
SMART Credentials in the Multi-queue of Slackness
(or Secure Management of Anonymous Reputation Traits without Global Halting)

Jack P. K. Ma
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Sherman S. M. Chow
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract—Anonymous credentials encourage online commu-
nication without fear of surveillance, but may invite misbe-
havior like hate speech. Previous updatable anonymous cre-
dentials keep a chronological queue of authenticated sessions
and a global pointer to the last chunk of judged sessions. This
design allows efficient authentication for proving over only
a subset of sessions. However, complications in subjective
evaluation often introduce hard-to-judge sessions, which halt
all users since sessions that come after the global pointer
cannot be redeemed, eventually exceeding the queue size
that limits the creation of bad sessions. Such a global-halting
loophole may also make judgments overly harsh and hasty.

We propose SMART (slack management of anonymous
reputation traits), maintaining multiple queues so the server
could issue interim judgments many times before finalization.
Such slackness removes the binary judgment of old methods
and mitigates the global-halting issue. Prior schemes only
allow score upgrades (WPES ’14) or require proving against
a global session list since the last checkpoint (S&P ’22). Our
authentication time is linear in the number of queues or
sessions in a designated queue for immediate revocation.

1. Introduction

Securing anonymous access to internet services such
as social media and collaborative platforms fosters par-
ticipation via privacy protection, among other benefits.
For example, users may risk censorship and legal/social
persecution for posting “sensitive” content online. Unfor-
tunately, anonymous access can also facilitate harmful be-
havior by allowing malicious users to evade detection and
carry out evil deeds such as spreading misinformation or
cyberbullying. Service providers (SPs) like Wikipedia [2]
restrict what users connecting via Tor [23] can do since its
anonymous connection makes it hard to prevent vandals.

Some systems address the tension between anonymity
and accountability with trusted third parties (TTPs). TTP-
based revocation (e.g., group signatures [15], [21], [38],
traceable signatures [17], [28] or “revocable anonymous
credentials” [1], [14]) often assumes that the misbehavior
has been deanonymized by external means. A TTP could
use the identifying information to recover some tracing
tokens for revocation. Some systems define misbehavior

Sherman Chow (corresponding) is supported by General Research Fund
(CUHK 14210621 and 14209918) and is grateful for the Early Career
Award on “Accountable Privacy in Online Communication” (439713)
from RGC, Hong Kong, We thank reviewers for their helpful comments.

with objectively evaluable criteria, e.g., double-voting [19]
or exceeding the limit of k-times authentication [9]. It
takes no external mechanism to judge. Such misbehavior
can often be detected quickly.

Many systems allow diverse forms of user interactions.
Subjective assessments are needed to identify misbehavior.
The SP may resort to “external” evaluation, say, voting
among the clients, user reports, judgment of modera-
tors, or a professional review by domain experts such as
lawyers. This process often takes time, especially when
there are controversies or complexities like translation,
e.g., “Zhemao” hoaxes on simplified Chinese Wikipedia.

Completely blocking users may not always be desir-
able. It is important to incentivize positive contributions by
maintaining reputation scores. It also helps alleviate sybil
attacks. Users who have yet to build up a reputation might
be deemed less trustworthy than those who have. Similar
to judging bad deeds, (finalizing the) subjective evalua-
tion can be time-consuming. Systems with slow/sporadic
reviews, e.g., Wikipedia, might employ a “time-dependent
model” (cf., blockchain consensus) – if a contribution has
not been flagged inappropriate for, say, six months, it is
deemed solid, and a score will be assigned.

1.1. Two Major Paradigms

Judging since Genesis. Blacklistable anonymous creden-
tials (BLAC) [33] feature TTP-free subjective judgment,
enforced by zero-knowledge proof (ZKP) against a global
blocklist L. A user generates a ticket tag = PRFx(sID),
a pseudorandom function (PRF) output of its credential
secret x over an assigned session identifier sID. If a session
is judged to be bad, the SP puts sID and its tag into L.
BLAC is readily extensible to BLACR [8] with reputation
via proving membership (claiming positive scores) on top
of non-membership proof. Its authentication costs O(|L|).

SNARKBlock [30] improves the non-revoked proof in
BLAC with zero-knowledge succinct non-interactive argu-
ments [27] (zkSNARK) for O(log |L|)-time verification.
Since the user proving complexity remains linear, hidden
common input aggregate proofs [30] is proposed, which
allows for the aggregation of existing proof for different
chunks of the blocklist. However, if we update L, say,
using it for reputation [8] and allowing updatable scores,
it invalidates the corresponding (offline) precomputation.
As an amortized approach, infrequent users need to catch
up with linear proof for all sessions that have happened

896

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Jack P. K. Ma. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00057

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
57

since they walked away. New users cannot benefit either
unless they reveal their joining time to skip older chunks.
Their authentication is set apart from other users and de-
grades their anonymity. BLACR-express [8] faces similar
shortcomings. To mitigate the scalability bottleneck due to
the ever-growing global list, we study alternative designs.

A Fixed-Size Queue Design. PEREA [34] proposes to
store only the K most recent session identifiers as tickets
in a credential and use K (non-)membership proofs for
claiming positive scores or showing they are guilt-free.
Reputation can only be transient. PERM [7] keeps tickets
in a user credential1. So, (infrequent/new) users only prove
w.r.t. their own fixed-size credentials but not the ever-
growing list of global sessions. Unfortunately, this design
comes with a dealbreaker. Adversaries are motivated to
authenticate rapidly to wash out problematic tickets from
the fixed-sized queue. A possible remedy is to tightly
couple another anonymous rate-limiting mechanism with
the credential, which is non-trivial.2 Rate-limiting also
unnecessarily curbs the enthusiasm of honest users [37].

1.2. The Unspoken Global Halting Issue

To support persistent reputation scores besides block-
listing, users must absorb judgments into their credentials
upon each interaction, even if judgment comes later. Later
designs [7], [35] speed up authentication by skipping
sessions that have been absorbed or proven irrelevant.

PERM [7] extends PEREA with a global judgment
pointer pointing to the last one in a continuous chronolog-
ical sequence of judged sessions, enabling an easy proof
of judged/unjudged status of tickets in a credential instead
of proving w.r.t. L. Meanwhile, the last unjudged ticket in
a credential cannot be too far away from such a pointer.
Without this rule as a part of authentication semantics, ma-
licious users can inject many “bad” sessions before being
caught, leading to a denial-of-service (DoS) vulnerability
of overloading the session evaluation operation.

FARB [35] explicitly makes the sequential order as-
sumption on session identifiers (higher IDs for later ses-
sions). Every ticket after the global pointer must be un-
judged. A single range proof can replace PERM’s linear
disjunctive proofs (judged/unjudged) of each ticket.

Cryptographic enforcement of such authentication se-
mantics using the global pointer is incompatible with the
time-consuming evaluation based on subjective criteria. A
single controversial session that takes long to finalize stalls
the moving of global judgment pointer and halts all users,
not just the one who originated the session, no matter
how many later sessions have been judged. The technical
reason for such global halting is that no users can redeem
(and remove) any sessions beyond the global judgment
pointer (pointing to the earliest unjudged session) since
their status cannot be inferred without direct explicit proof.

Once the global pointer moves a bit slower than the
authentication rate (and hence the birth rate of sessions),

1. Non-membership proof via an accumulator takes constant verifica-
tion costs. However, creating a witness is linear and requires recomputa-
tion when the accumulated values change. PERM replaces PEREA’s K
such proofs w.r.t. the public accumulator storing all blocked tickets to
K disjunctive proofs, allowing faster authentication with K > 10 [34].

2. The rate-limiting of k-time anonymous authentication [9] is peri-
odic. A burst of 2k authentications can be run across the epoch boundary.

tickets accumulate in the credential and reach the queue
size limit for DoS resilience. Such a global-halting vul-
nerability also affects the operational aspect of judgments,
forcing the subjective evaluation operates like a single-
thread process on a first-come-first-served basis.

Notable Exceptions. PE(AR)2 proposed by Yu et al. [37]
is an interesting attempt to achieve the best of both
worlds, namely, maintaining K pending sessions in the
credential but without mandating sequential judging. It
uses a blocklist to revoke [33] instead of assigning a very
negative score [35]. Apart from a faster non-membership
proof for a set of elements, it supports “soft” rate-limiting
by storing a variable number of unjudged sessions and
proving that it is less than some given threshold, albeit at
a degraded level of anonymity PE(AR)2 does not support
negative/downgradable scores. ARBRA [36] supports neg-
ative scores, but the user authentication cost is again linear
in |L| plus the number of the user’s unredeemed tickets.
We defer our concurrent work [20] to concluding remarks.

1.3. Revocation with Mercy/Elasticity or Urgency

Anonymous blocklisting/reputation systems should al-
low “revocation with mercy.” When accused, anonymous
blocklisting suspends users instead of permanently revok-
ing access. If cleared, users can be removed from block-
lists. It is exactly the existence of “difficult-to-judge” ses-
sions that motivates the need for anonymous blocklisting.

The sequential requirement of PERM/FARB mandates
the SP to judge sequentially and only once. The one-time
judgment forces SPs to catch misbehaving users in time,
or otherwise, they may escape from punishment forever.
These system constraints severely limit the applicability.
Consider contact tracing; a user can be “forgiven” if the
place s/he checked in is indeed safe (and vice versa).
Given the system constraints, overly cautious and harsh
judgments for preemptive measures seem logical.

Enabling multi-judging, specifically downgrading, can
be challenging since users have no incentive to voluntarily
redeem worse ratings. Naı̈ve attempt probably involves
inefficient ZKP enumerating all sessions ever associated
with a credential, not to mention the wash-away problem.

PERM/FARB also does not readily allow immediate
revocation. The SP must rapidly finalize the judgment of
all tickets prior to the one needing immediate attention.

1.4. Motivating the Design Choices of SMART

We design SMART for “secure management of anony-
mous reputation traits” with a few distinctive features.

Sublinear Authentication. SMART mandates users to
redeem the (temporary) score of the earliest session across
all queues (independent of their number of transient judg-
ments). The authentication cost scales linearly with the
number of queues, or sublinear in the number of user ses-
sions NK when each queue has K of them, as unjudged
tickets of a queue can be shown via range proofs.

Multi-queue of Slackness. A credential maintains mul-
tiple queues, each for sessions with the same number of
transient judgments made but with different transient (i.e.,
not finalized) scores. Making one more transient judgment

897

on a session moves it to the next queue. When the score
is finalized, the user redeems it out of the credential.

Supporting multiple queues brings us many benefits.
Scores of different sessions can keep updating (up to
(N−1) times) and possibly at different paces. They could
also be finalized at different times. The SP now has more
flexibility when finalizing the session scores. Our design
thus fits with different operational characteristics.

Maintaining multiple queues seems an intuitive and
arguably “trivial” solution to avoid one single queue from
getting stuck due to global halting. Note that the global
halting problem happens at the head of a queue but not
the end. Enlarging the buffer alone does not help much.

Custom Rate-Limiting. More importantly, we argue that
the apparent quantitative difference from a single queue
actually contributes to qualitative differences in two ways.

FARB has built-in rate-limiting from range proof.
In single-queue FARB, rate-limiting must be enforced;
otherwise, it is vulnerable to DoS attacks of rapidly in-
ducing many bad sessions before the blocklisting becomes
effective, i.e., when the earliest such session is put into the
blocklist and the authenticating user is forced to redeem it.

Note that these newly spawned sessions only appear
at the end of a queue. In our multi-queue design, they all
appear in Q0. In other words, SMART only needs to rate-
limit Q0. Note also that the SP knows at which queues
after Q0 those difficult-to-judge sessions are. The SP can
set a different rate limit accordingly or even remove the
limit altogether. This ensures the correctness of SMART’s
cryptographic enforcement. Namely, transient judgments
move the tickets to the next queue, which will never be
full, in contrast to the (only) base queue Q0 (in FARB).

Immediate Revocation. FARB features constant-time au-
thentication due to its clever use of range proof instead
of proving about each ticket in the single queue Q0. With
multiple queues, SMART can assign different “respon-
sibilities” to them. Of particular interest is an emergency
queue for immediate revocation. Specifically, any severely
serious session will be sent there. This queue does not
need to be long. Authentication now runs a special linear
scan of the emergency queue. Here, we can do reputation-
based blocklisting via assigning a very negative score,
or a direct blocklisting that merely a single ticket there
will block the credential from further authentication. Our
easiest implementation is to make this queue the last one.

