
smartFHE: Privacy-Preserving Smart Contracts from
Fully Homomorphic Encryption

Ravital Solomon
Sunscreen, USA

ravital@sunscreen.tech

Rick Weber
Sunscreen, USA

rick@sunscreen.tech

Ghada Almashaqbeh
University of Connecticut, USA

ghada@uconn.edu

Abstract—Despite the great potential and flexibility of smart
contract-enabled blockchains, building privacy-preserving
applications using these platforms remains an open question.
Existing solutions fall short since they ask end users to co-
ordinate and perform the computation off-chain themselves.
While such an approach reduces the burden of the miners
of the system, it largely limits the ability of lightweight users
to enjoy privacy since performing the actual computation on
their own and attesting to its correctness is expensive even
with state-of-the-art proof systems.

To address this limitation, we propose smartFHE, a
framework to support private smart contracts using fully
homomorphic encryption (FHE). To the best of our knowl-
edge, smartFHE is the first to use FHE in the blockchain
model; moreover, it is the first to support arbitrary privacy-
preserving applications for lightweight users under the
same computation-on-demand model pioneered by Ether-
eum. smartFHE does not overload the user since miners are
instead responsible for performing the private computation.
This is achieved by employing FHE so miners can compute
over encrypted data and account balances. Users are only re-
sponsible for proving well-formedness of their private inputs
using efficient zero-knowledge proof systems (ZKPs). We
formulate a notion for a privacy-preserving smart contract
(PPSC) scheme and show a concrete instantiation of our
smartFHE framework. We address challenges resulting from
using FHE in the blockchain setting—including concurrency
and dealing with leveled schemes. We also show how to
choose suitable FHE and ZKP schemes to instantiate our
framework, since naively choosing these will lead to poor
performance in practice. We formally prove correctness and
security of our construction. Finally, we conduct experiments
to evaluate its efficiency, including comparisons with a state-
of-the-art scheme and testing several private smart contract
applications. We have open-sourced our (highly optimized)
ZKP library, which could be of independent interest.

Index Terms—Blockchain model, private smart contracts,
fully homomorphic encryption, zero knowledge proofs

1. Introduction
Cryptocurrency can be traced back to (at least) 1983

when Chaum first proposed the concept of electronic cash
using blind signatures [25]. Extending Chaum’s design,
Bitcoin [60] removed the need for a trusted party and
introduced the notion of a public distributed ledger called
blockchain through which users could exchange currency
directly with one another. Unfortunately, Bitcoin provides

no privacy for the user as transaction records are fully
public on the blockchain [14]; thus, several initiatives
emerged to bring privacy to currency transfer [62], [65].

Smart contracts and privacy. In parallel, a very different
question about Bitcoin’s functionality was asked. Could
Bitcoin be extended to support arbitrary user-defined ap-
plications? The answer was yes but with major changes
to its UTXO-based design. Thus, Ethereum was born,
defining an account-based model and a Turing-complete
scripting language that permit users to deploy arbitrary
programs called smart contracts [70]. Although Ethereum
offers a highly expressive functionality, it provides no
privacy out of the box.

Over the last few years, several attempts have been
made to support private computation for a single user’s
inputs over a blockchain. Some constructions built upon
the paradigm used for private currency transfer—operating
directly on additively homomorphic encryptions with zero
knowledge proofs (ZKPs) to prove that inputs satisfy
certain conditions [22]. Unfortunately, additive homomor-
phisms enable only a limited set of applications with
input/output (I/O) privacy. Other constructions offload all
work to the end user to do offline (or off-chain) [19],
[68]. Users perform the intended computations on plain-
text data, encrypt inputs and outputs, and create a ZKP
certifying correctness of computation with respect to these
encryptions. Blockchain miners only verify correctness of
the ZKP. This is referred to as the ZKP-based approach
as it relies on the power of ZKPs to perform computations
with I/O privacy [8].

The ZKP-based approach is not suited to lightweight
users [8]. This is due to the fact that generating a proof
to certify computation correctness, for even simple com-
putations, is incredibly time and memory intensive even
with state-of-the-art constructions. For example, using
the highly optimized implementation of Zexe [19] with
a non-universal proof system [44], the user needs over
50 s to generate the proof showing correctness of off-
chain computation on 2 inputs. Furthermore, even if a
very efficient ZKP system is used, operating on private
inputs coming from different users (alternatively known
as operating on foreign data [67]) requires these users
to use a privacy-preserving function evaluation protocol
(e.g. multiparty computation [52]). This in turn requires
interaction and coordination between the users, along with
performing a distributed protocol to generate the com-
putation correctness proof (perhaps embedded inside the
private computation offline protocol).

309

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Ravital Solomon. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00027

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
27

Both industry and academia have become increasingly
focused on supporting lightweight users in the blockchain
setting. Reducing the user workload while computing over
her private inputs has led to considering fully homomor-
phic encryption (FHE) based approaches. Despite general
belief that FHE is quite inefficient, FHE has been used
to successfully support lightweight clients attempting to
retrieve relevant transactions [54], [57] (the latter, Spi-
ral [57], is deployed in practice [6]). Extending this line
of work, we ask if FHE might be used to support private
computation in the blockchain model for lightweight users.
We focus on building a privacy-preserving version of
Ethereum’s computing-on-demand model.

1.1. Our Contributions

We propose smartFHE, a framework for building smart
contracts that supports lightweight users. Operating di-
rectly on encrypted values has proven invaluable across
numerous applications [24], [33]. Using FHE, users could
supply encrypted inputs along with a simple ZKP showing
their well-formedness and that certain relations on the
plaintexts are satisfied. Miners check the proofs and per-
form the requested computations directly on the encrypted
inputs. No need for users to provide complex ZKPs attest-
ing to the correctness of the entire computation.

Combining FHE with blockchain represents a har-
monious union. Blockchain addresses the pain point of
verifying correctness of homomorphic computation. In
FHE, the evaluation party is different from the (encrypted)
input owner and there is no immediate way for the input
owner to validate correctness of the computation (without
repeating the entire computation). Although solutions exist
for this problem, the added cost can be prohibitive [39].
A blockchain offers a simpler solution through consensus;
the assumption that the majority of the mining power
is honest provides guarantees with regards to correct-
ness [50]. Moreover, a blockchain solves another problem
for computation outsourcing—namely, the need for an
always-available evaluation party. Miners perform paid
computations for users (as in Ethereum) which could be
the FHE computations needed in private smart contracts.

We take a foundational approach to realizing smart
contracts with I/O privacy employing FHE and ZKPs. To
the best of our knowledge, smartFHE is the first to use
FHE in the blockchain model; it is moreover the first
to support lightweight users in preserving input/output
privacy across arbitrary decentralized applications.
Although combining FHE with ZKPs to support private
computation appears natural, in the context of large
scale distributed systems like blockchain, this solution
introduces several challenges (including efficiency and
concurrency) that we address in our framework. We
elaborate on our contributions in what follows.

A notion for privacy-preserving smart contracts. We
define a notion for privacy-preserving smart contracts
(PPSCs) capturing the support of arbitrary computation
with I/O privacy. Furthermore, we extend existing
definitions of correctness and security [22], [65], in
terms of privacy/ledger indistinguishability and overdraft
safety/balance, to provide formal guarantees for a PPSC
scheme. We believe that our PPSC definition is of
independent interest as it is general enough to be used in

other private smart contract constructions.

smartFHE framework. We propose smartFHE, a frame-
work to support smart contracts with I/O privacy along
with payments that hide the users’ balances and transfer
amount via FHE and ZKPs. smartFHE preserves privacy
under the same decentralization, availability, and work
model of general-purpose (public) smart-contract systems.
smartFHE does not overload end users as miners are
responsible for executing the required computations. To
allow for operations on encrypted account states, we in-
troduce a locking mechanism (reminiscent of a mutex) to
solve resulting concurrency issues. It also protects against
front-running and replay attacks.

smartFHE is highly flexible with respect to function-
ality. First, it offers two modes of operation—public and
private—that users can switch between. Private accounts
and their data are stored encrypted on the blockchain and
users supplement any additional encrypted inputs with
proper ZKPs attesting to well-formedness. FHE allows
miners to operate directly on these private inputs, produce
private outputs, and update the blockchain state accord-
ingly. Second, our framework is modular since it is not
bound to particular FHE and ZKP schemes, allowing
us to exploit future improvements in these areas. Third,
our framework and its security notions establish rigorous
foundations based on which other FHE flavors can be used
to support private smart contracts, such as multi-party and
multi-key FHE [15], [58], [59].

smartFHE is highly versatile with respect to
applications as it supports operation on foreign values.
Our instantiation of smartFHE allows us to realize private
payments and arbitrary computations over a single user’s
inputs, e.g. automated market makers (AMMs) that
protect users against front-running attacks. Furthermore,
with additional smart contract logic, it can even realize
some important applications operating on multi-user
inputs such as statistical data analysis for financial
purposes (details can be found in Appendix B).

smartFHE instantiation. We provide an instantiation of
our framework and formally prove its correctness and
security based on our PPSC definition. Working with
FHE in the blockchain setting is non-trivial if we require
efficiency. Selection of an FHE scheme must be done
carefully with consideration of the need for exact compu-
tation, fast integer arithmetic, and high levels of precision.
Additionally, we encounter concurrency issues and must
get around bootstrapping as the best suited FHE schemes
for the blockchain setting do not offer fast bootstrapping.1

The most obvious path forward to proving the lattice-
based relations of FHE is via lattice-based ZKPs. How-
ever, state-of-the-art lattice-based ZKPs [16], [17] tend
to be hundreds of kilobytes to single digit megabytes
in size and are not nearly as space efficient as recently
proposed elliptic curve-based ZKPs [23], [28]. To address
this challenge, we utilize a recent elliptic-curve based
ZKP system [34] that allows for proving certain lattice-
based relations. As [34] proves relations with respect to a
Pedersen commitment, we can employ another elliptic-

1. Bootstrapping is needed to move from a leveled FHE scheme that
can perform only a certain number of homomorphic computations to an
FHE scheme that can perform an unlimited number of homomorphic
computations on encrypted data [20].

2
310

curve based ZKP—Bulletproofs [23]—to prove further
relations over private inputs quite efficiently.

To demonstrate feasibility, we evaluate the perfor-
mance of our instantiation to show how our approach
indeed supports lightweight users. In terms of private
payments, smartFHE allows a user to issue payments at a
rate that is 1.16x−7.79x (depending on parameter choice)
faster than Veri-zexe, a state-of-the-art scheme. We con-
duct experiments testing our instantiation in supporting
private smart contracts for statistical data analysis and
automated market makers (AMMs). Transaction genera-
tion time for these applications is smaller than that of
Veri-zexe across the board. Our implementation includes
developing the first library for short discrete log proofs.
Unfortunately, verification time in our system is quite
large but can be improved upon significantly with further
work into a GPU-accelerated version of short discrete
log proofs targeting OpenCL (our implementation targets
Apple Metal). We open source our library, which may be
of independent interest as it advances the current state-of-
the-art on privacy-preserving computing.

1.2. Related Work
Several works have explored privacy in the context of

blockchain. We focus on those peer-reviewed works that
provide I/O privacy for arbitrary computation (rather than
customized solutions for specific use cases).

Hawk [50] is one of the first works to construct a
private smart contract scheme using ZKPs. Hawk re-
quires a semi-trusted manager—trusted with protecting
the privacy of the users’ inputs but not for correctness of
computation. Ekiden [26] replaces a semi-trusted manager
with trusted hardware, while Arbitrum [48] relies on a full
quorum of trusted parties. Subsequent works avoid such
(semi-)trusted parties or hardware. Among them, several
works [10], [11], [13] (including Appendix G in [50])
improve on Hawk by implementing the manager function-
ality using a multiparty computation protocol with various
efficiency optimizations. While Zether [22] targets trust-
less smart contract privacy for Ethereum, its reliance on
additively homomorphic encryption restricts functionality
to private currency transfer and a limited class of private
smart contracts. Although Zether supports anonymity, this
feature cannot be implemented on Ethereum as the cost
exceeds the gas limit per block [22].

Zkay [68] and its extension ZeeStar [67] (which tar-
gets operation on foreign data) suggest that supporting
privacy for smart contracts requires knowledge of ad-
vanced cryptographic primitives that the average developer
may not possess. They develop a compiler that takes as
input a public smart contract and produces a functionality-
equivalent one that can operate on private inputs. Zkay
follows the ZKP-based approach described earlier, so it
overloads end users and requires off-chain coordination to
handle multi-user inputs [8]. Zeestar, on the other hand,
supports only additive homomorphisms, and it implements
a non-universal ZKP system [43] that requires a new setup
for each computation or application.2 Both works do not

2. Both Zeestar and Zether rely on ElGamal encryption. Thus, both
support only short plaintexts (i.e. of length up to 32 bits), meaning
that account balances and transferred values cannot exceed this limit.
smartFHE, as it relies on FHE, does not have this limitation and can
operate on longer plaintext values, e.g. 64 bits.

address concurrency issues related to operating on private
(encrypted) accounts. Nonetheless, we view the com-
piler idea as compatible with the smartFHE framework;
a compiler could be used to help implement automatic
conversion of smart contract code into public or private
format based on the types of accounts used in the code.

