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Abstract—Trusted Platform Modules (TPMs) constitute an
integral building block of modern security features. More-
over, as Windows 11 made a TPM 2.0 mandatory, they
are subject to an ever-increasing academic challenge. While
discrete TPMs (dTPMs) – as found in higher-end systems –
have been susceptible to attacks on their exposed communi-
cation interface, more common firmware TPMs (fTPMs) are
immune to this attack vector as they do not communicate
with the CPU via an exposed bus.
In this paper, we analyze a new class of attacks against
fTPMs: Attacking their Trusted Execution Environment
(TEE) can lead to a full TPM state compromise. We experi-
mentally verify this attack by compromising the AMD Secure
Processor (AMD-SP), which constitutes the TEE for AMD’s
fTPMs. In contrast to previous dTPM sniffing attacks, this
vulnerability exposes the complete internal TPM state of the
fTPM. It allows us to extract any cryptographic material
stored or sealed by the fTPM regardless of authentication
mechanisms such as Platform Configuration Register (PCR)
validation or passphrases with anti-hammering protection.
First, we demonstrate the impact of our findings by – to
the best of our knowledge – enabling the first attack against
Full Disk Encryption (FDE) solutions backed by an fTPM.
Furthermore, we lay out how any application relying solely
on the security properties of the TPM – like Bitlocker’s TPM-
only protector – can be defeated by an attacker with 2-
3 hours of physical access to the target device. Lastly, we
analyze the impact of our attack on FDE solutions protected
by a TPM and PIN strategy. While a naive implementation
also leaves the disk completely unprotected, we find that
BitLocker’s FDE implementation withholds some protection
depending on the complexity of the used PIN. Our results
show that when an fTPM’s internal state is compromised, a
TPM and PIN strategy for FDE is less secure than TPM-less
protection with a reasonable passphrase.

1. Introduction

Trusted Platform Module (TPM) is a standard for a
dedicated subsystem providing security primitives to a
system. TPMs include a hardware random number genera-
tor, can measure and attest system state, securely generate
cryptographic keys, and provide an interface for protecting
sensitive data akin to a smartcard.

Initially, TPMs were exclusively implemented as dis-
crete chips connected to the CPU via buses on the main-
board. However, CPU vendors introduced firmware TPMs
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(fTPMs) as an alternative implementation approach [24],
[28], [42]. In contrast to discrete TPMs (dTPMs), fTPMs
are implemented through code running in a Trusted Ex-
ecution Environment (TEE) provided by the CPU ven-
dor. While dTPMs are still found in higher-end devices,
fTPMs’ omnipresence in modern CPUs made them an
affordable and convenient alternative for OEMs. In ad-
dition, the ever-increasing integration of TPM services
into cryptographic APIs, e.g., Platform Crypto Provider in
Microsoft Windows [31], fosters TPM usage across many
layers and domains.

One of the more prominent use cases for a TPM is
Full Disk Encryption (FDE), as it can secure data-at-
rest without requiring the user to memorize a pre-boot
passphrase. The standardized interplay of firmware and
TPM, commonly called Measured Boot, verifies that the
system was booted into a trusted state before FDE keys
are released from the TPM to the Operating System (OS).
Hereby, the system measures each firmware component
and configuration value into the TPM, which keeps a
cryptographically secure log of these measurements. Once
the OS is in a trusted state, as reflected by the TPM’s
measurement logs, the TPM provides access to the disk
encryption keys. Since the OS is now already in control
of the system and its connected devices, it can effectively
employ security measures like a login prompt to enforce
access control to the user’s data.

Threat model. We assume an attacker with prolonged
physical access to a device, e.g., a stolen or lost laptop.
While this puts the data on the laptop at immediate risk,
TPM-based Measured Boot should be able to protect
private data, such as a VPN key or FDE keys, from the at-
tacker. This means only a properly booted runtime is able
to access the sealed data. For this paper, vulnerabilities in
the UEFI firmware or OS are out of scope.

Scenarios where this threat model becomes relevant
are journalists protecting their sources or traveling em-
ployees carrying intellectual property on their company-
provisioned laptop.

AMD’s fTPM. While (d)TPMs were previously targeted
at professional users and use cases only, the adoption of
fTPMs highlights that TPMs of all sorts must undergo
security testing. Moreso, since Windows 11 introduced a
TPM 2.0 requirement [35], which in many devices like
consumer-level laptops is available only as an fTPM.

In the past, dTPMs have been susceptible to attacks
compromising their communication buses [7], [20], [50].
fTPMs, however, do not expose their communication with
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the CPUs, making this particular attack vector infeasible.
Nevertheless, other attack vectors have come to light,
especially concerning their execution environment.

While the dominant vendor for CPUs is Intel, AMD’s
market share has been at a record high recently [6]. The
execution environment for fTPMs on AMD systems is
the AMD Secure Processor (AMD-SP), which has re-
cently been subject to physical and firmware attacks [14],
[16]. In these works, the authors analyzed to what extent
the Secure Encrypted Virtualization (SEV) technology is
affected by these security issues. However, the authors
neglected to analyze the impact of this Root of Trust
(RoT) compromise on other critical security functionality
provided by the AMD-SP.

In light of these attacks, we ask: What are the practical
consequences of physical attacks against AMD’s fTPMs?

1.1. Our Contributions

In this paper, we show that AMD’s fTPMs are vulner-
able to physical attacks against their execution environ-
ment: the AMD-SP. Our attack utilizes the AMD-SP’s
vulnerability to voltage fault injection attacks [14] to
extract a chip-unique secret from the targeted CPU. This
secret is subsequently used to derive the storage and
integrity keys protecting the fTPM’s non-volatile (NV)
data stored on the Basic Input/Output System (BIOS) flash
chip.

In contrast to the previous dTPM sniffing attacks,
our approach exposes the complete internal TPM state
of the fTPM. This allows us to extract any cryptographic
material stored or sealed by the fTPM regardless of the
authentication mechanisms, such as the measured system
state or passphrases with anti-hammering protection. Ad-
ditionally, once we have extracted the chip-unique secret
through voltage fault injection, we only need to re-read the
BIOS flash to defeat any TPM-based security measures.

To demonstrate the impact of our findings, we re-
enable attacks against FDE solutions that rely solely on the
TPM. Furthermore, we analyze how our findings impact
an FDE key protected by a TPM and PIN strategy. We find
that Microsoft BitLocker’s FDE implementation is reduced
to the security of a (TPM-less) PIN-only strategy. In con-
trast, a naive implementation leaves the disk completely
unprotected once the TPM is defeated. The example of
systemd-cryptenroll, a tool for enrolling hardware security
tokens and devices into a LUKS2 encrypted volume,
demonstrates this potential weakness.

In summary, our contributions are:

• We reverse-engineer the NV storage format of
AMD’s fTPM and the derivation of the chip-unique
keys protecting its confidentiality and integrity.

• We leverage previously published hardware vulnera-
bilities on the AMD-SP to extract the cryptographic
seeds used to derive the NV storage keys.

• Using the decrypted NV storage, we can extract
any cryptographic secret and unseal arbitrary TPM
objects protected with the fTPM.

• We use this ability to successfully attack Microsoft
BitLocker’s TPM-only key protector.

• We analyze the security of TPM and PIN protectors
for FDE keys and describe how BitLocker withstands

a compromised TPM when a strong PIN is used while
a naive implementation does not.

• We publish all required tools to mount the attack in
[27].

All security-relevant findings discussed in this paper
were responsibly disclosed to AMD, Microsoft, and the
systemd-cryptenroll maintainers. The systemd-cryptenroll
maintainers quickly got back to us to discuss specific
mitigation strategies.

2. Background

In this Section, we will introduce basic concepts
necessary for our paper, i.e., Trusted Platform Modules,
Full Disk Encryption in general, Microsoft BitLocker in
particular, and the AMD Secure Processor.