Rendering this idea with FARB runs into a dilemma.
This queue cannot be long for efficiency with the forced
linear scan (which spoils the constant-time authentication
time of FARB). This queue cannot be short either for
being the only storage for unjudged sessions. In short,
prior schemes with sequential judging require the SP to
judge once-and-for-all. An immediate revocation of a new
session can only be performed by removing all previously
unjudged sessions. The SP either blocks or forgives all
of them. SMART allows transient judgments to keep the
affected sessions and extend to support microscopic queue
management, e.g., designated queues to handle these bans.

Mitigating Global-Halting. Sequential judging still exists
to a certain degree since we move a sequential chunk of
tickets to the next queue. However, the backlog of non-
finalized sessions is split across different queues.

There does exist a pathological case that our system
will reach the “limit.” Still, the possibility is dramatically
trimmed down along three dimensions – individual tran-
sient judgment, enlarging the buffer, and customizable
queue-specific rate-limiting. The SP can make informed
choices in “slacking off” along these dimensions. In short,
the SP can better manage the operations for subjective
evaluation with all these additional features of SMART.

Revocations with Mercy and Elasticity. Transient scor-
ing naturally supports revocation with mercy/elasticity.

Versatile Applicabilities. Consider contact tracing; a user
checked in a place can have an initial (neutral) score
indicating the risk level. For visits later identified as
posing a high risk, the health department can downgrade
the score (e.g., to the minimum). After the negative results
of some antigen tests, it can be upgraded. With more
negative results from regular tests, the risk of a visit
will eventually vanish. The number of changes before
finalization is limited, fitting the time-dependent model.

Consider content reviewing (e.g., videos or photos); an
uploaded post may go through an initial review and is put
aside. The SP may wish to temporarily reward/punish the
uploader by issuing transient judgments. The multi-queue
design allows a multi-layered (periodic) review process,
e.g., the post can be judged monthly, and finalizing and
blocking can be done when needed. This also fits some
(anonymous) point reward systems that take a few days
to review each point collection/transaction.

Cryptographic Enforcement. Ensuring the efficiency of
authentication requires careful formulations of how users
are identified and how their sessions are scored. SMART
uses multiple queues to ease the tensions between op-
erational characteristics of judgment and its correspond-
ing cryptographic enforcement. It boils down to mov-
ing sessions across credential queues (rather than simply
adding them to a single queue). This aligns with how
judgments are updated across the SP-side global queues.
We extensively use zero-knowledge proof of knowledge
(PoK) of credential signatures (signatures with efficient
protocols) and homomorphic commitments for credential
updates. To prevent attackers from reusing signatures and
rolling back credentials, we rely on nonces and data-
structure invariants, namely, monotonic increasing session
identifiers and the head/tail pointers of the queues.

2. Preliminaries

Let λ be the security parameter and G be a cyclic
group of order p, where p is a λ-bit prime. PPT means
probabilistic polynomial time (in λ). The set of integers
{0, . . . , N−1} is denoted by [N]. If X is a finite set, x←$

X denotes sampling an element x uniformly at random
from the set X . An empty output is denoted by ⊥.

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a binary
relation which takes a statement x and witness w. Let
LR = {x|∃w s.t. R(x,w) = 1} be a language associated
with the relation R, which can also include a common
reference string crs as a part of the statement x.

We use P(U(inU),S(inS))→ (outU , outS) to denote
parties U and S interact via the protocol P taking ini and
outputting out i for i ∈ {U ,S}, respectively.

898

2.1. Homomorphic (Vector) Commitments

In a commitment scheme Πcom, the sender can commit
to a message m via a commitment Cm = Com(m; r) for
some randomness r. It can later be opened by providing
(m, r) (possibly in ZKP). For an ordered tuples of mes-
sage M = (m1, . . . ,mn), we denote the set of committed
messages by CM = {Com(mi; ri)}ni=1. Note that this
set of commitments does not preserve the message-index
relation (mi, i) in the vector, i.e., it is not position binding.

Definition 1. A commitment scheme is defined as follows:
Setup(1λ) → pp: It takes as input the security parame-
ter 1λ, and outputs a public parameter pp.
Compp(m; r) → (C, o): Given the public parameter pp
(as an implicit input), the message m, and randomness r,
it outputs a commitment C and opening o = (m, r).
Vf(pp, C,m, o)→ b: The verification algorithm outputs 1
if o is a valid opening for the commitment C, 0 otherwise.

It should satisfy the hiding and binding properties.

(Perfect) Hiding. Given pp, any (computationally un-
bounded) adversary who chooses (m0, m1) cannot dis-
tinguish b when given c = Com(mb; rb) for random b.

Binding. No PPT adversary can produce valid openings
o0, o1 that open a commitment c to distinct m0,m1.

In a vector commitment scheme, one can commit to a
vector of message �m = (m1, . . . ,mn). The commitment
should be hiding and (position)-binding.

The (generalized) Pedersen commitment [29] allows
m to be a vector of field elements. Let {gi}n+1

i=1 be inde-
pendent generators of G. A commitment of �m ∈ (Zp)

n,
denoted by C�m = Com({mi}ni=1; r), is grn+1

∏n
i=1g

mi
i ,

where r is randomly picked from Z
∗
p. It also features

homomorphism, i.e., Com(�a) · Com(�b) = Com(�a+�b).
One can prove that the set of committed messages

{Cmi
= Com(mi)}ni=1 commits to the entries of a gen-

eralized Pedersen commitment C�m on vector �m. We use
Pedersen commitments for our credential attributes.

2.2. Zero-Knowledge Proof or Argument

A prover can convince a verifier via a zero-knowledge
proof of knowledge (ZKPoK) protocol that a statement x
is true without revealing w and any other information. A
(non-interactive) proof system Π is defined as follows.

Definition 2 (Proof System). A proof system for a lan-
guage L consists of three algorithms Π = (Setup,P,V):
Setup(1λ)→ crs: It outputs the common reference string.
P(crs, x, w) → π: It outputs a proof for the statement x
and witness w, such that (x,w) ∈ R given crs.
V(crs, x, π)→ b: It outputs 1 if π is a valid proof for x.

A proof system must be complete and sound.

Completeneess. ∀x ∈ L and w where (x,w) ∈ R, the
prover can always output π such that the verifier accepts.

Soundness. ∀x /∈ L, no prover can output π to make a
verifier accepts.

A zero-knowledge proof (argument) of knowledge is
a proof system (denoted by ZKP) that satisfies knowledge

soundness (against computationally bounded provers) and
zero-knowledgeness (defined in Appendix A.1).

Knowledge Soundness. No cheating provers can convince
an honest verifier that for some false statement x /∈ L. It
requires the existence of an extractor Ext that can extract
the witness w from any proof π passing the verification.

Zero Knowledge. For all statements x ∈ L, there exists a
simulator Sim that can simulate a proof indistinguishable
from the real proof, i.e., the proof does not leak additional
information about the witness except the statement is true.

ZKP Notation. We use the standard notation introduced
by Camenisch and Stadler [15]. For example, ZKP{(x) :
y = gx} denotes ZKPoK for proving x such that y = gx.
The values on the left of the colon are not known by any
verifier. Symbols on the right are public values.

2.2.1. Non-Interactive Proof and Disjunctive Proof. Σ-
protocols [31] are three-move ZKP, which can be made
non-interactive with the Fiat-Shamir transform.

Disjunctive ZKP of two or more statements can be
realized by the secret-sharing technique [5], [22]. For R1∨
R2, the prover can prove R1 with the witness under the
challenge e− e1, where e is picked by the verifier and e1
is self-picked randomness, then simulate the ZKP for R2.

2.2.2. zkSNARK for Range & Circuits. A succinct non-
interactive argument of knowledge (SNARK) features suc-
cinct proofs sublinear in the statement size. The arithmetic
circuit over secret (witness) inputs and public inputs and
outputs can be translated into rank-1 constraint systems
(R1CS) and proved via (zk)SNARK. Notable zkSNARK
examples include Groth16 [27] and Bulletproofs [11].

Bulletproofs support succinct range proof using in-
ner product arguments. It is special honest-verifier zero-
knowledge for the relation R : ((pp, Cv, A,B), (v, r) :
Cv = Com(v; r)∧A ≤ v < B) where A = 0, B = 2n and
Com is a Pedersen commitment (gvhr) with pp = (g, h).
It takes a logarithmic number of rounds in the bit-length n
and can be made non-interactive with a logarithmic proof
size via Fiat-Shamir transform. With only a log(m) over-
head, m range proof can be aggregated.

2.2.3. Commit-and-Prove (CP) ZKP and zkSNARK.
LegoSNARK [16], using a trusted setup, enables com-
posing different zkSNARK for modular designs. Let
Πcom = (Setup,Com,Vf) be a commitment scheme. A
CP-SNARK (KGen,P,V) is a zkSNARK for the relation:

RCP : ((x, (c1, . . . , c�)), ((mj , oj)j∈[�], w) :∧
j∈[�]

Πcom.Vf(pp, cj ,mj , oj) = 1∧R(x, (mj)j∈[�], w)=1)

where pp ← Πcom.Setup(1λ), cj = Πcom.Com(mj ; oj)
and R is a relation over statement x on committed inputs
(mj) and witness w.

2.3. Credential Signatures with Protocols

Definition 3. A credential signature scheme Cred =
(KGen, Sig,Vf) for message vectors, associated with a
vector commitment scheme Πcom = (Setup,Com,Vf ′)
with public parameter pp, is defined by the algorithm-
s/protocols below, all taking pp as implicit input.

899

KGen(1λ) → (pk, sk): The probabilistic key generation
algorithm takes the security parameter λ and outputs a
public key pk and a secret key sk.
Sig(U(�m; ρ),S(aux, sk)) → (σ, aux′): In the signature-
issuing protocol, the user U hides the message �m with
randomness ρ using Πcom. The signer S inputs sk and aux.
The user receives a signature σ. The signer receives aux′.

Both aux and aux′ represent auxiliary information, one
for input and one for output. For example, aux can be
commonly known messages or ZKPs involving previously
issued signatures, and aux′ can be commitments of the
messages Com(�m), {Com(mi)} and proofs of opening.
Vf(pk, �m, σ) → b: The deterministic verification algo-
rithm takes as input the public key pk, the message
vector �m, and a signature σ. It outputs a result bit b.
For brevity, (�m, σ) might be collapsed into a single input.

It also supports efficient (non-interactive) proof for
the knowledge of a signature over a vector commitment
of �m or over a subset of committed messages, e.g.,
ZKP{(�m, ρ, σ) : Vf(pk, �m, σ) = 1 ∧ C�m = Com(�m; ρ)}.

It should be existentially unforgeable against adaptive
chosen-message attacks. No PPT adversary can output a
valid signature on a message not in the queried message
set, given that it can run the signing protocol with the
signer for queried messages polynomially many times.
The detailed definition is presented in Appendix A.2.

We use the BBS+ signature of Au, Susilo, Mu, and
Chow [9]. Camenisch, Drijvers and Lehmann [13] pro-
posed a PoK for signature on partially disclosed messages
without target-group operations in the (Type-III) pairing
setting, by also publishing signer secrets in the exponent.

In SMART, the user commits the attribute vector attr
(and its update attr′) and sends it to the SP. For flexibility
(e.g., using the most efficient ZKP for a specific relation),
the user can also send a set of individual commitments
on Cvi

for vi ∈ attr and proves in ZK that each Cvi
corresponds to the i-th attribute committed in Cattr.

3. Anonymous Reputation

Anonymous credentials with reputation revoke users
by assigning a low score to their previous sessions, barring
them from fulfilling authentication policies in the future.
A secure design should mandate that users redeem all
redeemable sessions before authentication. Redemption
can be done one by one or in a batch. It can be a
standalone protocol or integrated with the authentication.

Our system allows unblocking by supporting upgrad-
ing the score of non-finalized sessions. Meanwhile, the
score can also be downgraded. Not all systems offer
all these features. For example, PEREA/PERM does not
support score downgrading or separate credential updates
from authentication; each authentication removes one
ticket from the credential, which could even be unjudged!

3.1. Syntax

Definition 4. An anonymous credential system with rep-
utation consists of the PPT algorithms/protocols below.
Setup(1λ) → (pp, sk, st) is the SP setup algorithm. It
inputs a security parameter 1λ and outputs the public
parameter pp, a secret key sk, and public state st.