Zexe [19] takes privacy further by also supporting
function privacy (i.e. hiding the computation itself). Fol-
lowing the ZKP-based approach outlined previously, Zexe
operates in the UTXO-based model which restricts the
supported functionality to extending Zerocash [65] scripts
used to spend currency. Thus, it does not truly support
private smart contracts. Furthermore, Zexe uses a non-
universal ZKP system [43], [44], meaning that a new setup
is needed for each new computation circuit.3 Zexe will
scale poorly if the ZKP is used to attest to changes in the
contract state. Kachina [49] seeks to solve this problem
by introducing state oracles to reduce the ledger state size
involved in a ZKP, in addition to introducing a formal
model for private smart contracts. Nonetheless, it still
follows the ZKP-based approach; thus, it is not suitable
for lightweight users.

Combining FHE with blockchain applications has re-
cently been investigated thanks to optimized implementa-
tions of FHE schemes. Oblivious message retrieval [54]
allows a client to retrieve all private transactions relevant
to her. By utilizing FHE, this can be done in an efficient
way; miners will produce a concise response (without
knowing the client address or which transactions are of
interest) so the client can detect and then retrieve these
transactions privately. Spiral [57] utilizes FHE to build a
highly efficient single-server private information retrieval
(PIR) protocol. This allows a client, interacting with a
trustless server holding a private database, to retrieve
private records without revealing the access pattern.4

While the space has explored other paradigms such as
private (enterprise or permissioned) blockchains, where
privacy is controlled based on which parties are permitted
to join certain application or view certain blockchain logs,
our work focuses on cryptographic approaches to preserve
privacy in permissionless blockchains. Another paradigm
is utilizing differential privacy, which in general adds
noise to the user data so that the privacy loss is bounded
by some factor [31], [46]. A major challenge here is
the privacy-accuracy tradeoff—more noise implies higher
privacy level but less accurate results when operating on
the data. This limits the kind of applications this approach
can support, e.g., it cannot be used for private accounts
that require exact computation over their balances.

2. Defining a PPSC Scheme
In this section, we define a notion for a privacy-

preserving smart contract (PPSC) scheme and formulate
its correctness and security.

Notation. We use λ to represent the security
parameter, and pp to denote the system’s public

3. Veri-zexe [72] addresses this problem by replacing the non-
universal ZKP system that Zexe uses with a universal one, namely
Plonk [41], allowing for one setup in the system.

4. PESCA [32] proposes using threshold FHE to support private smart
contract state and computation with the secret key shared among the
committee handling the consensus. However, it introduces high level
ideas rather than a detailed protocol design and analysis.

3
311

parameters. To refer to parameter x inside pp, we write
pp.x. The public and secret keys of an account are
denoted pk and sk, respectively, with the account owner
in superscript and the account type (public or private) in
subscript. Lastly, PPT is probabilistic polynomial time,
negl is negligible function, and MAX is the maximum
balance value supported in the system.

PPSC definition. We envision a PPSC scheme applied
on top of a public smart contract-enabled cryptocurrency
(such as Ethereum). It can be viewed as the exten-
sions needed to support privacy-preserving execution of
smart contracts and payments on an account-based ledger.
Hence, a PPSC scheme inherits all the public functionality
and data structures found in the underlying public system.
This includes the append-only ledger L that stores states
for accounts (e.g. their balances and contract code if
applicable). Users have access to this ledger at any time.
Processing transactions and performing computations (the
code portions of smart contracts) change the state of the
ledger. Thus, issuing any transaction or implementing any
code relies on the latest ledger state reflected by the most
recent mined block. The system operates in blocks and
epochs (an epoch is k consecutive blocks).

Our definition below captures the new modules needed
to support private transactions and smart contract execu-
tion with private inputs and outputs.

Definition 1 (PPSC Scheme). A PPSC scheme Π is
a tuple of PPT algorithms (Setup, CreateAccount,
CreateTransaction, VerifyTransaction, Compute,
UpdateState) defined as follows:

• Setup: Takes as input a security parameter λ and
outputs system public parameters pp.

• CreateAccount: Takes as inputs pp and a privacy
mode (0 for public and 1 for private). It generates
a key pair (sk, pk) and an address addr (derived
from pk),5 and it initializes the account state, balance
Bal[pk] = 0 and locking entry Lk[pk] = ⊥ (⊥ means
the account is initially unlocked). CreateAccount
outputs the key pair, address, and state.

• CreateTransaction: Takes as inputs pp and transac-
tion related information. Outputs a transaction tx of
one of the following types:
– txshield : Transfers currency from a public account

to a private one. Currency amount is public.
– txdeshield : Transfers currency from a private ac-

count to a public one. Currency amount is public.
– txprivtransf : Transfers currency between private

accounts. Currency amount is private.
– txlock : Locks a private account to some other

account, thereby preventing the locked account
balance from being altered until unlocked.

– txunlock : Unlocks a private account, returning
control back to its owner. Only the account to
which the private account was locked can issue
this transaction.

• VerifyTransaction: Takes as inputs pp, transaction tx,
and the transaction’s syntax/semantics for the types
mentioned above. Outputs 1 if tx is valid based on
these syntax/semantics; 0, otherwise.

5. This address will have a postfix indicating if it is for a private or
public account.

• Compute: Takes as inputs pp, a circuit C repre-
senting the code to be executed, and circuit inputs
x1, . . . , xn:
– If x1, . . . , xn are public, then apply C as is on

these inputs.
– If x1, . . . , xn are private, transform C into a

functionality-equivalent circuit C ′ operating on
private inputs and producing private outputs,6 then
apply C ′ to x1, ..., xn.

Output 1 if computation is successful, and 0 other-
wise.7

• UpdateState: Takes as inputs pp, current ledger state
L, and a list of pending operations Ops = {opi}.8
Changes induced by all operations are reflected at
the end of a block except:
– txshield or txprivtransf are processed at the end of the

epoch (i.e. in the last block of the epoch).
– Incoming transactions to a locked account will not

be processed until the next epoch after which the
account is unlocked.

At the end of a block, UpdateState outputs an up-
dated ledger state L′.

Now, we define notions for correctness and security
of a PPSC scheme, which are inspired by [22], [65]. We
make the appropriate changes to take into account our
different account types, transaction types, private compu-
tation (rather just private payments as in these prior works)
and algorithms listed in the PPSC definition.

2.1. Correctness

Intuitively, the correctness of a PPSC scheme requires
that if we start with a valid ledger state and apply an
arbitrary sequence of operations, the resulting state is also
valid. Correctness with respect to public state variables
is derived from the correctness of the underlying public
system. It can be easily verified by inspecting the ledger
since public accounts and all operations performed on
them are stored in the clear. On the other hand, private
accounts store secret values. Although a smart contract’s
code is public, it is translated into privacy-preserving
operations before operating on private accounts so it pro-
duces private outputs. Thus, proving correctness requires
validating these private operations.

We define an incorrectness game INCGame between
a challenger C and a ledger sampler S . At a high level,
after performing the setup phase by C, S samples a valid
initial ledger L, a public account accpub (representing
the reference point) and a private account accpriv such
that their initial balances are identical, and an operation
transcript Ops that cover all basic operations in the system.
Ops will be applied separately to accpub (as is) and accpriv
(with an equivalent private version of Ops denoted as
Ops′) starting with L in each case. Here Ops′ corresponds
to the same functionality of Ops—produces identical state

6. So for any public input x and its private version x′, we have
C(x) = C′(x′).

7. Note that in practice a compute request is packaged as a transaction
containing the target smart contract address, the name of a function inside
this contract (the one that C represents), and the inputs.

8. Note that opi can be a transaction txi or a computation
Compute(pp, Ci, {xi,1, . . . , xi,n}) as described above.

4
312

changes—but it deals with private inputs/outputs instead
of public ones (e.g., txtransf is replaced with txprivtransf and
C is transformed into C ′ mentioned before).

Applying Ops and Ops′ will produce two updated
ledger states: L′

1 (when working on accpub) and L′
2 (when

working on accpriv). At the end of the game, the balances
of both accounts will be revealed (this requires a deshield
transaction for accpriv). S wins the INCGame game if it
can produce a scenario in which the balance of accpriv is
not equal to the balance of accpub.9

Definition 2 (Correctness of PPSC Scheme). A PPSC
scheme Π = (Setup, CreateAccount, CreateTransaction,
VerifyTransaction, Compute, UpdateState) is correct if
no PPT ledger sampler S can win the INCGame game
with non-negligible probability. That is, for every PPT S
and sufficiently large λ, we have:

AdvINCGame∏
,S < negl(λ)

where AdvINCGame
Π,S := Pr[INCGame(Π,S, 1λ) = 1] is

S’s advantage of winning the incorrectness game, and
the probability is taken over all randomness of C and S .

We now define the specifications of a valid Ops and
the ledger state evolution needed to define the INCGame
game referenced above.

Definition 3 (Specifications of a valid Ops). Let Ops =
{opi} be a list of operations sampled by S . We say that
Ops is valid if it satisfies the following:

• All account addresses, keys, and states are generated
using CreateAccount.

• Each opi is either a transaction defined in a PPSC
scheme (cf. Definition 1), a public transaction as de-
fined in the underlying public smart contract-enabled
system, or a Compute operation with some arbitrary
circuit C and a set of inputs {xi}.

• If an operation opi is issued in epoch i, then the
ledger state used to produce opi (if needed) is the
one produced by the last block of epoch i− 1.

The last condition implies that an operation issued in
an epoch will be processed in the same epoch, which re-
flects the assumption on processing delays in our system.

A ledger state is composed of two tables, Bal and
Lk, that store the balance amount and lock state for each
account. These tables are indexed using the public keys
of the accounts. Let the initial ledger state sampled by
S be L0. Bal and Lk will be initially set to 0 and ⊥,
respectively, for all accounts (including those for accpub
and accpriv sampled by S).

Definition 4 (Ledger state evolution). Let Li−1 be the
current ledger state and opi be the next operation to be
processed to produce the ith ledger state Li. The updates
resulting from processing opi are defined as follows:

• txshield ← Shield(skfrompub , pktopriv, val). If Lk[pktopriv] = ⊥
and val + Bal[pktopriv] < MAX, then increment
Bal[pktopriv] by val.

• txprivtransf ← PrivTransfer(skfrompriv , pk
to
priv, val). If

Lk[pktopriv] = ⊥ and Lk[pkfrompriv] = ⊥, then decrement
Bal[pkfrompriv] by val and increment Bal[pktopriv] by val.

9. Without loss of generality, to simplify the notions, we focus on the
balance value when dealing with states.

• txdeshield ← Deshield(skfrompriv , pk
to
pub, val). If

Lk[pkfrompriv] = ⊥, then decrement Bal[pkfrompriv] by
val and increment Bal[pktopub] by val.

• txlock ← Lock(sk, addr). If Lk[pk] = ⊥ then set
Lk[pk] = addr (pk is the public key tied to sk).

• txunlock ← Unlock(pk). If Lk[pk] = txunlock.addr,
then set Lk[pk] = ⊥ (txunlock.addr is the account
address that issued txunlock).

• Compute(pp, C, {x1, . . . , xn}). Updates depend on
the code that C represents. These may include alter-
ing storage variables related to the smart contract
code and/or account balances.

INCGame Game Definition. The probabilistic experi-
ment INCGame takes as inputs a PPSC scheme Π and a
security parameter λ. It defines an interaction between a
challenger C and a ledger sampler S as follows:

1) C runs System.Setup(1λ) and sends the public pa-
rameters pp to S .

2) S sends back a ledger L, two accounts accpub and
accpriv, and an operation transcript Ops.

3) C verifies the validity of Ops (cf. Definition 3), that
the two accounts have properly-initialized states that
are recorded on the ledger. If any of these checks
fail, C aborts and outputs 0.

4) C applies Ops to accpub with ledger state L and
produces an updated ledger state L′

1. Then, it applies
the private version of Ops (Ops′ mentioned earlier)
to accpriv with the same initial ledger state L and
produces an updated ledger state L′

2. Ledger state
evolution rules are per Definition 4.

5) C deshields the balance of accpriv on L′
2, denoted as

b′. Let b be the balance of accpub based on L′
1. If

b �= b′, C outputs 1 (meaning that S won the game),
otherwise, it outputs 0.

The advantage of S in wining the INCGame game is
defined as the probability that C outputs 1.

2.2. Security
A PPSC scheme is secure if it satisfies two proper-

ties—overdraft safety and ledger indistinguishability—as
captured by the following definition.

Definition 5 (Security of a PPSC Scheme). A PPSC
scheme Π = (Setup, CreateAccount, CreateTransaction,
VerifyTransaction, Compute, UpdateState) is secure if
it satisfies overdraft safety (cf. Definition 6) and ledger
indistinguishability (cf. Definition 8).

We define the security games that capture overdraft
safety and ledger indistinguishability. Let A be the ad-
versary; C, the challenger; and OPPSC, the oracle for a
PPSC scheme. All parties receive the security parameter
λ as input and are given oracle access to OPPSC. OPPSC

maintains the public parameters pp, the system state, and
all public keys generated in the system PK (the latter is
generated by C at A’s request). Since these belong to C,
A does not have the corresponding secret keys for them.
Any time a query requires a secret key belonging to C as
input, we allow A to specify the corresponding public key
in PK. OPPSC supports the following query types:

• (setup, 1λ): Takes the security parameter λ as input
and sets up the system accordingly. This includes cre-
ating the ledger and the public parameters needed by

5
313

all parties/cryptographic building blocks. This query
can be called only once by C.

