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Abstract—Content Security Policy (CSP) is a standardized
leading technique for protecting webpages against attacks
such as Cross Site Scripting (XSS). However, it is often hard
to properly deploy CSPs on webpages, and the deployed
CSPs often contain security issues or errors. In this paper,
we take the unsupervised clustering approach to analyze
the security levels of the deployed CSPs from the directive
coverage and secure use perspectives. To effectively protect a
webpage, a deployed CSP should cover all types of resources
needed on the webpage by using different directive names
(or some default directive names if available), and should
avoid using unsafe directive values which will allow harmful
resources to be loaded into a webpage. We implemented a
Google Chrome extension, designed policy features, designed
a Contrastive Spectral Clustering (CSC) algorithm, and
visited the Alexa top 100K websites to analyze the CSPs
deployed on them. From the 13,317 homepages that deployed
CSPs under the enforcement mode, we categorized their
policies into 16 clusters with different characteristics. We
found that 15 clusters are at the low level on the coverage
and five clusters are at the low level on the secure use
of directives; meanwhile, no cluster is at the high level
on the coverage of directives, and nine clusters are at the
high level on the secure use of directives. These results
indicate that most deployed CSPs do not sufficiently protect
webpages, and more importantly, clustering helps identify
the corresponding common or different reasons from the
directive coverage and secure use perspectives. In addition,
by analyzing 110,718 subpages of the 13,317 CSP-deployed
homepages, we found that most of them deployed the same
CSP as in their homepages. Overall, our approach and
results can be helpful for promoting the proper deployment
of CSPs.

1. Introduction

Content Security Policy (CSP) is a standardized lead-
ing technique for protecting webpages against code and
data injection attacks especially Cross Site Scripting
(XSS) attacks [2], [3], [8]. A webpage is vulnerable to
XSS attacks if it allows resources such as JavaScript code
or files (abbreviated as scripts) to be loaded from untrust-
worthy sources to manipulate its content or behavior. As
a powerful technique successfully adopted by all major
web browsers, CSP provides web application developers
with the capability to comprehensively define the policy
regarding the permissible resources (e.g., scripts) and

behaviors (e.g., form submissions) on each webpage to
protect against attacks such as XSS.

A CSP is composed of a set of directives, each of
which is a pair of whitespace-delimited directive name
and directive value. The directive name is a non-empty
string, while the directive value is a set (may be empty for
some directives) of whitespace-delimited strings (referred
to as directive value tokens in this paper). Typically, a
directive name specifies a certain resource type that will
be controlled, while a directive value specifies which re-
sources can be loaded or what behaviors can be allowed on
a webpage. Developers can deploy a CSP for a webpage
either through an HTTP response header or an HTML
<meta> tag. If deployed in the enforcement mode, a CSP
will be enforced at the client side by a web browser.
Unfortunately, largely due to the complexity reason, it
is often hard to properly deploy CSPs, and the deployed
CSPs often contain security issues or errors (Section 2.2).

In this paper, we take the clustering approach to an-
alyze the security levels of the deployed CSPs from the
directive coverage and secure use perspectives. To effec-
tively protect a webpage, a deployed CSP should cover all
types of resources needed on the webpage by using dif-
ferent directive names (or some default directive names if
available), and should avoid using unsafe directive values
which will allow harmful resources to be loaded into a
webpage. We take the unsupervised clustering approach
as it allows us to automatically categorize very diverse
and complex CSPs based on the extracted policy features.

We define each policy feature as a (directive name,
directive value token type) pair. Its value is binary, in-
dicating the existence or nonexistence of the feature in a
CSP. In the policy feature design, we include the directive
name to comprehensively cover all types of directives;
we include the directive value at the token type level to
capture the specified value neither too coarse-grained nor
overly fine-grained; in total, we define and extract 530
policy features.

We design a Contrastive Spectral Clustering (CSC)
algorithm for automatically categorizing very diverse and
complex CSPs based on the extracted policy features.
CSC takes the leading and popular spectral clustering
approach that has been theoretically analyzed and experi-
mentally demonstrated as superior to traditional clustering
approaches such as K-means [16], [25], [26], [30], [31].
CSC also integrates contrastive learning, a state-of-the-art
self-supervised representation learning technique [4], [10],
[38], for explicitly learning better (i.e., more informative)
representations of CSPs.
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We implemented a Google Chrome extension and
visited the Alexa top 100K websites to analyze the CSPs
deployed on them. From the 13,317 homepages that de-
ployed CSPs under the enforcement mode, we categorized
their policies into 16 clusters with different characteristics.
We found that 15 clusters are at the low level on the
coverage and five clusters are at the low level on the secure
use of directives; meanwhile, no cluster is at the high
level on the coverage of directives, and nine clusters are
at the high level on the secure use of directives. These re-
sults indicate that most deployed CSPs do not sufficiently
protect webpages, and more importantly, clustering helps
identify the corresponding common or different reasons
from the directive coverage and secure use perspectives.
In addition, by analyzing 110,718 subpages of the 13,317
CSP-deployed homepages, we found that most of them
deployed the same CSP as in their homepages.

We make four major contributions in this paper: (1)
we propose to take the clustering approach for analyzing
the security levels of the deployed CSPs from the directive
coverage and secure use perspectives; (2) we design and
extract 530 policy features based on the latest CSP Level
3 specification; (3) we design a CSC algorithm that lever-
ages the advantages of spectral clustering and contrastive
learning for automatically categorizing CSPs; (4) we per-
form a large-scale measurement study on 100K websites,
categorize the CSPs deployed on 13,317 homepages into
16 clusters with different characteristics, and analyze the
security levels of the CSPs in each unique cluster to help
promote the proper deployment of CSPs.

The rest of this paper is organized as follows. Section 2
reviews the background of CSP and the related work.
Section 3 presents the design of our study from the data
collection, policy feature extraction, clustering algorithm,
and security level analysis perspectives. Section 4 presents
and analyzes the clustering results. Section 5 summarizes
the high-level takeaways and recommendations for web
developers. Section 6 concludes this paper.

2. Background and Related work
2.1. Background of CSP

CSP is able to control the resource loading, navigation,
and script execution environment of a webpage. There are
five categories of directives: fetch, document, navigation,
reporting, and other directives.

Fetch Directives. Fetch directives are used to control
the locations from which certain types of resources can
be loaded into a webpage. In total, there are 17 types of
fetch directives indicated by their unique directive names.
For example, the “script-src http://example.com” directive
specifies that the scripts from “http://example.com” can be
loaded into a webpage for execution. If the “default-src”
directive is specified, its value will be considered as the
default fetch policy, and all other fetch directives that are
not explicitly specified will fall back to it. Other fallback
relationships exist among fetch directives according to
the CSP specification [15], [33]: e.g., “frame-src” and
“worker-src” fall back to “child-src”; “script-src-elem”,
“script-src-attr”, and “worker-src” fall back to “script-src”.

Document Directives. Document directives control
the properties of a webpage document and the script

execution environment. There are two types of document
directives: “base-uri” and “sandbox”. The former is used
to control the URLs that can be used in a webpage’s
<base> element. The latter is used to specify an HTML
sandbox policy to be applied to an element or resource.

Navigation Directives. Navigation directives control
the navigations of a webpage, and there are three types:
“form-action”, “frame-ancestors”, and “navigate-to”. The
“form-action” directive is used to control the target URLs
of a form submission. The “frame-ancestors” directive is
used to control the URLs that can embed a webpage
through <frame>, <iframe>, <object>, <embed>, or
<applet>. The “navigate-to” directive is used to control
the URLs to which a webpage can initiate navigations.

Reporting and Other Directives. When a resource or
a behavior violates the CSP deployed on a webpage, there
will be a CSP violation. There are two types of reporting
directives (“report-uri” and “report-to”) that can be used to
specify the hosts or servers to which violation reports will
be sent. Other specifications can further extend the core
CSP specification, thus there are some other customized
directives such as “upgrade-insecure-requests”.

CSP has two deployment modes: enforcement and
report-only. In the enforcement mode, CSP violations
will trigger enforcement actions (e.g., blocking certain
resources or disabling script execution); in the report-
only mode, CSP violations will only be reported (typically
for web developers to test policies) without incurring
enforcement actions. Meanwhile, there are two ways to
deploy a CSP for a webpage: via an HTTP response
header or an HTML <meta> tag. Developers can deploy
a CSP in the enforcement mode via a “Content-Security-
Policy” HTTP response header or an HTML <meta>
tag, and can deploy a CSP in the report-only mode via
a “Content-Security-Policy-Report-Only” HTTP response
header. When a webpage response is received, a browser
will load resources according to the specified CSP deploy-
ment mode and directives.

2.2. Related Work

CSP is very complex due to its diverse directive
names, infinite directive value space, and subtle semantics
(e.g., fallback relationships). This is one major reason why
its adoption ratio has always been low, and why it is hard
to properly deploy CSPs. Only 1% of the 100 most pop-
ular websites deployed the CSP in the enforcement mode
as reported by Weissbacher et al. in 2014 [36], only 3.7%
(out of 106 billion) URLs carried CSPs as reported by
Weichselbaum et al. in 2016 [35], and only 1,206 (out of
the top 10K) websites deployed CSPs on their homepages
as reported by Roth et al. in 2020 [21]. Roth et al. recruited
12 developers for a study with a semi-structured interview,
a drawing task, and a programming task [22]; they found
that the complexity of CSP, inconsistencies in the support
from browsers and web development frameworks, and
insufficient or bad information sources are some major
roadblocks for CSP deployment.

Meanwhile, security issues or errors are often found
in the deployed CSPs [1], [2], [21], [35]. Weichselbaum et
al. found that 94.72% of CSPs could not protect webpages
against XSS attacks because of policy misconfigurations
and insecure whitelisted entries [35]. Calzavara et al.
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found that some CSPs were ill-formed (thus invalid) or
too strict [1], and 92.4% of CSP-deployed websites were
vulnerable to XSS attacks due to using an ‘unsafe-eval’ or
‘unsafe-inline’ directive value; they also backed up their
findings by defining a formal semantics for CSP Level
2 [2]. To help deploy better policies, Calzavara et al.
further proposed Compositional CSP, which extends CSP
by incrementally composing a needed policy based on the
runtime interaction with a webpage [32]. Roth et al. found
that CSP has been increasingly used for other purposes,
such as frame control and TLS enforcement, in addition
to the traditional XSS defense purpose [21]; besides, they
found that insecure practices (especially ‘unsafe-eval’ or
‘unsafe-inline’ uses) were present on 90% of 421 websites
that deployed CSPs for restricting the script content.