In all protocols below, both the SP and users take the
public state st as implicit input. If it fails to run, both the
SP and users get ⊥; otherwise, the SP updates st into st′.
Policies AP, UP, and update function f also take (pp, st).
Reg(U(pp),S(pp, sk)) → (cred, st′): The SP S uses its
secret key sk to register the user U by creating a credential
cred with initial attributes defined by pp.
Auth(U(pp, cred, AP, f),S(pp, sk, AP, f)) → (cred′, st′):
A user U with a credential cred authenticates to the SP S .
If it passes authentication policy AP, i.e., AP(cred) = 1, U
obtains an updated credential cred′ on updated attributes
attr′ ← f(cred) as generated by S using its secret key
sk. The created authenticated session is captured by st′.
StMgn(pp, sk, st) → st′: The SP runs the state manage-
ment algorithm to render the subjective judgment (not
explicitly listed as an input) into a redeemable state. It
uses the secret key sk to update current state st into st′.
Redeem(U(pp, cred, UP, f),S(pp, sk, UP, f))→(cred′, st′):
Any user U runs this protocol to update cred to redeem
what is pending to redeem, i.e., UP(cred) = 1, and barring
cred from authentication, i.e., AP(cred) = 0. The update
does not generate new authenticated sessions.

Throughout this work, the attributes attr are the main
credential data (e.g., the data structure storing tickets),
while cred contains a credential signature on attr (and
attr itself) and possibly other (certified) auxiliary data.
In particular, update function f in SMART also returns
“enqueuing data” for the SP to issue enqueuing signatures
as a part of the user credential.

3.2. Security Requirements

An anonymous credential system with reputation
should provide the following security properties:

Completeness. An honest user can authenticate (redeem)
with cred if it satisfies the access (update) policy, i.e.,
AP(cred)=1 (UP(cred)=1), when talking to an honest SP.
Upon completion, cred updates according to f(cred).

Anonymity. A corrupted SP cannot distinguish any two
users who request to authenticate or redeem with cre-
dential cred0 and cred1, respectively, where AP(cred0) =
AP(cred1) or UP(cred0) = UP(cred1), i.e., they hide among
the anonymity set indexed by the policy AP or UP.

Soundness. Users with an invalid cred cannot authenticate
or redeem with SP, i.e., Auth (Redeem) returns ⊥ for
AP(cred) = 0 (UP(cred) = 0).

Security games are deferred to the full version.
It remains to specify soundness regarding AP, UP, and

credential update function f specifically used by SMART.

(i) Redeemable. Authentication updates a credential to
include a new, unique session. Redeeming updates the
credential to incorporate the finalized score of the session.

In more detail, every successful authentication Auth
creates a unique session identifier (ID), which is added
into attr′ of cred′ as updated by f . A ticket of the same
ID with an unjudged status will be added into st′ too,
which allows later SP judgment via StMgn. User with
cred can run Redeem, where UP(cred) = 1, to accumulate
the judgment from st′ into cred′ via f . The uniqueness of
tickets prevents users from “sharing” a session.

900

(ii) Non-escaping. The authentication policy AP disallows
further authentication of credential cred, i.e., AP(cred) =
0, until cred is free from any unredeemed but judged
session as specified by st. Meanwhile, Redeem only re-
moves finalized tickets from cred according to UP and
incorporates its score into cred′ via f , where the SP
specifies the score in st′ via StMgn.

(iii) Transient Judging. A ticket t can be temporarily
judged with some score via StMgn until it is finalized. In
more detail, when cred that originated t is used in Auth,
its evaluation of AP will take into account the score of t
as reflected by st on top of the current score of cred. Note
that Redeem does not remove such non-finalized tickets.

4. Technical Overview of SMART

4.1. Data Structures for Credential & Judgments

SMART extends the single implicit queue design of
FARB [35] to multiple queues while carefully ensuring
that no user can escape punishment even when they are
anonymous. In our “baseline” scheme below for illustra-
tion, we consider users specify the queue to redeem. Still,
the identifier of the ticket being redeemed remains private.
Table 1 lists some major notations of the whole paper.

4.1.1. Our Baseline Design from FARB. A main creden-
tial is (x, ν, s, head, tail, σ), with s as its current score and
σ is an SP’s signature signing everything else. To prevent
reuse, each authentication/redemption reveals the nonce ν.
The user then chooses a fresh value for the SP to blindly
issue an updated credential.

After each authentication, the credential will be
equipped with a new ticket, meaning that the user also

gets enqueuing signatures {enQ(i)
x = (x, ti, i, σ

i
x)}|Q|i=1.

The ticket number ti comes from a global counter tc
that increments by 1 for each authentication. The secret
x links to enqueuing signatures in an implicit ticket

queue Q = ({enQ(head+1)
x , . . . , enQ(tail)

x }, head, tail) with
k = (tail−head) tuples. Due to the ticket order invariant,
i.e., the increasing order of ti’s, the user only needs
to prove the first ticket thead+1 is unjudged via proving
jp < thead+1, where jp is the global judgment pointer
pointing to the last judged authentication. FARB assumes
a continuous order of judgment, i.e., all tickets smaller
than jp are judged, and all bigger than jp are unjudged.

A judgment is (t, st, σ
′) with an SP signature σ′ sign-

ing on a ticket t with score st. Redeeming a judgment on

thead+1 with enQ(head+1)
x performs dequeue on Q, which

updates Q to ({enQ(head+2)
x , . . . , enQ(tail)

x }, head+1, tail),
and s in cred absorbs its score sthead+1

. Authentication
increments tail into tail′ = tail+ 1, and the SP blindly
issues an enqueuing signature on (x, ttail′ , tail

′) to en-
queue t′tail. The queue of signatures becomes Q′ =

({enQ(head+1)
x , . . . , enQ(tail)

x } ∪ {enQ(tail′)
x }, head, tail′).

Figure 1 illustrates the global-halting issue of FARB
and its failure to support immediate revocation. Suppose
each of the two users authenticated five times; session
t = 2 is hard to judge, blocking the advancement of the
global pointer jp. Alice is then halted if the queue size
limit is 5. Also, for the SP to immediately revoke the user
who spawned t = 8, it needs to rush through t ∈ [2..7].

9 10

J 1 + 2 . . . 7 8

Finalized t

Need-to-rush t

Unjudged t

SP

Q 3 4 6 8 9

Hope-to-Revoke

jp′jp

Q 1 2 5 7 10
Alice Bob

Figure 1. FARB’s global halting and delayed revocation: i) Suppose only
jp = 1 is judged and t = 2 is “hard-to-judge”: Alice cannot authenticate
if the queue size limit has been reached, even though she did not originate
session t = 2. ii) Immediately revoking ticket 8 requires the SP to rush
in finalizing judgments on [2..7] to advance jp.

4.1.2. SMART’s Three Types of Signatures. We exten-
sively use signatures on commitments to maintain the data
structure in credentials. This part focuses on the data they
sign, and so do many parts in Section 5. We sometimes
use an abused notation that omits the signature for brevity.

i) Main credential stores N pair of pointers, i.e., cred =
(x, ν, s, {Qj .head,Qj .tail}j∈[0,N−1]), e.g., σ in Figure 4.

ii) Enqueuing signatures on {enQ(i,j)
x = (x, ti, i, j)} as-

sociate ticket ti to the i-th position in the j-th (implicit)
queue, e.g., the columns at Q0,Q1 in Figures 4-6.

iii) Judgment is a signature on the state (elaborated below)
of a ticket possibly with a score, e.g., list J0 in Figures 5-
6. Unlike the above two, the SP maintains this in public.
We also call lists Jj , ∀j ∈ [0, N − 1], by score lists.

4.1.3. Multiple Queues for Transient Judgment.

Qj=({enQ(head+1,j)
x , . . . , enQ(tail,j)

x , head, tail)}, j ∈ [N]

are queues implicitly maintained by (Qj .head,Qj .tail) in
the credential. t ∈ Qj refers to ticket t that is encoded in

some enQ(i,j)
x ∈ Qj , with i ∈ [Qj .head+ 1,Qj .tail].

Each judgment is a tuple (t, j, bnext, s(t,j)) for ticket t
residing at Qj with score s(t,j) (or simply st). It can be:

i) not judged (the initial status, or judged j = 0 times),

ii) skipped (bnext = 1, as an interim decision), or

iii) finalized (bnext = 0, to redeem out of a credential).
A signature (by the SP) on the judgment tuple changes
the state of ticket t, moving it from the j-th queue to the
(j + 1)-th queue (if bnext = 1) of a credential or out of
the credential (if bnext = 0) when the user redeems it.

For system parameter N (the total number of queues),
a session can be “skipped” at most (N − 1) times, each
corresponds to an interim decision or transient judgment.
Correspondingly, SMART maintains N judgment pointers
jpj , ∀j ∈ [0, N−1], which is simply the largest ticket (ID)
in the j-th score list Jj , not like the single jp in FARB.

4.1.4. Intra-Queue and Inter-Queue Invariants. Se-
quential judging within each queue is still needed to
maintain the intra-queue invariant. A judgment on t can
only be done after a (transient) judgment on each of the
previous tickets in the same queue has been made.

For simplicity, we enforce an inter-queue invariant

t ∈ Qi =⇒ t > t′ ∀ t′ ∈ Qi+1 (∀i ∈ [N]).

901

Unjudged 9 10

J0 1 2 . . . 7 8

J1 2 3 . . . 7

jp0 = 8 Skipped t

Finalized t

Unjudged t

SP

Q0 2 4 5 8 9

Q1 2 4 5

Revoke

Q0 1 3 6 7 10

Q1 3 6 7

Alice Bob

Figure 2. The SP decides to make a transient judgment for each t ∈
[2..7], which moves them up from Qj to Qj+1, as denoted by the arrows
(or � for a finalized judgment). Tickets t ∈ [2..7] are then pending
judgment on J1. (The dotted lines depict Qj .head ≥ Qj+1.tail.)

It means only tickets with smaller identifiers can go to the
next (upper) queue. Since they will be larger than those
in the upper queue, they will be appended to the end to
maintain the intra-queue invariant.

4.2. Multiple Queues in Action

Authentication (enqueuing t to Q0) works like FARB
but across multi-queues, which requires tQj .head+1 > jpj ,
∀j ∈ [N]. All newly spawned tickets are enqueued to Q0.

Redeeming in SMART depends on the judgment type:
i) redeeming a finalized ticket at Qj , which removes it
from the j-th queue and hence the credential;

ii) redeeming a skipped ticket at Qj , which dequeues it
from Qj and enqueues to Qj+1, when j < N − 1.

We illustrate how the tickets are moved in creden-
tials, corresponding to the judgments made by the SP as
reflected by the multiple global score lists J0, . . .JN−1.
Figure 2 focuses on the credential of Alice and Bob, re-
spectively holding (2, 4, 5, 8, 9) and (1, 3, 6, 7, 10) in Q0.

First, note that when jp0 = 1, Alice can authenticate
as long as Q0 is not yet full since tQ0.head+1 = 2 > jp0.

Suppose the SP skips all tickets t ∈ [2..7]. This can
be responding to any of the plausible scenarios below.

i) Those sessions now receive their first transient judg-
ment, e.g., in the time-dependent model, one month has
passed, and no negative report has been filed against them.
ii) Those sessions are difficult to judge, but the SP notices
that the global list J0 has been accumulating. To avoid
halting all users like in FARB, the SP moves them to J1.
iii) Similar to the plausible scenario above, the SP further
notices that session t = 8 is “especially” bad and would
like to revoke the user behind as soon as possible.

The SP makes the first transient judgments on t ∈
[2..7], which moves the global judgment pointer of J0

from jp0 = 1 to jp0 = 8. Figure 2 depicts the (pro-
jected) movements to Q1 of the affected tickets. Alice
is now forced to redeem t ∈ [2..7]. This is to make
tQ0.head+1 > jp0 or Alice cannot authenticate anymore.
(The conditions will be made more precise in Section 4.3.)
Likewise, Bob redeems t ∈ {1, 3, 6, 7}, moving them from
Q0 to Q1, which makes tQ0.head+1 = 10 > jp0. Subjective
evaluation can now have flexibility, either judging (the first
one in) {2, . . . , 7} ∈ J1 or the unjudged ones in {9, 10}.

J1 2 3 4 5 6 7

jp1 = 5SP
Q0 2 4 5 8 9

Q1 2 4 5

Q2 2 5

Alice

Figure 3. The set of skipped tickets {2, 3, 5} continues to be judged one
more time, which moves those in user credentials to the next queue Q2.
If N = 3, their next judgment must be final for being in the last queue.

Q0 2 4

Q1 ⊥

Q0 2 4 5

Q1 ⊥

head = 0

head

tail

tail = 2

head

tail = 3

secret x x x

t 2 4 5

index 1 2 3

queue # 0 0 0

Q0

cred x ν s 0 2 0 0
σ

Before Auth:

queue pointers

cred′ x ν′ s 0 3 0 0
σ′

After Auth:

Figure 4. Alice authenticates when tc = 4. The new ticket t = 5 is
enqueued to Q0 at index 3. She obtains cred′ with Q0.tail

′ = 3 and a
new enqueuing signature (in green).