• (request, op, aux): Allows A to request executing any
of the user algorithms defined in Definition 1 (rep-
resented by op) with certain inputs and any account
address of A’s choice (represented by the auxiliary
input aux) through C:

– For CreateAccount, A will receive only the ac-
count address and its public key.

– For Compute, only computations supported by the
PPSC system will be performed.

– Any transaction from a locked account will be
rejected.

• (insert, op): Allows A to insert its own well-formed
transaction or computation request. These (and any-
thing via request) will be held in pending state (or
pending operations denoted as Ops) until processed.

• (execute, op): Allows A to ask OPPSC to process an
arbitrary subset of pending operations op ⊂ Ops and
update the ledger state.

• (corrupt, pk): Allows A to corrupt an account with
public key pk, meaning that A will get the cor-
responding secret key sk. This command can be
invoked at anytime and as many times as A wishes.

OSGame game. Overdraft safety ensures that a PPSC
scheme Π does not allow A to spend more currency than
it owns. To capture this, we define an OSGame game.
A wins the game and, hence, breaks overdraft safety if it
manages to spend currency of a value larger than what it
rightfully owns. OSGame proceeds as follows:

1) (setup, 1λ)
2) AOPPSC(1λ)
3) At the end, C queries the ledger state through OPPSC

and outputs 1 (meaning that A won the game) if:

valA→PK + valInsert > valPK→A + valdeposit

such that:
• valA→PK is the total value of payments confirmed

from A to users with addresses in PK (this results
from A asking honest parties represented by C to
create transactions for it).

• valInsert is the total value of payments placed by A
on the ledger.

• valPK→A is the total value of payments confirmed
from users with addresses in PK to A.

• valdeposit is the initial amount of currency in ac-
counts owned by A.

Otherwise, C outputs 0.

Definition 6 (Overdraft Safety). A PPSC scheme Π pro-
vides overdraft safety if no PPT adversary A can win the
OSGame game with non-negligible probability. That is,
for every PPT A and sufficiently large λ, we have:

AdvOSGame∏
,A < negl(λ)

where AdvOSGame∏
,A := Pr[OSGame(Π,A, 1λ) = 1] is A’s

advantage of winning the overdraft safety game, and the
probability is taken over all randomness of C and A.

LINDGame game. Ledger indistinguishability ensures
that the ledger produced by a PPSC scheme Π does
not reveal additional information about private account

state beyond what can be inferred from what is publicly
revealed. We define a LINDGame to capture this. It is
very similar to OSGame except that at some point in
the game, A will send two publicly consistent operations
(a transaction or a compute request) instead of one. C
will randomly choose one of these operations to execute.
A wins the game if it manages to correctly guess which
operation was chosen.

We first define the notion of public consistency of two
operations, which is needed to rule out trivial wins of A
in the LINDGame game.

Definition 7 (Public Consistency). Two operations are
publicly consistent if:

• They refer to the same user algorithm, or computa-
tion, with the same public keys and addresses.

• For currency transfer between private accounts, only
one of the sender or recipient can be corrupt, not
both. If either is corrupt, then the transfer amount
must be the same.

• Lock must be associated with the same account and
address for the locker and lockee.

• Unlock must be associated with the same account.
• Same balance value returned when querying an ac-

count’s balance.
• For private computation requests, the computation in

both must be the same and behave similarly on the
supplemented inputs, with private output variables
that are not owned by A.10

Accordingly, the LINDGame proceeds as follows:

1) b
$←− {0, 1}

2) (setup, 1λ)
3) (op0, aux0, op1, aux1) ← AOPPSC(1λ)
4) If op0 and op1 are publicly consistent, then

(execute, opb, auxb)
5) A accesses the updated ledger state through OPPSC

6) A outputs b′, if b′ = b then return 1 (meaning that
A won), otherwise, return 0.

Definition 8 (Ledger Indistinguishability). A PPSC
scheme Π supports ledger indistinguishability if no PPT
adversary A can win the LINDGame game with non-
negligible probability. That is, for every PPT A and
sufficiently large λ, we have:

AdvLINDGame∏
,A <

1

2
+ negl(λ)

where AdvLINDGame∏
,A := Pr[LINDGame(Π,A, 1λ) = 1] is

A’s advantage of winning LINDGame, and the probabil-
ity is taken over all randomness of C and A.

3. Background and Challenges
In this section, we provide a brief background of the

cryptographic primitives employed in smartFHE, along
with a brief overview of Ethereum as our framework
builds upon its ideas.

Overview of Ethereum. Ethereum [70] is a smart
contract-enabled cryptocurrency that allows users to per-
form simple currency transfers in its native currency,

10. Public computations are always trivial—they must have same
input values, making op0 and op1 identical.

6
314

Ether, as well as deploy complex applications via the cre-
ation of user-defined smart contracts. To this end, Ether-
eum introduces a Turing-complete language and maintains
a virtual machine to execute contracts written in this
language. Ethereum relies on an account-based model
rather than the UTXO model like Bitcoin [60]. Thus, it
introduces a more advanced notion of ledger state, which
includes the state of all accounts in the system.

Ethereum provides two types of accounts: externally
owned accounts (EOAs) that are controlled by users and
contract accounts that are controlled by their contract
code. The state of an EOA mainly consists of a balance,
whereas that of a contract account also includes contract
code and its storage. Both account types can invoke func-
tions from a smart contract’s code. However, only an EOA
can initiate a transaction or deploy a smart contract.

Miners execute the code in any smart contract upon
request (i.e. when invoked). To prevent DoS attacks,
each operation has some associated cost in terms of
gas. Additionally, Ethereum’s blockchain has a gas limit
which constrains the number of operations that can be
executed in a single block.

Fully Homomorphic Encryption. A fully homomorphic
encryption (FHE) scheme consists of 3 efficient
algorithms: KeyGen for generating public/private keys
and public parameters needed in the scheme, Encrypt
for encrypting a message m to produce a ciphertext
ct, and Decrypt for decrypting a ciphertext ct to return
the plaintext message m. Moreover, an FHE scheme
supports addition and multiplication on ciphertexts,
thereby allowing for arbitrary computation on encrypted
data. If ct1 is a ciphertext of m1 and ct2 is a ciphertext
of m2, then ct1 + ct2 = ct3 is a ciphertext of m1 +m2.
Also, ct1 · ct2 = ct3 is a ciphertext of m1 ·m2. All known
FHE constructions rely on lattice-based cryptography so
provide post-quantum security guarantees. Correctness
of FHE means that decryption produces the original
plaintext that was encrypted, and that homomorphic
addition and multiplication produce ciphertexts for valid
results. For security, we require the conventional semantic
security (against CPA attackers).

Challenges in working with FHE. FHE schemes model
computation in one of three paradigms—as boolean, exact
arithmetic, or floating point arithmetic [45]. Arithmetic-
based schemes (such as BFV [36], BGV [21], CKKS [27])
are almost always used in the leveled format, meaning that
only a certain number of operations can be performed
on encrypted data. Ciphertexts produced directly from
encryption are “fresh.” A noise budget is associated with
each fresh ciphertext and over the course of computations
on this ciphertext is depleted. Once this budget reaches 0,
the ciphertext can no longer be decrypted successfully.

Although bootstrapping can used to support truly
arbitrary computation on encrypted data, it tends to be
very slow for arithmetic-based schemes, often taking
a few minutes [69]. Binary schemes offer very fast
bootstrapping so can (at face value) support truly
arbitrary computation. When using binary schemes (like
TFHE [29] or Concrete [30]), bootstrapping is used to
realize each operation [69]. For the blockchain setting, we
anticipate users needing to perform 32 bit computation

to represent account balances and transfer amounts.
TFHE and its variants generally struggle to support more
than 20 bits of precision [53]; in practice, bootstrapping
with even around 20 bits of precision can take a few
seconds, making boolean schemes practically inefficient
for the blockchain setting. Floating point arithmetic, on
the other hand, will provide only approximate values
and, thus, is a poor choice for smartFHE since we need
precise balance and transfer amounts. While any of the
computation paradigms may be used in the smartFHE
protocol, each one presents a unique set of tradeoffs that
system designers must account for.

Zero Knowledge Proofs. A zero knowledge proof
(ZKP) system allows a prover to convince a verifier
that it knows a witness w for some statement x without
revealing anything about the witness itself beyond what
can be inferred by x on its own. A ZKP system consists
of 3 algorithms: Setup for generating public parameters,
Prove for producing a proof π proving correctness of x
given w, and Verify for verifying if a proof π is valid for
statement x. A secure ZKP system must satisfy certain
properties with respect to soundness, completeness, and
zero knowledge. Informally, soundness guarantees a
prover cannot convince a verifier of false statements;
completeness guarantees that any honestly generated
proof will be accepted by the verifier; zero knowledge
guarantees that the proof of a statement does not reveal
anything about the witness.

Challenges in combining ZKPs with FHE. As men-
tioned before, all known FHE schemes are lattice-based.
Hence, a naive instanitation of our framework may also
require the use of a lattice-based ZKP system. Indeed this
provides full post-quantum security for private accounts
but harms efficiency in terms of storage overhead. Lattice-
based ZKPs, although quite fast, tend to result in proofs
that are hundreds of kilobytes to single digit megabytes
in size [55], [61], making them challenging to work with
in the blockchain model. An elliptic curve or hash-based
proof system likely offers space savings but at the cost of
longer proof generation times.

4. smartFHE Framework
In this section, we present the design of smartFHE, a

PPSC framework that uses FHE in the blockchain model.
We begin by outlining the cryptographic building blocks
employed, then we describe the smart contract-enabled
cryptocurrency architecture that we target, followed by
technical details of our framework. In presenting the
framework, we address challenges that result from work-
ing with FHE in the blockchain setting, such as dealing
with leveled FHE schemes and concurrency.

4.1. Architecture
Our framework can be viewed as extending a public

smart contract-enabled cryptocurrency to support privacy.
We require an account-based model, a Turing-complete
scripting language, and a virtual machine with a cost (i.e.
miners’ fees) associated with each smart contract opera-
tion. Thus, we consider an Ethereum-like architecture.

smartFHE supports four services: public payments,
public smart contracts, private payments, and private

7
315

smart contracts. The default operation is the public
mode—meaning that everything will be logged in the
clear on the blockchain and smart contract code will
operate on public inputs/outputs. These are handled in
the same manner as in Ethereum. On the other hand,
if the smart contract (or a payment transaction) operates
on private accounts, then the private mode will be used
instead. The required operations will be converted into
their equivalent privacy-preserving format and will pro-
duce private outputs (for simplicity, we refer to these as
private smart contracts). smartFHE extends the standard
transaction set of Ethereum with new types of transactions
and cryptographic capabilities to permit operations on
private accounts and user inputs.

Similar to Ethereum, smartFHE has two types of ac-
counts: contract owned and externally (or user) owned.
However, we further subdivide externally owned accounts
into two types: public and private. Private accounts will
be used to initiate private transactions and participate
in private smart contracts. In our scheme, each account
(public or private) will maintain its own nonce which must
be signed and incremented as part of any transaction this
account issues. This approach ensures that valid trans-
actions cannot be replayed and zero-knowledge proofs
cannot be maliciously imported into new transactions.

smartFHE operation proceeds in rounds (a round is
the time needed to mine a block on the blockchain) and
epochs (where an epoch is y contiguous rounds for some
integer y that is selected during the system setup phase).
The latter is needed to handle concurrency issues related
to operating on private accounts, as will be shown later.
If desired, epochs can be eliminated entirely (which we
discuss towards the end of this section).

4.2. The smartFHE Protocol

Our framework is composed of three components:
a setup phase to deploy the system, a network proto-
col defining all extensions required to support private
payments/smart contracts, and mechanisms for handling
concurrency issues (resulting from operating on private
accounts) and dealing with leveled FHE schemes.

4.2.1. Setup. This includes setup related to the system,
user, and smart contracts. System setup involves launching
the PPSC system—which starts with deploying miners,
creating the genesis block of its blockchain, and generat-
ing all public parameters pp needed by the cryptographic
primitives (such as FHE and ZKP) that we employ in the
system. The public parameters will be known to everyone
and could either be published in the genesis block or
announced and maintained off-chain. Once system setup is
complete, users can now join and create their own public
and/or private accounts. Smart contract setup is dependent
on the creator of its code. This code will specify the
sorts of (private or public) inputs the contract functions
will accept, along with the operations to be performed on
these inputs. Once the creator deploys the contract on the
blockchain, users can invoke its functionality and pass in
their inputs to be operated on.