These studies [1], [2], [21], [35] analyzed the overall
statistics of CSP security issues based on some specific
rules (or heuristics), while we take a clustering approach
to automatically categorize CSPs and analyze their com-
mon or different security issues. Meanwhile, they mainly
analyzed the vulnerabilities of specific directives (e.g.,
“script-src”, “object-src”, and “default-src”), but did not
estimate the overall or combined protection capabilities
of CSPs. For example, Roth et al. coarsely analyzed some
specific directives related to script content restriction, TLS
enforcement, and framing control [21]; they did not ana-
lyze detailed directive values for “frame-ancestors” and
did not analyze the combinations of different directive
types. A CSP that does not contain a vulnerable (or
unsafe) directive may not cover all needed resources, thus
leading to the insufficient protection of a webpage. A
CSP that contains a vulnerable directive may still be able
sufficiently protect a webpage as long as the remaining di-
rectives can cover all resources. We analyze the protection
capabilities of a CSP based on all its directives.

To promote the CSP adoption, some researchers fo-
cused on automatically generating CSPs typically for
some specific resources or controls [8], [9], [18]. Fazz-
ini et al. designed AutoCSP to generate a CSP for a
webpage by using dynamic taint analysis and identifying
resources that should be whiltelisted [9]. Pan et al. de-
signed CSPAutoGen to generate a CSP to protect scripts
in webpages by importing inline and dynamic scripts as
external scripts [18]. Eriksson et al. designed AutoNav to
generate a CSP to control navigations in a website based
on creating and analyzing a map of where webpages can
navigate to [8]. Our effort and results in this paper could
be helpful to the CSP auto-generation research.

In addition, some researchers studied the weaknesses
of the CSP standard [8], [20], [28]. Roth et al. found
that CSPs can be bypassed by open redirects and script
gadgets that would turn non-script data into code [20].
Eriksson et al. found that the “navigate-to” directive may
induce several vulnerabilities to a webpage such as re-
source probing, history sniffing, and bypassing third-party
cookie blocking [8]. Somé et al. found that CSP may be
vulnerable when embedded iframes from the same origin
are contained in a webpage [28]. To strengthen the security
of CSP, Somé et al. also proposed four extensions to
disallow redirections to partially whitelisted origins, check
URL parameters, selectively exclude whitelisted content,
and enable efficient feedback reporting [29].

3. Design and Methodology

In this section, we describe the design and methodol-
ogy of our study in terms of data collection, policy feature,
clustering algorithm, and security level analysis.

3.1. Data Collection Tool and Process

We construct a Google Chrome browser extension to
automatically visit websites and collect data. On each
website, our extension first visits the homepage. If the
homepage deploys a CSP either through an HTTP re-
sponse header or an HTML <meta> tag, the extension
will further randomly selects 10 subpages (with the same
domain or subdomain) of the homepage to visit. On each
webpage, our browser extension scrolls down to the bot-
tom and stays 60 seconds to collect all HTTP(s) requests
and responses, collect CSPs, and save the loaded HTML
document. The collected CSPs will be used for policy fea-
ture extraction (Section 3.2) and clustering (Section 3.3).
The collected HTTP(s) requests and HTML documents
will be used for analyzing the resource type coverage of
CSPs (Section 3.4).

3.2. Policy Feature Design and Extraction

We take the unsupervised clustering approach to cat-
egorize CSPs based on our designed policy features.
Alternatively, one may consider to categorize CSPs by
using pre-defined rules (or heuristics). However, due to the
diverse directive names, infinite directive value space, and
subtle semantics of CSPs, a rule-based approach would
need much more effort from security experts to manually
define rules, would not be able to comprehensively capture
the CSP directive use practices (proper or improper ones)
in the wild, would need frequent rule updates, and would
be error-prone.

Instead, we design policy features to be stable based
on the CSP specification [15], [33], and the clustering
approach will automatically categorize very diverse and
complex CSPs based on the automatically extracted policy
features. Meanwhile, we design our policy features to be
interpretable, comprehensive, efficient, and extensible.
Recall that we define each policy feature as a (directive
name, directive value token type) pair, and define its value
as binary to indicate the existence or nonexistence of
the feature in a CSP. For example, the (script-src, self)
pair is a policy feature extracted from the “script-src
‘self’ ” directive that allows the loading of scripts from
the same origin sources. Therefore, each policy feature in
the feature vector is interpretable at the bit level. In the
policy feature design, we include the directive name to
comprehensively cover all types of directives; we include
the directive value at the token type level and leverage
binning whenever appropriate as detailed below to capture
the specified value neither too coarse-grained nor overly
fine-grained; we design a feature value as binary because
binary feature representation is efficient in computation
and is popularly used in clustering tasks. In addition, when
new directives are introduced to the CSP specification
in the future, our policy feature vectors can be easily
extended by appending new bits at the end.

Table 1 lists the 28 directive names included in our
policy feature design. They cover all the directive names
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Table 1: Directive Names and the Allowed Directive Value
Types (defined in Table 2) or Values

Directive
Category

Directive Name Allowed Directive
Value Types or Values

Fetch
Directives

default-src Types I to V
child-src Types I to V
connect-src Types I to V
font-src Types I to V
frame-src Types I to V
img-src Types I to V
manifest-src Types I to V
media-src Types I to V
prefetch-src Types I to V
object-src Types I to V
worker-src Types I to V
script-src Types I to V
script-src-attr Types I to V
script-src-elem Types I to V
style-src Types I to V
style-src-attr Types I to V
style-src-elem Types I to V

Document
Directives

base-uri Types I to V
sandbox Type VI

Navigation
Directives

form-action Types I to V
frame-ancestors Types I and II, ‘self’,

‘none’
navigate-to Types I to V

Other
Directives

block-all-mixed-
content

No value is needed

upgrade-insecure-
requests

No value is needed

trusted-types ‘none’, ‘allow-
duplicates’, policyname

plugin-types Type VII
require-sri-for script, style
require-trusted-types-
for

‘script’

of four categories as defined in the CSP Level 3 speci-
fication [15], [33]. We do not include the two reporting
directive names (Section 2.1) because they are used for
sending CSP violation reports and not for directly protect-
ing webpages. Based on the specification, we identify the
allowed directive value types or values for each directive
name, and list them in the third column of Table 1. Most
directive names generally allow multiple types of directive
values. For example, “default-src” allows value types from
I to V. Some directive names allow certain types of
directive values and some specific directive values. For
example, “frame-ancestors” allows value types I and II
besides two keyword values ‘self’ and ‘none’.

Meanwhile, in our policy feature design we include
the directive value at the token type level, and identify 43
directive value token types as shown in the third column of
Table 2. There are seven directive value token types for
scheme-source, five for host-source, eight for keyword-
source, one for nonce-source, three for hash-source, 15
for sandbox values, one for plugins-types values, and three
for customized values. There are more than 200 official
scheme-source values, so we identify six of them that are
often related to security attacks as individual types while
binning all the rest as the seventh type “other schemes”.
Similarly, there are more than 50 MIME type tokens for
plugin-types values; we simply bin all of them into a
single type because plugins (e.g., java-applet and flash)
have generally become deprecated in modern browsers.

Infinite number of possible value tokens exist for host-
source, while the nonce values for nonce-source and hash

Table 2: Directive Value Types and Value Token Types
Directive
Value
Type#

Directive
Value
Type

Directive Value Token Types

I scheme-
source

7 in total: https, http, wss, ws, data,
blob, other schemes

II host-
source

5 in total: a host-source value is spec-
ified with the syntax: [ scheme-part
“://” ] host-part [ “:” port-part ] [
path-part ]; we bin possible values
into five types: *, *.external.domain
(*.exdo), *.same.domain (*.sado), ex-
ternal domain (exdo), same domain
(sado)

III keyword-
source

8 in total: ‘self’, ‘unsafe-inline’,
‘unsafe-eval’, ‘strict-dynamic’,
‘unsafe-hashes’, ‘none’, ‘report-
sample’, ‘unsafe-allow-redirects’

IV nonce-
source

1 in total: ‘nonce-<base64-value>’

V hash-
source

3 in total: ‘sha256-<base64-value>’,
‘sha512-<base64-value>’, ‘sha384-
<base64-value>’

VI sandbox
values

15 in total: “”, allow-downloads,
allow-downloads-without-user-
activation, allow-forms, allow-
modals, allow-orientation-lock,
allow-same-origin, allow-scripts,
allow-storage-access-by-user-
activation, allow-top-navigation,
allow-top-navigation-by-user-
activation, allow-pointer-lock,
allow-popups, allow-popups-to-
escape-sandbox, allow-presentation

VII plugin-
types
values

1 in total: all MIME type
<type>/<subtype> tokens are
binned into one type

VIII customized
values

3 in total: style, script or ‘script’,
‘allow-duplicates’

values for hash-source are all in gigantic spaces; therefore,
we also leverage the binning techniques to identify a
small number of directive value token types for them. In
more details, we identify five token types for host-source
(roughly from the least restrictive to the most restrictive)
as: allowing any host source through a wildcard character
‘*’ (*), whitelisting some external domain source(s) with
a domain combination by ‘*’ (*.exdo), whitelisting some
same domain source(s) with a domain combination by
‘*’ (*.sado), whitelisting some external domain source(s)
without a domain combination (exdo), and whitelisting
some same domain source(s) without a domain combina-
tion (sado). We bin all nonce values into one token type
for nonce-source, and bin hash values into three token
types for hash-source based on the currently supported
hash algorithms. For keyword-source, sandbox values, and
customized values, we simply use their exact values as the
token types because they all correspond to a small set of
important and well-defined values.

We then pair the 28 directive names (Table 1) with the
43 directive value token types (Table 2) by following the
third column of Table 1 to generate our policy features.
For directive names that do not need a value to be speci-
fied (e.g., “upgrade-insecure-requests”), we only have one
feature with an empty directive value token type for each
of them. In total, we define and extract 530 (directive
name, directive value token type) pairs as the complete
set of policy features.
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Our policy feature design is comprehensive as it in-
cludes all the 28 directive names and all the allowed 43
directive value token types. It is not too coarse-grained
because we do not just consider directive names and the
presence of an entire directive value. It is not overly fine-
grained because we leverage binning techniques to reduce
the infinite or gigantic directive value token spaces into
a small set of directive value toke types. All the 530
policy features are binary features which will be sufficient
for our CSP directive coverage and secure use analysis.
In other words, for each CSP-deployed webpage, a 530-
dimensional binary feature vector will be extracted to
represent its CSP.

