFL++
for every 64 bit part of the 256 bit EVM-native integer
that is equal. This allows AFL++’s cmplog mode, which
implements input-to-state correspondence on the 64 bit
comparison level, to effectively solve fuzzing roadblocks
on EVM-native 256 bit level. Similarly, we provide ex-
plicit coverage feedback to AFL++ whenever a contract
executes in a reentrant call. This allows the fuzzer to
distinguish a reentrant execution from a normal execution,
i.e., a simple form of context-sensitive coverage. We found
this beneficial for AFL++ to keep both reentrant and non-
reentrant variants of the same transaction sequence in the
queue.

When launching AFL++, we disable the byte-level
auto-dict feature since it is superseded by our replace-
ment acting on the EVM bytecode level. Re-implementing
the auto-dict feature in evm2cpp results in significantly
smaller and more useful dictionaries than relying on
AFL++’s auto-dict mode, which scans the final binary for
constants and also picks up irrelevant data, such as strings
only relevant for the eEVM runtime.

Multi-Core Fuzzing While AFL++ has a single-threaded
design, it is capable of synching with other instances of
AFL++ (and even other fuzzers) via the filesystem. EF�CF
inherits the same technique, and the wrapper scripts
we provide as part of EF�CF can automatically launch
multiple AFL++ instances. Generally, it is recommended
to launch AFL++ using multiple different configurations
when using multiple cores [22]. We adapt these recom-
mendations to EF�CF. When running on 4 or more cores,
we launch the following configurations:

1) A main instance with AFL++’s deterministic mu-
tation stages enabled.

2) A compare solver instance, with input-to-state [4]
and EVM-level compare tracing enabled.

3) One instance fuzzes only with the custom muta-
tor.

4) The remaining cores utilize AFL++’s lightweight
havoc mutations and our custom mutator.

Other Bug Oracles The standard bug oracles are imple-
mented inside of the eEVM runtime code. To implement a
new bug oracle, one has to modify the C++ implementa-
tion of the runtime code. For performance reasons, EF�CF
does not rely on heavyweight program analysis techniques
such as taint tracking to implement bug oracles. Instead,
the bug oracles in EF�CF are limited to detecting bugs
based on the state of the simulated Ethereum blockchain.
However, we believe that the existing bug oracles sup-
ported by EF�CF already cover a large set of use cases.

465

1 contract CrowdFund {
2 uint goal;
3 uint closetime;
4 bool is_closed;
5

6 // invariant: if the crowdfunding is closed then
7 // either the time ran out or the funding goal
8 // was met.
9 function property_check() public view returns(bool)

10 {
11 return (!is_closed) ||
12 (address(this).balance > goal
13 || block.timestamp > closetime);
14 }
15

16 // [...]
17 }

Figure 9: EF�CF supports property-based fuzzing. The de-
veloper specifies a custom function that checks a property
of a smart contract that must always hold. EF�CF repeat-
edly calls this function after every executed transaction to
check whether the property still holds and reports a bug
if not.

Furthermore, developers can use custom properties or
the event mechanism to implement custom bug oracles
directly in Solidity code.

Currently, EF�CF supports optional fuzzing modes,
which are also used by industry fuzzers such as
Echidna [25] or Mythril [38, 59]. For example, EF�CF
supports property-based fuzzing with an interface that is
fully compatible with the Echidna fuzzer. The developer
specifies a property of the contract that must always hold,
i.e., an invariant of the contract code. Such properties
are specified as a Solidity function that returns whether
the property is currently true or false. After every ex-
ecuted transaction, EF�CF calls the configured property
functions and checks whether the return value signals a
violated property. Similarly, EF�CF can utilize the EVM
event logging and error propagation mechanisms to detect
bugs. The smart contract developer emits a certain event
whenever a bug is triggered. Whenever this event is logged
during fuzzing, EF�CF will consider the execution to
trigger a bug and report it. Similarly, Solidity version
0.8 or above report special error messages to the caller,
whenever an assertion is violated or an integer overflow
happens. If configured, EF�CF picks up these special
error message return codes as a bug and reports it. This
way EF�CF can be utilized to fuzz for more than Ether-
based bugs and also uncover contract-specific logic bugs.
Figure 9 shows an example for an invariant specified as
a solidity function. EF�CF checks whether this function
returns true after every executed transaction.