4.2.2. Network Protocol Syntax. In what follows, we
informally present the syntax that smartFHE adds to

Ethereum’s network protocol to support privacy. Full
technical details can be found in Section 5).11

(1) Public operations via public accounts. To create a
public account, the user calls Pub.CreateAccount(pp) to
generate the account key pair (pkpub, skpub). The public
key defines the user’s account address while the secret
key allows her to sign all transactions issued by this
account. Each public account also has an unencrypted
balance and a nonce ctr[pkpub] associated with it.
smartFHE handles public operations (both payments and
smart contracts) in the same manner as Ethereum. The
algorithm Transfer(skfrompub , pktopub, amnt) allows a user to
send amnt currency from one public account to another.
The syntax for invoking functions in a smart contract is
defined by the contract creator. As in Ethereum, invoking
a function is done by issuing a transaction that contains
all inputs this function needs.

(2) Private payments via private accounts. Having a
private account allows its owner to initiate transactions
that hide transfer values and/or users’ balances.

To create a private account, the user calls
Priv.CreateAccount(pp) to generate the FHE account
key pair (pkpriv, skpriv) (which is used to encrypt
her inputs) along with a signature scheme key pair
(sigpkpriv, sigskpriv) to sign outgoing transactions. A
private account has an encrypted balance (with respect
to pkpriv) and a nonce ctr[pkpriv] associated with it. Users
can initiate the following private transaction types:

• txshield ← Shield(skfrompub , pktopriv, amnt): Transfers a
given amount of currency from a public account
to a private one. Thus, the transaction contains the
public keys of the sender’s public account and the
recipient’s private account, and the (unencrypted)
transfer amount. No ZKP is needed to prove that the
sender owns the right transfer amount. The sender
uses a public account and can be verified by simply
tracking the account’s public state on the blockchain.

• txprivtransf ← PrivTransfer(skfrompriv , pk
to
priv, amnt):

Transfers some undisclosed (encrypted) amount of
currency from one private account to another private
account. This transaction requires a ZKP that the
sender owns the transferred currency, that the same
amount has been added to the recipient’s account as
has been deducted from the sender’s account, that
the transfer amount is positive, and that the sender’s
remaining balance is non-negative.

• txdeshield ← Deshield(skfrompriv , pk
to
pub, amnt): Transfers

a given amount of currency from a private account
to a public one. This transaction needs a ZKP to
prove that the sender’s account has a balance equals
to at least the transfer value.

Note that txshield and txdeshield reveal some information
about the private account (i.e. sender/recipient has a bal-
ance larger than or equal to the released value) since the
transaction amount is public.

(3) Private smart contracts. Users can write smart con-
tracts with code operating on their private data and private

11. Users must sign all transactions they issue and miners must verify
these signatures before accepting any of these transactions. We omit
repeating this fact and the corresponding syntax in this section.

8
316

account balances. This code will be translated to an arith-
metic or boolean circuit depending on the type of FHE
scheme used. Since the code may operate on encrypted
values, users participating in the contract need to pro-
vide ZKPs showing that their initial ciphertexts are well-
formed and satisfy certain conditions (dependent on the
application). Miners (of which a majority are trusted for
correctness and availability in the blockchain model) will
check these ZKPs, perform the requested homomorphic
computations directly on the ciphertexts, and update the
blockchain state accordingly.

A smart contract will have functions that users can
invoke to operate on their inputs. When these inputs are
private, operations within a function will be translated in
terms of the following homomorphic computations:

• c3 = Priv.HomAdd(pkpriv, c1, c2): Adds ciphertexts
c1 and c2 (which are encrypted with respect to pkpriv)
together to produce the sum c3 of the two ciphertexts.

• c3 = Priv.HomMult(pkpriv, c1, c2): Multiplies two ci-
phertexts c1 and c2 (which are encrypted with respect
to pkpriv) together to obtain the product c3.

4.2.3. Handling Concurrency. Operating on private
states (such as encrypted account balances) introduces
concurrency issues. In particular, changes in an account
state can invalidate all pending ZKPs tied to this account,
thus invalidating all private transactions that rely on
these ZKPs. Such a situation can be exploited to perform
front-running attacks; Bob can front-run Alice by issuing
a transfer transaction that changes Alice’s account
state and, if this transfer is processed before Alice’s
pending transactions, her transactions will be rejected.
We introduce two complementary techniques to address
front-running: (1) automatic balance rollovers for private
transactions and (2) a private account locking mechanism
for private smart contracts.

Automatic Rollovers. Using this technique, which is
similar to the one in [22], all incoming transfers to a
private account are held in a pending state until an epoch
is complete. smartFHE will roll over these pending funds
to private account’s balance automatically at the end of
the epoch (unlike [22] which requires users to trigger
the rollover). To guarantee that deshielding and private
transfer transactions will be processed by the end of the
same epoch, private account users are advised to submit
such transactions at the beginning of an epoch. The
length of an epoch must be chosen carefully to ensure
that a transaction submitted at the start of an epoch is
processed before the epoch ends. The sender should view
the transaction amount as being deducted from his own
account balance immediately (to avoid double spending).

Private Account Locking. To address multi-epoch concur-
rency, smartFHE enables private accounts to be locked
to other accounts (via txlock) of any type. The locking
mechanism allows a user to put her account on hold for
as long as needed—preventing any state changes to her
private balance while her own private transactions are still
pending. The lockee will issue a txunlock transaction to
resume acceptance of new state updates, thereby returning
complete control of the locked account to the locker.

• txlock ← Lock(skfrompriv , addr
to): Checks that skfrompriv is

not already locked, and if not, it locks the private

account tied to pkfrompriv to the account tied to addrto

(the latter can even be the same account itself).
Finally, it outputs txlock = (addrto, σlock) where
σlock = Priv.Sign(sigskpriv, (addrto, ctr[pkpriv])).
Note that funds sent to pkfrompriv will not be rolled over
onto the account balance until it is unlocked.

• txunlock ← Unlock(pkpriv): First, checks the account
tied to pkpriv is locked. If so, it unlocks the private
account corresponding to pkpriv if and only if the
address addr that called Unlock is the same one
returned by CheckLock(pkpriv).

• CheckLock(pkpriv): Checks if the account tied pkpriv
is currently locked. If locked, returns the address of
the account it is locked to. Otherwise, returns ⊥.

As an optimization of smartFHE’s design, epochs can
be eliminated entirely using the above locking mecha-
nism.12 When issuing a deshield or private transfer trans-
action, Alice will lock her account to itself. However,
the network protocol would need to be modified—so that
once the ZKP is verified and the transaction is processed,
Alice’s account will automatically be unlocked.13

4.2.4. Handling Leveled Schemes. Arithmetic-based
FHE schemes are almost always used in the leveled for-
mat. It is highly unlikely that a user would know a priori
how many transactions she anticipates receiving or how
many smart contracts she will interact with. Even with
careful selection of FHE scheme parameters, it is entirely
possible that a user may run out of noise budget and even-
tually be unable to decrypt her private account balance. In
practice, users must track the noise associated with their
private account balance to ensure they do not run out of
noise budget. Upon reaching some pre-determined noise
threshold, bootstrapping could be used. Below, we present
an alternative technique to reset the noise budget that is
likely to offer better concrete efficiency than bootstrapping
due to advancements in ZKP constructions.

• b′, π ← Priv.RefreshBal(skpriv, b): Takes in en-
crypted account balance b to produce freshly en-
crypted account balance b′. User decrypts her private
account balance b to get plaintext value bal and then
freshly encrypts bal to produce b′. User will need to
provide a ZKP to show that the underlying plaintext
of b′ is equal to the one encrypted in b.14

• CheckPriv.RefreshBal(b′, π): Updates the user pri-
vate account balance (whose account corresponds to
pkpriv) from b to b′ if the proof π is valid.

5. Our Instantiation
We now present the full syntax and technical details

of our instantiation of the smartFHE framework. We first
provide additional notation needed in this section and
then an overview of the cryptographic constructions used
to instantiate the building blocks smartFHE needs.

12. By this we mean setting the epoch length to be equal to one block.

13. Note that we would still keep the Lock,Unlock procedures to
handle front-running issues in private smart contracts (to transfer own-
ership of the user account and keep away incoming transactions for an
unknown amount of time).

14. For floating point or certain binary-based FHE schemes, the
relation will be less than or equal. This is due to precision loss in
homomorphic computations under these paradigms.

9
317

Additional notation. We use Zp to represent Z/pZ, the
arrow notation for column vectors (e.g., �v), and capital
letters for matrices. For polynomials, we use boldface
notation (e.g., v), boldface with arrow notation for a
vector of polynomials (e.g. �v), and boldface capital letter
for a matrix of polynomials.

Cryptographic primitives. For FHE, we use the leveled
BFV scheme [36]. The BFV scheme models computation
as arithmetic circuits and supports exact arithmetic. In
BFV, the message, ciphertext, and the secret key are
vectors over the quotient ring R = Zq(x)/(f(x)) (where
f(x) = xd + 1 and d is a power of 2) whereas the
public key takes the form of a matrix over R. We have
chosen to use this scheme as it offers incredibly fast
integer arithmetic (crucial for private transactions) and
easily supports 64-bit computation.

Importantly, BFV relies on the hardness of Ring-
LWE [56], so we can use the short discrete log proofs
construction [34]. This proof system is elliptic curve based
and allows us to fairly efficiently prove knowledge of a
short vector �s such that A�s = �t for public A and �t
over the polynomial ring Zq[X]/(g(x)), where g(x) is
a monic, irreducible polynomial of degree d in Z[X].
Such a relation will allow users to attest to the well-
formedness of FHE ciphertexts (which are the users’
encrypted inputs). In practice, using this proof system,
we obtain proofs on the order of single to double digit
kilobytes and reasonable proving/verification times. As
part of the short discrete log proof construction, we obtain
a Pedersen commitment which can then easily be re-used
for Bulletproofs [23] which may be needed for private
computations. Bulletproofs allows us to prove arbitrary
properties of the user’s private account balance or private
inputs in a fairly efficient manner.

For digital signatures, we use the (lattice-based) Fal-
con scheme [40] when issuing transactions from private
accounts (for post-quantum protection), and ECDSA [47]
when the issuers are public accounts (to be compatible
with existing smart contract-enabled blockchains as in
Ethereum). If post-quantum security is not a concern, one
can use ECDSA for both (so long as different keys are
used for private and public accounts) Additional details on
all the previous primitives are provided in Appendix A.

5.1. Syntax

We now define the syntax used in our instantiation.
Note that all algorithms take as additional inputs the
public parameters pp and the system state sth for the
current block height h (but we omit listing it explicitly).

Setup Related. This is the setup for the entire system,
which involves choosing the public parameters of all
cryptographic building blocks and the initial state of the
ledger (details are in Figure 1).

Public Account Related. A public account owner main-
tains a key pair (pkpub, skpub) to sign outgoing txtransf and
txshield transactions (ECDSA is used here as in Ethereum),
an unencrypted balance balance, and a nonce ctr[pkpub].

1) Pub.CreateAccount(pp): This algorithm creates a
public account and outputs its key pair (pkpub, skpub).

Setup(1λ): Takes as inputs the security parameter λ.
Outputs the system public parameters pp, including:

• pp.BFV ← BFV.Setup(1λ)
• pp.NIZKlogproofs ← NIZKlogproofs.Setup(1

λ)
• pp.NIZKbulletproofs ← NIZKbulletproofs.Setup(1

λ)
• pp.sigpriv ← PrivSig.Setup(1λ), setup for signa-

ture scheme used for private accounts.
• pp.sigpub ← PubSig.Setup(1λ), setup for signa-

ture scheme used for public accounts.

Initializes:

• acc, account table.
• pendOps, pending operations table to keep track

of pending transactions and computations.
• lastRollOver, table of the last epoch at which a

private account’s balance was rolled over.
• lock, lock table keeping track of which address

a private account is locked to.
• counter, counter table keeping track of the coun-

ters associated with accounts.

Also outputs:

• MAX, maximum currency amount the system
can support. (We require MAX << q, where q is
the modulus of the ring Rq , to prevent possible
overflow for balance/transfer amounts.)

• E, epoch length.

Figure 1: System setup.

2) Pub.ReadBalance(pkpub): Returns the (plaintext)
balance balance belonging to the public account
pkpub. If no such account exists, returns ⊥.

3) Pub.Sign(skpub,m): Produces a signature σpub on
message m with secret key skpub.

4) Pub.VerifySig(m, σpub, pkpub): Verifies a signature
σpub on message m using pkpub.

Private Account Related. A private account owner main-
tains key pair (pkpriv, skpriv), an encrypted balance (with
respect to pkpriv), and a nonce ctr[pkpriv]. As indicated
earlier, the Falcon or ECDSA signature scheme is used to
sign outgoing txdeshield and txprivtransf transactions.

1) Priv.CreateAccount(pp): This algorithm creates a
private account. It outputs the account key pair
(pkpriv, skpriv), which are the keys for the BFV
scheme, along with the keys for the Falcon signature
scheme or ECDSA (sigpkpriv, sigskpriv). The public
key pkpub consists of matrix A and auxiliary informa-
tion τ for key switching; the secret key is skpriv = s.

2) Priv.Encrypt(pp, pkpriv,m): Calls BFV.Encrypt on
message m, and outputs ciphertext �c.

3) Priv.Decrypt(pp, skpriv,�c): Decrypts a cipher-
text �c encrypted under pkpriv by running
BFV.Decrypt(pp, s,�c).

4) Priv.ReadBalance(skpriv): Returns the unencrypted
balance balance belonging to a private account pkpriv.
If no such account exists, returns ⊥.