Note that multiple CSPs could be deployed (via re-
sponse headers and/or <meta> tags) for a single web-
page, and their directives will be merged by a browser
following the strictest directives to protect the webpage
based on the W3C specification [15], [33]. With our policy
feature design, feature values from multiple CSPs for a
single webpage will be simply merged into a single 530-
dimensional binary feature vector (by using the binary OR
operation) to accurately represent the overall policy of this
webpage. Logically, sometimes an AND while sometimes
an OR operation should be applied to merge CSPs. For
one example, CSP1 contains “script-src ‘none’ ”, while
CSP2 contains “img-src ‘none’ ”; a browser will use the
OR operation so that the merged CSP will contain both
directives. For another example, CSP1 contains “script-
src ‘none’ ”, while CSP2 contains “script-src ‘self’ ”; a
browser will use the AND operation so that the merged
CSP will only contain the strictest “script-src ‘none’ ”. Our
policy feature design allows us to programmatically use
the OR operation to accurately capture all information in
both types of examples into feature vectors as those four
directives are different features. The interpretation of a
merged policy will be the accurate AND or OR for each
feature vector. Thus, the dataset for our feature vectors
will be correctly constructed and not biased.

3.3. Clustering Algorithm Design

Leveraging our designed policy features, different al-
gorithms can be explored to cluster CSPs. We initially
experimented with two popular algorithms, K-means and
DBSCAN, implemented in the Scikit-learn machine learn-
ing library [24]; K-means performed better than DBSCAN
and is more flexible than DBSCAN on selecting different
numbers of clusters. We then further explored the leading
and popular spectral clustering approach, which embeds
the data in the eigenspace of the Laplacian matrix and has
been theoretically analyzed and experimentally demon-
strated as superior to traditional clustering approaches
such as K-means [16], [25], [26], [30], [31]. Meanwhile,
recent advances in self-supervised learning especially con-
trastive learning [4], [10], [38], in which labels are au-
tomatically derived from unlabeled examples to train an
unsupervised task in a supervised manner, inspired us to
explore the integration of contrastive representation learn-
ing into spectral clustering for achieving better results.

Specifically, we design a Contrastive Spectral Clus-
tering (CSC) algorithm (Algorithm 1), for automatically
categorizing very diverse and complex CSPs based on
the extracted policy features. We design a Contrastive

Algorithm 1 Contrastive Spectral Clustering (CSC)

Input: Xn×d is a dataset of n d-dimensional binary feature
vectors
Input: m is the dimension of the to be learned representations
Input: {kmin, ..., kmax} is a set of numbers of clusters of
interest
Output: kopt clusters C1, C2, ...., Ckopt of examples in X

1: Learn the m-dimensional representations of X using
Contrastive Learning (CL) (Algorithm 2): X̄n×m = CL
(Xn×d, m, ...)

2: Construct a similarity graph SG over X̄n×m using the
nearest neighbors method: SG = Construct SG (X̄n×m)

3: Construct an affinity matrix: An×n = Construct AM (SG)
4: Construct a degree matrix Dn×n based on A using the

formula: Di,j =

⎧⎪⎨
⎪⎩

n∑
l=1

ail where ail ∈ A, i = j

0, otherwise
5: Construct the normalized Laplacian matrix Ln×n using A,

D, and I (the identity matrix): Ln×n = I −D− 1
2AD− 1

2

6: Derive the eigenvector matrix En×n of L based on the
equation: L = EΛE−1, where Λ is the diagonal matrix
of the eigenvalues

7: k = kmin //the smallest number of clusters we consider
8: S = {∅} //for saving (number of clusters, spectral

clustering representations, and clustering evaluation score)
3-tuples

9: while k++ <= kmax do
10: Ek = {e1, ..., ek}, where ei is the ith eigenvector in

En×n

11: S = S ∪ {(k, Ek, Score (K-means (Ek, k)))}
12: kopt = Select optimal number of clusters (S)
13: return kopt clusters C1, ...., Ckopt = K-means (Ekopt , kopt)

Learning (CL) algorithm (Algorithm 2) for explicitly
learning better (i.e., more informative) representations of
CSPs. CSC is the main algorithm and it calls the CL
algorithm at the beginning before performing the spectral
clustering. We present the details of these two algorithms
in Sections 3.3.1 and 3.3.2, respectively.

3.3.1. Contrastive Spectral Clustering (CSC) Algo-
rithm. An unsupervised clustering problem can be con-
verted to a graph cut problem, in which clustering the
examples in a dataset into k clusters can be considered as
cutting the similarity graph of the examples into k disjoint
subgraphs by removing some edges. Spectral clustering is
one way to solve a relaxed graph cut problem through
a Laplacian matrix. Spectral clustering does not assume
the convexity of the clusters, and this is one main reason
why it often outperforms traditional algorithms such as
K-means [25], [30], [31].

As shown in Algorithm 1, given a dataset X of n
unlabeled examples (i.e., n CSPs represented by their d-
dimensional binary feature vectors), the dimension of the
to be learned representations, and a set of numbers of
clusters of interest as the inputs, CSC will automatically
return an optimal number of kopt clusters as the result.

In more details, at Line 1, CSC first learns X̄n×m,
the m-dimensional representations of X , using contrastive
learning (Algorithm 2). At Line 2, CSC constructs a
directed similarity graph SG over the learned X̄n×m using
the standard nearest neighbors method. In this similarity
graph, each node is an example and is connected to a
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certain number of nodes with the similar features. At
Line 3, CSC constructs a symmetric affinity matrix An×n

by averaging the elements in SG and the transpose of
SG. This affinity matrix intuitively reflects the mutual
similarities between each pair of examples in the dataset.
At Line 4, CSC constructs a diagonal degree matrix
Dn×n based on the affinity matrix to reflect the overall
connectivity level of each example in the dataset. At
Line 5, CSC constructs a normalized Laplacian matrix
Ln×n using the affinity matrix, the degree matrix, and the
identity matrix. Spectral clustering with the normalized
Laplacian minimizes the between-cluster similarity and
maximizes the within-cluster similarity, while that with
the unnormalized Laplacian only minimizes the between-
cluster similarity [31]. Here D− 1

2 is a diagonal matrix
with each diagonal element being the inverse of the square
root of the corresponding element in D. At Line 6, CSC
derives the eigenvector matrix En×n of the normalized
Laplacian matrix L through eigendecomposition, so each
column of E is an eigenvector.

From Line 7 to Line 12, for each k value (i.e., the
number of clusters) of interest, CSC selects the first k
eigenvectors corresponding to the k smallest eigenvalues
as the spectral representations, which are used for cluster-
ing (typically via K-means [31]) and scoring the clustering
results. We choose to use the popular Silhouette score [23]
in our Score(·) method. The Silhouette score measures the
mean intra-cluster distance and the mean nearest-cluster
distance of a clustering result. Its value is in the interval
of [-1, 1]. A higher Silhouette score indicates a better
clustering performance, which means that examples in
the same cluster are closer while the distances between
different clusters are larger. At Line 12, CSC selects the
number with the largest Silhouette score as the optimal
number of clusters kopt as suggested in [13]. At Line 13,
CSC returns kopt clusters.

3.3.2. Contrastive Learning (CL) Algorithm. Con-
trastive learning is a state-of-the-art self-supervised rep-
resentation learning technique. It has been demonstrated
to be effective in learning informative representations
from unlabeled examples for performing multiple types of
downstream tasks such as image, text, and graph related
classification and clustering [4], [10], [38]. Following the
SimCLR framework proposed by Chen et al. [4] (which
is for contrastive learning of visual representations), we
design our CL algorithm to maximize the agreement be-
tween differently augmented views of the same CSP via
a contrastive loss in the latent space.

As shown in Algorithm 2, given Xn×d and m (like
in Algorithm 1), the batch size in training, a set of
data augmentation operators, an encoder network, and a
projection head as the inputs, CL will automatically return
the learned representations for all examples.

In more details, at Line 1, CL selects two data aug-
mentation operators ta and tb to be used for generating
pairs of positive examples. The design of data augmen-
tation operators is crucial in contrastive learning and is
often unique (ours will be presented below) for different
types of tasks. From Line 3 to Line 6, CL generates
a pair of positive examples xa

i and xb
i (i.e., differently

augmented views of xi via ta and tb, respectively) from
each example xi in the current batch, extracts their m-

Algorithm 2 Contrastive Learning (CL)

Input: Xn×d is a dataset of n d-dimensional binary feature
vectors
Input: m is the dimension of the to be learned representations
Input: B is the batch size in training
Input: T is a set of data augmentation operators
Input: f is an encoder network while g is a projection head
Output: the learned contrastive learning representations X̄n×m

//Training a contrastive model
1: Select two data augmentation operators ta and tb from T
2: for each batch {xi}Bi=1 in X do
3: for i=1 to B do
4: xa

i =ta(xi); x
b
i=tb(xi) //generate two positive exam-

ples
5: ha

i =f(xa
i , m); hb

i=f(xb
i , m) //extract representa-

tions
6: zai =g(ha

i ); z
b
i =g(hb

i ) //map to the latent space

7: Compute the contrastive loss Lcontrastive over this
batch using the formula: Lcontrastive= 1

2B

∑B
i=1[l(z

a
i , z

b
i )+

l(zbi , z
b
i )]

8: Update the weights in f and g to minimize Lcontrastive

//Extracting the final representations for all examples
9: for each xi in X do

10: Extract the m-dimensional representation: x̄i =
f(xi, m)

11: return X̄n×m

dimensional representations using an encoder network f ,
and maps the learned representations to the latent space
using the projection head g. CL does not need to sample
negative examples as the other B − 1 pairs of generated
examples in a batch are treated as negative examples.
CL simply uses a multilayer perceptron (MLP) with two
hidden layers as the encoder network f , and uses another
MLP with one hidden layer as the projection head g. At
Line 7, CL computes the contrastive loss Lcontrastive

averaged over all augmented examples in the current
batch, where l(zai , z

b
i ) and l(zbi , z

b
i ) are individual pairwise

losses calculated using the normalized temperature-scaled
cross entropy loss function as in SimCLR [4]. At Line 8,
CL updates the weights in the encoder network and the
projection head to minimize the contrastive loss.

After training the contrastive model over all batches
in each epoch and often over multiple epochs, CL extracts
and returns the final representations for all examples in the
dataset using the updated encoder network (Lines 9∼11).
Note that the projection head is used only in the training
not in this final extraction as the learned m-dimensional
representations are what CL needs to return to the CSC
algorithm for performing the spectral clustering task.

We design a set T of three data augmentation operators
{Add, Delete, Swap} that can be used for generating pairs
of positive examples in our CL algorithm. Recall that the
input Xn×d contains d-dimensional binary feature vectors.
Unlike how data augmentation operators were designed
for other types of tasks (e.g., cropping and blurring im-
ages [4] in image related tasks, and extracting adjacent
and overlapped textual segments [10] in text related tasks),
we design these three operators so that the perturbations
to each binary feature vector xi will be relatively small
and the augmented positive examples in a pair (xa

i and
xb
i ) will be similar. The Add operator randomly changes
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one bit in xi from ‘0’ to ‘1’, thus the augmented example
will contain a new feature. The Delete operator randomly
changes one bit in xi from ‘1’ to ‘0’, thus the augmented
example will lose an existing feature. The Swap operator
randomly swaps a ‘1’ bit and a ‘0’ bit in xi, thus the
augmented example will contain a new feature while
losing an existing feature. Later we experiment with their
combinations and select the best combination for the two
operators ta and tb at Line 1 in our CL algorithm.