2.1. Trusted Platform Modules

TPMs are secure cryptoprocessors specified by the
Trusted Computing Group (TCG) featuring a hardware
random number generator, secure generation of crypto-
graphic keys, Platform Configuration Registers (PCRs)
to measure a system’s boot process, and secure stor-
age/sealing of those keys or user-provided data. The ‘TPM
2.0 Library specification’ [48] (also known as ISO/IEC
11889) specifies how a TPM should interact with an
external system. Two distinct types of TPMs can be dis-
tinguished based on their implementation: discrete TPMs
(dTPMs) and firmware TPMs (fTPMs) [47]. The imple-
mentation type has different implications on the security
level of the TPM. However, regardless of whether a
dTPM, or a fTPM is used, the provided functionality is
the same.
Both the security implications of the two implementation
approaches, as well as the basic TPM functionality, are
explained in the following sections:

2.1.1. Discrete TPM. dTPMs are dedicated hardware
components implementing the TPM specification and are
commonly built into commercial business laptops. dTPMs
implement a degree of physical tamper resistance to pro-
tect the stored secrets from exposure and are therefore
considered the most secure TPM variant [47]. Nonethe-
less, passive physical attacks have been demonstrated that
target the communication channel between the dTPM and
the rest of the system [50]. These can be used to, e.g.,
circumvent TPM-based FDE solutions that unlock a disk
without the need for a passphrase or PIN.

2.1.2. Firmware TPM. fTPMs, on the other hand, imple-
ment TPM functionality mainly through software running
in a Trusted Execution Environment (TEE) available to the
CPU. Intel and AMD provide fTPMs with their Desktop
CPUs, running on the Intel Management Engine (Intel-
ME) and AMD-SP, respectively. Due to the integration
of these coprocessors into the main die, they do not
require external buses to communicate with the CPU.
Therefore, sniffing attacks similar to the dTPM attacks
would require costly on-die probing, which – to the best
of our knowledge – has not been shown against fTPMs
yet. On the other hand, fTPMs rely heavily on the security
properties of the TEE.
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2.1.3. Sealing. A TPM can seal data, such as crypto-
graphic keys or secrets, and regulate access to the data.
For example, a user might generate an RSA key on the
TPM, protect it with a passphrase, and limit it to be used
as a signing key that can not be exported from the TPM,
binding the key to the device. In such a scenario, the TPM
acts like a smartcard.

Since TPMs have only a limited amount of non-
volatile (NV) storage on the device itself, data is usually
stored externally in a sealed object and can be loaded
into the TPM when needed. While these external objects
may reveal details about the kind of object that is sealed,
the sensitive data, e.g., RSA private key, is encrypted and
signed with storage keys only accessible to the TPM. The
format of these external objects and the key derivation for
their protecting keys are specified in the ‘TPM 2.0 Library
Specification’ [48].1

The authorization options for sealed TPM objects
are manifold and can be combined with ‘and’ and
‘or’ clauses to form complex authorization policies [9].
Two policies commonly used are PCR authorization and
PIN/passphrase authorization with anti-hammering protec-
tions.

2.1.4. Platform Configuration Registers. A PCR is a
memory location in the TPM used to store a hash, e.g., a
SHA256 digest. PCRs can only be updated by extending
the existing value with a new value as follows [9]:

PCR[n] = hash alg( PCR[n] || ExtensionV alue )

The only way to reset a PCR is to reset the TPM, in
which case it will reset to zero. This means that during
a system’s uptime, the PCR acts as a secure record of
all extension values: Once a value has been recorded, one
cannot ’un-record’ it, i.e., force the PCR’s value back to a
previous state – unless the underlying cryptographic hash
algorithm is flawed.

In the measured boot scenario – one of the most
prominent use-cases for PCRs – each firmware component
involved during boot is hashed and extended into an
appropriate PCR before it is executed. In order to protect
against malicious code runing early in the boot process, an
operating system can record a set of known-secure PCR
values and verify these PCRs on each boot. For example,
on a PC platform, PCRs zero to seven record the system’s
boot process.

The TPM can further use the PCRs itself to authorize
access to a TPM object. To check a PCR authorization
policy, the TPM compares the current PCRs to a set of
known values included with the policy. Such a policy can,
e.g., protect a cryptographic key from being used when the
system has been infected with a Root- or Bootkit.

2.1.5. PINs, Passphrases, and Anti-Hammering. An-
other method of authorizing access to sealed TPM objects
is a passphrase or Personal Identification Number (PIN)
[9]. Of course, passphrase authorization is also commonly
used for software-only protection, e.g., with SSH keys.
However, TPM-based passphrase authorization can defend

1. See ‘22 Protected Storage’ of ‘Part 1: Architecture’ for
the key derivation algorithms and, for the object format,
TPM2B_PUBLIC/TPM2B_PRIVATE in ‘Part 2: Structures’.

much more effectively against dictionary or brute-force
attacks. The TPM can be configured to keep track of
the failed passphrase authorization attempts and limit the
amount or rate of authorization attempts. For example,
Windows limits the authorization rate to one try every ten
minutes once 32 failed attempts have been made [30]. This
significantly limits the power of dictionary or brute-force
attacks and even enables the use of lower entropy PINs
to protect a TPM object.

2.1.6. Applications. A significant application of TPMs
is hardware-aided key management. The tpm2-pkcs11
project [46], for example, exposes the TPM’s functionality
as a PKCS #11 interface, which is a standardized API to
access cryptographic services like smartcards [40]. With
tpm2-pkcs11 the TPM can be used to, e.g., hold and
manage an SSH key protected with anti-hammering and
bound to the system’s TPM. Similarly, Microsoft uses the
TPM as a hardware backend for their Platform Crypto
Provider API in Windows [31]. Additionally, Windows
Hello uses a device-unique asymmetric key-pair protected
to authenticate a device with the identity provider (Win-
dows). This key is sealed by and bound to the TPM of
the device, as well as protected by PIN that authenticates
the user towards the device [31]. Another prominent use
case for TPMs is Full Disk Encryption (FDE), which we
discuss at length in the next Section.

2.2. Full Disk Encryption

Full Disk Encryption (FDE) protects the confiden-
tiality and integrity of data-at-rest of a computer, i.e.,
the contents of the computer’s disks. This includes the
computer’s operating system, which means that the disk’s
encryption keys need to be available to the boot loader
before it can load the operating system. One approach
asks the user to enter a passphrase in a pre-boot envi-
ronment and derive a key from this passphrase. However,
to support changing the passphrase and allow multiple
decryption methods, FDE tools like BitLocker or LUKS
do not directly seal the key encrypting the data-at-rest,
but store multiple encrypted copies of this key alongside
the data [11], [36]. The respective key-encryption keys for
these encrypted copies represent a method of decrypting
the disk, e.g., a recovery key stored safely out-of-band,
a passphrase, or a TPM-based decryption method. For a
TPM-based decryption method, the FDE tools seal the
key-encryption key with the TPM and protect it using the
TPM’s authentication mechanisms.

2.2.1. TPM-only strategy. Here, the sealed key-
encryption key is protected solely by a PCR policy (2.1.4).
The PCR values necessary to unseal the key reflect a boot
with a trusted firmware and boot loader configuration. If
any part of the boot process is altered, e.g., by a UEFI
Root- or BootKit, the PCR values reveal this change to the
TPM, and the (possibly compromised) boot loader cannot
unseal the key-encryption key. On the other hand, if the
key can be unsealed – meaning the PCR values indicate
a boot with valid and trusted firmware – the operating
system’s security measures enforce access policies to the
disk’s content and data in use, including the unsealed key.
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A notable distinction of this approach is its trans-
parency toward to user. Although no interaction is required
in the pre-boot environment, even an attacker with phys-
ical access cannot access the data-at-rest off the disks.
However, a downside of TPM-only strategies for FDE is
that they offer no additional security if the TPM protection
can be broken, e.g., by a sniffing attack (3.2).

2.2.2. TPM and PIN strategy. A strategy that offers
more protection than the TPM-only strategy against, e.g.,
sniffing attacks, is to include a PIN or passphrase. The
TPM’s anti-hammering features (2.1.5) compensate even
the use of a lower-entropy PIN compared to a (TPM-
less) passphrase-only strategy that can only protect against
brute-forcing through a strong secret. If, on the other hand,
an attacker gains access to the PIN or passphrase, the
PCR policy still ensures that the key can only be accessed
by the trusted boot loader running alongside the trusted
firmware, leaving other (OS-level) protection mechanisms
intact.

2.3. Microsoft BitLocker

BitLocker is a full-volume encryption feature by Mi-
crosoft integrated into Windows and available since Win-
dows Vista. BitLocker aims to protect the confidentiality
and integrity of data-at-rest, i.e., when the computer is
powered off or in hibernate, from unauthorized access.

BitLocker Drive Encryption is a data protec-
tion feature that integrates with the operating
system and addresses the threats of data theft
or exposure from lost, stolen, or inappropriately
decommissioned computers. BitLocker provides
the most protection when used with a Trusted
Platform Module [...]. [29]

On Windows 11, BitLocker is enabled by default on
systems with an enabled TPM and when a Microsoft
Account is used during setup [51].
In the Windows runtime, BitLocker’s deep integration
into Windows makes the encryption and decryption of
data completely transparent to user applications. During
boot, BitLocker will provide an early (unencrypted) boot
component handling the decryption of the remaining disk.