5) Priv.Sign(sigskpriv,m): Produces a signature σpriv on
message m using Falcon or ECDSA schemes.

10
318

6) Priv.VerifySig(m, σpriv, sigpkpriv): Verifies if the sig-
nature σpriv on message m is valid using sigpkpriv.

7) CheckLock(pkpriv): Checks if the account corre-
sponding to pkpriv is currently locked. If locked,
returns the address of the account it is locked to.
Otherwise, returns ⊥.

Transaction Related. Users can engage in six types of
transactions using their key pairs. We have omitted shield,
deshield, and private transfer from here as they are dis-
cussed in detail in Section 5.2.

1) Transfer(skfrompub , pktopub, amnt): Used to send currency
from one public account to another public account.
It outputs txtransf .

2) VerifyTransfer(txtransf): Verifies if all the conditions
for txtransf have been satisfied. If yes, it outputs 1.
Otherwise, it outputs 0.

3) Lock(skfrompriv , addr
to): First, checks that the account

corresponding to skfrompriv is not already locked by

calling CheckLock(pkfrompriv). If not, locks it to the
account corresponding to addrto (the latter can
even be the same account itself). Finally, outputs
txlock = (addrto, σlock) where

σlock = Priv.Sign(sigskpriv, (addr
to, ctr[pkfrompriv]))

Note that funds sent to pkfrompriv will not be rolled over
onto the account balance until it is unlocked.

4) Unlock(pkpriv): First, checks that the account
corresponding to pkpriv is locked by calling
CheckLock(pkpriv). If so, unlocks this account if and
only if the address addr that called Unlock is the
same one returned by CheckLock. Outputs txunlock.

Private Smart Contract Related. Operations on inputs
belonging to a private account will be translated into
homomorphic computations, with the corresponding smart
contract code translated to an arithmetic circuit.

1) Priv.HomAdd(pkpriv,�c1,�c2): Runs BFV.HomAdd on
the ciphertexts �c1 and �c2 (which are encrypted under
pkpriv) to produce the sum �c3 = �c1 + �c2 mod q.

2) Priv.HomMult(pkpriv,�c1,�c2): Runs BFV.HomMult
on the ciphertexts �c1 = (c1,0, c1,1),�c2 = (c2,0, c2,1)
(which are encrypted under pkpriv) to obtain the
product �c3 after performing the appropriate rounding
operation on (c1,0·c2,0, c1,0·c2,1+c1,1·c2,0, c1,1·c2,1).
We call Priv.Refresh on �c3 and output the result.

3) Priv.Refresh(�c, τ): Runs BFV.Refresh on the cipher-
text �c (encrypted under pkpriv) using auxiliary infor-
mation τ associated with private account pkpriv to
facilitate key switching.

5.2. Instantiating the Payment Mechanism

We discuss our payment scheme in detail; namely, we
show how users perform the shield, deshield and private
transfer transactions using our instantiation.

Representing Balances and Transfers. Let R =
Zq(x)/(f(x)). We use the Integer Encoder technique
(from SEAL [66]) to represent integer value currency
amounts for private accounts as follows:

1) Compute the binary expansion of the integer.
2) Use the bits as coefficients to create the polynomial

g(x). Negative integers can be represented via the
use of 0 and −1 as coefficients.

3) To get back the integer from a polynomial, simply
evaluate the polynomial g(x) at x = 2.

Thus, the modulus q must be chosen to be large
enough so that there is no overflow. Finally, the newly
obtained polynomial (that represents some integer
amount) is passed into Priv.Encrypt to obtain an
encryption that hides this amount.

Shielding Transaction. A sender with public account
(pkfrompub , skfrompub) and unencrypted balance balancefrom

wishes to send some currency amnt to a private account

(pktopriv, sk
to
priv) with encrypted balance �b′. To do so, the

sender issues a shielding transaction txshield containing the
following information:

• Receiver’s public key: pktopriv
• Transfer amount (in plaintext): amnt
• Transfer amount encrypted under the receiver’s pub-

lic key: �c
• Randomness used for encrypting transfer amount: r

The sender signs the transaction along with his nonce
ctr[pkfrompub], producing signature σfrom

pub . He then broad-
casts the transaction txshield to the miners. The miners
check that the following conditions are met (perform
VerifyShield(txshield)) in order to accept this transaction:

• Valid signature from sender
• Receiver’s public key exists/is valid
• Ciphertexts are well-formed
• Transfer amount is positive: amnt ∈ [0,MAX]
• Encrypted transfer amount matches plain-

text amount with published randomness:

Priv.Encrypt(pp, pktopriv, amnt; r)
?
= �c

• Sender’s remaining balance is non-negative:
balancefrom − amnt ∈ [0,MAX]

If all conditions are satisfied, miners update the
sender’s account balance to balancefrom − amnt and the
receiver’s balance to �b′ + �c (i.e. by calling

Priv.HomAdd(pktopriv,
�b′,�c)).

Deshielding Transaction. A sender with private account

(pkfrompriv , sk
from
priv) and encrypted balance �b wishes to send

some currency amnt to the receiver who has public ac-
count (pktopub, sk

to
pub) and unencrypted balance balanceto.

The sender will issue a deshielding transaction txdeshield
containing the following information:

• Receiver’s public key: pktopub
• Transfer amount (in plaintext): amnt
• amnt encrypted under sender’s public key: �c
• Randomness used for encrypting transfer amount: r
• Sender’s remaining encrypted balance �b′ and proof
πdeshield that this balance is non-negative (i.e.

Priv.Decrypt(pp, skfrompriv ,
�b′) = balance∗ ∈ [0,MAX])

The proof πdeshield is produced using discrete log
proofs. The sender signs the transaction along with his
nonce ctr[pkfrompriv], producing signature σfrom

priv . He then
broadcasts txdeshield to the miners. For the transaction to
be valid, and hence VerifyDeshield(txdeshield) = 1, miners
check that the following conditions are met:

• Valid signature from sender

11
319

• Sender’s account is not currently locked
• Receiver’s public key exists/is valid
• Transfer amount is positive: amnt ∈ [0,MAX]
• Encrypted transfer amount matches plain-

text amount with published randomness:

Priv.Encrypt(pp, pkfrompriv , amnt; r)
?
= �c

• Sender’s remaining balance is correctly computed:
�b′ ?

= �b− �c
• Proof πdeshield is valid

If the transaction is valid, miners update the sender’s

encrypted balance to �b′ = �b − �c and the receiver’s
balance to balanceto + amnt.

Private Transfer Transaction. A sender with private

account (pkfrompriv , sk
from
priv) and encrypted balance �b wishes

to send some amnt of currency to a recipient who is using

a private account (pktopriv, sk
to
priv) with encrypted balance �b′.

Thus, this sender will issue a private transaction txprivtransf
containing the following information:

• Receiver’s public key: pktopriv
• Transfer amount encrypted under sender’s public key:
�c = Priv.Encrypt(pp, pkfrompriv , amnt; r)

• Transfer amount encrypted under receiver’s public
key: �c′ = Priv.Encrypt(pp, pktopriv, amnt; r)

• Proof that �c and �c′ encrypt same transfer amount
amnt with same randomness r and that this transfer
amount is in [0,MAX] 15

• Proof that sender’s remaining (encrypted) balance �b∗

is non-negative (i.e. Priv.Decrypt(pp, skfrompriv ,
�b∗) =

balance∗ ∈ [0,MAX])

The sender signs the transaction along with his
nonce ctr[pkfrompriv], producing signature σfrom

priv . He then
broadcasts the transaction txprivtransf to the miners.
In order to accept this transaction, the miners run
VerifyPrivTransfer(txprivtransf) which checks that the fol-
lowing conditions are satisfied:

• Sender’s account is not currently locked
• Valid signature from sender
• Receiver’s public key exists/is valid
• Sender’s remaining encrypted balance is correctly

computed: �b∗ ?
= �b− �c

• All proofs are valid

To prove that the two encryptions are to the same
positive transfer amount, we set up the following matrix-
vector equation. Let the sender’s public key be represented
by matrix A; the receiver’s public key, by matrix B. Let �m
contain the transfer amount amnt and randomness. Then
we can form the equation:(

A
B

)
· �m =

(
�c
�c′

)
(1)

This equation verifies that �c and �c′ do in fact encrypt
the same amount amnt under the sender’s public key A
and the receiver’s public key B, respectively. Thus, we
will need to show that �m satisfies the above equation and
that amnt represented in it is non-negative. This can be
done using [34] We will also have another proof that the

sender’s remaining balance Priv.Decrypt(pp, skfrompriv ,
�b∗) is

15. The scheme is still secure with randomness re-use here (to en-
crypt the transfer amount under the sender and receiver’s keys) via the
generalized Leftover Hash Lemma [35].

non-negative; this proof is identical to the one in txdeshield
as discussed earlier.

If the transaction is accepted, miners update the

sender’s encrypted balance to �b − �c and the receiver’s

encrypted balance to �b′ + �c′.

5.3. Instantiating Private Computation

The exact computation to be performed is based on the
content of a smart contract that a user deploys. Requesting
a computation to be executed (over public or private
inputs) is done by sending transactions containing calls to
the functions defined in such a smart contract. The code
of a function is represented by a circuit C that Compute
takes as input. It is up to the contract creator to select
the computation and specify which conditions must be
satisfied by the user-provided encrypted inputs xj.

Based on the instantiation of smartFHE, computation
is limited to what can be presented by the selected FHE
scheme—binary or arithmetic circuits depending on the
type of scheme chosen. The user provides her encrypted
inputs (encrypted with respect to her FHE public key
pkpriv) and the necessary ZKPs πi showing that her inputs
satisfy the relevant conditions. Similar to private payments
discussed in the previous section, this is done via short
discrete log proofs and bulletproofs in which we can re-
use the Pedersen commitment created as part of short
discrete log proofs for the Bulletproofs commitment. If
the proof is accepted, the requested computation is then
performed directly on the encrypted inputs, and the ledger
state will be updated accordingly. As discussed earlier in
the Introduction, miners do not need to provide correctness
proofs to verify that C has been performed correctly over
the user inputs, i.e. ledger state updates are valid. This is
enforced by the security assumption that the majority of
the underlying mining power is honest. Thus, only state
changes resulted from valid computation will be accepted.

Depending on the computation being performed (if
a reciprocal action must happen on a different user’s
account), the user may also need to encrypt certain inputs
with respect to the reciprocal account’s public key and
show that the two encryptions indeed contain the same
plaintext value; this proof is similar in flavor to what was
presented as a private transfer transaction (i.e. txprivtransf).

5.4. Security

Our instantiation realizes a correct and secure PPSC
scheme based on the notions introduced in Section 2. In
Appendix C, we prove the following theorem:

Theorem 1. Our smartFHE instantiation realizes a cor-
rect (cf. Definition 2) and secure (cf. Definition 5) PPSC
scheme (cf. Definition 1).

We note that smartFHE is applied on top of a (se-
cure) public smart contract-enabled blockchain. We do not
change the consensus, liveness, availability, or the public
payment/smart contract operation of the underlying sys-
tem; these invariants are preserved. Thus, proving security
entails proving that smartFHE satisfies the additional pri-
vacy properties it offers (outlined in Definition 1), which
is detailed in Appendix C.

12
320

6. Performance Evaluation
We evaluate the computational and storage cost of

our instantiation, highlighting how our work supports
lightweight users. Specifically, we provide the cost of
private transactions in our system as well as three different
representative applications. We compare our work to the
state-of-the-art Veri-zexe [72], which builds upon and
improves Zexe. In evaluating our system, we provide the
first implementation of short discrete log proofs and open
source our library. We describe our methodology, discuss
the obtained results, and address potential extensions to
further improve execution time and storage costs.

6.1. Methodology

For the BFV scheme [36], we use Microsoft’s SEAL
library [66] to prototype the various FHE computations
needed as this library provides a highly optimized imple-
mentation. For Bulletproofs, we use Dalek [3] for 32-bit
range proofs as it is one of the fastest implementations of
Bulletproofs. For short discrete log proofs, we provide the
first implementation (a library with 4102 LOC) with Apple
Metal GPU-accelerated code; we significantly improve
upon the authors’ performance estimates in [34] by speed-
ing up scalar multiplication and scalar inversion. In our li-
brary, we use Curve25519 for compatibility with the Dalek
Bulletproofs library. We believe our library is of inde-
pendent interest as this proof system provides reasonable
time/space tradeoffs for proving well-formedness of FHE
ciphertexts; thus, we have open-sourced our work for the
community. For digital signatures, we use ECDSA with
curve secp256k1 (as used by Ethereum) from OpenSSL.
We conducted our experiments on an Apple M2 Max with
64GB RAM, chosen to represent a lightweight user.

We benchmark our work against the state-of-the-art
Veri-zexe [72] which improves upon Zexe by remov-
ing per-application trusted setup and significantly cutting
down on memory usage but at the cost of increasing
transaction size by an order of magnitude. As Zexe was
the most performant system implementing the ZKP-based
approach, comparing our system against its successor
Veri-zexe seems most appropriate.16 Both Zexe and Veri-
zexe work in the UTXO model so costs are given based on
the number of inputs and outputs as per the methodology
used in their own evaluations.