3.4. CSP Security Level Analysis Methods

Based on the clustering results, we analyze the security
levels of the deployed CSPs from the directive coverage
and secure use perspectives. To be effective, a deployed
CSP should cover all types of resources needed on a
webpage by using different directive names (or some
default directive names if available), and should avoid
using unsafe directive values which will allow harmful
resources to be loaded into a webpage.

Analyzing the secure use of directives is relatively
straightforward as it is specific to each individual policy
feature. In short, we label each of our designed policy
features as a safe, unsafe, or uncertain feature according
to the CSP specification [15], [33] and guidelines such
as the OWASP XSS Prevention Cheat Sheet [17]. If a
policy feature clearly provides some control on resources
or behaviors and would not incur potential risks, it is
considered safe; if a policy feature clearly incurs potential
risks, e.g., by allowing the loading of resources from any
place, it is considered unsafe; all other policy features
whose safeness would depend on some specific context
are conservatively labeled as uncertain.

Analyzing the coverage of a CSP is about in-
specting the extent to which the directives of the
CSP will protect the actual resources requested or per-
missible on a webpage. In more details, a Google
Chrome extension can directly identify 13 types of re-
source types in requests: “main frame”, “sub frame”,
“stylesheet”, “script”, “image”, “font”, “object”, “xml-
httprequest”, “ping”, “csp report”, “media”, “websocket”,
and “other” [5]. We need to map these resource types
to the corresponding resource types in CSPs for per-
forming the coverage analysis. For example, “xmlhttpre-
quest”, “ping”, and “websocket” resource types will be
mapped to the “connect” resource type. We also extract
other resource types (e.g., “form-action”, “manifest”, and
“prefetch”) from the saved HTML document of a web-
page, and map them to the resource types in CSPs. On
the other hand, we identify from policy features the types
of resources controlled by a CSP. Some directive names
such as “script-src” and “img-src” directly indicate that
one type of resources can be controlled. Some directive
names such as “default-src” and “child-src” imply that
multiple types of resources can be controlled. Some direc-
tive names such as “upgrade-insecure-requests”, “frame-
ancestors”, and “block-all-mixed-content” do not control
any types of resources since they are not used for resource
control. For other policy features, we identify the type
of resources from the directive value token type. For
example, the “require-sri-for script” directive indicates
that scripts can be controlled.

4. Results and Analysis

In this section, we first introduce our CSP dataset and
CSC algorithm evaluation. We then present and analyze
the detailed CSP clustering results. Finally, we briefly
analyze the CSP deployment on subpages.

4.1. CSP Dataset

Using Google Chrome and our browser extension, we
visited the Alexa top 100K (dated Nov. 9th 2021) websites
from Nov. in 2021 to Apr. in 2022. In total, 81,476 home-
pages were successfully visited, and 14,451 (17.74%) of
them contain CSPs. In more details, 13,604 homepages
contain CSPs in the enforcement mode and 209 of them
contain multiple CSPs, while 847 homepages only contain
CSPs in the report-only mode. We further filtered out 287
homepages from those 13,604 homepages because their
CSP directives are simply empty, leaving the remaining
13,317 homepages in our dataset. We also successfully
visited 110,718 subpages (Section 3.1) of the 13,317 CSP-
deployed homepages. To be consistent across different
websites, our clustering is based on the CSPs deployed on
the 13,317 homepages. Note that Calzavara et al. showed
in 2021 that 73% of websites deployed the same CSP
between a homepage and its subpages [3]; therefore, in
our clustering, excluding the CSPs of subpages also helps
mitigate the bias that can be incurred from the identical
CSPs of the same website. Instead, we separately analyze
the CSPs of subpages at the end of this section.

Our data collection process does not raise obvious
ethical issues. It does not involve human subjects or
potentially sensitive data (e.g., user behavior or social
network information, evaluation of censorship, etc.). Our
Google Chrome extension only visited the public home-
pages and 10 of each homepage’s public subpages. On
each webpage, our browser extension scrolls down to the
bottom and stays 60 seconds to collect HTTP(s) requests
and responses, collect CSPs, and save the loaded HTML
document; it does not click on links or buttons, thus there
is no change to the click-through rate of ads. There is no
modification to any accessed webpage. The traffic burden
incurred to each accessed website is also minimal.

From each of the 13,317 homepages, we extracted
its CSP policy features into a 530-dimensional binary
feature vector as described in Section 3.2. Recall that if
multiple policies are deployed for a webpage, they will
be combined into a single feature vector; thus we simply
refer to the CSPs of the 13,317 homepages as 13,317
CSPs. We filtered out 172 features that have the zero
value in all 13,317 CSPs because they will not contribute
to the clustering, and we reserved the remaining 358
features. In other words, in the inputs to our CSC and CL
algorithms, n=13,317 and d=358. Most removed features
are unusual directive name and value (or value token type)
combinations in practice, although they are not explicitly
prohibited based on the CSP specification [15], [33]. For
example, “img-src ‘unsafe-allow-redirects’ ” is unusual as
the value ‘unsafe-allow-redirects’ was designed for the
“navigate-to” directive name. Similar examples are “base-
uri ‘strict-dynamic’ ” and “prefetch-src ‘nonce-<base64-
value>’ ”.
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Overall, the reserved 358 features cover all 28 direc-
tive names listed in Table 1. Among these 358 features,
219, 70, and 69 are labeled as safe, unsafe, and uncertain,
respectively (Section 3.4). Figure 1 shows the ranked pop-
ularity of the 358 features among the 13,317 homepages.
The details of all these 358 ranked features (with the index
from 1 to 358) are shown in Table 5 in Appendix B.

Figure 1: Ranked Popularity of the 358 Features among
the 13,317 Homepages

The most popular (on 44.57% of homepages) feature is
“upgrade-insecure-requests”, which is a safe feature (with
an empty directive value token type) used to upgrade
insecure http URLs to the corresponding secure https
URLs. The next five most popular features are: “frame-
ancestors ‘self ’ ” (a safe feature) which specifies that only
the webpages with the current URL’s origin can be the
valid parents of (i.e., can embed) this current webpage,
“block-all-mixed-content” (a safe feature with an empty
directive value token type) which prevents loading any
content over http when the webpage uses https, “frame-
ancestors ‘none’ ” (a safe feature) which specifies that
no webpages can be the valid parents of this current
webpage, “script-src ‘unsafe-inline’ ” (an unsafe feature)
which allows inline scripts to be executed, and “style-src
‘unsafe-inline’ ” (an unsafe feature) which allows inline
stylesheets to be loaded. We can see that two unsafe
features are in the top-6 list, and they all popularly appear
on more than 17% of homepages.

4.2. CSC Algorithm Evaluation

4.2.1. Experiments and Evaluation Metrics. We evalu-
ate the clustering performance of our CSC algorithm, and
compare that with the performance of the K-means algo-
rithm. Meanwhile, to measure the usefulness of contrastive
learning in clustering, we also evaluate the performance
of a variant of CSC (referred to as CSC without CL) and a
variant of K-means (referred to as K-means with CL); the
former is CSC without using our CL algorithm, i.e., CSC
without its Line 1 and working directly on the original
d-dimensional binary feature vectors, while the latter is
K-means working on the m-dimensional representations
learned by our CL algorithm.

The number of clusters k that we are interested in is
from five (not too small) to 20 (not too large). We run each
of the four algorithms five times on our dataset of 13,317
CSPs. We obtain the optimal number of clusters from
each algorithm based on the the largest Silhouette score

(Section 3.3.1) averaged over the five runs. While the
Silhouette score can be used to automatically quantify the
clustering performance, we further verify the clustering
performance by manually inspecting the clustering results
of 1,000 CSPs randomly sampled from our dataset and
by calculating the normalized mutual information (NMI)
score [14].

The NMI score is in the interval of [0, 1], and a
higher score indicates a better agreement between two
clustering results. NMI is also popularly used in evaluating
the quality of clustering results such as in [11], [39], but
its calculation needs the ground-truth. Basically, given an
optimal k value obtained from an algorithm, we manually
categorize the sampled 1,000 examples into k clusters
as the ground-truth. We then calculate the NMI score
between the k clusters produced by the algorithm on the
1,000 examples and the corresponding ground-truth.

4.2.2. Implementation of the Algorithms. We imple-
mented our CSC and Cl algorithms using the PyTorch
Lightning deep learning framework [19] and the Scikit-
learn machine learning library [24]. We used the default
K-means implementation in the Scikit-learn library. In
CSC and CL algorithms, the dimension of the to be
learned representations is m=128. In the CL algorithm,
each hidden layer of the encoder network f has 256
hidden units, while the hidden layer of the projection head
g has 128 units. Each hidden layer in either f or g is
followed by a ReLU activation function. While we also
explored other parameter values such as a large number
of hidden units, these implementation settings worked the
best in our experiments. In the CL algorithm, the best
combination for the two data augmentation operators ta

and tb is Add and Swap. The detailed NMI scores of the
experiments for all combinations of data augmentation
operators are shown in Table 4 in Appendix A. Some
other implementation details such as the learning rate in
the CL algorithm are also provided in Appendix A.

4.2.3. Evaluation Results. Figure 2 shows the Silhouette
scores of the four algorithms under different numbers of
clusters. It is obvious that the largest Silhouette score
(averaged over the five runs) of each algorithm occurs
after k >15, indicating that the optimal number of clusters
is greater than 15 for all four algorithms. The optimal
number of clusters is 16 for our CSC algorithm. Based
on the Silhouette scores, CSC is the best performer once
after k >7, demonstrating the overall effectiveness of
our algorithm design. Meanwhile, CSC always outper-
forms CSC without CL while K-means with CL always
outperforms K-means, demonstrating the usefulness of
contrastive learning in clustering.