Comparison of Bug Oracles Previous analysis tools often
implement a wide variety of bug oracles [10, 35, 40, 53]
to detect security vulnerabilities, code smells, and other
potentially interesting properties of the code. However,
the definition of the bug oracles and what oracles should
be considered as a security vulnerability differ across the
literature. We identify the unprotected selfdestruct bug
oracles as one of the few oracles that are recognized in
almost all analysis tools. We utilize this bug oracle in our
benchmarks (see Section 5 and Appendix C). In EF�CF,
we focus on Ether gains as our primary bug oracle, as
it features the least number of false alarms in practice.

However, this single bug oracle in EF�CF actually maps
to multiple bug oracles in other tools. Furthermore, we
implement several additional optional bug oracles that can
be used in EF�CF. We show a comparison of supported
bug oracles in Table 5. In the following, we discuss some
of the bug oracles in more detail.

Locking Ether is fundamentally a liveness property. In
general, liveness properties are hard to prove with a fuzzer.
A standard fuzzing approach can only show that a certain
code path can be reached. However, to accurately report
locked Ether, the fuzzer would have to show that a certain
code path cannot be reached. For this reason, many fuzzers
actually implement a static analysis approach to detecting
locked Ether. For example, ILF [27] and Confuzzius [53]
simply scan the contract for any instruction that can, in
theory, send Ether. However, they do not verify that the
instruction can actually be executed. For this reason, this
approach will only detect simple cases of locked Ether.

Leaking Ether and Ether Gains are two very related
bug oracles. Both attempt to identify bugs where the con-
tract can be used to send Ether to some unrelated address.
EF�CF supports detecting leaking Ether but disables the
bug oracle by default. The idea is that the attacker can trick
the contract into sending Ether to some contract that has
no previous relationship with the contract. However, many
contracts support transferring Ether indirectly to another
address as a feature. For example, all token contracts
must support transferring tokens to arbitrary addresses as
a feature. In contrast, EF�CF uses Ether gains as a bug
oracle that covers more realistic cases. EF�CF will report
an Ether gain bug whenever the sum of the Ether balances
of all attacker-controlled accounts exceeds the initial sum
of balances. This allows EF�CF a wider and more realistic
set of issues. For example, the vulnerability depicted in
Figure 6 is detected neither by Confuzzius [53] nor by
Smartian [10]. However, since EF�CF simulates multiple
attacker-controlled accounts, it will quickly generate a
transaction originating from the first account and leaking
the Ether to a second attacker-controlled address.

Most analysis tools feature explicit Reentrancy bug
oracles. In contrast, EF�CF does not feature an explicit
detector for reentrancy but simply generates reentrant

Table 5: Comparison of bug oracles in various fuzzing-
based analysis tools with the bug oracles available in
EF�CF. � fully supported. × not supported. �∗ supported
but not enabled by default. �† only supported for contract
compiled with Solidity version > 0.8. ×‡ only if it leads
to triggering another bug oracle.

Bug Name EF�CF Confuzzius [53] Smartian [10] Echidna [25]

Assertion Failure �† � � �∗

Arbitrary Write ×‡ × � ×‡

Block State Dependency ×‡ � � ×‡

Control-flow Hijack (JUMP) ×‡ × � ×‡
Custom Event Oracle �∗ × × �∗

Custom Property Checking �∗ × × �∗

Ether Gains � × × ×
Integer Overflow ×‡/ �† � � ×‡
Leaking Ether �∗ � � ×
Locking Ether × � � ×
Multiple Send × × � ×
Reentrancy ×‡ � � ×
Require Violation × × �∗ ×
Transaction Origin Use ×‡ × � ×‡
Transaction Order Dependency × � × ×
Unsafe Delegatecall � � � ×
Unprotected Selfdestruct �∗ � � �∗

Un/Mishandled Exception ×‡ � � ×

466

transaction sequences that trigger other bug oracles, such
as Ether gains. In this way, EF�CF detects reentrancy
bugs, but only if they are actually exploitable. In contrast
to other analysis tools, this leads to fewer false alarms,
e.g., when encountering manual reentrancy locking [43].