6.2. Results

Setup costs for the system and per user are fairly
negligible as observed in Table 1. We evaluate the cost
of private transactions and three private smart contract
applications ranging from DeFi to statistical computations.
Before discussing the results, we note that one of the most
important parameters to set is the polynomial modulus
degree d for the BFV scheme as it has the largest
impact on short discrete log proof performance, which
dominates both transaction generation and verification
time. Additionally, setting d smaller limits the number
of sequential homomorphic multiplications that can be

16. Zexe’s code (the one used in their paper [19]) is no longer
maintained. For this reason, Veri-zexe chose to benchmark their work
against snarkVM testnet-2 (created by the company Aleo [1]) which
instantiates the same model as Zexe.

TABLE 1: Setup times (one time cost)

Performed
by

Operation d = 1024 d = 2048 d = 4096

User KeyGen 0.216 ms 0.375 ms 36.5 ms
System ZKP setup 0.8 s 2.06 s 5.7 s

performed. Effectively choosing FHE scheme parameters
is a difficult task with many tradeoffs to consider and
beyond the scope of this work [69]. In deploying our
system, we suggest d = 1024 if private transactions
are the main focus. For deploying more complex smart
contract applications, d should be set to 2048 or 4096.

Private transactions. We evaluate the cost of the main
transactions in our system, focusing on the added cost
from privacy. As shown in Table 2, shield and deshield
transactions are fairly lightweight with regards to genera-
tion time and size.17 The situation is different for private
transfer due to the proofs incorporated. Miner cost is
particularly high as our experiments were run on a laptop.
While our system targets lightweight users, we emphasize
that miners are not lightweight and require much more
heavy duty machines to efficiently verify transactions.18

Veri-zexe’s performance is given in Table 4. Working
in the UTXO model presents a scalability issue when
trying to spend coins distributed among several UTXOs.
To elaborate, a user must prove that she owns all these
(private) inputs, thus increasing the generation cost as
the table shows19—a problem that does not exist in the
account-based model we adopt. Our scheme exhibits
superior performance in terms of user execution time
even compared to 2x2 transactions using Veri-zexe. The
difference is more stark when setting d = 2048 or lower.

Private smart contract applications. Next, we consider
three applications offering I/O privacy implemented as
private smart contracts. Briefly, they are (full details can
be found in Appendix B):

A1. Automated market maker (AMM): a special form
of decentralized exchange for trading cryptocurrency.
Adding privacy to AMMs protects users against front
running attacks. An AMM trades tokens in pairs, say
token A and B, with reserve values denoted as totalA and
totalB . A user submits a order to swap an (encrypted)
amount amntA of token A. The AMM contract com-
putes the (encrypted) amount amntB of token B this
order will receive (using the constant product formula):
amntB = totalB − totalA · totalB/(totalA + amntA)

A2. Financial standing of DAO members: a DAO
(decentralized autonomous organization) contract wants to
decide if the financial standing of a set of members (5
in our experiment) permits spinning out a new business
proposal. Members submit their (encrypted) fund amounts
and the DAO computes the mean/variance of these funds.

17. As a further optimization, we are able to perform shield and
deshield transactions using ciphertext-plaintext operations in the BFV
scheme. Thus, the user does not need to encrypt the transfer amount.

18. We benchmarked the SDLP verifier algorithm on an M2 Max with
30 GPU cores, each of which runs 32 threads in a wavefront. Since scalar
multiplication is ALU bound, we expect a validator using e.g. a Nvidia
RTX 4090 with 16384 shader cores to conservatively yield a 10-15x
performance improvement.

19. The slowdown is non-linear; interested readers can check [72] for
detailed justification of this trend.

13
321

TABLE 2: Private transaction costs for smartFHE’s
instantiation—user side.

Operation Time (s) Size (KB)

d = 1024
Shield(txshield) 0.0002 0.101
Deshield(txdeshield) 1.89 2.47
PrivTransfer(txprivtransf) 3.57 20.03

d = 2048
Shield(txshield) 0.0002 0.101
Deshield(txdeshield) 3.58 2.53
PrivTransfer(txprivtransf) 10.7 64.76

d = 4096
Shield(txshield) 0.0002 0.101
Deshield(txdeshield) 11.17 2.66
PrivTransfer(txprivtransf) 23.89 180.1

TABLE 3: Private transaction costs for smartFHE’s
instantiation—miner side.

Operation Time (s)

d = 1024
VerifyShield 0.00017
VerifyDeshield 0.92
VerifyPrivTransfer 1.95

d = 2048
VerifyShield 0.00017
VerifyDeshield 1.92
VerifyPrivTransfer 6.37

d = 4096
VerifyShield 0.00017
VerifyDeshield 6.42
VerifyPrivTransfer 14.77

A3. Insurance premium: a decentralized health insur-
ance company relies on the chi-squared test over genetic
data to decide premiums. The data is hosted by a group
of hospitals (set to 3 hospitals holding data for 98 patients
in our experiment). Hospitals submit the private quantities
needed to compute the test. The contract aggregates the
submissions and facilitates the test computation.

The first and second applications require the user to
provide a single encryption, generate a short discrete log
proof for two ciphertexts, and a bulletproof. The third
application requires each party to provide three encryp-
tions, a short discrete log proof, and a bulletproof. Miners
check the proofs and then perform the homomorphic
computation (the AMM calculation, mean/variance calcu-
lation, or chi-squared calculation, respectively). For these
applications, we focus on the core computation related
to smartFHE (that involve FHE, ZKP, and signatures) to
quantify the overhead of our scheme. The full description
of the applications (as found in Appendix B) include
additional details that are implementation dependent, e.g.
the users share the secret key of the FHE computation,
decrypt the result locally (decryption time is 0.087 ms,
0.173 ms, 0.7 ms for d = 1024, 2048, 4096, respectively),
or notify the smart contract that an encrypted result is
within a given range or open the result (if the developer
chooses to do that, the costs of these operations are
basically that of our private transactions reported earlier).

The cost of our applications is shown in Table 5.
Regardless of application, user execution time is superior
to Veri-zexe on even two inputs and two outputs;
furthermore, it is unclear if an AMM can be implemented
in the UTXO model used by Veri-zexe or Zexe.

Scalability. We briefly discuss issues that impact scala-
bility of the system. Increasing the number of users (or
clients) does not impact the per-user cost since each of
them is concerned with only her own inputs. The miners,
on the other hand, have to process more information as the
number of users increases. From our benchmarked appli-

TABLE 4: Base private transaction costs for Veri-zexe.

no. of inputs ×
no. of outputs

User genera-
tion time (s)

Miner verifica-
tion time (ms)

Size (KB)

2 × 2 27.82 13.21 4.82
3 × 3 54.9 13.14 4.88
4 × 4 59 13.15 4.95
8 × 8 121 13.15 5.2

TABLE 5: Private smart contract application costs.

Application Per user gen-
eration time
(s)

Miner verifica-
tion/computing
time (s)

Size (KB)
per user

AMM
(d = 2048)

6.4 3.58 33.53

AMM
(d = 4096)

20.88 12.64 91.4

Mean/variance
(d = 4096)

20.89 62.9 91.45

Chi-squared
(d = 4096)

23.89 44.39 26.95

cations, we observe that the additional cost is dominated
by verifying more short discrete log proofs rather than the
FHE computation or bulletproof verification. For example,
for the mean/variance applications, miner verification time
is 63.15 s, 126.19 s, and 189.23 s for 5, 10, and 15 users
participating in that application, respectively (where the
short discrete log proof verification cost in these scenarios
is 62.9 s, 125.8 s, and 188.7 s, respectively).

As such, an important area to focus on is a GPU-
accelerated implementation of this proof system for
OpenCL so we can target a variety of architectures and
provide significantly improved performance for miners
(who certainly would not be using an Apple laptop).
Performance could be further improved by speeding up
multi-scalar multiplication. These are among our future
work directions.

Storage is a large concern in the blockchain setting.
To get around having large transactions and private smart
contract state, a potential solution is to employ a decentral-
ized file storage system like IPFS [5]. Retrieving cached
content takes less than a second on average [4]. To prevent
data from being discarded in IPFS, it must be “pinned.”
Storage is tamper resistant as any changes to the data
changes the content identifier. Rather than storing the FHE
ciphertexts directly on chain, a content identifier may be
stored in its place which allows users or miners to then
retrieve the relevant ciphertext.

7. Conclusion

In this paper, we defined a notion for a PPSC scheme
and introduced smartFHE as a modular framework realiz-
ing this notion. smartFHE is the first system to investigate
the utility of FHE in supporting private computing in the
blockchain model and the first to support private smart
contracts for lightweight users. In comparison to a state-
of-the-art solution relying on the ZKP-based approach
(where users do the computation off-chain and submit
ZKPs attesting to correctness), our experiments show that
our work offers superior performance for the user. Such
results demonstrate the potential viability of FHE-based
solutions to private decentralized applications.

14
322

References

[1] Aleo. https://www.aleo.org/.

[2] Curve amm. https://curve.fi/#/ethereum/swap.

[3] Dalek library. https://github.com/dalek-cryptography/bulletproofs.

[4] Gaining visibility in ipfs systems. https://blog.cloudflare.com/
ipfs-measurements/.

[5] Ipfs. https://docs.ipfs.tech/concepts/what-is-ipfs/.

[6] Spiral. https://btc.usespiral.com/.

[7] Uniswap protocol. https://uniswap.org/.

[8] Ghada Almashaqbeh and Ravital Solomon. Sok: Privacy-
preserving computing in the blockchain era. In 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P), pages
124–139. IEEE, 2022.

[9] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical
product proofs for lattice commitments. IACR Cryptol. ePrint
Arch., 2020:517, 2020.

[10] Aritra Banerjee, Michael Clear, and Hitesh Tewari. zkhawk:
Practical private smart contracts from mpc-based hawk. In 2021 3rd
Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), pages 245–248. IEEE, 2021.

[11] Aritra Banerjee and Hitesh Tewari. Multiverse of hawkness: A
universally-composable mpc-based hawk variant. Cryptography,
6(3):39, 2022.

[12] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch La-
fuente. Maximizing extractable value from automated market
makers. In Financial Cryptography and Data Security: 26th
International Conference, FC 2022, Grenada, May 2–6, 2022,
Revised Selected Papers, pages 3–19. Springer, 2022.

[13] Carsten Baum, James Hsin-yu Chiang, Bernardo David, and
Tore Kasper Frederiksen. Eagle: Efficient privacy preserving smart
contracts. Cryptology ePrint Archive, 2022.

[14] Alex Biryukov and Sergei Tikhomirov. Deanonymization and
linkability of cryptocurrency transactions based on network analy-
sis. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 172–184. IEEE, 2019.

[15] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain,
Sam Kim, Peter MR Rasmussen, and Amit Sahai. Threshold
cryptosystems from threshold fully homomorphic encryption. In
Advances in Cryptology–CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23,
2018, Proceedings, Part I 38, pages 565–596. Springer, 2018.

[16] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and
Gregor Seiler. A non-pcp approach to succinct quantum-safe zero-
knowledge. In Annual International Cryptology Conference, pages
441–469. Springer, 2020.

[17] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Alge-
braic techniques for short (er) exact lattice-based zero-knowledge
proofs. In Annual International Cryptology Conference, pages
176–202. Springer, 2019.

[18] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Alge-
braic techniques for short (er) exact lattice-based zero-knowledge
proofs. In Annual International Cryptology Conference, pages
176–202. Springer, 2019.

[19] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers,
Pratyush Mishra, and Howard Wu. Zexe: Enabling decentralized
private computation. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 820–837, 2018.

[20] Zvika Brakerski. Fundamentals of fully homomorphic encryption-
a survey. In Electron. Colloquium Comput. Complex., volume 25,
page 125, 2018.

[21] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully
homomorphic encryption without bootstrapping. Cryptology ePrint
Archive, Report 2011/277, 2011. https://eprint.iacr.org/2011/277.

[22] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan
Boneh. Zether: Towards privacy in a smart contract world. In
International Conference on Financial Cryptography and Data
Security, pages 423–443. Springer, 2020.

[23] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra,
Pieter Wuille, and Greg Maxwell. Bulletproofs: Short proofs for
confidential transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 315–334. IEEE, 2018.

[24] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla,
Hugo Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dy-
namic searchable encryption in very-large databases: data struc-
tures and implementation. In NDSS, volume 14, pages 23–26.
Citeseer, 2014.

[25] David Chaum. Blind signatures for untraceable payments. In
Advances in cryptology, pages 199–203. Springer, 1983.

[26] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas
Hynes, Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song.
Ekiden: A platform for confidentiality-preserving, trustworthy, and
performant smart contracts. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 185–200. IEEE, 2019.

[27] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
Homomorphic encryption for arithmetic of approximate numbers.
In International conference on the theory and application of cryp-
tology and information security, pages 409–437. Springer, 2017.

[28] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra,
Noah Vesely, and Nicholas Ward. Marlin: Preprocessing zksnarks
with universal and updatable srs. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques,
pages 738–768. Springer, Cham, 2020.

[29] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika
Izabachène. Tfhe: fast fully homomorphic encryption over the
torus. Journal of Cryptology, 33(1):34–91, 2020.