We further calculated the NMI scores for each algo-
rithm after k >15 as shown in Figure 3. We can see
that CSC always outperforms CSC without CL, which
further outperforms both K-means and K-means with CL
(although it is hard to conclude which one of them is
better). These NMI results further demonstrate the overall
effectiveness of our algorithm design. The CSP clustering
results and analysis presented in the rest of the paper are
all based on our CSC algorithm and its optimal number
of clusters k=16.
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Figure 2: The Silhouette Scores of Algorithms under
Different Numbers of Clusters

Figure 3: The NMI Scores based on 1,000 Randomly
Sampled Examples

4.3. CSP Clustering Results and Analysis

Our CSC algorithm categorized the 13,317 CSPs into
16 clusters. Figure 4 shows the TSNE visualization of
the 16 clusters. TSNE visualization provides intuitive
information in terms of the within and between cluster
distributions of datapoints. Using the same feature indexes
as in Figure 1 and Table 5 (in Appendix B), Figure 5
shows the feature popularity of each cluster. Note that
in each subfigure, the popularity percentage is calculated
based on the size (i.e., number of CSPs or homepages)
of the corresponding cluster. These subfigures will help
us characterize and interpret the clustering results. We
now analyze the CSPs in the 16 clusters based on their
feature popularity patterns and their security levels from
the directive coverage and secure use perspectives. For
the ease of presentation, we put the 16 clusters into four
groups based on the high-level visual perception of the
similar or different feature popularity patterns among the
16 subfigures; meanwhile, within each specific cluster, we
refer to a feature as a popular feature if above 50% of
CSPs in this cluster have this feature. Note that seemingly
contradictory directives may co-exist in a CSP for back-
wards compatibility reasons. For example, ‘unsafe-inline’,
‘nonce-abcdefg’, and ‘strict-dynamic’ may co-exist as val-
ues in the “script-src” directive but will act differently in
browsers that support different CSP versions [6]. In our
analysis, we examine whether such backwards compatible
directive values co-occur in a CSP and meanwhile are in
popular features. However, backwards compatibility is not
a common case in our results, for example, “script-src
‘unsafe-inline’ ” is a popular feature in many clusters but
the “script-src ‘strict-dynamic’ ” feature rarely appears in
CSPs (Sections 4.3.1-4.3.4).

Figure 4: TSNE Visualization of the 16 Clusters

4.3.1. Group 1. This group includes Clusters 1, 3, 4,
6, and 11 since the features in these five clusters are
sparse (with 54, 9, 63, 19, and 30 features, respectively).
In Clusters 1, 4, 6, and 11, there is only one popu-
lar feature which is “upgrade-insecure-requests”, “frame-
ancestors ‘self’ ”, “block-all-mixed-content”, and “frame-
ancestors ‘none’ ”, respectively; meanwhile, the popularity
of all other features in these clusters is less than 10%. In
Cluster 3, there are only three features whose popularity
is above 10%, and two of them are popular features;
meanwhile, all CSPs in this cluster contain “block-all-
mixed-content” and “frame-ancestors ‘none’ ”.

Cluster 1 is unique especially because the “upgrade-
insecure-requests” directive is the only directive in most
CSPs (99.29%), and the popularity of the rest 53 features
is less than 1.5%. CSPs in Cluster 1 are mainly used for
TLS enforcement. In Cluster 3, all CSPs contain “block-
all-mixed-content” and “frame-ancestors ‘none’ ”, but less
than 1% of CSPs contain the rest eight policy features.
Thus, most CSPs in Cluster 3 are mainly used for TLS
enforcement and framing control. In Cluster 4, most CSPs
contain the “frame-ancestors ‘self’ (99.31%) directive, and
less than 4.5% of CSPs contain the rest 62 features. Thus,
most CSPs in Cluster 4 are mainly used for framing
control. All CSPs in Cluster 6 contain “block-all-mixed-
content”, and less than 2% of CSPs contain the rest 18
features. Thus, CSPs in Cluster 6 are mainly used for
TLS enforcement. All CSPs in Cluster 11 contain “frame-
ancestors ‘none’ ”, and less than 4% of CSPs contain the
rest 29 features. Thus, CSPs in Cluster 11 are mainly used
for framing control.

We further analyze the security levels of the CSPs in
each cluster from the directive coverage and secure use
perspectives. Popular features in Clusters 1, 4, 6, and 11,
only cover one category of directives, and popular features
in Cluster 3 only cover two categories of directives. Es-
pecially, fetching directives are completely missing in the
majority of the CSPs in all these five clusters, leaving their
webpages vulnerable to XSS attacks. Furthermore, by
analyzing the actual resources requested on each webpage
(Section 3.4), we verified that only 0.70%, 0.13%, 0.33%,
and 0.25% of CSPs in Clusters 1, 4, 6, and 11, respec-
tively, can fully cover or control the actually requested
resources on their corresponding webpages. No CSP in
Cluster 3 can fully cover or control the actually requested
resources on its corresponding webpages. Therefore, we
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(a) Cluster 1 (n=3,134) (b) Cluster 2 (n=1,043) (c) Cluster 3 (n=2,003) (d) Cluster 4 (n=1,588)

(e) Cluster 5 (n=287) (f) Cluster 6 (n=305) (g) Cluster 7 (n=1,273) (h) Cluster 8 (n=811)

(i) Cluster 9 (n=617) (j) Cluster 10 (n=346) (k) Cluster 11 (n=390) (l) Cluster 12 (n=246)

(m) Cluster 13 (n=324) (n) Cluster 14 (n=262) (o) Cluster 15 (n=301) (p) Cluster 16 (n=387)

Figure 5: Feature Popularity of Each Cluster

consider that the CSPs in all these five clusters are gen-
erally at the low-level on directive coverage. Since all
popular features in Clusters 1, 3, 4, 6, and 11 are safe
features, we consider that the CSPs in them are generally
at the high-level on secure use.

4.3.2. Group 2. This group includes Clusters 2 and 7
since the popularity of features gradually decreases in the
two subfigures. Clusters 2 and 7 both contain above half of
the features (257 and 327, respectively) in total, but their
popular features are less than 7.5% (5 and 23, respec-
tively). The CSPs in both clusters often contain a “style-
src” or “script-src” directive name with an ‘unsafe-inline’
or ‘unsafe-eval’ value to allow any scripts or stylesheets
to be loaded, and often whitelist some domain sources.
In Cluster 7, above 50% of CSPs also contain at least
one of five other fetch directives (i.e., “default-src”, “img-
src”, “font-src”, “frame-src”, and “connect-src”), while
“style-src” or “script-src” are the only two directive names
contained by above 50% of CSPs in Cluster 2. Since all
popular features in Clusters 2 and 7 are fetch directives,
CSPs in both clusters are mainly used for protecting
against XSS attacks.

We now analyze the security levels of their CSPs.
Popular features in Cluster 2 only include “style-src” and
“script-src” directives, and less than 35% of CSPs contain
a “default-src” directive which can cover almost all types
of resources. We also found that less than 20% of CSPs
include navigation directives and document directives in
Cluster 2. Popular features in Cluster 7 include seven
fetch directives including a “default-src” directive, but

less than 35% of CSPs include navigation directives,
and less than 20% of CSPs include document directives.
Note that missing navigation or document directives in a
CSP will make a webpage vulnerable to UI Redressing
attacks, and malicious resources can be inserted through
the document type of resources such as a <base> tag.
Meanwhile, only 28.28% of CSPs in Cluster 2 can fully
control the requested resources in their corresponding
webpages, while that percentage is 54.91% in Cluster 7.
Therefore, we consider that the CSPs in Cluster 2 are at
the low-level on directive coverage, while the CSPs in
Cluster 7 are generally at the medium-level on directive
coverage. In Cluster 2, 40% of popular features are safe
thus we consider that its CSPs are generally at the low-
level on secure use. In Cluster 7, 78.26% of popular
features are safe while less than 20% of popular features
are unsafe, thus we consider that its CSPs are generally
at the medium-level on secure use.

4.3.3. Group 3. This group includes Clusters 5, 9, 10,
13, 15, and 16 since their popular features (excluding
Cluster 9 which does not have a popular feature) contain
some features that are not top-ranked in Table 5 (in
Appendix B). Among the total 18 features in Cluster 5,
only three are popular features; there is no popular feature
in Cluster 9 among 136 features; only two out of the total
18 features in Cluster 10 are popular features; only two out
of the total 48 features in Cluster 13 are popular features;
only two out of the total 20 features in Cluster 15 are
popular features; only four out of the total 94 features in
Cluster 16 are popular features.
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All CSPs in Cluster 5 contain “upgrade-insecure-
requests” and “block-all-mixed-content” directives, and
89.89% of them contain “frame-ancestors *” which al-
lows any webpages to embed a current webpage. The
popularity of the rest features is less than 1%. Therefore,
CSPs in Cluster 5 are mainly used for TLS enforcement
and framing control. The most popular feature in Clus-
ters 9 and 16 is “frame-ancestors *.sado” (26.09% and
97.41%, respectively). About 15% of CSPs in Cluster
9 use ‘frame-ancestors *.exdo” to allow webpages from
external sources to embed a current webpage by using
a domain combination scheme, while that percentage in
Cluster 16 is 95.61%. The most popular feature in Cluster
10 is “frame-ancestors exdo” which allows webpages from
external sources to embed a current webpage without us-
ing a domain combination scheme. Most CSPs in Cluster
10 also allow webpages from the same origin to embed
a current webpage. The most popular feature in Cluster
13 is “frame-ancestors ‘self’ ”, Most CSPs in Cluster 13
also allow webpages from the same domain to embed a
current webpage. The most popular feature in Cluster 15 is
“frame-ancestors *.exdo”. The directive name of features
whose popularity is above 10% in Clusters 9, 10, 13, 15,
and 16 is “frame-ancestors”. Therefore, CSPs in Clusters
9, 10, 13, 15, and 16 are mainly used for framing control.

We now analyze the security levels of their CSPs.
Popular features in Cluster 5 only include one naviga-
tion directive “frame-ancestors” and two other directives
(i.e., “upgrade-insecure-requests” and “block-all-mixed-
content”); popular features in Clusters 10, 13, 15, and 16
only include one navigation directive “frame-ancestors”;
there is no popular feature in Cluster 9. We can see that
popular features in all these six clusters do not include
any fetch or document directives. We consider that the
CSPs in Clusters 5, 9, 10, 13, 15, and 16 are generally
at the low-level on directive coverage because in each
cluster, less than 2% of CSPs (0%, 0.97%, 0%, 0%, 0%
and 1.81%, respectively) can cover requested resources.
Since all popular features in Clusters 10, 13, 15, and 16 are
safe, we consider that their CSPs are generally at the high-
level on secure use. Since 66.67% of popular features are
unsafe in Cluster 5 and there is no safe popular feature in
Cluster 9, we consider that the CSPs in these two clusters
are generally at the low-level on secure use.

4.3.4. Group 4. This group includes Clusters 8, 12, and
14 since all these clusters contain many features whose
popularity is above 20%. In Cluster 8, three out of the
total 191 features are popular features, and the popularity
of two popular features is above 90%; in Cluster 12, 12
out of the total 211 features are popular features, and the
popularity of six popular features is above 90%; in Cluster
14, 26 out of the total 191 features are popular features,
and the popularity of five popular features is above 90%.