By default, EF�CF reports unprotected selfdestruct
only if the selfdestruct will transfer the remaining Ether
of the target contract to the attacker, i.e., the address
parameter of the selfdestruct is controlled by the attacker.
Optionally, EF�CF can also report DoS-style unprotected
selfdestructs, i.e., if the selfdestruct can be triggered by
anyone, but always targets a trusted address such as the
owner. This style of detection is featured in most other
analysis tools.

With Solidity versions > 0.8, contracts feature auto-
matic integer overflow checking and proper assertion vio-
lation reporting. EF�CF supports this new Solidity excep-
tion mechanism to signal errors to the fuzzer. Previously,
assert statements were implemented with the INVALID
opcode that also triggers a transaction revert. However,
earlier contracts (pre 0.4) also used this to implement
failure of input sanitization, which makes it hard to re-
liably distinguish between a regularly failing transaction
and a assertion violation across Solidity versions. We
expect developers to use newer Solidity versions for newly
deployed contracts. We opted to support only the new
Solidity exception mechanism, which allows us to reliably
detect internal errors in a smart contract. This includes
memory allocation failure, integer overflows, and internal
assertions. Developers can utilize EF�CF for general ro-
bustness testing of their newly deployed smart contracts.

En/Decoding the ABI We use the ethabi Rust library to
parse the JSON-based ABI definition, which allows us to
en- and decode the ABI format expected by the smart
contract. Sometimes the base fuzzer will break the ABI
encoding, which results in the custom mutator attempting
to decode an extremely large input data. In fact, during
development of EF�CF, we uncovered and fixed two bugs
in the ethabi library such that it would not result in
an irrecoverable error when attempting to decode broken
ABI-encoded data. However, we still set an 8 kbyte limit
to the number of bytes we attempt to decode. This guards
against spending too much time on attempting to decode
an unusually large input byte-string of a transaction. Since
it is unlikely a valid or useful input for the smart contract
under test, it is preferable to avoid the lengthy decoding
process altogether. In these pathological cases, we fall
back on the random mutations provided by the base fuzzer.

Additional Tooling Based on our custom mutator code,
we additionally implemented several tools that proved
to be useful for smart contract fuzzing. For instance,
EF�CF also features a test case minimizer that performs
structural minimization on a test case, allowing an analyst
to reduce the size of a test case. Furthermore, EF�CF
integrates a translator between our binary test case format
and a human-readable yaml-based format, allowing for
easy manual modification of test cases. EF�CF can also
convert a test case into a Solidity attack contract that can
be deployed within a blockchain environment to study the
generated attack. These tools help an analyst performing
root cause analysis given a test case that triggers a bug.

1 bool not_called_re_ent27 = true;
2 function bug_re_ent27() public {
3 require(not_called_re_ent27);
4 if(! (msg.sender.send(1 ether))){
5 revert();
6 }
7 not_called_re_ent27 = false;
8 }

Figure 10: An injected reentrancy bug, which is also
detected by bug oracles that only identify leaking Ether
without considering reentrancy.

1 // initialized with 0
2 mapping(address => uint) redeemableEther_re_ent25;
3 function claimReward_re_ent25() public {
4 /// since the balances mapping is never written

anywhere else,↪→
5 /// this require cannot be bypassed by a dynamic

analysis tool.↪→
6 require(redeemableEther_re_ent25[msg.sender] > 0);
7 /// unreachable code
8 uint transferValue_re_ent25 =

redeemableEther_re_ent25[msg.sender];↪→
9 msg.sender.transfer(transferValue_re_ent25);

//bug↪→
10 redeemableEther_re_ent25[msg.sender] = 0;
11 }

Figure 11: An injected reentrancy bug that cannot be
triggered because of a guarding condition that cannot be
satisfied.