Figure 3 illustrates subsequent actions after some ses-
sions have been “skipped” to the next global score list J1,
and the corresponding changes to Alice’s session queues.
Suppose the SP further skips 2, 3, 5 and finalizes 4 in J1.
Alice’s last queue will store tickets 2, 5 after redemptions.

4.3. Illustrations involving Proof of Signatures

We further illustrate the involvement of signatures in
our cryptographic protocols in a simpler example. Suppose
Alice has authenticated at tc = 2, 4, a global ticket counter
maintained by the SP. Tickets {1, 3} do not belong to her.

4.3.1. Authentication. AP checks for each queue:
i) Qj is empty (Qj .head = Qj .tail) or
ii) the first ticket at Qj is unjudged (jpj < tQj .head+1)
and Qj is not full (Qj .tail−Qj .head < Kj).

In Figure 4, without any judged tickets, Alice proves
the credential and the enqueuing signatures enQQj

x for the
first ticket (if it exists) in each queue j for authentication.
The SP then increments tc (to 5) and binds a new ticket
t′ = tc = 5 to the (Q0.tail + 1)-th position (i.e., 3) of
Q0 of her credential via issuing an enqueuing signature
on (x, 5, 3, 0), where the commitment of Q0.tail is sent
by Alice during the proof of AP. Her cred is also updated.

4.3.2. SP Judging. SP sequentially judges unjudged ses-
sions to appear in Jj , e.g., t ∈ [1..5] for J0 in Figure 5.
Suppose the SP wants to finalize ticket 1 with score s1
and revoke 3 with a very negative score s3 as a non-final
judgment. Any unjudged tickets <3 need to be moved to
the next queue or finalized. In this case, it is only ticket 2,
with a transient score, say, s2 = 0.

902

TABLE 1. NOTATIONS

Notation Description

N , Ki # of queues, the maximum size of the i-th queue

t Session/Ticket (identifier)
x, ν, s Credential secret, nonce, and score

enQ
(i,j)
x = Enqueuing signature of ti at i in the j-th queue Qj ,

(x, ti, i, j, σ) (enQ
Qj
x denotes t is at the head (i = Qj .head+ 1))

Qj ({enQ(head+1,j)
x , . . . , enQ

(tail,j)
x }, head, tail)

Jj [t] A judged ticket (t, j, bnext, st, σ′) in score list Jj

s∗
(t,0)

Score for a finalized judgment on ticket (t, 0)

TS
0/TS

j /TF Global 0-/j-time judged/finalized ticket list

V The set of used credential nonces
tc A counter for the new session/ticket identifier

jpj Judgment pointer for Jj

The SP gives judgment signatures on:
i) (1, 0, bnext = 0, s1),
ii) (2, 0, bnext = 1, s2), and
iii) (3, 0, bnext = 1, s3), respectively.

They are put into the public score list J0.
The SP also updates the global judgment pointer jp0

to 3, meaning that the third and its prior sessions (in J0)
have been judged and must be redeemed (from Q0 of any
credential). This is how SP ensures a user will redeem
any judged sessions or the credential cannot pass AP.

4.3.3. Redeeming. Alice checks her credential against the
score list to see if it has judged tickets (jpj ≥ tQj .head+1).
If so, she fetches those (by downloading everything) and
runs the Redeem protocol on Qj with signatures below:

i) cred = (x, ν, s, {Qj .head,Qj .tail}N−1
j=0),

ii) enQQj
x = (x, t,Qj .head+ 1, j), and

iii) a judgment (t, j, bnext, st).
Upon completion, cred will be updated with:

i) a fresh nonce ν′ and a new score (s+ st),
ii) Qj .head++ (dequeue), and
iii) Qj+1.tail :=Qj+1.tail+bnext (enqueue if bnext=1).

An enqueuing signature (x, t,Qj+1.tail+ bnext, j + bnext)
will be blindly issued3 upon redemption on (t, j) too.

In Figure 5, Alice’s Q0 has a transient judgment
(2, 0, bnext = 1, s2). She thus redeems ticket 2 in Q0,
which dequeues 2 from Q0 and enqueues it to Q1, result-
ing in Q0 = (4, 5); Q1 = (2). Q0.head advances which
voids the old enQQ0

x = (x, 2, 1, 0) since Q0.head+1>1.
For Q1, an enqueuing signature on (x, 2, 1, 1) is issued;
Q1.tail is also incremented since bnext=1.

4.3.4. Finalizing a Transient Judgment. The SP now
needs to judge 4, 5, and 2 that will be posted on J0,J1.
Suppose the SP finalizes ticket 2 (Figure 6), it posts:
i) a final judgment (2, 1, bnext = 0, s(2,1)) on J1 and

ii) [optional] a final judgment4 (2, 0, 0, s∗(2,0)) on J0.

For example, if an initial score s(2,0) = s2 = 3 has been
given and a finalized score of s∗(2,0) = 10 is to be given;

the SP finalizes it by setting s(2,1) = 10− 3 = 7. If Alice

3. This makes redeeming a final/transient judgment indistinguishable,
except for the last JN−1 having only final judgments.

4. s∗
(t,j)

/s(t,j) distinguish scores for finalized/skipped judgments in

the same score list, e.g., ticket 2 in J0 in Figure 6. It reduces the number
of redeeming requests when Alice waits until (2, 0) is finalized.

Q0 2 4 5

Q1 ⊥

Q0 2 4 5

Q1 2

head = 0

head

tail

head = 1

tail tail
head

tail = 1

(1, 0, 0, s1)

jp0 = 3

(2, 0, 1, s2)

(3, 0, 1, s3)

Score List J0

secret x x x

t 2 4 5

index 1 2 3

queue # 0 0 0

Q0
secret x

t 2

index 1

queue # 1

Q1

cred x ν s 0 3 0 0
σ

Original:

cred′ x ν′ s+s2 1 3 0 1
σ′

Redeemed:

+bnext

+bnext

+1 +bnext

Figure 5. Alice redeems a judgment (red) on t = 2 (a transient one with
score s2) via PoK of i) judgment signature on (2, 0, bnext =1, s2) and
ii) enqueuing signature (x, 2, 1, 0) (stored in the Q0 box). Q0.head
advances to remove ticket 2 at Q0 and Q1.tail advances by bnext = 1
for accommodating the moved ticket. s becomes s+ s2.

Q0 2 4 5

Q1 2

head

tail = 1

Q0 2 4 5

Q1 2

head = 1

tail

head = 1

tail
head

tail

...

jp0 = 3

(2, 0, 1, s2,0)

(2, 0, 0, s∗(2,0))

Score List J0

(2, 1, 0, s(2,1))

jp1 = 2
Score List J1

secret x x x

t 2 4 5

index 1 2 3

queue # 0 0 0

Q0
x

2

1

1

Q1

Figure 6. Alice redeems a finalized ticket 2 at Q1 with (2, 1, 0, s(2,1)).
Q1.tail advances by bnext = 0, i.e., unchanged. Q1.head advances to
Q1.tail, so Q1 is empty.

absorbs s(2,0), s(2,1) via two updates in Figures 5 and 6,
they sum up to 10. The SP also updates jp1 = 2 to indicate
all tickets t ∈ J1, t ≤ 2 are judged (ticket 1 is finalized
at J0 and thus will not appear in subsequent score lists).

4.3.5. Redeeming a Finalized Judgment. With new jp1,
Alice needs to redeem judgment (2, 1, 0, s(2,1)) with

enQQ1
x = (x, 2, 1, 1) since her Q1 contains a judged

ticket 2. (Alternatively, if she waits until ticket 2 is fi-
nalized, cf. Figure 5, she uses (2, 0, 0, s∗(2,0)) to redeem

and no ticket will be enqueued to Q1.) After redeeming,
Q0 = (4, 5); Q1 = (⊥), with Q1.head = Q1.tail = 1 in
cred′. Thus, Alice can prove tickets in Q0 are unjudged
(tQ0.head+1 > jp0) and Q1 is empty (Q1.head = Q1.tail).
Figure 6 illustrates the resulting changes.

903

5. SMART Credential Construction

5.1. Overview of Actions taken by Users/SP

5.1.1. User’s Actions. A user registers with the SP to
obtain a signature encoding a starting credential. It has
all empty queues, so no enqueuing signature is issued.

To authenticate, the user first checks its credential with
the score lists for judged tickets. If there are judged tickets,
the user redeems them prior to actual authentication.

The user redeems with a valid credential, an enqueuing
signature, and a judgment on (t, j), where t is the first
ticket at Qj . We assume the user redeems one ticket at
each time and j is revealed in the baseline construction.

When j < N , the redeemed ticket would be moved to
the next queue, so the user should receive a (valid) new
enqueuing signature on (x, t,Qj+1.tail+ 1, j + 1).

5.1.2. SP’s Actions. The SP setups the system parame-

ters, e.g., the number of queues N and their bounds �K.
During authentication and redemption, the revealed nonce
is stored in V , and a new ticket (ID) generated in Auth
is added to the public state st. The SP can issue transient
or finalized judgments on tickets via StMgn to update st
(which consists of score lists and pointers {(Jj , jpj)}N−1j=0).

5.2. Setup

The SP calls Setup(1λ) to run the following steps.

1. Determine the following system parameters appropriate
for the application scenario:

• N : the number of queues;

• �K ∈ NN (or {Kj}N−1j=0): the maximum number of
sessions in each of the N queues in a credential;

• smin: the minimum score for the authentication
policy AP. (SMART could be easily extended to
cover � score categories.)

2. Initialize the following sets to be an empty set ∅:
• V: the set of credential nonces that the SP has seen

in user authentication and redeeming;
• {Ji}i∈[N]: the set of judgments that have been

skipped/(temporarily-)judged for i times.
• {TS

j}j∈[N],T
F: the queues of tickets that are

judged j times, and the queue of finalized tickets.

3. Initialize the following values to be 0:

• {jpi}: global judgment pointers indicating the last
judged tickets of the i-th score list Ji;

• tc: a ticket counter indicating the last session ID
assigned to an authenticated session.

4. Setup the cryptographic systems:

• crs ← ZKP.Setup(1λ): the common reference
string for the zero-knowledge proof/argument;

• {(pkk, skk) ← Cred.KGen(1λ)}k∈{c,t,j}: the key
pair(s) of the credential signature scheme for sign-
ing tuples of credentials, tickts, and judgments.

5. Output:

• pp := (crs, {pkk}k∈{c,t,j}, N, smin);
• st := (tc,TS

0, {TS
j},TF,V, {Ki,Ji, jpi}), where

j ∈ [N] and i ∈ [N].
• Return (pp, (skc, skt, skj), st).

Reg(U(pp),S(pp, sk))
U : x, ν ←$ Zp, s := 0

attr := (x, ν, s, {Qi.head,Qi.tail}i∈[N])

U ↔ S : run Cred.Sig(U(attr; ρ),S(pp, skc))→ (σ,⊥)
// the user-chosen secret and nonce are hidden in a commitment

U : return (cred := (attr, σ))

S : return st

Figure 7. Registration Protocol

AP(cred)

parse pkc, pkt, pkj, {jpi,Ki}i∈[N] from pp, st

parse (x, ν, s, {Qi.head,Qi.tail}i∈[N], σ) from cred

attr := (x, ν, s, {Qi.head,Qi.tail}i∈[N])

parse {enQQi
x = (x, tQi.head+1,Qi.head+ 1, i, σi

x)}i∈[N]

if (Cred.Vf(pkc,attr, σ) = 0) then return 0

if (s < smin) then return 0 // minimum score

for i in [N]

if (Qi.tail = Qi.head) then continue // Qi is empty

if (tQi.head+1 ≤ jpi) then return 0 // unjudged first ticket

if (Qi.tail−Qi.head ≥ Ki) then return 0

if (Cred.Vf(pkt, enQ
Qi
x) = 0) then return 0

endfor

return 1

Figure 8. Authentication Policy Checking

5.3. Registration

Figure 7 presents the registration protocol. The ini-
tial attributes of the user credential are set to attr =
(x, ν, s, {(Qj .head,Qj .tail)}j∈[N]), with initial score s
and N empty queues (Qj .head,Qj .tail) = (0, 0).

The user engages in the signature issuance protocol of
Cred with the SP, proving the commitment of attributes
(using some random ρ) is well-formed, i.e., everything in
attr other than x and ν is 0. The secret x can be jointly
sampled by the user and SP, or related to a long-term user
public key, e.g., gx. The user then gets a credential cred.

5.4. Authentication

To authenticate, the user credential must pass the
authentication policy AP in Figure 8 on the following:

1) Main credential cred is valid with a fresh nonce ν.
2) The scores satisfy5 smin announced by the SP.
3) Each queue i has no unredeemed tickets, i.e., Qi

is empty (via a simple equality check), or the
first ticket at Qi is unjudged (via the enqueuing
signature and a range proof against jpi).