In Cluster 8, containing a “default-src” directive in a
policy is common; meanwhile CSPs in Cluster 8 often
use a “data:” scheme and an ‘unsafe-inline’ or ‘unsafe-
eval’ value to allow any scripts or stylesheets to be
loaded. CSPs in Cluster 12 commonly deploy eight fetch
directives: “style-src”, “img-src”, “script-src”, “default-
src”, “connect-src”, “font-src”, “frame-src”, and “media-
src”; meanwhile, they control the resources through ‘*’
value or through a “data:” scheme. The wildcard ‘*’

allows resources from any sources to be loaded in
a webpage. CSPs in Cluster 14 often deploy 10 di-
rectives: “font-src”, “upgrade-insecure-requests”, “media-
src”, “style-src”, “connect-src”, “script-src”, “object-src”,
“default-src”, “img-src”, and “child-src”. Most CSPs in
Cluster 14 control resources through an “https:”, “data:”,
or “blob:” scheme, and all CSPs contain “img-src data: ”.
They also often control scripts and stylesheets by us-
ing “script-src” and “style-src” directive names with an
‘unsafe-eval’ or ‘unsafe-inline’ value. Since popular fea-
tures in Clusters 8, 12, and 14 are fetch directives, CSPs
in these three clusters are mainly used for XSS mitigation.

We now analyze the security levels of CSPs in these
clusters. Popular features in all these three clusters do
not cover any navigation or document directives. In all
these three clusters, less than 50% (32.55%, 35.77%, and
35.69%, respectively) of CSPs can cover all requested
resources in the corresponding webpages, so we consider
that the CSPs in all three clusters are generally at the
low-level on directive coverage. Since above 90% of
popular features are unsafe in Clusters 8 and 12 (100%
and 91.67%, respectively), we consider that the CSPs in
Clusters 8 and 12 are generally at the low-level on secure
use. Since 57.67% of popular features in Cluster 14 are
safe, we consider that the CSPs in Cluster 14 are generally
at the medium-level on secure use.

4.3.5. Potential Reasons for Some CSP Patterns. We
consider a group of popular directives in a cluster as a CSP
pattern for the cluster. Analysis of popular directives in
each cluster shows that some popular directives are shared
in several CSP patterns while some popular directives
are uniquely contained by a certain cluster. To figure out
how webpage properties contribute to CSP patterns of
clusters, we further analyzed development settings and
CSP contents of webpages.

Most webpages deployed an identical CSP in Clusters
3 and 5. We observed that 1,995 out of 2,003 webpages in
Cluster 3 deployed the identical CSP which is “block-all-
mixed-content; frame-ancestors ‘none’; upgrade-insecure-
requests;”, and 256 out of 287 webpages in Cluster 5
deployed the identical CSP which is “block-all-mixed-
content; frame-ancestors *; upgrade-insecure-requests;”.
What are the reasons for more than 90% webpages of
different websites to deploy an identical CSP in Clusters
3 and 5? Why popular directives are so similar in Clusters
3 and 5? By analyzing development settings of webpages,
we found that 1,985 (examples are in Appendix C.1)
out of those 1,995 webpages in Cluster 3 were built by
using Shopify (which is a platform for building shopping
websites [27]), and all those 256 webpages in Cluster 5
were built by using Shopify. We also checked development
settings of webpages in other clusters, and found that only
ten webpages were built by using Shopify.

One possible reason is that there is a default CSP pro-
vided by Shopify, thus identical CSPs are commonly used
in Clusters 3 and 5, respectively. However, it is difficult to
check all website templates provided by Shopify because
most of them are not free. Based on the replies in the
Shopify community (community.shopify.com), we figured
out that for protecting websites against clickjacking at-
tacks, Shopify deploys a default CSP which is the one
used in those 1,985 webpages in Cluster 3. However, those
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256 webpages in Cluster 5 modified the default CSP to
allow any frame ancestors, thus they may not be able to
sufficiently prevent clickjacking attacks. It seems that the
developers of those 256 webpages in Cluster 5 realized
that there is a default CSP deployed in their webpages.
On the other hand, it is unclear if the developers of those
1,985 webpages in Cluster 3 were aware of that default
CSP deployed in their webpages and its purposes. The
default CSP provided by Shopify also explains why most
CSPs in Clusters 3 and 5 do not contain fetch directives.

Similarly, most webpages deployed an identical CSP
in Clusters 1, 4, and 6, respectively. We observed that
3,030 out of 3,134 webpages in Cluster 1 only deployed an
“upgrade-insecure-requests” directive, 1,440 out of 1,588
webpages in Cluster 4 only deployed a “frame-ancestors
‘self’ ” directive, and 293 out of 305 webpages in Cluster
6 only deploy a “block-all-mixed-content” directive. We
found that 1,242 out of those 3,030 webpages in Cluster
1 and 218 out of those 293 webpages in Cluster 6 were
built by using WordPress (which is a platform for building
any websites [37]). In other clusters, 751 webpages were
built by using WordPress, but less than 16% webpages
in each cluster were built by using this platform. Most
webpages built by using WordPress focus on controlling
http URLs by deploying an “upgrade-insecure-requests”
directive or “block-all-mixed-content” directive. In Cluster
4, 333 out of those 1,440 webpages were built by using
Webflow (which is a platform like WordPress for building
any websites [34]), and only 46 webpages were built
by using this platform in other clusters. Meanwhile, 337
out of those 3,030 webpages in Cluster 1 were built by
using HubSpot (which is also a platform for building any
websites [12]), and only five webpages were built by using
this platform in other clusters. Unlike Shopify, WordPress,
HubSpot, and Webflow did not provide a default CSP for
webpages built by using them.

CSPs in Clusters 2, 7, 8, 12, and 14 commonly contain
fetch directives. Meanwhile, ‘unsafe-inline’ and ‘unsafe-
eval’ are popular in these five clusters likely because
plugins and event handlers cannot be easily whitelisted by
using hashes or nonces [21], [22]. We wondered whether
default CSPs provided by website builders also contribute
to the common use of ‘unsafe-inline’ and ‘unsafe-eval’.
However, we did not find clear evidence to show website
builders’ contribution of these two directives.

4.3.6. Summary of the Analysis Results. Overall, based
on the 16 subfigures in Figure 5 and our detailed descrip-
tions, we summarized the main aims of the CSPs and the
CSP security level analysis results for the 16 clusters in
Table 3. We can see that all these 16 clusters have their
own unique characteristics, and CSPs in each cluster often
have limited aims or even a single aim. Furthermore, based
on those unique characteristics and by analyzing the 16
clusters in four groups, we identified many common or
different CSP directive use practices within and between
clusters. All these further helped us analyze the CSP
security levels in each cluster from the directive coverage
and secure use perspectives.

Main Aims of the CSPs. From Table 3, we can see
that CSPs in Clusters 1 and 6 are mainly used for TLS
enforcement; CSPs in Clusters 2, 7, 8, 12, and 14 are
mainly used for protecting against XSS attacks; CSPs in

Clusters 3 and 5 are mainly used for TLS enforcement
and framing control; CSPs in Clusters 4, 9, 10, 11, 13,
15, and 16 are mainly used for framing control. Similar
to what Calzavara et al. found in 2018 [2], CSP is no
longer used mainly for XSS mitigation. In those clusters
whose CSPs are used mainly for protecting against XSS
attacks, the “object-src” directive name is unfortunately
not in any popular feature. However, to better prevent
script injection attacks, developers should use both “script-
src” and “object-src” directives [35]. Nonces and hashes
are not commonly used either, and they are not even in
the top-50 features in Table 5; however, ‘unsafe-inline’
and ‘unsafe-eval’ directive values are still commonly used
and in the top-10 features. The low adoption of nonces
and hashes may be attributed to the insufficient support
from event handlers, web development frameworks, and
plugins [21], [22].

Security Levels of the CSPs. Unfortunately, no clus-
ter has its CSPs at the high-level on directive coverage.
CSPs in one cluster are generally at the medium-level on
directive coverage, while CSPs in 15 clusters are generally
at the low-level on directive coverage. It is worth noting
that the popular features in most low-level directive cover-
age clusters only cover at most two types of directives with
limited aims or limited controls on resource types (e.g.,
only on scripts). From the directive secure use perspective,
CSPs in nine, two, and five clusters are generally at the
high-level, medium-level, and low-level, respectively. It is
worth noting that all the nine high-level secure use clusters
contain less than 100 features, which are all unfortunately
at the low-level on directive coverage. It is also worth
noting that CSPs in the medium-level secure use clusters
popularly contain unsafe directives “script-src ‘unsafe-
inline’ ”, “script-src ‘unsafe-eval’ ”, and “style-src ‘unsafe-
inline’ ”. We conclude that most deployed CSPs do not
sufficiently protect webpages from either the directive
coverage or the directive secure use perspective.

Previous studies such as [1], [2], [21], [35] mainly an-
alyzed the vulnerabilities of specific directives, but did not
estimate the overall protection capabilities of CSPs, espe-
cially from the directive coverage perspective. Meanwhile,
we found that severe problems (unreported in previous
studies such as [2], [21], [35], [36]) exist in some specific
clusters: (1) fetch directives are completely missing in the
majority of CSPs in Clusters 1, 3, 4, 6, and 11; (2) 89.90%
of CSPs in Cluster 5 contain “frame-ancestors *” which
allows any webpages to embed a current webpage; (3)
CSPs with a “default-src” fallback directive in Clusters
8, 12, and 14 often contain unsafe directive values such
as ‘unsafe-inline’, ‘unsafe-eval’, or “*”. Some example
websites with such problems are in Appendix C.2.