B. Problems with Existing Datasets

By now, there are multiple attempts to create standard-
ized datasets to evaluate smart contract analysis tools [12,
24]. However, they lack diversity of bugs, especially with
respect to reentrancy bugs. They often only contain the
simple same-function reentrancy pattern and contain many
honeypot contracts (see Appendix F).

Ghaleb et al. [24] attempt to synthesize a benchmark
dataset using artificial bug injection. Unfortunately, we
find that these synthesized datasets are not suitable to test
reentrancy detection based on fuzzing or symbolic execu-
tion. The injected reentrancy bugs focus on same-function
reentrancy and do not cover more complex reentrancy
patterns, such as cross-function reentrancy [43]. Further-
more, the injected patterns themselves are suboptimal. For
example, many of the injected reentrancy bugs do not
require a reentrant call to be exploitable. Figure 10 shows
an injected bug that is prone to reentrancy. However, the
function can be identified as vulnerable without resorting
to a reentrancy attack. For example, MAIAN [40] detects
an Ether leaking vulnerability in this function because the
injected function will unconditionally send Ether (line 4)
the first time a caller calls the function. Reentrancy is
only necessary to repeatedly leak Ether. A second type
of injected reentrancy bug is shown in Figure 11. This
reentrancy bug can never be triggered during fuzzing or
symbolic execution. The injected vulnerable function con-
tains a guard, the require statement in line 6, that cannot
be satisfied, because it accesses a storage variable that
is never modified in the contract’s code. This makes the
reentrant call practically dead code. We therefore conclude
that the reentrancy bugs injected as part of the SolidiFI
project are not suitable to test dynamic analysis tools, i.e.,
fuzzers or symbolic execution-based analyzers.

467

C. Details on Benchmarks

Scalability Benchmark Dataset We create a set of con-
tracts that can be used to evaluate tools with respect to
their scalability to generating long transaction sequences.
Here we utilize a time-to-bug approach to benchmarking.
We therefore require contracts with ground truth and bugs
that are widely supported by analysis tools. We opted to
create our own set of benchmark contracts. Furthermore,
we devise multiple variants of the same contracts, allowing
us to measure scalability to longer transaction sequences
in a more fine-grained manner.

To this end, we automatically synthesize the multi
contracts as follows: For each function, several equality
or i-equality constraints are enforced on up to six in-
teger arguments before setting a boolean internal state
variable. These benchmark contracts test the capability
of solving input constraints across multiple transactions.
The functions of the contract must be called in the right
order and with the right inputs to trigger a selfdestruct
of the contract. The synthesized contracts favor symbolic
execution tools because there is no potential for path
explosion within the functions. This is because they do
not contain any control-flow statements except for error
handling.

The three complex contracts consist of a manual adap-
tation of the multi contracts with more varying constraints
on the input and the internal state of the smart contract
(e.g., requiring an array input of a certain length or
requiring the sha3 hash of a fixed value as input). The idea
is to add more complex and diverse input requirements
that are more akin to real-world smart contracts. We only
use three different variants of these contracts because they
are created manually.

Code Coverage Dataset For our code coverage experi-
ments in Section 5.3, we utilize a set of real world smart
contracts. To create a realistic set of smart contracts,
we first analyzed the smartbugs-wild dataset [12] and
ranked the contracts according to their peak Ether balance
(as reported by etherscan.io). Ranking according to peak
Ether balance naturally excludes toy or test contracts and
creates a dataset that is focused on contracts that are
actually in use.

We then processed the top 1000 contracts according to
this ranking and created a minset of those contracts that
are supported by all fuzzers. For example, the contract
must not require constructor parameters such that the
contracts can easily be deployed in every fuzzer. The
resulting dataset consists of a set of 253 contracts from
the top 1000 contracts of the smartbugs-wild dataset that
offer a certain level of code diversity.