[30] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable
bootstrapping enables efficient homomorphic inference of deep
neural networks. In International Symposium on Cyber Security
Cryptography and Machine Learning, pages 1–19. Springer, 2021.

[31] Tarun Chitra, Guillermo Angeris, and Alex Evans. Differential
privacy in constant function market makers. In Financial Cryp-
tography and Data Security: 26th International Conference, FC
2022, Grenada, May 2–6, 2022, Revised Selected Papers, pages
149–178. Springer, 2022.

[32] Wei Dai. Pesca: A privacy-enhancing smart-contract architecture.
Cryptology ePrint Archive, 2022.

[33] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin
Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkow-
icz. Chet: an optimizing compiler for fully-homomorphic neural-
network inferencing. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion, pages 142–156, 2019.

[34] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. Short
discrete log proofs for fhe and ring-lwe ciphertexts. In IACR
International Workshop on Public Key Cryptography, pages 344–
373. Springer, 2019.

[35] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam
Smith. Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. SIAM journal on computing,
38(1):97–139, 2008.

[36] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive, 2012.

[37] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio
Orlandi. Quisquis: A new design for anonymous cryptocurrencies.
In International Conference on the Theory and Application of
Cryptology and Information Security, pages 649–678. Springer,
2019.

[38] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Conference
on the theory and application of cryptographic techniques, pages
186–194. Springer, 1986.

[39] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently
verifiable computation on encrypted data. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 844–855, 2014.

15
323

[40] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset,
Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon: Fast-
fourier lattice-based compact signatures over ntru. Submission
to the NIST’s post-quantum cryptography standardization process,
2018.

[41] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk:
Permutations over lagrange-bases for oecumenical noninteractive
arguments of knowledge. Cryptology ePrint Archive, 2019.

[42] Priscilla E Greenwood and Michael S Nikulin. A guide to chi-
squared testing, volume 280. John Wiley & Sons, 1996.

[43] Jens Groth. On the size of pairing-based non-interactive arguments.
In Annual international conference on the theory and applications
of cryptographic techniques, pages 305–326. Springer, 2016.

[44] Jens Groth and Mary Maller. Snarky signatures: Minimal signa-
tures of knowledge from simulation-extractable snarks. In Annual
International Cryptology Conference, pages 581–612. Springer,
2017.

[45] Roger A Hallman, Kim Laine, Wei Dai, Nicolas Gama, Alex J Mal-
ozemoff, Yuriy Polyakov, and Sergiu Carpov. Building applications
with homomorphic encryption. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
pages 2160–2162, 2018.

[46] Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen.
Differential privacy in blockchain technology: A futuristic ap-
proach. Journal of Parallel and Distributed Computing, 145:50–74,
2020.

[47] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic
curve digital signature algorithm (ecdsa). International journal of
information security, 1(1):36–63, 2001.

[48] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Wein-
berg, and Edward W Felten. Arbitrum: Scalable, private smart
contracts. In 27th {USENIX} Security Symposium ({USENIX}
Security 18), pages 1353–1370, 2018.

[49] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss.
Kachina–foundations of private smart contracts. In 2021 IEEE
34th Computer Security Foundations Symposium (CSF), pages 1–
16. IEEE, 2021.

[50] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Char-
alampos Papamanthou. Hawk: The blockchain model of cryp-
tography and privacy-preserving smart contracts. In 2016 IEEE
symposium on security and privacy (SP), pages 839–858. IEEE,
2016.

[51] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. Pri-
vate computation on encrypted genomic data. In Progress in
Cryptology-LATINCRYPT 2014: Third International Conference
on Cryptology and Information Security in Latin America Flo-
rianópolis, Brazil, September 17–19, 2014 Revised Selected Pa-
pers, pages 3–27. Springer, 2015.

[52] Yehuda Lindell. Secure multiparty computation. Communications
of the ACM, 64(1):86–96, 2020.

[53] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-
precision homomorphic sign evaluation using fhew/tfhe bootstrap-
ping. Cryptology ePrint Archive, 2021.

[54] Zeyu Liu and Eran Tromer. Oblivious message retrieval. In Annual
International Cryptology Conference, pages 753–783. Springer,
2022.

[55] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon.
Lattice-based zero-knowledge proofs and applications: Shorter,
simpler, and more general. Cryptology ePrint Archive, 2022.

[56] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 1–23. Springer, 2010.

[57] Samir Jordan Menon and David J Wu. Spiral: Fast, high-rate
single-server pir via fhe composition. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 1568–1568. IEEE Computer
Society, 2022.

[58] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe
Bossuat, and Jean-Pierre Hubaux. Multiparty homomorphic
encryption from ring-learning-with-errors. Proceedings on
Privacy Enhancing Technologies, 2021(CONF):291–311, 2021.

[59] Pratyay Mukherjee and Daniel Wichs. Two round multiparty com-
putation via multi-key fhe. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages
735–763. Springer, 2016.

[60] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, 2019.

[61] Ngoc Khanh Nguyen and Gregor Seiler. Practical sublinear proofs
for r1cs from lattices. In Annual International Cryptology Confer-
ence, pages 133–162. Springer, 2022.

[62] Shen Noether. Ring signature confidential transactions for monero.
IACR Cryptol. ePrint Arch., 2015:1098, 2015.

[63] Andreas Park. The conceptual flaws of constant product automated
market making. Available at SSRN 3805750, 2021.

[64] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the
blockchain protocol in asynchronous networks. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, pages 643–673. Springer, 2017.

[65] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In 2014 IEEE
Symposium on Security and Privacy, pages 459–474. IEEE, 2014.

[66] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL,
April 2020. Microsoft Research, Redmond, WA.

[67] Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin
Vechev. Zeestar: Private smart contracts by homomorphic en-
cryption and zero-knowledge proofs. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 1543–1543. IEEE Computer
Society, 2022.

[68] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior,
Petar Tsankov, and Martin Vechev. zkay: Specifying and enforcing
data privacy in smart contracts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security,
pages 1759–1776, 2019.

[69] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. Sok: Fully
homomorphic encryption compilers. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1092–1108. IEEE, 2021.

[70] Gavin Wood. Ethereum: A secure decentralised generalised trans-
action ledger. Ethereum Project Yellow Paper, 2014.

[71] Aaron Wright. The rise of decentralized autonomous organizations:
Opportunities and challenges. Stanford Journal of Blockchain Law
& Policy, 4(2):152–176, 2021.

[72] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz,
Ben Fisch, Fernando Krell, and Philippe Camacho. Veri-zexe:
Decentralized private computation with universal setup. Cryptology
ePrint Archive, 2022.

[73] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng.
Sok: Decentralized exchanges (dex) with automated market maker
(amm) protocols. ACM Computing Surveys, 55(11):1–50, 2023.

A. Cryptographic Building Blocks

In this section, we provide an extended review of the
cryptographic building blocks that we use in our instan-
tiation of smartFHE (Section 5)—namely, fully homo-
morphic encryption, zero-knowledge proof systems, and
digital signatures.

A.1. Fully Homomorphic Encryption

FHE supports computations directly on ciphertexts.
All currently known schemes rely on lattice-based
cryptography, thus providing post-quantum security
guarantees. In our instantiation, we use the BFV

16
324

scheme [36], which is based on the Ring-LWE public
key encryption scheme [56]. We provide an overview of
both schemes starting with the latter.

Ring-LWE Encryption Scheme. The Ring-LWE public
key encryption scheme [56], which we denote as RPKE
is composed of five algorithms: Setup, SecretKeyGen,
PublicKeyGen, Encrypt, and Decrypt. All operations are
performed over the polynomial ring Rq = Zq[x]/(f(x))
where q is an integer and f(x) ∈ Z[X] is a monic,
irreducible polynomial of degree d. In describing the
previous algorithms, we loosely follow the presentation
from short discrete log proofs here [34]. Let λ be the
security parameter, the RPKE is defined as follows:

RPKE.Setup(1λ, 1μ): Takes as inputs security parameter
λ and positive integer μ. It outputs public parameters
rpke.pp = (p, q, d, χ) where p is the size of the plaintext
space (often chosen to be binary), q is a μ-bit modulus,
d = d(λ, μ) is a power of 2 for R = Z[x]/f(x) where
f(x) = xd + 1, and χ = χ(λ, μ) is a “small” noise
distribution. The parameters are chosen such that the
scheme is based on a Ring-LWE instance that achieves
2λ security against known attacks [21].

RPKE.SecretKeyGen(rpke.pp): Takes the public
parameters rpke.pp as input, and outputs a secret
key rpke.sk = s where s is a polynomial with small,
bounded coefficients from the error distribution χ.

RPKE.PublicKeyGen(rpke.pp, rpke.sk): Takes the public
parameters rpke.pp and the secret key rpke.sk as inputs,
and outputs public key rpke.pk = (a, t) for a, t ∈ Rq

where a is a random polynomial and t = as+ e such
that e is a polynomial with small, bounded coefficients
from the error distribution χ.

RPKE.Encrypt(rpke.pp, rpke.pk,m): Takes the public pa-
rameters rpke.pp, and the public key rpke.pk, and the
message m = m ∈ Rq to be encrypted as inputs (where all
the coefficients of m are in Zp), and outputs the ciphertext
�c that is computed as follows:

1) Sample polynomials r, e1, e2 with small, bounded
coefficients from the error distribution χ. Form �m∗
consisting of the message and randomness as follows:

�m∗ =

⎛
⎜⎝

r
e1
e2
m

⎞
⎟⎠

2) Form the matrix A from rpke.pk by setting:

A =

(
pa p 0 0
pt 0 p 1

)

3) Compute A · �m∗ =

(
pa p 0 0
pt 0 p 1

)⎛
⎜⎝

r
e1
e2
m

⎞
⎟⎠ =

(
u
v

)

4) Output ciphertext �c =

(
u
v

)

RPKE.Decrypt(rpke.pp, rpke.sk,�c): Takes the public pa-
rameters rpke.pp, the public key rpke.pk, and the ci-
phertext �c as inputs, and outputs the plaintext m pro-
duced by decrypting �c as follows: compute v − us
mod p. This will return the plaintext message m since

v − us = p(er+ e2 − se1) +m and all the coefficients
in the above equation were chosen to be small so that no
reduction modulo q occurred.

Correctness is straightforward. Semantic security is
based on the hardness of Ring-LWE for ring R [56].
Recall that the Ring-LWE problem with appropriately
chosen parameters can be reduced (via a quantum
reduction) to the Shortest Vector Problem over ideal
lattices. Full details on the reduction can be found in [56].

BFV Scheme. The BFV scheme [36] is a leveled FHE
scheme, meaning that only a certain number of homo-
morphic multiplications can be performed sequentially
before reaching a point at which the resulting ciphertext
cannot be decrypted. Each time we perform homomor-
phic operations (especially multiplication), the ciphertext’s
noise grows. As mentioned before, bootstrapping can be
used as an optimization to avoid having to specify the
multiplicative depth in advance.

When we multiply two ciphertexts �c and �c′ together,
we get a long resulting ciphertext. Having to work with
these increasingly long ciphertexts impacts the efficiency
of the scheme so BFV utilizes an additional technique
called key switching (or relinearization) that instead allows
us to work with a smaller ciphertext that is of the same
size as the original. This technique is encapsulated in the
refreshing procedure that can be performed by anyone.
The security of the BFV scheme follows from the security
of the basic Ring-LWE encryption scheme [56].

We present a simplified description of the BFV
scheme below, while full details can be found in [36].
The BVF scheme is composed of seven algorithms:
Setup, KeyGen, Encrypt, Decrypt, HomAdd, HomMult,
and refresh defined as follows:

BFV.Setup(1λ): Takes the security parameter λ as input,
and outputs the parameters bfv.pp, which includes a
modulus, noise distribution, two integers, and rpke.pp
(produced by invoking RPKE.SecretKeyGen(rpke.pp)).

BFV.KeyGen(bfv.pp): Takes the public parameters bfv.pp
as input, and outputs a secret key sk = s obtained by
running RPKE.SecretKeyGen(rpke.pp)), a public key pk
(obtained by running RPKE.PublicKeyGen(rpke.pp, s)),
and auxiliary information {τ} needed to facilitate the key
switching procedure in BFV.Refresh.

BFV.Encrypt(bfv.pp, bfv.pk,m): Takes the public
parameters bfv.pp, the public key bfv.pk, and a message
m as inputs. It outputs a ciphertext �c which consists of
two Ring-LWE samples. The first sample c0 encodes the
message m using t from rpke.pk and the second sample
c1 is auxiliary and formed from a in rpke.pk.

BFV.Decrypt(bgv.pp, bfv.sk,�c): Takes the public
parameters bfv.pp, the secret key bfv.sk, and a ciphertext
�c as inputs. It outputs the corresponding plaintext m
after performing the appropriate modulo reductions and
rounding operations on c0 + c1s.

BFV.HomAdd(bfv.pk,�c1,�c2): Takes as inputs two
ciphertexts �c1 = (c1,0, c1,1) and �c2 = (c2,0, c2,1), such
that both are encrypted under the public key bfv.pk. It
outputs �c3 = (c1,0+ c2,0, c1,1+ c2,1), which is the sum of

17
325

the two ciphertexts �c1 and �c2 resulted from performing
component-wise vector addition.