4.4. CSP Deployment on Subpages

We further analyzed the CSP deployment on the
110,718 subpages of the 13,317 CSP-deployed home-
pages. We found that 12,373 homepages contain same
domain or subdomain subpages, while the rest 944 home-
pages do not. Among those 12,373 homepages, 9,862 of
them have all their sampled subpages containing CSPs,
2,365 of them have portions of their sampled subpages
containing CSPs, and 146 of them do not contain any
CSP on their sampled subpages. In total, we found that
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Table 3: Summary of the Main Aims of the CSPs and the CSP Security Level Analysis Results for the 16 Clusters

Cluster No. Main Aims of the CSPs in the Cluster Number of Websites
in the Cluster

Overall Level on
Directive Coverage

Overall Level on
Directive Secure Use

1 TLS enforcement via “upgrade-insecure-requests” 3,134 low-level high-level

2
XSS mitigation

via “script-src” and “style-src” directives
1,043 low-level low-level

3
TLS enforcement via “block-all-mixed-content”;
Framing control via “frame-ancestors ‘none’ ”

2,003 low-level high-level

4 Framing control via “frame-ancestors ‘self’ ” 1,588 low-level high-level

5
TLS enforcement via “upgrade-insecure-requests”

and “block-all-mixed-content”;
Framing control via “frame-ancestors *”

287 low-level low-level

6 TLS enforcement via “block-all-mixed- content” 305 low-level high-level

7
XSS mitigation via fetch directives with

external domain combinations and a “self” value
1,273 medium-level medium-level

8 XSS mitigation via a “default-src” directive 811 low-level low-level
9 Framing control via whitelisting sources 617 low-level low-level

10
Framing control via “frame-ancestors exdo”

and “frame-ancestors ‘self’ ”
346 low-level high-level

11 Framing control via “frame-ancestors ‘none’ ” 390 low-level high-level

12
XSS mitigation

via fetch directives with a “*” value
246 low-level low-level

13
Framing control via “frame-ancestors *.sado”

and “frame-ancestors ‘self’ ”
324 low-level high-level

14
XSS mitigation via fetch directives

with blob:, data:, and https: schemes
262 low-level medium-level

15 Framing control via “frame-ancestors *.exdo” 301 low-level high-level

16
Framing control via “frame-ancestors *.exdo”

and “frame-ancestors ‘self’ ”
387 low-level high-level

the subpages of 9,726 homepages all contain CSPs in the
enforcement mode, while the subpages of 136 homepages
contain CSPs in both the enforcement and report-only
modes. We focused on analyzing the CSPs deployed on
subpages in the enforcement mode, and comparing if they
are identical to the CSPs deployed on their corresponding
homepages. Overall, subpages of 9,441 homepages have
identical policy feature vectors as their corresponding
homepages, and subpages of 9,269 of these homepages
further have the identical CSP content as their correspond-
ing homepages. In summary, most of subpages deployed
the same CSP as in their homepages. This result is largely
consistent with what Calzavara et al. found in [3]. It is
worth noting that although deploying the same CSP on
multiple webpages of a website is convenient for web
developers, it should be clear to them that the directive
coverage and secure use problems are also common across
all their webpages that share a common CSP.

5. Takeaways and Recommendations

5.1. High-level Takeaways from Our Study

We have three high-level takeaways from our study.
First, taking the clustering approach allows us to automat-
ically categorize CSPs and effectively analyze common or
different security problems (Section 4); if we statistically
analyze the data based on specific rules or heuristics, much
more effort would be needed, and the analysis would
not be comprehensive as we discussed in Sections 2.2
and 3.2. Second, it is important to analyze CSPs from
both directive coverage and secure use perspectives (Sec-
tions 2.2 and 3.4); as we summarized in Section 4.3.6,
nine CSP clusters often contain secure directives but have
a poor directive coverage, and CSPs in most clusters do
not sufficiently protect webpages from one of the two
perspectives. Third, we have the following new findings
beyond existing studies: (1) each of those 16 clusters has

its unique CSP patterns, and most CSPs have limited aims
or even a single aim (Sections 4.3.1-4.3.4); (2) 15 clusters
are at the low-level on the directive coverage (a major
problem) and five clusters are at the low-level on the
secure use of directives, while previous studies did not
analyze the overall protection capabilities of CSPs (Sec-
tion 4.3.6); (3) web development platforms contributed to
the specific CSP patterns of many websites (Section 4.3.5
and Appendix C.1); (4) several severe problems exist in
specific clusters (Section 4.3.6 and Appendix C.2).

5.2. Recommendations for Web Developers

Based on our findings, we provide three recommenda-
tions that may help developers deploy CSPs or improve
their currently deployed CSPs. First, for developers of
CSP-deployed websites, we recommend them to improve
CSPs from both the directive coverage and the secure use
perspectives, and especially, to put more effort on improv-
ing the directive coverage of CSPs to comprehensively
protect a website. Second, for web developers who would
like to build their websites through a web development
platform, we recommend them to ascertain and leverage
the CSP support (if exists) of the web development plat-
form; meanwhile, they should upgrade (instead of down-
grading) the protection capability of their CSPs when they
further customize the policies. Third, we recommend web
developers to avoid those severe problems in specific clus-
ters as summarized in Section 4.3.6. We further provide
a secure CSP example in Appendix C.3 for developers to
use as a reference in their CSP deployment.

6. Conclusion

In this paper, we took the unsupervised clustering ap-
proach to analyze the security levels of the deployed CSPs
from the directive coverage and secure use perspectives.
We designed policy features and a Contrastive Spectral
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Clustering (CSC) algorithm to automatically categorize
very diverse and complex CSPs. From the 13,317 home-
pages that deployed CSPs under the enforcement mode,
we categorized their policies into 16 clusters with different
characteristics. We found that 15 clusters are at the low
level on the coverage and five clusters are at the low level
on the secure use of directives; meanwhile, no cluster
is at the high level on the coverage of directives, and
nine clusters are at the high level on the secure use of
directives. These results indicate that most deployed CSPs
do not sufficiently protect webpages; more importantly,
clustering helps identify the corresponding common or
different reasons from the directive coverage and secure
use perspectives.

While our detailed findings depend on the specific
CSP dataset that we constructed, our design and method-
ology on policy feature, clustering algorithm, and security
level analysis can be generally applied to any dataset.
Meanwhile, while the interpretations of the clustering
results still need human efforts, everything else is largely
automatic. Overall, our approach and results can be help-
ful for promoting the proper deployment of CSPs. We
suggest that developers should improve CSPs from both
the directive coverage and secure use perspectives. Our
dataset and source code are available at [7].
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A. Other Parameters in Our Algorithms and
Combinations of Data Augmentation Opera-
tors

We provide more implementation details of our CSC
algorithm (Algorithm 1) and CL algorithm (Algorithm 2)
in this appendix. In the CSC algorithm, 200 neighbors
are used in the nearest neighbors method (Line 2 in
Algorithm 1). In the CL algorithm, the batch size (Line 2
in Algorithm 2) is B=193; the fine-tuned temperature in
the contrastive loss function Lcontrastive (Line 7 in Algo-
rithm 2) is 0.5; the training epoch is 100; the optimizer
is RMSprop [40] while the learning rate is 1 × 10−4,
which are used to optimize the encoder network f and
the projection head g. Table 4 lists the NMI scores for all
six combinations of the three data augmentation operators
we considered in the CL algorithm. The best combination
is Add & Swap.

B. The 358 Ranked Policy Features

Table 5 lists all the 358 ranked policy features which
are used for clustering the CSPs from the 13,317 home-
pages.

Table 4: NMI Scores of the Experiments for Six Combi-
nations of Three Data Augmentation Operators.

Combination NMI Score
Add & Add 0.7882884

Delete & Delete 0.775500
Swap & Swap 0.7968726
Add & Delete 0.7721543
Add & Swap 0.8044657

Delete & Swap 0.7884328
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Table 5: Details of the 358 Ranked Policy Features. The blue color indicates safe features, the red color indicates unsafe
features, and the black color indicates uncertain features.

Rank Feature Rank Feature Rank Feature
1 (upgrade-insecure-requests, “ ”) 2 (frame-ancestors, self) 3 (block-all-mixed-content, “ ”)
4 (frame-ancestors, none) 5 (script-src, unsafe-inline) 6 (style-src, unsafe-inline)
7 (img-src, data) 8 (script-src, unsafe-eval) 9 (script-src, self)
10 (default-src, self) 11 (script-src, exdo) 12 (style-src, self)
13 (img-src, self) 14 (font-src, data) 15 (font-src, self)
16 (connect-src, self) 17 (style-src, exdo) 18 (script-src, *.exdo)
19 (default-src, unsafe-inline) 20 (connect-src, exdo) 21 (frame-ancestors, exdo)
22 (img-src, exdo) 23 (frame-src, exdo) 24 (font-src, exdo)
25 (default-src, data) 26 (default-src, unsafe-eval) 27 (frame-src, self)
28 (connect-src, *.exdo) 29 (frame-ancestors, *.exdo) 30 (frame-ancestors, *.sado)
31 (img-src, *.exdo) 32 (default-src, https) 33 (frame-src, *.exdo)
34 (img-src, blob) 35 (style-src, *.exdo) 36 (img-src, https)
37 (media-src, self) 38 (default-src, exdo) 39 (object-src, none)
40 (img-src, *) 41 (default-src, *.exdo) 42 (default-src, blob)
43 (script-src, https) 44 (script-src, blob) 45 (frame-ancestors, sado)
46 (media-src, blob) 47 (font-src, *.exdo) 48 (script-src, *.sado)
49 (script-src, sado) 50 (style-src, https) 51 (default-src, *)
52 (object-src, self) 53 (script-src, data) 54 (connect-src, sado)
55 (connect-src, *.sado) 56 (base-uri, self) 57 (default-src, *.sado)
58 (img-src, sado) 59 (img-src, *.sado) 60 (media-src, exdo)
61 (worker-src, blob) 62 (media-src, data) 63 (font-src, https)
64 (child-src, blob) 65 (form-action, self) 66 (connect-src, https)
67 (child-src, self) 68 (style-src, *.sado) 69 (frame-src, *.sado)
70 (worker-src, self) 71 (media-src, *.exdo) 72 (script-src, *)
73 (style-src, *) 74 (frame-src, sado) 75 (style-src, sado)
76 (connect-src, blob) 77 (default-src, sado) 78 (frame-src, *)
79 (media-src, https) 80 (font-src, *) 81 (connect-src, *)
82 (style-src, data) 83 (frame-ancestors, *) 84 (child-src, exdo)
85 (script-src, nonce-) 86 (img-src, unsafe-inline) 87 (font-src, sado)
88 (manifest-src, self) 89 (media-src, *) 90 (font-src, *.sado)
91 (connect-src, wss) 92 (connect-src, data) 93 (style-src, blob)
94 (child-src, https) 95 (form-action, exdo) 96 (font-src, unsafe-inline)
97 (default-src, none) 98 (child-src, *.exdo) 99 (default-src, wss)
100 (base-uri, none) 101 (object-src, https) 102 (frame-src, https)
103 (child-src, data) 104 (media-src, sado) 105 (media-src, *.sado)
106 (connect-src, unsafe-inline) 107 (frame-src, data) 108 (object-src, exdo)
109 (style-src, unsafe-eval) 110 (default-src, other scheme) 111 (script-src, sha256-)
112 (frame-src, blob) 113 (form-action, *.exdo) 114 (object-src, *)
115 (script-src, http) 116 (script-src, strict-dynamic) 117 (font-src, blob)
118 (img-src, other scheme) 119 (script-src, report-sample) 120 (object-src, *.exdo)
121 (frame-src, unsafe-inline) 122 (default-src, http) 123 (script-src-elem, unsafe-inline)
124 (img-src, http) 125 (child-src, *.sado) 126 (child-src, sado)
127 (form-action, sado) 128 (form-action, https) 129 (script-src-elem, self)
130 (script-src-elem, exdo) 131 (form-action, *.sado) 132 (object-src, data)
133 (object-src, *.sado) 134 (prefetch-src, self) 135 (script-src, other scheme)
136 (frame-src, other scheme) 137 (img-src, unsafe-eval) 138 (frame-ancestors, other scheme)
139 (media-src, unsafe-inline) 140 (worker-src, *) 141 (style-src-elem, unsafe-inline)
142 (worker-src, data) 143 (object-src, blob) 144 (worker-src, sado)
145 (default-src, ws) 146 (object-src, sado) 147 (style-src, http)
148 (worker-src, exdo) 149 (style-src-elem, self) 150 (child-src, *)
151 (connect-src, other scheme) 152 (worker-src, *.exdo) 153 (worker-src, *.sado)
154 (font-src, unsafe-eval) 155 (worker-src, https) 156 (connect-src, unsafe-eval)
157 (script-src-elem, *.exdo) 158 (frame-src, unsafe-eval) 159 (style-src, report-sample)
160 (worker-src, unsafe-inline) 161 (connect-src, ws) 162 (object-src, unsafe-inline)
163 (child-src, unsafe-inline) 164 (style-src-elem, exdo) 165 (sandbox, allow-scripts)
166 (connect-src, http) 167 (worker-src, none) 168 (sandbox, allow-same-origin)
169 (prefetch-src, exdo) 170 (sandbox, allow-forms) 171 (sandbox, allow-popups)
172 (font-src, http) 173 (script-src-elem, unsafe-eval) 174 (form-action, *)
175 (object-src, unsafe-eval) 176 (worker-src, unsafe-eval) 177 (sandbox, allow-popups-to-