D. Ablation Study: Scalability

As part of our ablation study, we also compare the
various configurations in terms of scalability to longer and
complex transaction sequences. We utilize the same scal-
ability experiment as in Section 5.1. However, we bound
the execution time to a maximum of 8 h. We run EF�CF
in four configurations: Full EF�CF with ABI, full EF�CF
without knowledge of the ABI, fuzzing with the custom
mutator only (EM), and fuzzing with AFL++’s mutations

only (AFL). The results are shown for the multi, complex,
and justlen benchmarks in Figure 12a, Figure 12b, and
Figure 12c, respectively. While the AFL configuration
generally provides the highest throughput (see Table 2),
it lacks structured mutation operations, such as splicing
at the transaction level. As a result, the fuzzing process
becomes ineffective and fails to reliably generate even
short meaningful transaction sequences. Furthermore, the
AFL configuration fails to identify a bug in any of the
complex contract variants. This shows that the custom mu-
tator in EF�CF is essential for good fuzzing performance.
Furthermore, we can see that in this benchmark, the EM
performs best since the magic value comparisons are best
solved using the dictionary-based sampling employed by
the custom mutator for integer types. Since the custom
mutator utilizes the dictionary probabilistically, we also
observe some extreme outliers in these experiments. Since
the custom mutator performs mostly structural mutations
on the transaction sequences, it also performs best on the
justlen experiment.

While the EM configuration performs best on the
benchmarks presented here, we found that without AFL’s
mutations (especially the input-to-state correspondence [4]
mutations) there are several fuzzing roadblocks in practice
that cannot be solved by the EM configuration. Fur-
thermore, the benchmarks focusing on real-world smart
contracts in Section 5.1 show that the standard EF�CF
configuration performs best.

Fuzzing without ABI When fuzzing without ABI in-
formation, EF�CF fully relies on the coverage feedback
to discover useful transaction inputs. Generally, EF�CF
without ABI information expectedly performs worse com-
pared to fuzzing with ABI information. On the multi
and complex contracts, fuzzing without ABI information
identifies the bug in a mean of 223 min (σ = 205).
In comparison, fuzzing with ABI information requires
a mean of 87 min (σ = 127) to identify the bug. On
the justlen benchmark, the difference is much smaller:
3.9 min with ABI and 6.6 min without ABI. To identify a
bug in the justlen benchmark, the fuzzer does not need
to identify correct input parameters, as most exposed
functions simply do not require parameters. Performing
structural mutations on the transaction sequence does not
require ABI information. For this reason, the performance
difference is much smaller.

The largest difference can be observed in the multi
benchmark. This contract primarily tests the analysis
tool’s capability of finding solutions to multiple input
constraints while creating long transaction sequences. This
benchmark heavily favors symbolic execution tools, as
there is nearly no potential for state explosion within func-
tions. Figure 13 shows a comparison of EF�CF with and
without ABI with the best performing symbolic execution
tool and the fuzzers we evaluated. While EF�CF with
ABI features comparable performance to symbolic exe-
cution tools, EF�CF without ABI performs significantly
worse. Because of the lack of knowledge about the input
structure, EF�CF samples the dictionary less often than
with ABI. This leads to a decreased chance of placing the
correct values into the input. However, remarkably, EF�CF
without ABI information still performs significantly better
than state-of-the-art fuzzing tools that utilize the ABI.

468

2 3 4 5 6 7 8 9 10
Required TX Sequence Length

0.01

0.05
0.1

0.25
0.5

1

3
6

A
n
al

y
si

s
T

im
e

(h
o
u
rs

u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

Full
EM

AFL Full w/o ABI

(a) multi

5 7 9

Required TX Sequence Length

0.1

0.25

0.5

1

2

4

A
n
al

y
si

s
T

im
e

(h
o
u
rs

u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

EM Full Full w/o ABI

(b) complex

8 64 128 256

Required Array Length

0.5

1

2

4

10

20

50

100

A
n
al

y
si

s
T

im
e

(m
in

u
te

s
u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

AFL
EM

Full Full w/o ABI

(c) justlen

Figure 12: Results of scalability experiments showing the analysis time required over the length of transaction sequences
with various configurations of EF�CF.