Figure 1. Available protector types for Microsoft BitLocker on Win-
dows 11, as displayed by ‘manage-bde’. TPM-related protectors are
highlighted.

2.3.1. Key management. All data on disk is encrypted
using the Full Volume Encryption Key (FVEK). The

FVEK is stored encrypted by the Volume Master Key
(VMK) in an unencrypted portion of the volume. The
VMK is stored encrypted by several so-called (key) pro-
tectors that can be seen in Figure 1, one of which is, by
default, the numeric recovery key a user is requested to
print out during setup. The encrypted copies of the VMK
– by default, a TPM-protected VMK and a recovery key-
protected VMK – are stored in an unencrypted portion of
the BitLocker-protected volume. They can be managed
on Windows through a Microsoft-provided PowerShell
tool (‘manage-bde‘) and Linux with the third-party tool
Dislocker [8]. Dislocker is furthermore able to mount a
BitLocker-encrypted volume, given an unencrypted VMK.

2.3.2. TPM-based protectors. Besides protector modes
like a passphrase or USB key, BitLocker provides mul-
tiple protectors facilitating a TPM. In fact, BitLocker,
by default, uses the TPM’s boot integrity measurements
exclusively to ensure that an only untampered BitLocker
runtime can access the TPM-protected VMK.
During setup, BitLocker takes the VMK and seals it with
the current TPM state represented by the PCR register
values 0, 2, 4, and 11. It then stores a handle to this sealed
TPM object in the volume’s unencrypted BitLocker header
(as explained in more detail in 5.2). After setup and during
each boot, BitLocker relies on the TPM to unseal (2.1.3)
the VMK. However, the TPM will only do so if the PCR
register values match those saved in secure storage and
defined during the BitLocker setup.
This makes the TPM(-only) protector entirely transparent
for the user during boot, as it requires no additional user
interaction when the PCRs are in the expected state. If
not, BitLocker will fall back on the recovery protector. In
order to decrypt it, it will prompt the user to enter the
recovery key.

2.4. AMD Secure Processor

The AMD Secure Processor (AMD-SP) is a dedicated
security co-processor part of all recent AMD Systems-
on-a-chip (SoCs), including the Ryzen CPUs. Since its
introduction in 2013, the AMD-SP (formerly known as
Platform Security Processor (PSP)) has acted as the Root
of Trust (RoT) of the SoC [28]. Its responsibilities on
the Ryzen platform include the early SoC initialization,
starting and initializing the secure boot chain, providing
a TEE, and hosting the fTPM application [4], [12], [19].

2.4.1. Early Boot. The AMD-SP boots before the main
X86 cores of the AMD SoC [13]. As illustrated in Figure
2, the first boot stage to run on the AMD-SP is an
immutable Read-Only Memory (ROM) boot loader. After
some minimal system initialization, the ROM boot loader
loads the AMD Root Key (ARK) from the BIOS flash
chip and verifies the key by comparing its SHA256 digest
to a known value that is part of the AMD-SP’s immutable
ROM [14]. Once verified, the AMD-SP loads its next
boot stage, the so-called off-chip boot loader, from the
BIOS flash chip and verifies it using the ARK. Finally,
the off-chip boot loader initializes various components of
the SoC and executes other system initialization routines
like DRAM training.
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� � � ROM Boot Loader

� � �AMD Root Key
(ARK)

� � �Off-Chip Boot
Loader

SPI Flash

AMD-SP Compare

� � � ARK

Load & verify

� � � � ��Off-Chip Boot Loader

� � �UEFI Firmware

Load

� � � � ��Secure OS

� � �Secure OS & Apps

� � � ���fTPM App � � �

X86 UEFI Firmware Boot

Load & verify Load & verify � � �

Figure 2. Early boot of a modern AMD CPU. A key denotes a public key, a pound sign a hash, and a lock a signed element.

After the system initialization, the AMD-SP loads the
initial boot firmware into X86 memory and starts the
X86 cores [12]. Once the X86 cores are running, the
off-chip boot loader is replaced with a microkernel. This
microkernel acts as a TEE for, among other applications,
the fTPM implementation.

2.4.2. Firmware. Besides the ROM boot loader, all
firmware executed on the AMD-SP is loaded from BIOS
flash. Although the general format is standardized by
the Unified Extensible Firmware Interface (UEFI) volume
standard, the AMD-SP’s code is stored in a proprietary
file system. The open-source tool PSPTool [49] aims to
parse and modify these firmware file systems. It has been
used by Buhren et al.’s security-related publications about
AMD processors [12], [14], [16].

2.4.3. Cryptographic Co-Processor (CCP). The
AMD-SP features a dedicated hardware component,
the so-called Crypto Co-Processor (CCP), that allows
offloading various cryptographic operations and is
available to both the AMD-SP and the X86 CPU.
Although not officially documented by AMD, the CCP
Linux driver gives an insight into its functionality [1].
The CCP features a local memory space commonly
called the Local Storage Buffer (LSB), which can hold
keys or other data for cryptographic operations.

2.4.4. Attacks. In [12], Buhren et Eichner present their
emulation efforts of the PSP and disclose a critical vul-
nerability in the ROM boot loader of supposedly all Zen 1
and Zen Plus CPUs. A stack-based buffer overflow caused
by user-provided data from the Serial Peripheral Interface
(SPI) flash yields privileged code execution in the ROM
Boot Loader (as seen in Figure 2). Unfortunately, since the
vulnerability lies in the on-chip ROM of the PSP, AMD
cannot issue any fix for this vulnerability.

However, in this paper, we use a voltage fault injection
attack to gain code execution on the AMD-SP of the newer
Zen 2 and Zen 3 CPU generations as introduced by Buhren
et al. in [14]. This attack leverages the Serial Voltage Iden-
tification Interface 2.0 (SVI2) bus, allowing the AMD SoC
to update its supply voltages dynamically. By injecting
packets onto this bus, an attacker causes a short drop in
the AMD-SP’s supply voltage and induces a fault in the
AMD-SP. With a carefully timed fault injection, Buhren
et al cause the Compare operation illustrated in Figure
2 to accept a modified ARK previously placed on the

BIOS flash chip. With PSPTool’s capabilities to replace
and resign various AMD-SP firmware components, this
fault injection attack can be used to gain code execution
in various stages of the AMD-SP’s runtime.

3. Related Work

3.1. TPM Attacks

3.1.1. Side-channel attacks against fTPMs and
dTPMs. The most recent academic attack on TPMs is
[37]. Moghimi et al. perform a black-box timing analysis
of TPM 2.0 devices and find secret-dependent execution
times during signature generation. These timing leakages
are discovered on both an Intel fTPM and a dTPM by
STMicroelectronics.
Both Intel and STMicroelectronics have released firmware
updates addressing the vulnerabilities [52].

3.1.2. Power management attacks against the TPM
2.0 specification and tboot. In [22], two sorts of TPM
attacks regarding power management are reported where
Han et al. find a way to reset and forge the TPM’s
PCRs values. One vulnerability targets a grey area design
flaw in the TPM 2.0 specification. The other exploits
an implementation flaw in the most popular measured
launch environment used with Intel’s Trusted Execution
Technology (TXT), ‘tboot‘.
While the authors provided a patch to mitigate the latter,
they contacted and reported their findings of the former
to Intel, Dell, Gigabyte, and Asus.

3.1.3. AMD fTPM trustlet code execution attack.
In an earlier public disclosure of AMD’s fTPM security
[19], Cohen finds a stack-based buffer overflow in the
fTPM trustlet running on the PSP. The vulnerability is
exploitable through user-controlled data in a TPM 2.0
call and allows full control of the program counter. By
applying additional exploit techniques like return-oriented
programming, this vulnerabilty can make it possible to
break the fTPM’s security guarantees.
AMD issued firmware updates to mitigate the vulnerabil-
ity [2].

3.1.4. LPC sniffing attacks against dTPMs. Even
though dTPMs are tamper-resistant devices, the LPC bus
connecting it to the main CPU is not. In [50], Winter et
Dietrich show that passive attacks against dTPMs’s bus
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communication can be mounted with reasonably inexpen-
sive equipment. Moreover, active attacks allow the authors
to circumvent any security mechanism provided by the
TPM, e.g., the chain of trust.