4) Each queue i has not reached its full capacity Ki.

If it passes, the parties run the protocol in Figure 9,
i.e., Auth(U(pp, cred, AP, f),S(pp, sk, AP, f)), as follows.

5. We use s ≥ smin to denote score satisfaction. The policy can be all
categories’ scores or weighted some of them being above the threshold.

904

Auth(U(pp, cred, AP, f),S(pp, sk, AP, f))
U : parse cred := (attr, σ, {enQQi

x })
parse attr := (x, ν, s, {Qi.head,Qi.tail}i∈[N])

if !AP(cred) then return ⊥
π ← ZKP.P(pp, (AP, st), cred)

attr′ ← f(cred)

U → S : (π, ν)

S : if !(ZKP.V(pp, (AP, st), π) ∧ (ν /∈ V)) return ⊥
V := V ∪ {ν}, tc := tc+ 1,TS

0 := T
S
0 ∪ {tc}

U ↔ S : // Run in parallel

run Cred.Sig(U(attr′; ρ),S((π, f), skc))→ (σ,⊥)
run Cred.Sig(U((x, tc,Q0.tail+ 1, 0); ρ′),

S((π, f), skt))→ (σ1,⊥)
S : return st′ // Updated V , tc, T

S
0

U : enQ′x := (x, tc,Q0.tail+ 1, 0, σ1)

U : return cred′ := (attr′, σ; enQ′x)

Figure 9. Authentication Protocol

f(cred) for Auth

parse attr := (x, ν, s, {Qi.head,Qi.tail}i∈[N])

ν′ ←$ Zp

attr′ := (x, ν′, s,Q0.head,Q0.tail+ 1, . . . ,QN−1.tail)

enQ′ := (x, tc,Q0.tail+ 1, 0) // where tc is from st

return cred′ := (attr′; enQ′)

Figure 10. Credential Updating in Auth

1. The user generates ZKP π for satisfying AP:

ZKP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(cred, {enQQi
x }Ni=1, ν

′) :
(Cx = Com(x)) ∧ (Cs = Com(s))

∧ (Cν′ = Com(ν′))

∧
i∈[N]

⎧⎪⎨
⎪⎩

CQi.head = Com(Qi.head)

∧ CQi.tail = Com(Qi.tail)

∧ CtQi.head
= Com(tQi.head)

⎫⎪⎬
⎪⎭

∧ (Cred.Vf(pkc, cred) = 1) ∧ (s ≥ smin)

∧
i∈[N]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(Qi.head = Qi.tail) ∨⎛
⎜⎝
(Qi.tail−Qi.head ∈ [0,Ki − 1])

∧ (tQi.head+1 > jpi)

∧ Cred.Vf(pkt, enQ
Qi
x) = 1

⎞
⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The statement involves the opening of (individually)
committed attributes in cred, the new nonce ν′, the en-
queuing signatures enQQi

x , and the score passes the thresh-
old smin. The implicit queue design and the intra-queue
order invariant allow checking only the first ticket (knowl-
edge of enQQi

x) in Qi with jpi or Qi.head = Qi.tail (for
an empty Qi) via an OR-composition proof. The user also
proves the queue size is within the public bound Ki.

2. The user sends the nonce ν and above ZKP π to the
SP, which proves that its credential satisfies the policy.

3. The SP confirms that ν /∈ V and the validity of π. Then
it updates V := V ∪ {ν}, the ticket counter tc := tc + 1,
and the unjudged ticket set TS

0 := T
S
0 ∪ {tc}.

4. The user prepares the update as f(cred) in Figure 10:

Commitments for Signing f(cred), C1 ← Com(1)

Cattr′ :=(Cx, Cν′ , Cs, CQ0.head, CQ0.tail · C1, . . . , CQN−1.tail)

CenQ := (Cx, Ctc, CQ0.tail · C1, C0) // C0 ← Com(0)

Figure 11. SP Computation of f(cred) in Auth

• randomly picks a new nonce ν′ ←$ Zp;
• increments Q0.tail in attr′ for adding a slot for

the new ticket at the end of the 0-th queue;
• prepares the enqueuing data for ticket ID tc at the

i-th slot, i = Q0.tail+ 1, of the 0-th queue.

5. The parties reuse commitments from ZKP π (namely,
(Cx, Cν , Cs, {CQi.head, CQi.tail}i∈[N]) for the old creden-
tial and Cν′ for the new nonce) to invoke in parallel 2
credential-signature issuance instances over commitments
Cattr′ and CenQ for SP’s signatures on attr′ and enQ′.
Cattr′ and CenQ can be created as in Figure 11.

The user stores the two obtained signatures: the up-
dated credential signature σ on new attributes attr′ and
the enqueuing signature for enQ′x, which enqueues t = tc.

6. The SP updates state st to st′ with new tc, TS
0, and V .

5.5. Session Judging and Queue Management

A successful authentication appends a new ticket to
T
S
0, the unjudged ticket set. In StMgn, the SP puts

judgments into {Jj}j∈[N] for TS
0, j-time judged sets

{TS
j}j∈[1..N−1], and the finalized ticket list TF, all in st.

(In Figure 2, TS
0 = (9, 10),TS

1 = ∅,TS
2 = (2, . . . , 7).)

With the sequential judgment of each queue, the SP
should judge tickets at the heads of {TS

j} (e.g., 2, 9 in
Figure 2). For a transient (or final) judgment of a ticket t,
the SP posts it to score list Jj , moves t to T

S
j+1 (or TF),

and advances judgment pointer jpj to t. Specifically,

1. Transient judgment moves t from T
S
j to T

S
j+1 and puts

a signature on (t, j, bnext = 1, s(t,j)) to Jj .

2. Final judgment moves t from T
S
j to T

F and puts a
signature on (t, j, bnext = 0, s(t,j)) to Jj and a signature
on (t, 0, 0, s∗(t,0)) to J0, where s(t,j) is computed using

previous transient scores, e.g., s(t,j) = s∗(t,0)−
∑j−1

i=0 s(t,j).
As an example, a ticket t that is skipped twice goes

through T
S
0 (unjudged), TS

1 and T
S
2 (2 transient judgments

in J0,J1). To finalize t, (t, 2) is added to T
F where the

SP judges (t, 0), (t, 2) with bnext = 0 and adjusted scores.

5.6. Session Redeeming or Credential Updating

When a valid credential has t ∈ T
S
j in its Qj . the

user needs to redeem judged tickets in every queue j
before the next authentication. Redeeming a ticket updates
the credential. Like enqueuing a new ticket by Auth, the
credential (and other signatures) is updated by obtaining
a signature on the committed multi-block message.

The user can redeem t ∈ Qj by revealing j or
keeping j private. They have different update functions f .

5.6.1. Redeeming a Ticket in a Known Queue. Redeem
in Figure 13 proceeds mostly like the steps in Auth.

1. When j is public, the user checks if the credential
satisfies the specific redeeming policy UPj parameterized

905

by j in Figure 12, i.e., eligible to redeem tQj .head+1 ∈ Qj .
If so, the user proves the ZKP below by proving the
knowledge of signatures on each of the following:
i) cred = ((x, ν, s, {Qi.head,Qi.tail}i∈[N]), σ),

ii) enQQj
x = ((x, tQj .head+1,Qj .head+ 1, j), σj

x), and
iii) Jj [tQj .head+1] = ((tQj .head+1, j, bnext, st), σ

′′) for:

ZKP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(cred, enQQj
x ,Jj [t], ν

′) :
Cx = Com(x) ∧ Cν′ = Com(ν′) ∧
Cj = Com(j) ∧ Cs = Com(s) ∧{
CQi.head = Com(Qi.head) ∧
CQi.tail = Com(Qi.tail)

}
i∈[N]

∧

Cst = Com(st) ∧ Cbnext = Com(bnext) ∧
Cred.Vf(pkc, cred) = 1 ∧
Cred.Vf(pkt, enQ

Qj
x) = 1 ∧

Cred.Vf(pkj, (t, j, bnext, st), σ
′′) = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Secret x and Qj .head in cred link to those in enQQj
x ,

which contains the ticket ID t = tQj .head+1 and queue
index j that judgment Jj [t] is for.

2. The user sends the proof π and current credential
nonce ν to the SP, whom confirms ν /∈ V and π is valid.
If so, the SP updates the nonce set V ∪ {ν}.
3. The parties also invoke in parallel 2 credential-signature
issuance instances with the individual homomorphic com-
mitments in ZKP π as auxiliary inputs to compute updated
attr′ ← f(cred) as in Figure 14.

• samples a new nonce ν′ ← Zp;
• absorbs st by updating s as s+ st;
• increments Qj .head which dequeues Qj ;
• adds bnext to Qj+1.tail in attr′

(i.e., adding a slot if bnext = 1);
• prepares the data to enqueue tQj .head+1 to the (i =

Qj+1.tail+bnext)-th slot of the (j+bnext)-th queue.

All the involved terms, including Qj+1.tail, are from
the credential (bnext, st are from the judgment signature)
and have been proven by ZKP already. The SP computes
the commitment of attr′ as in Figure 15 (which also lists
the individual commitments from π) for blind signature
issuance. Here, the SP can pick the Qj head and Qj+1

tail from Cattr and update accordingly by adding C1 ←
Com(1) and Cbnext since j is revealed. The user receives:

• an updated credential cred′ on attr′ ← f(cred):
(x, ν′, s + st, . . . ,Qj .head + 1, . . . ,Qj+1.tail +
bnext, . . . ,QN−1.tail);

• an enqueuing signature on
(x, tQj .head+1,Qj+1.tail+ bnext, j + bnext).

A transient judgment has bnext = 1; or 0 if final. A user
redeeming a transient judgment obtains a new enqueueing
signature on the redeemed ticket binding to Qj+1.tail+1
and index j +1. (In Figure 5, after redeeming a transient
judgment on ticket t = 2 at Q0, Alice gets a enqueuing
signature on (x, 2, 1, 1) for t = 2 at (Q1.tail+ 1).)

On the other hand, the enqueuing signature obtained
for redeeming a finalized judgment will be “outdated” for
any queues since it binds t to the current queue j with
index Qj+1.tail < Qj .head+1 (the inter-queue invariant),
e.g., the (invalid) enqueuing signature Alice obtains in

UPj(cred)

parse (pkc, pkt, pkj), (jpj ,Jj) from pp, st

parse ({Qj .head,Qj .tail}j∈[N]) from cred

parse (x, tQj .head+1,Qj .head+ 1, j, σj
x) from cred

enQ
Qj
x := (x, tQj .head+1,Qj .head+ 1, j, σj

x)

parse Jj [tQj .head+1] from Jj // returns ⊥ if not exist

if (Cred.Vf(pkc, cred) = 0) then return 0

if (Cred.Vf(pkt, enQ
j
x) = 0) then return 0

if (Cred.Vf(pkj,Jj [tQj .head+1]) = 0) then return 0

return 1

Figure 12. Redeeming/Update Policy Checking

Redeem(U(pp, cred, UPj , f),S(pp, sk, UPj , f))
U : parse cred := (attr, σ, {enQQj

x })
parse attr := (x, ν, s, {Qi.head,Qi.tail}i∈[N])

parse Jj [tQj .head+1] := (t, j, bnext, st, σ
′′) from Jj

if !UPj(cred) then return ⊥
π ← ZKP.P(pp, (UPj , st), cred)

attr′ ← f(cred)

U → S : (π, ν)

S : if !(ZKP.V(pp, (UPj , st), π) ∧ (ν /∈ V)) then

return ⊥; else V := V ∪ {ν}
U ↔ S : // Run in parallel, using (Com(Qj+1.tail),Com(bnext)) in π

run Cred.Sig(U(attr′; ρ),S((π, f), skc))→ (σ,⊥)
run Cred.Sig(U((x, tQj .head+1,Qj+1.tail+ bnext,

j + bnext); ρ
′),S((π, f), skt))→ (σ′,⊥)

S : return st′ // Updated V
U : enQ′x :=(x, tQj .head+1,Qj+1.tail+bnext, j+bnext, σ

′)

return cred′ := (attr′, σ; enQ′x)

Figure 13. Redeeming Protocol

f(cred) for Redeem

parse attr := (x, ν, s, {Qi.head,Qi.tail}i∈[N])

parse enQ
Qj
x = (x, tQj .head+1,Qj .head+ 1, j)

parse Jj [tQj .head+1] := (tQj .head+1, j, bnext, st)

ν′ ←$ Zp

attr′ := (x, ν′, s+ st, . . . ,Qj .head+ 1,

. . . ,Qj+1.tail+ bnext, . . .QN−1.tail)

enQ′ := (x, tQj .head+1,Qj+1.tail+ bnext, j + bnext)

return cred′ := (attr′; enQ′)

Figure 14. Credential Updating in Redeem

Figure 6 will be (x, 2, 0, 1), where i < Q1.head+ 1 = 1,
assuming Q2 is empty. Knowing j is the last queue, the
signature issuance protocol needs not to be run.