escape-sandbox)
178 (frame-ancestors, https) 179 (manifest-src, sado) 180 (script-src, unsafe-hashes)
181 (child-src, http) 182 (media-src, http) 183 (style-src-elem, *.exdo)
184 (style-src-attr, unsafe-inline) 185 (media-src, none) 186 (manifest-src, exdo)
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187 (base-uri, *.sado) 188 (media-src, other scheme) 189 (script-src-attr, unsafe-inline)
190 (form-action, unsafe-inline) 191 (sandbox, allow-presentation) 192 (child-src, unsafe-eval)
193 (manifest-src, unsafe-inline) 194 (media-src, unsafe-eval) 195 (script-src-elem, *.sado)
196 (object-src, http) 197 (base-uri, exdo) 198 (font-src, other scheme)
199 (default-src, unsafe-hashes) 200 (prefetch-src, *.exdo) 201 (script-src-elem, sado)
202 (style-src-attr, self) 203 (frame-src, none) 204 (manifest-src, *.sado)
205 (frame-src, http) 206 (style-src, unsafe-hashes) 207 (base-uri, sado)
208 (form-action, http) 209 (manifest-src, *.exdo) 210 (style-src, other scheme)
211 (script-src-attr, self) 212 (script-src-elem, https) 213 (script-src-attr, none)
214 (child-src, other scheme) 215 (child-src, none) 216 (prefetch-src, *)
217 (prefetch-src, *.sado) 218 (frame-ancestors, data) 219 (prefetch-src, sado)
220 (base-uri, *.exdo) 221 (style-src-elem, *) 222 (style-src-elem, *.sado)
223 (script-src-elem, *) 224 (base-uri, unsafe-inline) 225 (form-action, none)
226 (frame-ancestors, unsafe-inline) 227 (plugin-types, “ ”) 228 (default-src, nonce-)
229 (manifest-src, *) 230 (style-src, nonce-) 231 (script-src-elem, blob)
232 (frame-ancestors, blob) 233 (sandbox, allow-modals) 234 (style-src, sha256-)
235 (style-src-elem, sado) 236 (form-action, unsafe-eval) 237 (default-src, report-sample)
238 (img-src, unsafe-hashes) 239 (manifest-src, unsafe-eval) 240 (manifest-src, none)
241 (manifest-src, data) 242 (prefetch-src, unsafe-inline) 243 (script-src-elem, data)
244 (connect-src, unsafe-hashes) 245 (frame-src, nonce-) 246 (media-src, report-sample)
247 (script-src, wss) 248 (worker-src, unsafe-hashes) 249 (worker-src, http)
250 (style-src-elem, https) 251 (style-src-elem, data) 252 (script-src-attr, unsafe-eval)
253 (form-action, other scheme) 254 (frame-ancestors, unsafe-eval) 255 (font-src, unsafe-hashes)
256 (frame-src, unsafe-hashes) 257 (manifest-src, unsafe-hashes) 258 (media-src, unsafe-hashes)
259 (object-src, unsafe-hashes) 260 (prefetch-src, unsafe-eval) 261 (prefetch-src, unsafe-hashes)
262 (style-src-attr, *) 263 (form-action, unsafe-hashes) 264 (form-action, data)
265 (sandbox, allow-top-navigation-

by-user-activation)
266 (connect-src, nonce-) 267 (font-src, none)

268 (manifest-src, https) 269 (style-src-elem, unsafe-eval) 270 (style-src-elem, blob)
271 (script-src-attr, *) 272 (base-uri, *) 273 (sandbox, allow-pointer-lock)
274 (font-src, report-sample) 275 (media-src, nonce-) 276 (object-src, report-sample)
277 (prefetch-src, https) 278 (worker-src, wss) 279 (script-src-elem, unsafe-hashes)
280 (script-src-elem, report-sample) 281 (script-src-elem, nonce-) 282 (style-src-attr, unsafe-hashes)
283 (script-src-attr, unsafe-hashes) 284 (script-src-attr, https) 285 (base-uri, https)
286 (frame-ancestors, http) 287 (sandbox, allow-downloads) 288 (sandbox, allow-top-navigation)
289 (child-src, strict-dynamic) 290 (child-src, wss) 291 (frame-src, report-sample)
292 (img-src, report-sample) 293 (prefetch-src, none) 294 (prefetch-src, data)
295 (script-src, ws) 296 (style-src, wss) 297 (worker-src, report-sample)
298 (worker-src, ws) 299 (style-src-elem, unsafe-hashes) 300 (style-src-attr, https)
301 (style-src-attr, data) 302 (script-src-attr, blob) 303 (base-uri, data)
304 (form-action, report-sample) 305 (sandbox, allow-orientation-lock) 306 (child-src, report-sample)
307 (connect-src, report-sample) 308 (default-src, strict-dynamic) 309 (font-src, wss)
310 (img-src, nonce-) 311 (img-src, wss) 312 (object-src, other scheme)
313 (object-src, nonce-) 314 (script-src, sha384-) 315 (style-src, strict-dynamic)
316 (style-src, ws) 317 (worker-src, other scheme) 318 (style-src-elem, nonce-)
319 (script-src-elem, sha256-) 320 (script-src-elem, http) 321 (style-src-attr, report-sample)
322 (style-src-attr, *.exdo) 323 (script-src-attr, exdo) 324 (base-uri, other scheme)
325 (form-action, nonce-) 326 (frame-ancestors, report-sample) 327 (require-trusted-types-for, script)
328 (child-src, nonce-) 329 (connect-src, strict-dynamic) 330 (connect-src, none)
331 (default-src, sha256-) 332 (font-src, nonce-) 333 (font-src, ws)
334 (frame-src, strict-dynamic) 335 (frame-src, wss) 336 (manifest-src, http)
337 (manifest-src, blob) 338 (media-src, wss) 339 (object-src, strict-dynamic)
340 (worker-src, strict-dynamic) 341 (worker-src, nonce-) 342 (style-src-elem, strict-dynamic)
343 (style-src-elem, report-sample) 344 (style-src-elem, sha256-) 345 (style-src-elem, http)
346 (script-src-elem, strict-dynamic) 347 (script-src-elem, wss) 348 (style-src-attr, *.sado)
349 (style-src-attr, sado) 350 (style-src-attr, exdo) 351 (script-src-attr, report-sample)
352 (script-src-attr, *.exdo) 353 (base-uri, unsafe-eval) 354 (base-uri, http)
355 (form-action, blob) 356 (navigate-to, *) 357 (require-sri-for, script style)
358 (trusted-types, policyname)
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C. Some Website and CSP Examples

C.1. Example Websites Built through Web Devel-
opment Platforms with Identical CSPs

We analyzed in Section 4.3.5 that some websites were
built through the same web development platform, and
they deployed the identical CSP. For example, websites
https://huel.com, https://goli.com, and https://vessi.com/
were built through Shopify. All of them deployed the same
CSP which is “block-all-mixed-content; frame-ancestors
‘none’; upgrade-insecure-requests;”.

C.2. Example Websites with Severe Problems in
Their CSPs

We analyzed in Section 4.3.6 that websites in some
clusters had severe problems in their CSPs. The fol-
lowing are some examples. In Cluster 1, the CSP of
https://sina.cn/ only contained the “upgrade-insecure-
requests” directive, which did not cover any type of
resources needed in the webpage. In Cluster 5, the
CSP of https://www.vqfit.com/ was “block-all-mixed-
content; frame-ancestors *; upgrade-insecure-requests;”.
The “frame-ancestors *” directive allows any webpages
to embed the current webpage. In Cluster 8, the CSP
of https://www.cope.es/ was “default-src ‘unsafe-inline’
‘unsafe-eval’ ‘self’ data: blob: wss://* http://* https://*;”,
which included unsafe directive values. The ‘unsafe-
inline’ directive value allows any inline scripts and
stylesheets to be loaded in the webpage. The ‘unsafe-
eval’ directive value allows any eval-like functions to be
executed in the webpage. Meanwhile, the “data:”, “blob:”,
“wss://*”, “http://*”, and “https://*” directive values allow
resources from any external sources to be loaded.

C.3. A Secure CSP Example for Web Developers
to Use as A Reference in Their CSP Deployment

The CSP deployed on https://www.xrptoolkit.com/ (as
shown in Figure 6) is a secure CSP example from both
the directive coverage and the secure use perspectives. It
is used for XSS mitigation, framing control, and TLS en-
forcement. The policy features of the CSP are “default-src
‘none’ ”, “object-src ‘none’ ”, script-src ‘self’ ”, “manifest-
src ‘self’ ”, “style-src ‘self’ ”, “img-src ‘self’ ”, “img-
src exdo”, “connect-src exdo”, “frame-ancestors ‘none’ ”,
“base-uri ‘none’ ”, “form-action ‘none’ ”, and “block-all-
mixed-content”. All these policy features of this CSP are
safe. With the “default-src ‘none’ ” directive, all types of
resources can be controlled by the CSP for XSS mit-
igation. The “block-all-mixed-content” directive is used
for TLS enforcement. For framing control, the “frame-
ancestors ‘none’ ” directive does not allow any webpages
to embed a current webpage.

Figure 6: The CSP Deployed on
https://www.xrptoolkit.com/
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