3.2. BitLocker Attacks

Two of these attacks remain problematic for BitLocker
until today:

1) Microsoft recommends defeating any power
management-based attacks (3.1.2) by “disabl[ing]
Standby power management, and shut[ing] down or
hibernat[ing] the device before it leaves the control
of an authorized user” [30].

2) To protect against any LPC sniffing attacks against
dTPMs (3.1.4), Microsoft advises using a TPM with
PIN protector instead of a purely PCR-based TPM
protector [30].

3.2.1. Cold boot attack against RAM. Cold boot attacks
are a physical side-channel attack in which an attacker
performs a memory dump of the RAM by performing a
hard reset of the target machine. They rely on the data
remanence property of DRAM and SRAM that allows re-
trieving memory contents seconds to minutes after power
off. Since BitLocker stores the essential key material in
memory, this attack can be mounted regardless of the used
BitLocker protectors.
Full memory encryption, as implemented by AMD [3] and
proposed by Intel [25], can potentially mitigate cold boot
attacks.

3.2.2. Drive-by DMA attacks. In the past, BitLocker was
a popular target for Direct Memory Access (DMA) attacks
using FireWire [10]. As it allows an attacker to retrieve
BitLocker keys directly from memory, its nature is similar
to 3.2.1 but with less complex hardware requirements.
Such attacks are still relevant [43] but actively mitigated
by leveraging the system IOMMU to implement kernel
DMA protection [32].

3.2.3. Dictionary attacks. Decrypting the BitLocker
VMK was optimized for GPUs in [5]. However, cracking
it in such a fashion remains a costly and time-consuming
task.

4. fTPM Attack

In this section, we present our attack on AMD’s pro-
prietary fTPM, which allows us to decrypt sealed TPM
objects regardless of their authorization policy (2.1.3).

To carry out our attack, we execute a small payload
that leaks a chip-unique secret from the CPU (4.3). This
secret is used to derive the encryption and signature keys
for the fTPM’s non-volatile data, which is stored on the
BIOS flash chip (4.2). As a result, we now have the ability
to decrypt or modify the fTPM’s non-volatile state, which
we use to get access to the storage keys of sealed TPM
objects (4.4).

�Attacker Target Motherboard�

AMD CPU
Power 

SVI2 Bus 

BIOS 
SPI Flash 

SPI
Programmer 

Logic  
Analyzer 

μController 

AMD-SP

Power Strip 

Figure 3. Physical connections necessary for the attack

Hardware Access. In order to analyze and attack AMD’s
fTPMs, we use the voltage fault injection attack presented
by Buhren et al. [14]. This attack (2.4.4) allows us to gain
code execution during various stages of the AMD-SP’s
firmware, including the fTPM application (2.4.1). The
attack requires access to the motherboard of the target
system (4.1), particularly its SPI bus and voltage regula-
tors. After leaking a CPU’s chip-unique secret, no more
glitching is required. To attack this CPU, we now merely
need access to the BIOS flash, which can simply be read
by accessing the motherboard’s SPI bus.

Older CPUs. Our attack targets AMD Ryzen CPUs of
the microarchitecture generations Zen 2 & 3, which use
a common fTPM implementation. The older Zen (1) and
Zen + CPUs use a different fTPM implementation and,
particularly a different non-volatile storage format. If an
attacker reverse engineers this storage format and its key-
derivation algorithm, the same attack approach does apply.
Since there are code-execution attacks for these CPUs that
do not need fault-injection whatsoever (2.4.4), they should
be considered even more vulnerable.

4.1. Voltage Fault Injection Attack

Recall the AMD-SP’s boot-process (2.4): An im-
mutable ROM bootloader loads and verifies the AMD
Root Key (ARK), which is used to verify all further
firmware components, including the off-chip bootloader
that is executed after the ROM bootloader. Buhren et
al.’s voltage fault injection attack causes the AMD-SP to
accept an invalid ARK and thus enables an attacker to
replace and resign various firmware components on AMD
Epyc CPUs. In this section, we introduce details about this
attack and highlight changes that were necessary to apply
the attack to Ryzen CPUs and laptops.

4.1.1. Hardware Setup. To leverage the AMD-SP’s sus-
ceptibility towards voltage fault injection, an assortment
of readily available hardware is required:

SPI Programmer In order to read and write the BIOS
flash chip, an SPI flash programmer is needed.

Attack μController A small microcontroller board in-
jects the voltage fault and generates the fault injection
trigger. As described by Buhren et al. [14], a driver IC

1133



Description Cost in USD
Teensy 4.0 Development Board ∼ 20$
SPI flash programmer ∼ 15$
Logic Analyzer ∼ 15$
Driver IC and additional resistors ∼ 5$
Flash chip test clip ∼ 5$
Test probes with spring-loaded pins ∼ 120$
Controllable Power Relay ∼ 15$
Total ∼ 195$

TABLE 1. TOTAL HARDWARE COSTS FOR THE ATTACK AT TIME OF

WRITING

Figure 4. Attack setup on a Lenovo Ideapad 5 Pro-16ACH6

and some additional resistors aid the microcontroller
with its SVI2 bus injection.

Reset Method Since the attack also requires frequent
restarts of the device under attack, the microcontroller
needs to be able to reset the target. In the case of
a desktop motherboard, the original glitch attack’s
method using the ATX case header’s reset pin can
be used [14]. For laptops, which generally do not
expose an ATX case header, a relay can be used to
control the laptop’s power supply while disconnecting
any batteries.

Logic Analyzer Buhren et al. use the SPI bus to extract
data from the AMD-SP [14]. To capture this data, a
logic analyzer is also connected to the SPI bus and
records the communication.

Figure 3 illustrates all necessary connections to the target
motherboard.

For the additional connections to the motherboard’s
SVI2 bus, we used test probes with spring-loaded tips.
With these, we could reliably connect our injection hard-
ware without soldering, even to adjacent pins of the TQFN
packages used by all target Voltage Regulators (VRs) that
we attacked.
The final attack setup can be seen in Figure 4. At the time
of writing, the total hardware cost amounts to under 200
USD, more than half of which is spent on the test probes
(Table 1).

4.1.2. Gaining Code Execution. Once the fault injection
hardware is connected, the attack by Buhren et al. consists
of a manual parameter determination phase and a brute-
force search for a final delay parameter [14]. The first
step requires around 30 minutes of manual attention at
the moment, we believe it can be automated, as algorithm-

like descriptions of the parameter determination process
can already be found in the attack’s supplementary code
repository [14], [15]. The attack’s second phase consists
of a loop of repeated attack attempts to search for the
last to-be-determined parameter and execute the attack’s
payload.

4.1.3. Payload creation. Our payloads consist of a
short ARMv7a assembly section (the AMD-SP’s architec-
ture [28]) to bootstrap our C-code payload. The neces-
sary hardware details, e.g., the MMIO interfaces of the
AMD-SP’s SPI controller or the CCP (2.4.3), can be found
in Buhren et al.’s supplementary repository [15]. In order
to finally gain code execution, we create our own RSA
key pair and replace the ARK on the BIOS flash chip with
our key. We then replace the off-chip boot loader on the
BIOS flash chip and resign it with our ARK replacement
key. Once we successfully inject a fault and the AMD-SP
accepts our ARK, it will load and execute the modified
off-chip boot loader.

To make cryptographically consistent changes to the
AMD-SP’s file system, we rewrote parts of the open-
source tool PSPTool [49] that check and re-create sig-
natures when a key or other firmware file is replaced.
Our modifications to PSPTool have since been upstreamed
to the current version of the tool [49]. In addition to
executing a payload instead of the off-chip boot loader, we
can also patch existing firmware components, resign the
image, and boot the whole AMD SoC with the modified
firmware.

4.2. Non-Volatile Storage

The non-volatile (NV) state of AMD’s fTPM is stored
on the motherboard’s BIOS flash chip. To protect against
an attacker with read or write capabilities to the BIOS
flash chip, the confidentiality and integrity of the NV state
are cryptographically protected. We reverse-engineered
the data structures of these files, as well as the storage
and integrity key derivation algorithms for Ryzen CPUs
of the Zen 2 and Zen 3 microarchitecture generations2.

The fTPM’s non-volatile state can be found in a file
stored alongside the AMD-SP’s firmware on the BIOS
flash chip. PSPTool labels this file NV_DATA. Although
the NV_DATA file’s sensitive data is encrypted, its meta-
data and structure can be understood without access to
the encryption keys. NV_DATA files are divided into two
64KiB sections featuring append-only data structures (left
side of Figure 5). Once both sections are filled, the older
of the two sections is overwritten and it is ensured that
the new file contains all the data necessary for the fTPM.
Each section consists of a header and multiple entries,
each of which is associated with a context that indicates
the entry’s usage. Furthermore, the entries of each context
are ordered by an increasing sequence number.