4. The user stores the updated credential signature σ on
the new attributes attr′ and the enqueuing signature on
tQj .head+1 (if bnext = 0, the user can discard the signature).

5. The SP updates its state st with the new nonce set V .

5.6.2. Hiding the Queue Index. If j is also hidden in a
commitment, the user, instead of the SP, will compute the

906

Commitments for Signing f(cred)

parse from π : Cν′ ,

(Cx, Cν , Cs, {CQi.head, CQi.tail}i∈[N]), // Cattr

(Cx, CtQj .head+1 , CQj .head+1, Cj), // C
enQ
Qj
x

(CtQj .head+1 , Cj , Cbnext , Cst) // CJj [tQj .head+1]

Cattr′ :=(Cx, Cν′ , Cs · Cst , CQ0.head, . . . , CQj .head · C1,

. . . , CQj+1.tail · Cbnext , . . . CQN−1.tail)

CenQ := (Cx, CtQj .head+1 , CQj+1.tail · Cbnext , Cj · Cbnext)

Figure 15. SP Computation of f(cred) in Redeem

TABLE 2. POSSIBLE TICKET JUDGMENTS FOR THE j-TH QUEUE

Type bnext Next Queue Index j′

Transient 1 (j + 1) �= (N − 1)
Final 0 j

Exigent 1 N − 1

commitment(s) of attr′ and enQ, and proves to the SP
that they are updated according to update function f The
user prepares the update f(cred) similar to Section 5.6.1
(with differences highlighted in blue):

• ν′ ← Zp; st := s+ st;
• increments Qj .head to dequeue Qj ;
• adds bnext to Qj+bnext .tail in attr′;
• prepares the data to enqueue tQj .head+1 to the

i′-th slot of the (j + bnext)-th queue, where i′ =
bnext·(Qj+bnext .tail+ bnext).

Unlike when j is known, now the SP does not know
which commitment to apply additive homomorphism to
compute f(cred), and hence it relies on the user. Besides,
j could be the last queue where Qj+1 is not well-defined.
This explains the formula of i′. For a final judgment where
bnext = 0, i′ = 0. “Enqueuing” to the 0-th slot of any slot
means nothing, as it is an invalid slot for any credential.

The user proves that Cattr′ updates Qj .head and
Qj+bnext .tail in Figure 16 with two ZKPs on Rsel =
((C�m, C�m′ , Cj′ , Cb), (�m, �m′, j′, b) : �m′[j′] = �m[j′] + b),
which proves the j′-th slot of both �m′ and �m differ by b:

• (Qj .head) Rsel holds for �m = attr, �m′ = attr′,
j′ = 3 + 2j + 1, b = 1 (public);

• (Qj+bnext .tail) Rsel holds for �m = attr, �m′ =
attr′, j′ = 3 + 2(j +1+ bnext), b = bnext.

For CenQ, Rsel′ = ((C�m, Cj′ , Ci′ , Cb), (�m, j′, i′, b) :
i′ = b·(�m[j′])) is used to prove Ci′ (in CenQ) commits the
product of b = bnext and the j′-th element of �m = attr′.

If all three ZKPs above are valid, the SP runs
Cred.Sig() on the commitments (Cattr′ , CenQ), and the
user will obtain an updated credential over (attr′, enQ).

5.7. Emergency Revocation

In the baseline design, tickets inQj can only be moved
to Qj+1 (or out of the credential). When a judgment
can easily be deemed to be final, slowly advancing one
queue at a time is not needed. Allow moving a ticket
from Qj directly to the finalized queue QN−1 also enables
emergency revocation. i.e., the SP wants to revoke the user

Proof of attr′ ← f(cred) when j is hidden

parse Cattr, Cν′ from π

parse (Cx, CtQj .head+1 , CQj .head+1, Cj) from π // enQ

parse (CtQj .head+1 , Cj , Cbnext , Cst) from π // Judgment

Cj′ := C3+2j+1 // computes homomorphically

Cj′′ := C3+2(j+1+bnext) // index of Qj+bnext ’s tail

U : Cattr′ := (Cx, Cν′ , Cs · Cst , CQ0.head, . . . ,

CQj .head · C1, . . . , CQj+bnext
.tail · Cbnext , . . . CQN−1.tail)

CenQ := (Cx, CtQj .head+1 , Ci′ , Cj · Cbnext)

π1 ← ZKP.P(pp,Rsel, (attr,attr
′, j′, 1))

π2 ← ZKP.P(pp,Rsel, (attr,attr
′, j′′, bnext))

π3 ← ZKP.P(pp,Rsel′ , (attr
′, j′′, i′, bnext))

U → S : (Cattr′ , CenQ, π1, π2, π3)

Figure 16. Proving f(cred) in Redeem for Hidden j

Unjudged 9 10 J0 1 2 . . . 7 + 8

J1 2 3 . . . 7J2 {2, 8}

SP

Q0 2 4 5 8 9

Q1 2 4 5

Q2 8 2 Linear scan against J2 in Auth

Alice

Figure 17. Let the emergency queue be Q2. Dark-red boxes (8 in Q0,
2 in Q1) are exigently-judged tickets. Redeeming them moves them
directly to Q2. Authentication will prove each ticket in Q2 w.r.t. J2.

concerned immediately, without any delay when the con-
cerned ticket is not in the first slot of each queue. We thus
designate the last queue as the “emergency” queue. The
tickets there can only be redeemed and incorporated into
the credential score, instead of moving to other queues.

To realize this technically, we start by enabling an SP
to move a ticket to the last queue from previous queues
(via exigent judgments); then, we describe the linear scan
in authentication for proving each ticket in this queue.

5.7.1. Augmented Judgment and Queue Advancement.
During redemption, j, bnext in the judgment (t, j, bnext, st)
determines the destination queue (j+bnext). We extend the
judgment from (t, j, bnext, st) to (t, j, bnext, j

′, st), which
adds the next queue index j′ and is set according to
Table 2. The update function f is the same as f in
Section 5.6.2, except the new enqueuing signature’s queue
index (j + bnext) is replaced by j′ (highlighted in blue):

• prepares the data to enqueue tQj .head+1 to the (i =
Qj′ .tail+ bnext)-th slot of the j′-th queue.

Indices-hiding can still be achieved as in Section 5.6.2.

5.7.2. Emergency “Queue” with a Linear Scan. Tick-
ets in the emergency queue are likely out of order. For
example (cf., Figure 17, where N = 3), the SP decides
to move ticket 8 and ticket 2 at Q0 and Q1 to Q2. Thus,

907

it posts two exigent judgments (8, 0, bnext=1, j′ = 2, s8),
(2, 1, 1, 2, s2) on J0,J1. Alice must redeem them to au-
thenticate again. Whether she redeems from Q0 or Q1

first is not enforced, so the intra-queue invariant does not
hold for Q2. Nonetheless, it is no longer needed when
authentication checks each ticket in Q2 against the score
list J2 instead of a single range proof against jp2.

To authenticate, the user proves for the last queue Q2

in AP that |Q2| ≤ K2 where |Q2| = Q2.tail, and each
ticket ti in Q2 satisfies some predicate P(J2, ti). If |Q2|
shall be revealed, the user proves the knowledge of |Q2|
enqueuing signatures and P(J2, ti) = 1 ∀ ti ∈ Q2.

The range 0 ≤ |Q2| ≤ K2, is where |Q2| can
be hidden within. For each i in [1,K2], we can use
OR-composition proof to prove either the possession

of (message-)signature (pair) enQ(i,2)
x for i ≤ |Q2|, or

Q2.tail < i (exceeding the user’s Q2) for |Q2| < i ≤ K2.
Specifically, for known (J2, pkt, CQ2.head, CQ2.tail),

we prove Rscan = (({enQ(i,2)
x }|Q2|

i=1 ,Q2.head,Q2.tail) :∧K2

i=1[(Cred.Vf(pkt, enQ
(i,2)
x) ∧ (P(J2, ti) = 1)) ∨

(Q2.tail < i)] ∧ (Q2.tail ≤ K2)) holds.
Note that the emergency queue size would be small

for its special purpose.

5.7.3. Blocklist/Reputation Check. P(J2, ti) can be:

i) (If J2 stores blocked tickets :) ti is a non-member of
the revoked ticket set J2, e.g., via an accumulator [1], i.e.,
one is revoked for holding any ticket in this queue; or

ii) There is an up to date judgment on ti in J2 =
{(t, st, τ)} where τ is the current timestamp.

The latter reputation-based approach can still incorpo-
rate the transient/finalized judgment using timestamp τ .
Each exigent judgment can first be judged with a (very
negative) initial score s(t,τ), and can be updated to s(t,τ ′)
afterward; until a special τ∗ is marked, denoting the
finalized judgment. The user can redeem finalized ones out
of the emergency queue with a more complex operation,
such as using verifiable shuffle [20]. This also requires a
loosely-synchronized clock for the timestamps across all
judgments or a signature expiry mechanism [20]. One can
see this as adopting the idea in our concurrent work [20]
for a specific queue instead of the entire credential.

6. Instantiation and Performance

6.1. Related Zero-Knowledge Proofs

An authenticating user needs to compute ZKP that
each ticket queue Qj is either empty (equality check
over commitments) or tQj .head+1 is unjudged. Given a
Σ-protocol for the equality check, signature verification,
and range proof over committed values, the OR-proof
technique [22] could be applied directly. We use the
following ZKP for different relations:

• ZKPequal{(a, b, r, s) : Ca = Com(a; r) ∧ Cb =
Com(b; s) ∧ a = b}

• ZKPscore{(a, r) : Ca = Com(a; r) ∧A ≤ a < B}
• ZKPdiff{(a, b, r, s) : Ca = Com(a; r) ∧ Cb =

Com(b; s) ∧ a− b ∈ [0,K − 1]}
• ZKPinner{(�a,�b, c, r, s, t) : C�a = Com(�a; r)∧C�b =

Com(�b; s) ∧ Cc = Com(c; t) ∧ 〈�a,�b〉 = c}

• ZKP for knowing BBS+ signature over individual
commitments of �m [7], [13].

The range proof can be instantiated using the
signature-based set membership proof [12] or Bullet-
proofs [11], [25] which directly works with Pedersen com-
mitment. One can also utilize the compressed-Σ protocol
theory [4]–[6], which applies Bulletproofs to Σ-protocols
for opening linear forms on a committed vector.

A range proof of v ∈ [0, 2n − 1] (supported natively
by Bulletproofs) can be converted to an arbitrary range
[A,B] using two range proofs [12] on subtracted values
to A,B. Assume 2n−1 < B < 2n, we can prove that
v − B + 2n ∈ [0, 2n − 1] ∧ v − A ∈ [0, 2n − 1]. Thus,
we set a soft upper bound on the maximum value of the
tickets and score to be 264 − 1.

For our combined use with BBS+ signature, we work
on a pairing-friendly curve for the pairing operations,
e.g., BLS12-381. The proof of message equality in two
commitments is straightforward. A redeeming user needs
to prove the satisfaction of redeeming policy by ZKP of
three valid signatures. The details on ZKP of the BBS+
signature can be found in Appendix B.

6.2. Using CP-SNARK

We also utilize the commit-and-prove paradigm. Most
of the efficiently-implemented zkSNARKs focus on prov-
ing general circuits or rank-1 constraint systems. ZKP of
AP(cred) = 1 on committed attributes of enQQi

x and cred,
and public parameters jpi and Ki, can be separated into

∧
i∈[N]

⎧⎨
⎩
(Qi.head = Qi.tail) ∨(
(Qi.tail−Qi.head ∈ [0,Ki − 1]) ∧
(tQi.head+1 > jpi)

)
⎫⎬
⎭ and

∧
i∈[N]

((Qi.head = Qi.tail) ∨ Cred.Vf(pk, enQQi
x) = 1),

where the first and second nested relations can be proved
by CP-SNARK (e.g., LegoGro16 [16] on circuits written
with circom library6) and proof of partial knowledge
respectively. The committed values in the two relations
are linked with the commit-and-prove paradigm.