2 3 4 5 6 7 8 9 10
Required TX Sequence Length

0.01

0.05
0.1

0.25
0.5

1

3
6

12
24
48

A
n
al

y
si

s
T

im
e

(h
o
u
rs

u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

efcf

efcf.noabi

confuzziuspypy

echidna2

maian

Figure 13: Comparison of EF�CF with and without ABI
and other analysis tools. MAIAN is the best analysis
tool in this benchmark and never uses ABI information.
Echidna and Confuzzius always utilize ABI information.
We can see that EF/CF without ABI performs significantly
worse but still outperforms the other fuzzers that utilize
ABI information.

E. Additional Benchmarks and Evaluation
Details

Multi-Core Performance We also evaluate multi-core
performance of those analysis tools that support it: EF�CF,
Manticore, and Echidna. To parallelize Echidna, we utilize
the echidna-parade [26] tool to run multiple instances
of Echidna in parallel. In contrast to the normal mode
of operation in echidna-parade, we always fuzz the full
set of functions by not excluding any function from the
fuzzing runs. In our benchmarks, the default mode of op-
eration is detrimental to performance in terms of time-to-
bug. Manticore natively supports multi-threaded analysis
to leverage multiple cores. For EF�CF, we leverage the
multi-core fuzzing approach of AFL++.

Figure 14 shows the multi-core performance of several
analysis tools on the multi contracts. We can see that with
EF�CF, the performance significantly increases between
the single and multi-core versions. This is primarily be-
cause EF�CF utilizes an ensemble fuzzing-like approach
that spawns EF�CF’s core fuzzer in multiple different

2 3 4 5 6 7 8 9 10

Required TX Sequence Length

0.01

0.05
0.1

0.25
0.5

1

3
6

12
24
48

A
n
al

y
si

s
T

im
e

(h
o
u
rs

u
n
ti

l
fi

rs
t

b
u
g
,

lo
g
-s

ca
le

)

efcf

efcf.c4

echidna

echidnaparade.p1_c4

manticore

manticore.c4

Figure 14: Results of running multiple analysis tools on
a single core vs. running on 4 cores (marked with c4) in
parallel on the multi dataset.

configurations. Similarly, parallelizing Echidna with the
echidna-parade tool shows significant improvements over
the single-core Echidna. In a multi-core setting, Echidna
can find the transaction sequences with up to 8 transac-
tions and features a significant speed-up for the transaction
sequences with lengths 4 to 7. For both fuzzers, we
observe that some single-core runs are as fast or faster
than other multi-core runs. Overall, however, the multi-
core runs reduce the variance between the runs, allowing
the fuzzer to identify the bug in a given time span more
consistently. Interestingly, Manticore, the only other tool
with built-in multi-core support, does not gain a significant
speedup in this experimental setup. We suspect that the
symbolic execution approach taken by manticore cannot
fully leverage multiple cores.

Code Coverage In Section 5.3, we describe an experiment
to assess the ability of current fuzzers to reach code cov-
erage on a set of real-world smart contracts. We describe
the dataset in more detail in Appendix C. The overall
results are shown in Table 6. Here, we show the number
of targets where one fuzzer outperforms another fuzzer
with statistical significance.

469

F. Fuzzing Reentrancy Honeypots

Torres et al. [55] discussed the phenomenon of hon-
eypot contracts. These contracts are deployed with source
code often available on etherscan.io that appears to be
vulnerable to, e.g., reentrancy attacks. However, these con-
tracts are, in fact, a form of scam. They target malicious
actors that search for easily exploitable contracts on the
blockchain. They require the attacker to first invest a
number of Ether to later exploit the seemingly vulnerable
contract. However, the code hides a mechanism that pre-
vents exploitation, locking the previously invested Ether
of the attacker. Most of the known reentrancy honeypot
contracts use a call to an external library-like contract
to revert attack transactions. The deception works by
suggesting that the source code on etherscan also provides
the source code for the external contract when, in fact, a
different contract is used.