Each entry consists of a variably sized body encrypted
using AES128 in counter mode. The entry’s body can
be subdivided into up to seven variably sized fields. The
integrity of each entry is protected by an HMAC-SHA256
MAC over the encrypted body, the IV for the encryption
cipher, and the unencrypted field-length specification (see

2. This storage format differs for Zen 1/+-based systems.
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header

entry (ctx: 1, seq: 0)

entry (ctx: 1, seq: 1)

...

entry (ctx: 3, seq: 0)

section_mac

entry (ctx: 2, seq: 4)

...

entry (ctx: 3, seq: 1)

section_mac

entry header
(size, ctx_id, seq_id)

entry_mac

aes_iv

field_specs

AES_CTR(fields) 

Figure 5. Format of an NV section (left) and entry (right)

right side of Figure 5). In addition to this Encrypt-then-
MAC protection of each entry, the section data is protected
by occasional HMAC-SHA256 message authentication
codes (MACs) over the whole section contents up to the
latest entry (left side of Figure 5). A tool for parsing (and
decrypting) this NV storage format is presented in Section
4.3.2.

4.2.1. NV storage key derivations. To reverse-engineer
the key derivation process for both the storage (AES)
key and the integrity (HMAC) key, we used the ability
to patch and replace arbitrary firmware components of
the AMD-SP (4.1). The fTPM application runs as an
application in the SecureOS microkernel (2.4.1). Another
application, labeled DRIVER_ENTRIES by the PSP-
Tool, implements drivers for device-specific functionality,
like the CCP or SPI bus. We statically analyzed the
DRIVER_ENTRIES binary and created a modified ver-
sion that logs every cryptographic operation, including its
inputs and outputs (see Figure 6), to the AMD-SP’s SPI
bus.

The storage and integrity keys are derived from a
128 bit secret unique to each CPU. This chip-unique
secret is held by the CCP of the AMD-SP. It is present
at address zero of the LSB (2.4.3). Across all devices we
tested, the derivation process (illustrated in Figure 6) was
consistent:

1) The secret is used as key in an AES128 decrypt
operation with a constant as ciphertext.

2) From the AES operation’s output, two 256 bit values
are derived using a NIST specified key derivation
function (KDF)3, where “AES key for wrapping data”
and “HMAC key for wrapping data” are used as the
label inputs.

3) Into each of these values, the signing key of the fTPM
application is mixed. This is done by computing
the SHA256 digest of the RSA key’s modulus and
calculating the HMAC-SHA256 of this digest with
the secret as a key.

3. KDF in counter mode with HMAC-SHA256 as psoudorandom
function and an empty context, specified in NIST’s SP 800-108 [18].

(1) AES128 
decrypt

(2) KDF3

(3) SHA256 
HMAC

(2) KDF3

(3) SHA256 
HMAC

(4) SHA256 
HMAC

(4) SHA256 
HMAC

(5) 
AES key

(5)  
HMAC key

chip-unique
secret �c��k�

�seed�

�key� �key�

�key� �key�

�context��context�

constant 
�0x982f8a42...

"HMAC key for
wrapping data!"

"AES key for
wrapping data!"

fTPM app
key modulus

�m�

fTPM app
application ID

�m�

Figure 6. Key derivation used for the NV data keys

4) Similarly, the id under which the fTPM application is
run in the SecureOS is mixed in. The resulting values
are the HMAC-SHA256 of the 128 bit id, used as
message, and the respective secrets, as keys.

5) Finally, the first value is truncated to its first 128 bits
and used as the AES storage key, while the full
256 bits of the second value are used as the HMAC
integrity key.

4.3. Secret Extraction

We extracted the output of each step of the key
derivation process by booting the system with a patched
DRIVER_ENTRIES binary and analyzing the traced cryp-
tographic operations. However, this entails the challenge
of leaving the boot functionality intact.

In order to remove the need to fully boot the system
and to make our attack work with other versions of the
DRIVER_ENTIRES binary, we built a payload (4.1.3)
that directly computes the output of step (1) of the key
derivation process and writes the result to the SPI bus.
Then, using the fault injection attack, we can execute the
payload in place of the off-chip boot loader (4.1) and,
with the logic analyzer, extract the seed value (underlined
in Figure 6) from the SPI bus.

This extracted seed is all that is necessary to decrypt a
Zen 2 or Zen 3-based fTPM’s internal state from a BIOS
image. However, we additionally provide the means to
leak the unmodified chip-unique secret from pre-Zen 3
CPUs:

4.3.1. Extracting the chip-unique secret. The chip-
unique secret (underlined in Figure 6) used in the fTPM’s
key derivation is contained in a read-protected area of the
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Figure 7. Our LSB extraction technique illustrated

CCP (2.4.3). This is presumably meant to add a layer of
protection by preventing the secret from being extracted
from the LSB. But, due to an oversight in the CCP’s
interface design, we are able to extract the entire contents
of the LSB for Zen 1, Zen +, and Zen 2 CPUs, including
read-protected areas. This extraction is possible due to the
allowed use of unaligned key addresses in AES crypto
operations.

Usually, the LSB is accessed in multiples of 16 byte
regions, so-called slots, but the CCP allows AES opera-
tions with arbitrarily aligned keys. In particular, the CCP
allows us to execute an AES128 operation with a key that
is contained partially in a read-protected and partially in
an unprotected slot. We use this to execute an AES128
encrypt operation with a key of which 120 bits (15 bytes)
are known, and only 8 bits (1 byte) are unknown. Fur-
thermore, we can choose the operation’s input and have
access to its output. This enables us to brute-force the
unknown byte by comparing the AES operation’s output
to the 256 possible outputs that an AES operation with
the given input and possible key values can have (see
Figure 7). By shifting the key-window one byte at a time
and repeating the single-byte brute-force attack, we can
extract the entire read-protected slot.

On Zen 3 CPUs, AES operations with an unaligned
key result in an error, foiling this extraction method for
AMD’s latest generation Ryzen CPUs. Further inquiries
into the CCP interface did not yield similar vulnerabilities
for Zen 3. Nevertheless, since the ciphertext for operation
(1) of the key-derivation algorithm (Figure 6) is constant,
leaking the output of this operation, as described in Sec-
tion 4.3, is sufficient to achieve the same goal on Zen 3
CPUs.

4.3.2. Tooling. We included the payloads that implement
both methods of extracting key derivation secrets in the
paper’s supplementary code repository [27]. Additionally,
to parse and decrypt the fTPM’s NV storage, we de-
veloped the Python tool amd-nv-tool, whose code we
also published alongside the paper. amd-nv-tool parses the
unencrypted structure and metadata of the NV_DATA file,
derives the storage and integrity keys, and finally outputs
the NV storage’s contents in a JSON representation.

size outerHMAC

size symmetric IV

size

size sensitiveType authValue

seedValue

sensitive

ou
te

rH
M

A
C

sensitiveArea (encrypted)

Figure 8. Format of TPM2B_PRIVATE object

4.4. TPM Object Decryption

At this point, we have an attack primitive to extract
a chip-unique secret for a CPU and decrypt the fTPM’s
non-volatile storage with this secret. One application
of this decrypted TPM state is to decrypt sealed TPM
objects (2.1.3). Externally stored (sealed) TPM objects
consist of a public and a private part. The public part
communicates metadata about the object, e.g., the object
authorization policy, and uniquely identifies the object
(TPM2B_PUBLIC in “Part 2: Structures” of the TPM
specification [48]). No part of this public part is encrypted
or its integrity protected.

In contrast, the object’s private portion is protected
with an encrypt-then-MAC approach involving a symmet-
ric and an HMAC key (see Figure 8). The encrypted
part of the object consists of structural metadata, an au-
thentication value, a seed, and the object’s sensitive data.
The authentication value is used for PIN or passphrase
authentication, while the seed adds entropy to the object
and can be used to seal child objects of this object. In the
sensitive data part, we find the sealed data or, in the case
that our object is a key, its the symmetric or private key.