Instantiating ZKP for Rsel and Rsel′ . In Sec-
tion 5.6.2, ZKP on Rsel and Rsel′ are used: Rsel =
((C�m, C�m′ , Cj′ , Cb), (�m, �m′, j′, b) : �m′[j′] = �m[j′]+b) is
used to prove correct update of queue pointers in f(cred).
Using zkSNARK, �m = attr, �m′ = attr′, the committed
index j′ and bit b = bnext are the inputs to a circuit that
checks ifRsel is satisfied, where the commitments are used
for the proof of UP. One can utilize the one-hot encoding
�e of j′ (as an implicit input), where the circuit checks:
i) 〈�e,�1〉 = 1 ∧ 〈�e,�1−�e〉 = 0 (�e is a weight-1 bit vector);
ii) 〈�e, (0, . . . , 3 + 2N)〉 = j′;
iii) 〈�e, �m′ − �m〉 = b.

ZKP on Rsel′ = ((C�m, Cj′ , Ci′ , Cb), (�m, j′, i′, b) :
i′ = b · (�m[j′])) is used to prove the index i′ in the
enqueuing data, where �m = attr′. Utilizing the one-hot
encoding �e, ZKP on Rsel′ can be instantiated by proving
the first and second conditions with two more conditions:
〈�e, �m〉 = �m[j′] and b · (�m[j′]) = i′. The above relations
are readily supported by zkSNARKs.

6. https://github.com/iden3/circom

908

0 1 4 8 12 16
0

1

2

3

4

5

6

Total Number of Queues (N)

R
u
n

T
im

e
(s

ec
o
n
d
s)

User Auth

SP Auth

User Redeem

SP Redeem

Figure 18. Computation times for Auth,Redeem (using Bulletproofs)

0 1 4 8 12 16
0

50

100

150

200

250

Total Number of Queues (N)

C
o
m

m
u
n
ic

at
io

n
(k

il
o
b
y
te

s)

Auth

Redeem

Figure 19. Total communication costs for Auth,Redeem

6.3. Experimental Evaluation

We use the Rust library from docknetwork7 which is
based on the arkwork library [3]. We also use the modified
version of the Bulletproofs8 for the pairing-friendly curve
BLS12-381. We test on a desktop PC (localhost setting)
with an 8-core AMD Ryzen CPU running at 3.7GHz. We
use Windows Linux Subsystem to emulate Ubuntu 20.04.

We benchmark our authentication and redeeming pro-
tocols against numbers of queues N = {1, 4, 8, 12, 16}
with 8 scoring categories (� = 8). We compare with
our re-implementation of FARB [35], the state-of-the-art
sequential-judging system. The runtimes in Figure 18 are
taken as the average timing of multiple runs. The bit-
length of the score, tickets, and indexes is 64. Note that the
improved ZKP for signature verification [13] is used. We
also plot the total communication costs of authentication
and redeeming in kilobytes versus the number of queues.

Compared to FARB (N = 1) with no slackness,
SMART’s user authentication time increases by about
1.35× when the SP can slack for N − 1 = 7 times.
We deem such kind of overhead acceptable. For example,
the time for N = 16 is still in the order of 5 seconds.
More fundamentally, this can be sped up by using better
computing platforms alone; while the subjective judging
complexity and hence its associated global-halting issue

7. https://github.com/docknetwork/crypto

8. https://github.com/dalek-cryptography/bulletproofs

are inherent no matter how fast the future computing
platform will be (unless the subjective assessment can be
fully automated, say, by fancy AI technologies).

Our protocol scales linearly in the number of queues
in both computation and communication costs (Figure 19).
The increased communication cost in redeeming mainly
comes from the increased credential proof size. The bot-
tleneck of the authentication is the computation (and
verification) of the N disjunctive proof.

Our authentication and redeeming costs are indepen-
dent of the number of sessions in each queue and the
global score lists. Efficiency-wise, one could roughly con-
sider our N takes the role of prevalent parameter K
in prior sequential-judging designs. Nonetheless, as ex-
plained in the introduction, the implications brought by
tuning these two parameters are different. SMART gains
flexibility and resilience against global halting.

7. Concluding Remarks

Securing the online world and protecting user privacy
are becoming increasingly important, asking for anony-
mous credential systems free from trusted third parties.
Meanwhile, incorporating reputation mechanisms based
on subjective evaluation can add an additional layer of
trust and security to these anonymous credential systems.

We unveil the unspoken global-halting vulnerability of
the prevailing first-in-first-out sequential judging (PEREA,
PERM, BLACR-express, and FARB [35]). Adversaries
can launch denial-of-service attacks by introducing many
hard-to-judge sessions. As long as one session remains
unjudged, the entire system becomes paralyzed, affecting
honest users as well. They also fail to support transient
judgments. Another design (BLAC(R), SNARKBlock)
processes all judgments ever made. Precomputations are
only reusable when the judgments never change.

We propose SMART, with an extended multi-queue
data structure in the credential. Besides alleviating the
global-halting issue, SMART allows the SP to give ad-
justable judgment to authenticated sessions, avoiding the
dilemma of being too lenient or overly cautious. SMART
needs to carefully maintain the user sessions across mul-
tiple queues, in particular, hiding the source queue and
the transient/finalized nature while redeeming, which are
non-issues in single-queue designs like FARB.

We end with introducing two concurrent works.
SAC [20] supports transient judgments without sequential
judging and is also free from the global-halting issue. The
credential uses an unordered data structure of a set to store
the ticket. Redeeming (and hence removing) finalized tick-
ets requires (signature-based) membership proof against
the finalized ticket set. Verifiable shuffle is employed to
hide the indices of any added or removed tickets. Unlike
SMART, SAC requires signature expiration to invalidate
previous judgments, i.e., all active tickets need to be re-
signed whenever the SP upgrades a score.

In a regular system, judgments on the tickets cannot
be casually deleted since the privacy guarantee makes it
unclear whether they have been redeemed or not. Decen-
tralized anonymous reputation with sustainability [18] is
recently formalized. A subset of surely-redeemed tickets
can be identified and hence deleted from time to time.

909

References

[1] Tolga Acar, Sherman S. M. Chow, and Lan Nguyen. Accumulators
and U-Prove revocation. In Ahmad-Reza Sadeghi, editor, Financial
Cryptography and Data Security - 17th International Conference,
FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers, volume 7859 of Lecture Notes in Computer Science, pages
189–196. Springer, 2013.

[2] antonela. The value of Tor and anonymous con-
tributions to wikipedia. https://blog.torproject.org/
the-value-of-anonymous-contributions-wikipedia.

[3] arkworks contributors. arkworks zkSNARK ecosystem, 2022.
https://arkworks.rs.

[4] Thomas Attema and Ronald Cramer. Compressed Σ-protocol
theory and practical application to plug & play secure algorithmics.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in
Cryptology - CRYPTO 2020 - 40th Annual International Cryptol-
ogy Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes
in Computer Science, pages 513–543. Springer, 2020.

[5] Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing
proofs of k-out-of-n partial knowledge. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part IV, volume 12828 of
Lecture Notes in Computer Science, pages 65–91. Springer, 2021.

[6] Thomas Attema, Ronald Cramer, and Matthieu Rambaud. Com-
pressed Σ-protocols for bilinear group arithmetic circuits and ap-
plication to logarithmic transparent threshold signatures. In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory
and Application of Cryptology and Information Security, Singa-
pore, December 6-10, 2021, Proceedings, Part IV, volume 13093
of Lecture Notes in Computer Science, pages 526–556. Springer,
2021.

[7] Man Ho Au and Apu Kapadia. PERM: Practical reputation-based
blacklisting without TTPs. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-
18, 2012, pages 929–940, 2012.

[8] Man Ho Au, Apu Kapadia, and Willy Susilo. BLACR: TTP-free
blacklistable anonymous credentials with reputation. In 19th An-
nual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012. The Inter-
net Society, 2012.

[9] Man Ho Au, Willy Susilo, Yi Mu, and Sherman S. M. Chow.
Constant-size dynamic k-times anonymous authentication. IEEE
Systems Journal, 7(2):249–261, 2013.

[10] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher,
and Kai Samelin. Issuer-hiding attribute-based credentials. In
Mauro Conti, Marc Stevens, and Stephan Krenn, editors, Cryp-
tology and Network Security - 20th International Conference,
CANS 2021, Vienna, Austria, December 13-15, 2021, Proceedings,
volume 13099 of Lecture Notes in Computer Science, pages 158–
178. Springer, 2021.

[11] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Gregory Maxwell. Bulletproofs: Short proofs
for confidential transactions and more. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 315–334. IEEE Computer
Society, 2018.

[12] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Efficient proto-
cols for set membership and range proofs. In Josef Pieprzyk, editor,
Advances in Cryptology - ASIACRYPT 2008, 14th International
Conference on the Theory and Application of Cryptology and
Information Security, Melbourne, Australia, December 7-11, 2008.
Proceedings, pages 234–252, 2008.

[13] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous
attestation using the strong Diffie Hellman assumption revisited.
In Michael Franz and Panos Papadimitratos, editors, Trust and
Trustworthy Computing - 9th International Conference, TRUST
2016, Vienna, Austria, August 29-30, 2016, Proceedings, volume
9824 of Lecture Notes in Computer Science, pages 1–20. Springer,
2016.

[14] Jan Camenisch and Anna Lysyanskaya. Signature schemes and
anonymous credentials from bilinear maps. In Matthew K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, Cal-
ifornia, USA, August 15-19, 2004, Proceedings, volume 3152 of
Lecture Notes in Computer Science, pages 56–72. Springer, 2004.

[15] Jan Camenisch and Markus Stadler. Efficient group signature
schemes for large groups (extended abstract). In Burton S. Kaliski
Jr., editor, Advances in Cryptology - CRYPTO ’97, 17th Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture
Notes in Computer Science, pages 410–424. Springer, 1997.

[16] Matteo Campanelli, Dario Fiore, and Anaı̈s Querol. LegoSNARK:
Modular design and composition of succinct zero-knowledge
proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 2075–2092. ACM,
2019.

[17] Sherman S. M. Chow. Real traceable signatures. In Michael
J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, ed-
itors, Selected Areas in Cryptography, 16th Annual International
Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14,
2009, Revised Selected Papers, volume 5867 of Lecture Notes in
Computer Science, pages 92–107. Springer, 2009.

[18] Sherman S. M. Chow, Christoph Egger, Russell W. F. Lai, Viktoria
Ronge, and Ivy K. Y. Woo. On sustainable ring-based anonymous
systems. In 36th IEEE Computer Security Foundations Symposium,
CSF 2023, Dubrovnik, Croatia, July 9 - 13, 2023, 2023. To appear.

[19] Sherman S. M. Chow, Joseph K. Liu, and Duncan S. Wong. Robust
receipt-free election system with ballot secrecy and verifiability. In
Proceedings of the Network and Distributed System Security Sym-
posium, NDSS 2008, San Diego, California, USA, 10th February
- 13th February 2008. The Internet Society, 2008.

[20] Sherman S. M. Chow, Jack P. K. Ma, and Tsz Hon Yuen. Scored
anonymous credentials. In Mehdi Tibouchi and Xiaofeng Wang,
editors, Applied Cryptography and Network Security - 21st Inter-
national Conference, ACNS 2023, Kyoto, Japan, June 19-22, 2023,
Proceedings, Part II, volume 13906 of Lecture Notes in Computer
Science. Springer, 2023. To appear.

[21] Sherman S. M. Chow, Haibin Zhang, and Tao Zhang. Real hidden
identity-based signatures. In Aggelos Kiayias, editor, Financial
Cryptography and Data Security - 21st International Conference,
FC 2017, Sliema, Malta, April 3-7, 2017, Revised Selected Papers,
volume 10322 of Lecture Notes in Computer Science, pages 21–38.
Springer, 2017.

[22] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs
of partial knowledge and simplified design of witness hiding
protocols. In Yvo Desmedt, editor, Advances in Cryptology -
CRYPTO ’94, 14th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1994, Proceedings,
volume 839 of Lecture Notes in Computer Science, pages 174–187.
Springer, 1994.

[23] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor:
The second-generation onion router. In Matt Blaze, editor, Pro-
ceedings of the 13th USENIX Security Symposium, August 9-13,
2004, San Diego, CA, USA, pages 303–320. USENIX, 2004.

[24] Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah
Tyner. Threshold BBS+ signatures for distributed anonymous
credential issuance. In 44th IEEE Symposium on Security and
Privacy, SP 2023, San Francisco, CA, USA, 22-25 May 2023, pages
2095–2111. IEEE Computer Society, 2023.

[25] Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi,
and Daniel Tschudi. Fiat-Shamir Bulletproofs are non-malleable
(in the algebraic group model). In Orr Dunkelman and Stefan
Dziembowski, editors, Advances in Cryptology - EUROCRYPT
2022 - 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway,
May 30 - June 3, 2022, Proceedings, Part II, volume 13276 of
Lecture Notes in Computer Science, pages 397–426. Springer,
2022.