Many of the known honeypot contracts feature very
obvious reentrancy vulnerabilities, as these contracts are
designed to be easily analyzable (i.e., to lure more people
into attempting to attack the honeypot). Many of those
reentrancy honeypot contracts ended up in various datasets
of prior studies [6, 12]. In the curated version of the
smartbugs dataset, the majority of the contracts identified
as vulnerable to reentrancy are, in fact, honeypot contracts.
This dataset contains 19 reentrancy honeypots and 12
other contracts vulnerable to reentrancy.

Honeypot contracts introduce significant bias into
datasets. For example, a tool that detects all honeypot
contracts in the curated smartbugs dataset already seems
to detect the majority of reentrancy bugs. However, in
reality, all these reentrancy bugs follow the exact same
code pattern. For this reason, we chose to summarize all
these cases as trivial reentrancy in Section 5.4.

The reentrancy honeypots can be analyzed in two
ways: by relying on the source code only and by importing
code and state data directly from the blockchain. It is
important to distinguish both cases since, in the former,
the contract is exploitable, while in the latter, it is not.
We verified that EF�CF correctly identifies the reentrancy
attacks in the first case (see Section 5.4). Here we deploy
a fresh instance of the contract, and the mechanism to
prevent exploitation does not work. In this case, EF�CF
can correctly identify the reentrancy vulnerability. How-
ever, if we export the contract’s state from the blockchain,
including the external contract that is called, then the
mechanism to prevent exploitation is working. In this
case, EF�CF also executes the second external contract,
reverting the transaction before the reentrancy takes place.
Thus, EF�CF correctly does not report any false alarm.

Table 6: Comparison of all fuzzers on the test set: the
number of times fuzzer A outperformed fuzzer B.

Fuzzer A
Fuzzer B

EF�CF Confuzzius ILF

EF�CF - 141 120
ConFuzzius 83 - 105
ILF 112 136 -

G. Sailfish Reentrancy Findings

As part of the evaluation of the SAILFISH tool, Bose et
al. released a list of contracts where reentrancy causes in-
consistent state according to SAILFISH. This list contains
1904 contracts, of which the Bose et al. verified 26 to be
true positives1. Among the list of 1904 contracts, EF�CF
identifies vulnerabilities in only 67 contracts. However, in
8 of these 67 contracts, EF�CF discovers a vulnerability
unrelated to reentrancy, e.g., a controlled delegatecall
vulnerability.

Furthermore, we analyzed the list of verified true
positives in more detail. Among the vulnerable contracts
reported by the SAILFISH tool, EF�CF correctly identifies
5 contracts that can be exploited with reentrancy to steal
Ether. Among these five contracts, one is a test contract,
one a known honeypot, and the remaining 3 contracts
are duplicates. Furthermore, EF�CF identifies one contract
that can be exploited due to an access control bug, not a
reentrancy. Note that EF�CF only identifies the honeypot
as vulnerable when deploying from source code (see
Appendix F). We manually identified one contract that
seems to be vulnerable to reentrancy, but no Ether is at
stake. The remaining contracts exhibit reentrancy patterns
but are probably not exploitable.

For example, the CommonWallet contract, depicted in
Figure 15, is affected by a similar token-related reentrancy
as the Uniswap-V2 contract [54]. Here, the attacker must
supply an ERC777 token where an ERC20 token is ex-
pected. Most (legitimate) ERC20 token contracts do not
perform callbacks to the attacker and therefore the attacker
cannot trigger a reentrancy situation. However, this is
different for ERC777 contracts that feature callbacks by
design. They allow the attacker to reenter the Common-
Wallet contract and trigger a reentrancy. Currently, EF�CF
does not detect token-related bugs since EF�CF has no
concept of tokens and therefore does not regard token
gains as a bug.