4.4.1. Deriving the sealing keys. As described in Section
“23 Protected Storage Hierarchy” of “Part 1: Architecture”
of the TPM specification [48], TPM objects are organized
in a tree of objects, where each object is ‘sealed’ by
its parent. This is realized by deriving the sealing keys
of an object from its public portion together with the
parent’s seed value (see “22 Protected Storage” of “Part
1: Architecture” of the TPM specification [48]). The root,
or primary, objects of these trees can be deterministically
generated from a persistent seed value but are, per default,
cached in the TPM’s non-volatile storage [9].

We used this caching to our advantage and imple-
mented an unsealing tool that searches all consecutive
256 bit values in the decrypted non-volatile fTPM state
for the correct primary seed. To check whether a possible
seed value is the desired primary seed, our tool derives the
corresponding HMAC key and tries to verify the HMAC
of the object’s private portion. Once this verification suc-
ceeds, we use this primary seed to derive the symmetric
key and decrypt the object’s private part.
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System CPU
Lenovo Ideapad 5 Pro 16ACH6 Ryzen 5600H (Zen 3)
Asrock 520M-HDV Ryzen 5600X (Zen 3)
Asrock 520M-HDV Ryzen 3600 (Zen 2)

TABLE 2. TARGETS VERIFIED TO BE VULNERABLE TO OUR FTPM
ATTACK

This means, with access to the decrypted non-volatile
fTPM state, we are able to decrypt any TPM object
whose primary key is cached on the fTPM, regardless
of the object’s authentication policies. We implemented
the key derivation and decryption detailed above in our
amd_ftpm2_unseal tool, published alongside this pa-
per.

4.5. Results

To summarize, we consider an attacker in possession
of a victim device, e.g., a laptop, wants to carry out the
attack described in this paper to attack any fTPM-based
security measure. The necessary steps they will have to
mount are as follows:

1) Backup the BIOS flash image using an SPI flash
programmer

2) Connect the fault injection hardware and determine
the attack parameters (4.1)

3) Compile & deploy the payload extracting the key
derivation secret (4.3)

4) Start the logic analyzer to capture the extracted key
derivation secrets via SPI

5) Start the attack cycle on the target machine until the
payload was executed successfully

6) Parse & decrypt the NVRAM using the BIOS ROM
backup and payload output with amd-nv-tool

7) Extract and decrypt TPM objects protected by this
fTPM with amd ftpm unseal

Note that once the seed or chip-unique secret has been
extracted (steps 2 to 5), the attack can be re-mounted
quickly by reading the BIOS flash image, parsing the
contained NVRAM, and decrypting external TPM objects
(steps 1, 6, and 7). This process takes us about 15 minutes
on a standard laptop.

We successfully executed the attack end-to-end on the
hardware listed in Table 2. After having gained experience
with the attack, we are able to perform the full attack on a
new device within two to three hours. All necessary tools,
as well as sample intermediate data, are available in the
supplementary repository [27].

Furthermore, we were able mount the LSB secret
extraction (4.3) on Zen 1 and Zen + CPUs by using the
less complex ROM boot loader attack (2.4.4). A simplified
attack (without the need for voltage glitching) can, there-
fore, compromise Zen 1/+-based fTPMs, if an attacker
conducts the necessary reverse engineering efforts.

5. Case Study: BitLocker

To evaluate the severity of our fTPM attack on TPM-
based applications, we conducted a case study on the
implementation of BitLocker’s TPM-only and TPM and
PIN protectors (2.3). Since a TPM-only strategy does not
apply any other means of protection than the TPM, we

expect all such protection mechanisms to be broken by
our attack.

However, as shown in Figure 1, BitLocker provides
additional authentication factors which can be combined
with a TPM: PIN, i.e., a 4- to 20-digit numeric or al-
phanumeric passphrase, and StartupKey, storing part of the
encryption key on a USB flash drive. Since the StartupKey
protector, according to Microsoft documentation, does not
make any use of the TPM [33] but supposedly acts as
another layer of cryptographic protection, it does not apply
to our fTPM attacks and is not subject to our case study.

5.1. Threat Model

BitLocker “addresses the threats of data theft or expo-
sure from lost, stolen, or inappropriately decommissioned
computers” [29]. Since all these events regard the physical
state of the protectee’s device, BitLocker’s goal is to
secure data from an attacker with physical access to the
device. However, Microsoft differentiates two types of
(physical) attackers:

1) An opportunistic attacker “does not use de-
structive methods or sophisticated forensics hard-
ware/software” [...] “Physical access may be limited
by a form factor that does not expose buses and
memory.”

2) A targeted attacker has “plenty of time; this at-
tacker will open the case, will solder, and will use
sophisticated hardware or software.”

Our threat model considers a targeted attacker who
has gained prolonged access to the device, e.g., a thief
targeting a company laptop. This attack type is commonly
referred to as an Evil Maid attack. However, as we will
discuss in detail in Section 6.3.2, for Zen 1 and Zen +
systems, our attack may be suitable for an opportunistic
attacker as well.

5.2. TPM-only Protector

To apply our attack described in Section 4, we first
need to get ahold of the TPM objects that facilitate Bit-
Locker’s TPM protection. The Dislocker toolchain [8] can
parse the unencrypted headers and metadata of a BitLocker
volume and decrypt a volume given one of the volumes
VMKs. For a BitLocker volume protected by a TPM-only
protector, the metadata corresponding to that protector
consists of a single datum labeled “TPM-encoded”.
This datum contains the sealed TPM object containing a
VMK and the metadata required to fulfill the PCR policy
authentication of the object.

In detail, the datum contains the concatenation of the
TPM object’s private and public portion (4.4), to which
another data structure specifying the PCR policy is ap-
pended. As described in Section 4.4.1, with the decrypted
non-volatile fTPM state, our amd_ftpm2_unseal tool
can extract the wrapping keys for the sealed object and
decrypt its contents. The unsealed TPM object contains
another BitLocker datum, the last 256 bits of which are
the disk’s VMK. To verify our exploit, we mounted and
decrypted the BitLocker volume using the dislocker
toolchain’s dislocker-fuse command [8].
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5.3. TPM and PIN Protector

The TPM and PIN protector consists of multiple da-
tums in a volume’s BitLocker metadata. These include
datums used for key stretching – similar to those used
for a recovery password – in addition to a TPM encoded
datum like the one of the TPM-only protector. In contrast
to the TPM-only protector, the unsealed datum does not
directly contain the VMK, but an AES-CCM encrypted
datum.
Once the TPM protections have been circumvented, it
is still necessary to brute-force, or otherwise acquire,
the PIN. We assume that BitLocker uses this scheme
to provide reasonable protection even in case the TPM’s
security properties can be subverted:

For some systems, bypassing TPM-only may
require opening the case, and may require sol-
dering, but it could be done at a reasonable
cost. Bypassing a TPM with a PIN protector
would cost much more, and require brute forcing
the PIN. With a sophisticated enhanced PIN, it
could be nearly impossible. [30]

Although recommended by Microsoft for some scenar-
ios, we will discuss in 6.4.2 that it is not straightforward
to step up from the default TPM-only to a TPM and PIN
protector.

5.3.1. Brute-forcing the PIN. The PIN-based key deriva-
tion involves a 128 bit salt and 1 048 576 rounds of
SHA256, which limit the speed of a brute-force attack to
around 1 000 PINs/passwords per second on a GPU [5]. In
contrast, on a dTPM, the hardware-aided anti-hammering
mechanism limits the authorization rate to one attempt
every ten minutes [34].

time to brute-force
PIN/password min-entropy fTPM dTPM

4 digits 29 0.5 sec 3.5 days
10 digits 215 33 sec 7.3 mo

10 characters 221 34 min 41 yr
20 characters 236 2.1 yr 1.3 · 106 yr

TABLE 3. ESTIMATED BRUTE-FORCE TIMES BASED ON NIST’S

PASSWORD GUESSING ENTROPY [17]

As can be seen in Table 3, the additional security
provided by a numeric PIN – in case of a compromised
fTPM – is negligible, while a 4-digit PIN already defeats
a traditional evil maid attack if a dTPM is used. On the
other hand, a properly chosen passphrase can provide an
adequate level of security even with a compromised fTPM.

5.3.2. Alternative implementations. The naive approach
to a TPM and PIN protector is to only rely on the
TPM’s authentication mechanism to verify the PIN. As
detailed in Section 4.4, these authentication mechanisms
do not mean the PIN/passphrase are involved in the sealed
TPM-object’s encryption and therefore do not impose any
restrictions on our attack.