910

[26] Christina Garman, Matthew Green, and Ian Miers. Decentralized
anonymous credentials. In 21st Annual Network and Distributed
System Security Symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014. The Internet Society, 2014.

[27] Jens Groth. On the size of pairing-based non-interactive arguments.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 305–
326. Springer, 2016.

[28] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable
signatures. In Christian Cachin and Jan Camenisch, editors, Ad-
vances in Cryptology - EUROCRYPT 2004, International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027
of Lecture Notes in Computer Science, pages 571–589. Springer,
2004.

[29] Torben P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In Joan Feigenbaum, editor,
Advances in Cryptology - CRYPTO ’91, 11th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
11-15, 1991, Proceedings, volume 576 of Lecture Notes in Com-
puter Science, pages 129–140. Springer, 1991.

[30] Michael Rosenberg, Mary Maller, and Ian Miers. SNARKBlock:
Federated anonymous blocklisting from hidden common input ag-
gregate proofs. In 43rd IEEE Symposium on Security and Privacy,
SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages 948–
965. IEEE, 2022.

[31] Claus-Peter Schnorr. Efficient signature generation by smart cards.
J. Cryptol., 4(3):161–174, 1991.

[32] Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part V, volume 14008
of Lecture Notes in Computer Science, pages 691–721. Springer,
2023.

[33] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith.
Blacklistable anonymous credentials: Blocking misbehaving users
without TTPs. In Peng Ning, Sabrina De Capitani di Vimercati,
and Paul F. Syverson, editors, Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, pages 72–81.
ACM, 2007.

[34] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith.
PEREA: towards practical ttp-free revocation in anonymous au-
thentication. In Peng Ning, Paul F. Syverson, and Somesh Jha,
editors, Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 2008, pages 333–344. ACM, 2008.

[35] Li Xi and Dengguo Feng. FARB: Fast anonymous reputation-
based blacklisting without TTPs. In Gail-Joon Ahn and Anupam
Datta, editors, Proceedings of the 13th Workshop on Privacy in the
Electronic Society, WPES 2014, Scottsdale, AZ, USA, November 3,
2014, pages 139–148. ACM, 2014.

[36] Li Xi, Jianxiong Shao, Kang Yang, and Dengguo Feng. ARBRA:
Anonymous reputation-based revocation with efficient authentica-
tion. In Sherman S. M. Chow, Jan Camenisch, Lucas Chi Kwong
Hui, and Siu-Ming Yiu, editors, Information Security - 17th Inter-
national Conference, ISC 2014, Hong Kong, October 12-14, 2014.
Proceedings, volume 8783 of Lecture Notes in Computer Science,
pages 33–53. Springer, 2014.

[37] Kin Ying Yu, Tsz Hon Yuen, Sherman S. M. Chow, Siu-Ming
Yiu, and Lucas Chi Kwong Hui. PE(AR)2: Privacy-enhanced
anonymous authentication with reputation and revocation. In
Sara Foresti, Moti Yung, and Fabio Martinelli, editors, Computer
Security - ESORICS 2012 - 17th European Symposium on Research
in Computer Security, Pisa, Italy, September 10-12, 2012. Proceed-
ings, volume 7459 of Lecture Notes in Computer Science, pages
679–696. Springer, 2012.

[38] Tao Zhang, Huangting Wu, and Sherman S. M. Chow. Structure-
preserving certificateless encryption and its application. In Mitsuru
Matsui, editor, Topics in Cryptology - CT-RSA 2019 - The Cryptog-
raphers’ Track at the RSA Conference 2019, San Francisco, CA,
USA, March 4-8, 2019, Proceedings, volume 11405 of Lecture
Notes in Computer Science, pages 1–22. Springer, 2019.

A. Security Definition of Building Blocks

A function f : N → R is negligible, denoted by
negl(λ), if ∀c > 0, ∃ x0 s.t. f(x) < 1/xc, ∀x > x0.

A.1. Zero-Knowledge Proof or Argument System

A (non-interactive) proof system is an argument of
knowledge if it satisfies the two properties below.

Definition 5 (Completeness). A non-interactive proof sys-
tem Π = (Setup,P,V) for language LR achieves perfect
completeness if for all (x,w) ∈ R: Pr[1← V(crs, x, π) :
crs← Setup(1λ), π ← P(crs, x, w)] = 1

Definition 6 (Knowledge-Soundness). A (non-interactive)
proof system Π = (Setup,P,V) satisfies knowledge-
soundness if there exists a PPT simulator Ext such that
for all PPT adversaries A and prover P∗:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎣V(crs, x, π) = 1

crs← Setup(1λ),

(x,w)← A(crs),
π ← P∗(crs, x, w)

⎤
⎥⎦

− Pr

⎡
⎢⎣(x,w) ∈ R

crs← Setup(1λ),

(x,w)← A(crs),
w ← ExtP

∗
(crs, x)

⎤
⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ).

Definition 7 (Perfect Special Honest-Verifier Zero-knowl-
edge (SHVZK)). A non-interactive proof system Π =
(Setup,P,V) is said to be Perfect SHVZK if there exists
a PPT simulator Sim = (Sim1, Sim2) such that for all
pairs of PPT adversaries (A1,A2):

Pr

⎡
⎢⎣(x,w) ∈ R,A1(π) = 1

crs← Setup(1λ),

(x,w)← A2(crs),

π ← P(crs, x, w)

⎤
⎥⎦

= Pr

⎡
⎢⎣(x,w) ∈ R,A1(π) = 1

crs← Sim1(1
λ),

(x,w)← A2(crs)

π ← Sim2(crs, x)

⎤
⎥⎦ .

A.2. Credential Signature Scheme

Definition 8 (Unforgeability). A credential signature
scheme Cred = (KGen, Sign,Vf) is said to be unforgeable
if for all PPT adversaries A, the probability of winning
the following game is less than negl(λ):

• The challenger runs KGen(1λ) to obtain (pk, sk),
pk is given to the adversary A.

• The adversary can query the signing protocol
inputting �m, r. The protocol (with the challenger
playing as the signer) returns a signature σ.

• The adversary outputs a message-signature tu-
ple (�m∗, σ∗) that is valid and distinct, i.e.,
Cred.Vf(pk, �m∗, σ∗) = 1 and �m∗ has not been
queried before.

911

Definition 9 (Blindness). A credential signature scheme
Cred = (KGen, Sign,Vf) satisfies the blindness property
if for all PPT adversaries A, the probability of winning
the following game is less than 1/2 + negl(λ):

• The challenger runs KGen(1λ) to obtain (pk, sk),
(pk, sk) is given to the adversary A.

• The adversary on input (pk, sk), outputs two mes-
sages �m0, �m1.

• The challenger samples a bit b and randomness r
and interacts with the adversary in the Cred.Sig
protocol with input (�mb; r).

• The adversary outputs a bit b′ and wins if b = b′.

Blindness follows from the (perfectly) hiding prop-
erty of the Pedersen commitment scheme and zero-
knowledgeness of the ZKP.

B. BBS+ Signature

Let G1, G2, and GT be cyclic groups of λ-bit prime
order p. Let e : G1 × G2 → GT be a non-degenerate
bilinear map.

The setup algorithm outputs the bilinear group context
(p,G1,G2,GT , e, g, h) with g, h being a generator of G1,
G2, respectively, and e(g, h) is a generator of the target
group GT . For Type-III pairing, G1 �= G2, with no
isomorphism between G1 and G2.

The public parameter pp contains generators
(g, g0, . . . , gn, h) ←$ G

n+1
1 × G2 and the description of

the bilinear group. The BBS+ signature (over a bilinear
group defined by pp) consists of three algorithms:

• BBS+.KGen(1λ) → (pk, sk): The signer samples
γ ∈ Z

∗
p, sets sk = γ, and sets pk = w = hγ .

• BBS+.Sign(�m, sk) → σ: To sign �m =
(m1, . . . ,mn) ∈ Zn

p , the signer samples e, s ←$

Zp and computes A ← (ggs0
∏n

i=1 g
mi
i)

1
e+γ . The

signature on �m is σ ← (A, e, s).
• BBS+.Vf(pk, �m, σ)→ b : To verify σ on �m under

pp = (g, g0, . . . , gn, h) and pk = hγ , the verifier

returns e(A,whe)
?
= e(ggs0

∏n
i=1 g

mi
i , h).

The BBS+ signature supports signing on committed
multi-block message �m. We describe the blind signature
issuance protocol run between the signer and user:

1) The user computes the commitment of �m as
C�m = gs

′
0

∏n
i=1 g

mi
i for a randomly sampled

s′ ←$ Z
∗
p.

2) The user sends the commitment C�m to the signer
with ZKPoK of the commitment opening, e.g.,
ZKP{(�m; ρ) : C�m = Com(�m; ρ)}.

3) The signer computes A = (ggs0Cm)
1

e+γ , where
e, s←$ Z∗p, and sends σ′ = (A, e, s) to the user.

4) The user parses the signature as σ = (A, e, s+s′)
and returns σ, if BBS+.Vf(pk, �m, σ) = 1.

The server stores the auxiliary output aux′ that contains
the commitment(s) and ZKP. The user can further prove
relations about individual commitments of mi ∈ �m, e.g.,
ZKP{({mi; ri}�i=1; ρ) : C�m = Com(�m; ρ)

∧�
i=1(Cmi

=
Com(mi; ri))}, where Cmi

would also be proved about
in other ZKPs (commit-and-prove).

To prove the knowledge of the signature on the com-
mitted multi-block message, the prover can prepare the
commitment and prove in zero-knowledge that the pairing
verification equation holds [9] (which requires ZKP in
the target group GT). Camenisch et al. [13] proposed a
more efficient variant of ZKP that only involves operations
over G1 and supports selective message disclosure, i.e.,
{mi}i∈D are revealed, where D ⊆ {1, n} is a subset of
indexes of �m. The prover with σ = (A, e, s) on �m ran-
domizes the signature with r1 ←$ Z

∗
p by setting A′ ← Ar1 .

It computes r3 ← 1
r1

and set Ā ← A′−e · Br1 , where

B = (ggs0
∏n

i=1 g
mi
i = Aγ+e). It also picks r2 ←$ Zp and

sets d← br1 ·g−r2
0 and s′ ← s− r2 · r3. Finally, it proves:

π ← ZKP{({mi}i/∈D,e, r1, r2, r3, s
′) : Ā/d = A′−e · gr20

∧ g
∏
i∈D

gmi
i = dr3g−s′

0

∏
i/∈D

g−mi
i }.

The proof consists of (A′, Ā, d, π). Its verification requires
checking A′ �= 1G1

and e(A′, w) = e(Ā, h). The signer
needs to publish (ḡ1, ḡ1

γ) for ḡ1 �= 1G1
and ensures A �=

1G1
. The nonce is revealed to the SP in our protocol.

Recently, a variant of the BBS+ signatures with a shorter
signature size has been proposed [32].

The BBS+ scheme is existentially unforgeable against
adaptive chosen message attacks for Type-III pairings un-
der the q-strong Diffie-Hellmen (q-SDH) assumption [13].

Definition 10 (q-SDH Assumption). Given the tuple
(g1, g

x
1 , g

(x2)
1 , . . . , g

(xq)
1 , g2, g

x
2) ∈ G

q+1
1 × G

2
2, no PPT

algorithm can output (c, g1/(x+c)
1), where c ∈ Zp \ {−x}.

C. Extensions to Multiple Service Providers

The SP holds the credential issuance key for ticket
management in our setting. As SMART uses a credential
signature scheme in a black-box manner, we can distribute
the credential-issuing power across multiple SPs by re-
placing it with its different extensions for different “trust”
models. For example, for the n′-out-of-n access structure,
i.e., any subgroup of n′ SPs among a group of n SPs
can issue credentials, we can use 1-out-of-n ZKP [22]
or threshold BBS+ [24]. In issuer-hiding attribute-based
credentials, Bobolz et al. [10] replaced the OR-proof tech-
nique with a signature-based set membership proof [12],
where the verifier specify the permitted issuer public keys
by signing a possibly different set of them according to
the expected verification policy (regarding the SPs) in a
given scenario.

Different SPs can also judge tickets as they wish, and
multiple SPs can judge the same ticket. The redemption
policy and the credential update function could take in
the same judgment signed by at least n′ SPs (with n′-
out-of-n proof [5], [22]). With the above in mind, our
signature-based design makes it compatible with a possi-
ble extension to the decentralized setting. The core idea
is that the credentials, policies, and score lists can be put
into a trusted public ledger [26] where succinct ZKPs
accompany the credential updates.

912