However, in reality, this reentrancy bug cannot be
used to cause damage. The reason for this is that the
attacker would have to cause an integer underflow, which
is prevented due to the integer checking leveraged by the
contract. EF�CF would not identify a possible reentrancy
attack, even if there were a bug oracle for tokens, because
there is no way to exploit the reentrancy attack. We
verified this by testing EF�CF with a contract that exhibits
the same vulnerability but with Ether instead of tokens.
We believe the reason for this false alarm is that Sailfish
does not accurately model the transaction-based execution
model of the EVM. It will eagerly report a bug without
considering that the transaction will revert later, a flaw
common to many analysis tools [45].

Interestingly, Sailfish uses a rather broad definition of
state inconsistency caused by reentrancy. Any reachable
state write that could cause inconsistency is considered a
true alarm. We found several contracts where reentrancy is
possible but where the reentrancy will never actually cause
inconsistent state. Here, a state variable is written but
never changed, e.g., the reentrant code path will perform
a subtraction with 0. However, this state variable update
is identified by SAILFISH to cause state inconsistency. In

1. https://github.com/ucsb-seclab/sailfish

470

1 function safeSub(uint256 _x, uint256 _y)
internal pure returns (uint256) {↪→

2 assert(_x >= _y);
3 return _x - _y;
4 }
5 function sendTokenTo(address tokenAddr,

address to_, uint256 amount) {↪→
6 require(tokenBalance[tokenAddr][msg.sender]

>= amount);↪→
7 /* external call - might cause reentrancy

*/↪→
8 if(ERC20Token(tokenAddr).transfer(to_,

amount)) {↪→
9 /* state update with underflow check in

safeSub */↪→
10 tokenBalance[tokenAddr][msg.sender] =
11

safeSub(tokenBalance[tokenAddr][msg.sender],
amount);

↪→
↪→

12 }
13 }

Figure 15: CommonWallet reentrancy, which is not ex-
ploitable due to the integer overflow check.

contrast, EF�CF will only report bugs that actually cause
damage. Furthermore, as a static analysis tool, Sailfish
must over-approximate and consider all external calls as
being able to cause reentrancy. However, in practice, many
contracts issue calls to trusted contracts that do not allow
the attacker to perform reentrancy. In contrast, EF�CF
will not perform reentrancy on calls to unknown contracts
by default, avoiding false reentrancy alarms. For highest
precision, it can also import and execute trusted contract
dependencies of the target.

1 number: 0
2 difficulty: 0
3 gas_limit: 0
4 timestamp: 0
5 initial_ether: 14000000000000000000
6 txs:
7 - length: 4
8 return_count: 0
9 receiver_select: 0

10 sender_select: 2
11 block_advance: 0
12 call_value: 9227875636482146304
13 input: "0xd0e30db0" # deposit()
14 returns: []
15 - length: 4
16 return_count: 1
17 receiver_select: 0
18 sender_select: 2
19 block_advance: 0
20 call_value: 0
21 input: "0x5fd8c710" # withdrawBalance()
22 returns:
23 - value: 1
24 reenter: 2
25 data_length: 0
26 data: "0x"
27 - length: 68
28 return_count: 0
29 receiver_select: 0
30 sender_select: 2
31 block_advance: 0
32 call_value: 0
33 # addAllowance(
34 # 0xc3cf2af7ea37d6d9d0a23bdf84c71e8c099d03c2,
35 # 1117873197643827594651545771110674982630890210242
36 #)
37 input: "0xf3c40c4b0000000...."
38 returns: []
39 - length: 68
40 return_count: 0
41 receiver_select: 0
42 sender_select: 3
43 block_advance: 0
44 call_value: 0
45 # transferFrom(
46 # 0xc2018c3f08417e77b94fb541fed2bf1e09093edd,
47 # 295147905179352825856
48 #)
49 input: "0x01c6adc30000000...."
50 returns: []
51 - length: 4
52 return_count: 1
53 receiver_select: 0
54 sender_select: 3
55 block_advance: 0
56 call_value: 0
57 input: "0x5fd8c710" # withdrawBalance()
58 returns:
59 - value: 1
60 reenter: 0
61 data_length: 0
62 data: "0x"

Figure 16: Textual representation of the transaction se-
quence generated by EF�CF to exploit the contract from
Figure 2.

471