An FDE tool that does not implement a TPM and
PIN strategy with a defense-in-depth approach is the open-
source tool systemd-cryptenroll. The systemd-cryptenroll
tool is part of the widely adopted systemd project and acts
as a management tool for encrypted disks conforming to

the popular LUKS standard [44], [45]. Support for TPM
based protections has only been introduced recently and
includes a TPM-only and a TPM and PIN strategy [21],
[41]. Our analysis of the systemd-cryptenroll code shows
that a randomly generated 256 bit secret is directly sealed
by the TPM, protected either by a PCR policy only or
additionally a PIN. The so-called LUKS keyslot (analogous
to BitLocker’s VMK) is then encrypted with the base64-
encoded secret as passphrase.

Once the NV state is decrypted, the LUKS key is
directly accessible and no brute-forcing is necessary.

To mitigate this issue, we recommend including the
PIN in the passphrase protecting the LUKS keyslot. With
this approach, we can protect the disk and PIN with
the brute-force resistant key-derivation mechanism of the
LUKS keyslot, even if the TPM encoded secret was leaked
by an attack like the one described in this paper. We
proposed this approach to the maintainers of systemd-
cryptenroll.

5.4. Results

Our case study shows that TPM-only protection mech-
anisms for FDE are ineffective when the TPM’s internal
state can be extracted. In particular, we demonstrated
this with BitLocker’s TPM-only protector using our attack
against AMD’s fTPM. Furthermore, BitLocker’s TPM and
PIN protector retains the protection that a PIN-only strat-
egy would offer, which is basically negligible in the case
of a numeric PIN.

With a passphrase, however, the same level of secu-
rity that the passphrase-only protector offers is retained,
thanks to the additional layer of encryption applied to
the VMK before it is sealed by the TPM. This reveals a
need for careful consideration when implementing a TPM
and PIN strategy. On a vulnerable fTPM, such a strat-
egy without additional brute-force protection may be less
secure against a targeted attacker than a PIN/Passphrase-
only strategy with a similarly strong PIN or passphrase.

6. Discussion

In this section, we evaluate the feasibility and impact
of our attack, propose potential mitigations, and, in light
of publicly known TPM attacks, discuss important con-
siderations for the use of BitLocker with a TPM, as well
as the secure implementation of systems and applications
relying on a TPM in general.

Our attack model assumes that an attacker has pro-
longed physical access to the target system. Even though
these are strong prerequisites, they are well within the
threat model of typical applications using the TPM, e.g.,
Microsoft BitLocker, detailed in Section 5.1. For example,
a typical scenario is when an attacker has stolen a laptop
with valuable company secrets that is protected with Full
Disk Encryption (FDE).

6.1. Requirements

In order to mount the key extraction, the attacker needs
to be able to execute a custom payload on the AMD-SP.
Although we demonstrated the attack on newer Zen 2/3
systems, code execution on Zen (1)/+ systems can be
achieved with a simpler setup.
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6.1.1. Zen 2/3 (Glitch attack). As detailed in Section
4.1.1, the hardware required to carry out the attack is
readily available and amounts to under 200 USD.
While the attack requires manual examination of each
target motherboard, it has been adaptable to each target
we tested in a few hours of work. In addition, the use
of spring-loaded pins has further removed the need for
any soldering. These capabilities correspond to a targeted
attacker defined by BitLocker’s threat model (5.1).
Since the extracted secrets are chip-unique and immutable,
an attacker can mount the glitching task, e.g., before the
laptop reaches the end-user. Afterward, they only need
(software- or hardware-based) SPI flash reading capabili-
ties to mount the remaining attack.

6.1.2. Zen 1/+ (ROM attack). Due to an unpatchable
vulnerability in the ROM boot loader of Zen 1 and Zen
+ CPUs [12], a much simpler setup, with no voltage
glitching required, can be used to extract the keys (2.4.4).
Instead, the attack only requires write capabilities for the
BIOS flash chip. These can be achieved through either
physical access with an SPI flash programmer or, in
some cases, even through privileged software-only access.
Although the proprietary NV storage format for Zen 1 and
Zen + differs from the one we reverse-engineered, back-
porting ‘amd-nv-tool‘ would merely be diligence work.
The final attack would only involve opening the case and
attaching the SPI flash programmer. Thus, we argue that
this would lift the requirements of this attack to be suitable
even for an opportunistic attacker.

6.2. Capabilities

There are two common FDE strategies employing a
TPM an attacker could face. Depending on these strate-
gies, our attack yields different capabilities for the at-
tacker. Additionally, we discuss the capabilities an attacker
gains against other TPM applications using our attack.

Our attack demonstrates that FDE using a TPM-only
protector, i.e., a protector sealed with a PCR policy, can
be decrypted regardless of the FDE implementation, which
we verified by attacking Microsoft BitLocker (5.4).
The attack’s capabilities against an FDE secured by a TPM
and PIN protector rely heavily on the FDE implementa-
tion. In particular, the anti-hammering protections of the
fTPM can be circumvented by our attack. However, as
shown in our case study (5.3), a TPM and PIN protector
can be implemented such that the security of a PIN-only
strategy remains once the fTPM state is compromised.
This highlights the importance of BitLocker’s TPM and
PIN protector and emphasizes the importance of the used
PIN strength, which we will elaborate in Section 6.4.1.
We discuss general considerations regarding FDE imple-
mentations in Section 6.4.3.

In general, our attack gives an attacker access to the
complete internal state of the fTPM. Since any authoriza-
tion policy that specifies how and when a TPM object
can be used or accessed is ineffective (4.4), it allows
circumventing any security mechanism relying on the
fTPM. For example, an SSH private key protected by
a TPM (2.1.6) would be vulnerable to our fTPM state
compromise.

6.3. Mitigations

Stopping arbitrary code execution attacks on the
AMD-SP is the only way to mitigate our attack effectively.
Unfortunately, this is currently not possible, as outlined
in the following two Sections. Nevertheless, starting with
Section 6.3.3, we propose soft measures that can make it
harder to mount our attack.

6.3.1. Zen 2/3 (Glitch attack). Since our attack is based
on Buhren et al.’s voltage fault injection attack [14],
it is not easily mitigable for currently available CPUs.
Mitigations involve changes in the hardware of the SoC
or the ROM boot loader of the AMD-SP [14]. They can
therefore be expected at the earliest in the next microar-
chitecture generation. This is an essential difference to
attacks exploiting software vulnerabilities in the fTPM’s
code [19] or its execution environment [37]. Such attacks
can be (and have been [2], [52]) mitigated with updates
to the relevant software components.

A notable development in the realm of hardware-
based FI countermeasures is Intel’s introduction of dig-
ital detection circuitry into their Converged Security and
Manageability Engine (CSME) [38], [39], which is Intel’s
counterpart to the AMD-SP. The CSME acts as the TEE
for Intel’s fTPM implementation, called Platform Trust
Technology (PTT) [26]. With this approach, Intel preemp-
tively follows Buhren et al.’s mitigation recommendations.

6.3.2. Zen 1/+ (ROM attack). The ROM boot loader
vulnerability presented in [12] cannot be mitigated in
existing Zen 1/+ CPUs, as it lies in the read-only memory,
but has been mitigated since.

6.3.3. LSB secret extraction. On Zen 2 and below,
we extracted the chip-unique secrets of the CCP (2.4.3)
through unaligned AES operations (detailed in Section
4.3). These enabled us to derive the NV storage keys
offline. While this extraction method cannot be mitigated
on pre-Zen 3 CPUs, it has been mitigated in Zen 3
CPUs by disallowing the use of unaligned keys in AES
operations. However, since we can still perform the first
stage of the NV storage key derivation online, the measure
could not mitigate our attack whatsoever.

6.3.4. Limiting hardware access. Our attack requires
access to the SPI and SVI2 buses of the target system.
Therefore, hardware obfuscation techniques could impede
the attack, e.g., by hiding the relevant buses on the main-
board or making them otherwise physically inaccessible.
However, we believe that these techniques will not effec-
tively mitigate but only delay attacks. For example, if the
SVI2 was inaccessible, an attacker could directly interfere
with the mainboard’s passive power supply components.

6.3.5. Software obfuscation. In the same vein, AMD
could change the NV storage layout or its key derivation
algorithm, e.g., by changing its constant value (Figure
6). Such obfuscation attempts can be circumvented by
additional reverse engineering. In addition, on Zen 3, this
would potentially also require extracting another secret
(4.3). As there is no secret accessible to the AMD-SP’s
firmware that we cannot compromise through our attack,
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updated algorithms are not able to secretly generate, let
alone use, keys to restore protection of the non-volatile
data.

6.4. TPM Considerations

Both users and software and hardware developers can
apply various strategies to alleviate the consequences of
this attack or regain security for specific applications of a
TPM. We will discuss these in the following.

6.4.1. Using BitLocker protectors effectively. Our at-
tacks have shown that an fTPM cannot sufficiently protect
its internal state against firmware or physical attacks.
In such a scenario, a passphrase-only key protector of
reasonable length provides better security than a TPM-
only protector with a numeric PIN (5.3.1). This is in stark
contrast to Microsoft’s claim that “BitLocker provides
the most protection when used with a Trusted Platform
Module” [29] (see also in 2.3). In fact, of all available
protectors (seen in Figure 1), TPM-only is arguably the
weakest protection strategy.

However, one can make sense of Microsoft’s claim
differently: The TPM adds a layer of security when an-
other factor is used. Specifically, a TPM and PIN protector
is superior to a passphrase-only protection of the same
length and character set. For example, assume an attacker
has gained knowledge of the used BitLocker passphrase
through social engineering and has physical access to
the victim’s machine. The attacker will then be able to
boot up Windows and enter the correct PIN to get past
the Windows pre-boot prompt. However, even though the
BitLocker-protected volume is now unlocked, the attacker
faces the regular Windows login prompt. At the same time,
booting into an attacker-controlled system instead will not
enable them to unseal the VMK: Even though they have
obtained the correct PIN, changing the boot volume alters
the PCR registers – a change the TPM will detect. In
contrast, a passphrase-only protector would have enabled
him to use, e.g., Dislocker to decrypt the protector and
mount the volume.

6.4.2. Easing the setup of ‘TPM + PIN‘ protectors.
BitLocker’s TPM and PIN protector is currently disabled
by default. Users need to find the respective Group Pol-
icy settings (Computer Configuration → Administrative
Templates → Windows Components → BitLocker Drive
Encryption → Operating System Drives → Require Addi-
tional Authentication at Startup) before they can use these
protectors. Additionally, they need to use the command-
line tool ‘manage-bde’ to set them up [23]. Even worse,
Microsoft BitLocker only allows so-called enhanced PINs
(alphanumeric) with another Group Policy change (Com-
puter Configuration → Administrative Templates → Win-
dows Components → BitLocker Drive Encryption →
Operating System Drives → Allow enhanced PINs for
startup).

These advanced steps clearly show that Microsoft does
not expect or encourage private users to use TPM and PIN
protectors. For a non-technical user with high-security
requirements, e.g., a journalist, BitLocker’s default TPM-
only configuration gives a false sense of security regarding
their encrypted data-at-rest. While TPM-only protection

relying on dTPMs is vulnerable to sniffing (3.1.4), our pre-
sented attack amends this capability for firmware TPMs.

We believe that it would significantly benefit the secu-
rity of users if Microsoft provided a way to use TPM and
PIN in their default BitLocker setup flow. It would also be
thinkable to re-use or derive existing shared user secrets,
e.g., the Microsoft Hello PIN, for this matter. However,
TPM and PIN protection can be reduced to brute-forcing
the PIN when a vulnerable fTPM is used (5.3). Since a
non-technical user does not discriminate between discrete
and firmware TPMs, it would be advisable for Microsoft
BitLocker to suggest using an enhanced PIN when an
fTPM is used, and implement NIST’s password selection
rules [17]. Furthermore, we deem it reasonable for Mi-
crosoft to distinguish the confusing nomenclature of an
enhanced PIN from a numeric PIN by introducing a ded-
icated protector named TPM and passphrase, highlighting
the improved security level.

6.4.3. Implementing FDE with TPM and PIN securely.
Our case study shows that FDE implementations must
employ standalone anti-brute-force measures beyond the
sealed TPM object as BitLocker does (5.3.2). If the TPM
is compromised, this upholds the protector’s confidential-
ity to a degree a (non-TPM) PIN/password-only protector
can achieve. The security of such a method dramatically
depends on the length and complexity of the PIN or
password, so strong requirements regarding its length and
character set should be considered.

Effective authentication methods are often a trade-off
between usability and (cryptographic) strength. In contrast
to password and passphrase, the term Personal Iden-
tification Number (PIN) indicates weaker requirements
regarding its length and character set. For example, credit
card PINs often only consist of 4 numeric digits. The un-
derlying smart card’s lockout mechanism compensates for
this low-entropy authentication factor that is potentially
prone to brute-forcing attacks. The TPM’s anti-hammering
protection pursues a similar goal but is ineffective on
fTPMs compromised by our proposed attack.

Theoretically, a layer of encryption could be added
to the TPM specification: An object protected by a user
authentication policy could be encrypted internally not
only by a storage key derived from the parent object
but also with a key derived from the user authentication
string. However, this would break basic concepts of the
TPM specification, e.g., it would no longer be possible to
bind together a user authentication policy with another by
an ”or” clause. Additionally, the key derivation functions
might also prove too expensive for dTPMs.

6.4.4. Firmware vs. Discrete TPM. Consider a TPM ap-
plication relying exclusively on the TPM to seal a shared
secret (like BitLocker’s default configuration): Since our
attack is arguably harder to mount than a dTPM bus
sniffing attack, fTPMs can be considered more secure
than a dTPM in this case. Apart from this particular case,
dTPMs should be chosen over fTPMs for two reasons:
Firstly, since dTPMs – to the best of our knowledge – have
not been subject to full state compromises, they protect
sensitive data that should never leave the TPM, e.g., pri-
vate keys. Secondly, dTPMs uphold the protection of, e.g.,
the sealed BitLocker VMK protected by TPM and PIN,
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through the anti-hammering protection (see 5.3.1). This
allows the literal use of low-entropy PINs (compare with
Table 3). At the same time, dTPMs make it paramount to
use second factors, as they otherwise disclose replayable
secrets through their exposed communication interface
(as seen with TPM-only BitLocker sniffing attacks). This
significantly limits the practical usage of dTPM for server
Full Disk Encryption (FDE), as every reboot, e.g., for
scheduled security updates, would require human inter-
vention.

7. Conclusion

AMD’s firmware TPMs of recent microarchitecture
generations are vulnerable to physical attacks such as
voltage fault injection. They enable an attacker to access
all assets secured by the TPM using low-cost, off-the-shelf
hardware. To the best of our knowledge, our work is the
first full TPM state compromise against a widely adopted
TPM implementation. This is a considerable advance com-
pared to previous attacks leveraging external communi-
cation to capture replayable secrets or sophisticated side
channels compromising select parts of the TPM’s internal
state. Our full state compromise gives the powerful ability
to defeat any TPM-based security: Applications relying
exclusively on the TPM are left entirely unprotected, while
those employing multiple layers of defense face the loss
of their TPM-based security layer.

Motivated by Windows 11’s push to use the TPM
for even more applications, we apply the vulnerability
to Microsoft BitLocker and show the first fTPM-based
attack against the popular Full Disk Encryption solution.
BitLocker’s default TPM-only strategy manages – without
any changes to the user experience – to swiftly step up
a user’s security in the face of a lost or stolen device.
However, as our work complements the established at-
tacks against dTPMs with an even more potent attack
against AMD fTPMs, a TPM-only configuration lulls a
non-technical user with high protection needs into a false
sense of security.

When attacked with our full state compromise, Bit-
Locker’s TPM and PIN protector, in contrast, retains a
security level according to the PIN’s resistance against
brute force. Nonetheless, we find fault that this feature
is deeply buried inside Microsoft’s Group Policy settings
and hidden from a non-technical user. Moreover, a tradi-
tional PIN, i.e., a short numeric secret, does not provide
even minuscule brute-force protection. Upgrading the se-
curity with so-called enhanced PINs – a euphemism for
a passphrase – requires similarly advanced configuration
changes.

Microsoft should empower their users to make an in-
formed choice regarding the protection level of their data-
at-rest: Users who fear a physical attacker with reasonable
resources should opt for a TPM and PIN configuration.
When BitLocker identifies that the underlying TPM is
an fTPM, users should be urged to turn their PIN into
a passphrase.

While TPMs are an essential tool to build secure
applications, protect and manage cryptographic material,
and anchor trust in the hardware of our physical devices,
awareness of the required security levels and the TPM
variant in use is essential. We hope that our contributions

regarding the security of TPMs in general and AMD’s
fTPMs in particular guide users and developers on this
journey.

Data Availability

We publish all code necessary to mount the attack
under [27]. The repository further includes several inter-
mediate results, e.g., flash memory dumps, to retrace the
attack process without possessing the target boards and
required hardware tools.
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