BFV.HomMult(bfv.pk,�c1,�c2): Takes as inputs two
ciphertexts �c1 = (c1,0, c1,1) and �c2 = (c2,0, c2,1), such
that both are encrypted under the public key bfv.pk. It
computes (c1,0 · c2,0, c1,0 · c2,1 + c1,1 · c2,0, c1,1 · c2,1)
over the integers and then performs a rounding operation
mod q to obtain �c3, which is the product of the two
ciphertexts. Finally, it calls BFV.Refresh on �c3 and
outputs the result.

BFV.Refresh(�c, τ): Takes as inputs a ciphertext �c and
auxiliary information τ to facilitate key switching. It then
expands the ciphertext and performs the key switching
procedure resulting in a new ciphertext �c′ of the original
size, and outputs �c′.

A.2. Zero-Knowledge Proofs

As FHE uses lattice-based cryptography, lattice-based
ZKPs would be a natural candidate for proving rela-
tions about the input plaintexts in our instantiation. There
have been recent improvements to lattice-based ZKPs
(namely [18], [16], and [9]) but these constructions still
do not achieve the desired efficiency level with regards to
proof sizes (<100KB).

Perhaps surprisingly, it is possible to use elliptic
curve-based ZKPs to prove relations in lattice-based
cryptography quite efficiently via the short discrete log
proofs construction [34]. We take this approach in our
instantiation to obtain small proof sizes (in the single
digit kilobyte range). We will then use Bulletproofs [23]
to prove properties of the plaintext (such as ensuring that
a currency amount is in a particular value range). Both
of these ZKP systems provide soundness, completeness,
and zero-knowledge guarantees and can be made
non-interactive using the Fiat-Shamir transform [38].
Additionally, neither requires a trusted setup.

Bulletproofs. This proof system [23] allows us to
efficiently prove that a committed value is in a particular
range using an inner product argument. We have chosen
Bulletproofs for our smartFHE instantiation as they are
universal (i.e. a single reference string can be used to
prove any NP statement), transparent (i.e. no trusted
setup), and efficient. Bulletproofs are readily compatible
with short discrete log proofs [34], relying also on the
hardness of the discrete log assumption. Additionally, the
Pedersen commitment obtained from short discrete log
proofs can be re-used for our range proof [34].

Short Discrete Log Proofs. This proof system [34] allows
us to efficiently prove knowledge of a short vector �s such
that A�s = �t for public A and �t over the polynomial ring
Rq = Zq[X]/(f(x)), where f(x) is a monic, irreducible
polynomial of degree d in Z[X].

To do so, we first form a Pedersen commitment to the
coefficients of �s. This commitment is in some group G

of size p such that the discrete log problem is hard. The
proofs owe their efficiency to the fact that p is usually
much larger than q, particularly in the FHE setting.

Then, to prove the linear relation, a variant of Bullet-
proofs is used, which differs from the original Bulletproofs
construction in that the inner-product proof will be zero-
knowledge [34]. Using the initial Pedersen commitment
to �s, we can use Bulletproofs to prove properties of the
plaintext—such as a secret value being in a particular
range. The soundness of the proofs is based on the discrete
log problem, whereas secrecy is based on Ring-LWE, a
problem generally considered to be hard even for quantum
computers [56].

A.3. Digital Signatures

As our system deals with public and private accounts,
issuing public and private transactions and computation
requests, a user needs at least two keypairs: one for a
private account and one for a public account (assuming
the user is interested in both modes of operation). As men-
tioned earlier, with public accounts, we use ECDSA [47]
as in Ethereum. For private accounts, if post-quantum
security for signatures is desired, we can use a lattice-
based digital signature scheme compatible with our FHE
scheme. In practice, we would like for such a scheme to be
fairly efficient. We use the lattice-based Falcon signature
scheme [40] in our instantiation, one of three finalists
for NIST’s post-quantum cryptography standardization
competition. If post-quantum security is not a concern,
we can instead use ECDSA for improved efficiency and
compatibility with existing public smart contract-enabled
blockchains. The only condition is that the user must use
a different keypair for the private account than that of the
public account to preserve privacy.

B. Applications

In this section, we demonstrate how our smartFHE
instantiation can be used to support real-world applica-
tions that require privacy. These applications are used
for performance evaluation purposes of our framework
as shown in Section 6. Note that the goal is to provide
representative computations that require FHE to enable
evaluating the overhead of our framework.

B.1. Automated Market Makers

Automated market makers, or AMMs, are a form of
decentralized exchange for trading cryptocurrency tokens
without intermediaries [73]. They connect buyers with
sellers, where sellers build liquidity pools for trading
particular tokens, e.g. Ether-NU trading. AMMs are a
prime example of Decentralized Finance (DeFi) services.
They build a platform for automated order matching and
execution. The price of the traded token is automatically
computed based on supply and demand. Naturally, if
supply is low (i.e. liquidity in the pool is low) then the
price becomes higher. An AMM is usually implemented
as a smart contract to support automatic execution, with
many popular systems such as Uniswap [7] and Curve [2]
deployed in practice.

A major problem for AMMs is front-running attacks
that allow manipulating the market to achieve significant
profits. Malicious parties monitor the mempool for large

18
326

pending orders and submit competing (buy) ones with
higher fees, before the matching happens, to front-run
unsuspecting user orders. As the competing order may
cause significant price slippage, the victim’s (buy) order
may execute at a worse price than anticipated. The ma-
licious party will then execute a second (sell) order after
the victim’s order, profiting off the price slippage caused
by the prior trades. The root cause of this type of attack is
lack of privacy. If AMMs permitted execution of private
orders, then malicious parties could not manipulate the
pool price in such a manner. This is a critical problem
that has received widespread interest [12], [63].

In this application, we show how smartFHE can
be used to build a private AMM. We follow the con-
stant product formula for computing the trading price
as adopted in Uniswap. This formula keeps the ratio of
token reserves, and consequently prices, in the pool as
balanced as possible to reduce price slippage. In particular,
let token A and token B be the pair of tokens being
traded, and totalA and totalB be the pool reserve values
of tokens A and B, respectively. This formula ensures that
the price of token A multiplied by the price of token B
equals a constant number, where the price of token A is
totalB/totalA (i.e. it is the number of B tokens required
to purchase a single A token); a similar formula applies
to the price of token B.

Accordingly, for an order trading an amount of token
A, amntA, the amount of token B, amntB , that this order
receives is computed as:

amntB = totalB − totalA · totalB/(totalA + amntA)

A private version of this AMM can be implemented in
smartFHE as follows. Alice locks her private account that
contains tokens of type A to the AMM smart contract (to
avoid any concurrency issues). She then issues an order,
which is basically a transaction, to the AMM representing
the intended trade. This transaction includes the encrypted
amount of token A to be traded, denoted as cA, and a ZKP
attesting that:20

• cA encrypts a non-negative value,
• that Alice’s private account can cover the total order

value,
• and that cA is well-formed.

The AMM smart contract will compute the amount of
B tokens Alice will get for her order. This is done using
the constant product formula as follows (where cB is the
ciphertext of B token amount resulting from the trade,
encrypted under Alice’s public key):

cB = totalB − totalA · totalB
totalA + cA

Alice will then finalize the trade by issuing a deshield
transaction to send amntA tokens out of her private
account to the AMM contract account, which the AMM
adds to the pool reserve of token A. This transaction
will include as auxiliary information the randomness used
to encrypt cA, allowing anyone to verify that indeed cA

20. It is unlikely that a single trade will drain the pool reserves entirely
of token B. Pool reserves are generally quite large and Alice will be
required to show that she owns a sufficiently large amount of token A
along with locking her account to the contract. Even if this is the case,
submitting such an order is to Alice’s detriment.

encrypts the correct amntA value. Upon receiving this
transaction and executing it, the AMM contract issues
a transfer transaction to send amntB tokens to Alice’s
account (if Alice’s B account is private, this will be a
shield transaction), and modifies the pool reserves of token
B accordingly. Note that even though these values are
public, this does not impose any threat to Alice’s trade
since it has already been executed—thus addressing front-
running attacks.

B.2. Statistical Data Analysis

Many financial applications rely on the results of
particular statistical analyses of user financial standing or
other user-related private information, e.g. health records.
The spread of blockchain-based applications to avoid
centralized trust has led to several innovations through
which traditional services and organizations are reshaped
into fully decentralized ones. Decentralized autonomous
organizations (DAOs) [71] are one such example. These
facilitate company/organization formation, with a trans-
parent way of buying shares, voting on project and busi-
ness proposals, decision making, e.g. for loan services or
health insurance. We discuss two sub-applications under
this category—namely, analyzing user financial standing
and performing a chi-squared test over genetic data.

B.2.1. Analyzing Financial Standing. For this applica-
tion, we imagine that a DAO is trying to decide on forming
a new company or spinning out a project based on the
financial standing of the users backing the endeavour.
Suppose we have a set of users P1, . . . , Pn, each of
which is willing to put funds u1, . . . , un to back the
proposal, where the fund amounts are private. The goal
is to compute the mean and variance to assist in making
the decision. Specifically, the mean must be close enough
to some target value set by the DAO and the individual
funds should not be far from the mean.

This application relies on inputs from multiple users;
we want all these to be encrypted under the same public
key to allow the DAO contract to compute the mean
and variance over the ciphertexts. One approach is to let
the users collectively generate a public key pk and share
the corresponding secret key sk. Thus, to decrypt any
ciphertext under pk, all the users’ secret key shares are
needed. Each Pi will encrypt her fund value ui (under pk)
and send it to the DAO contract, which in turn computes
the mean and the variance over all ciphertexts and updates
the contract state with the (encrypted) result. The users
can collectively decrypt the results and take further action
(if needed). For example, if the statistical analysis values
are within the required bounds stated by the DAO, any of
these users can issue a transaction to inform the DAO
of that (without disclosing the plaintext values of the
statistical results).

In terms of smartFHE operations, the above can be
done as follows. User Pi locks her own private account
(which contains a balance that can cover the individual
fund ui) to the DAO smart contract. Then she submits
a ciphertext ci of the value of her fund ui (encrypted
under the group public key pk) to the DAO. This is done
by issuing a transaction, which is basically a function call

19
327

with the encrypted fund as an input. This call also includes
a ZKP attesting that:

• The balance of the private account of Pi can cover
the fund value ui,

• and that the ciphertext of ui is well-formed.

After receiving c1, . . . , cn, the DAO contract will per-

form the computation. It computes the mean c̄ =
∑n

i=1 ci
n ,

and the variance var =
∑n

i=1(ci−c̄)2

n−1 .21

The resulting (encrypted) mean and variance will be
recorded in the DAO smart contract. The users can retrieve
these values and use their shares of the secret key to
collectively decrypt the result. If they find out that these
values satisfy the conditions set by the DAO, anyone can
notify the DAO of that. This is can be done by issuing a
transaction with a ZKP attesting that the encrypted mean
and variance are within the prescribed bounds.

B.2.2. Chi-squared Test. The chi-squared test, or X 2,
is a popular statistical test that answers questions with
respect to association relations or goodness of fit [42].
In association relations, this involves testing whether a
particular factor, such as age or gender, has a significant
association with a particular outcome, such as election
results or health status. In goodness of fit, this involves
testing whether a particular variable (or set of variables)
follows a particular distribution. In Genome-Wide Asso-
ciation Studies (GWAS), the chi-squared test is used to
test for deviation from the Hardy-Weinberg equilibrium,
and, thus, detect potential risks for diseases. Testing such
hypotheses is also useful for financial applications, such
as setting health insurance premiums.

In this application, we consider a scenario in which
a (decentralized) health insurance company relies on the
genetic testing results for a population of users of size
n to make decisions for insurance premiums. The ge-
netic data of these users is hosted by several trusted
medical institution or hospitals. The population is divided
into sub-populations of size n1, n2, . . . , nq such that for
i ∈ {1, . . . , q} the ni group data is hosted by hospital hi.
All these hospitals want to keep the hosted data private
from others.

We use the approach proposed in [51], [69] to compute
this genetic test. We start with one group to explain the
computation and then show how hospitals h1, . . . , hq will
participate together under smartFHE. For population n1,
let the genetic counts be t0, t1, t2 such that n1 = t0 +
t1 + t2. For example, assume that the test is for the two
alleles A and a of the gene, then t0 = tAA, t1 = tAa,
and t2 = taa. The chi-squared test is computed in two
stages. First, compute the quantities α = (4t0t2 − t21)

2,
β1 = 2(2t0 + t1)

2, β2 = (2t0 + t1)(2t2 + t1), and β3 =
2(2t2 + t1)

2. Second, compute the test value as:

X 2 =
α

2n1

(1

β1
+

1

β2

1

β3

)

The goal is to have all hospitals collectively compute
one test value over their data through the insurance com-
pany smart contract. Similar to the previous application,

21. Note that the squaring operation is simply a homomorphic multi-
plication of the quantity by itself and the number of users is public—it
is the count of the submitted ciphertexts. Thus, dividing the resulting
ciphertext by a public constant is a cheap operation.

these hospitals will generate one public key pk and share
the corresponding sk. Then, each hospital hi will submit
the encrypted genetic counts for population ni, denoted
as cti,0 , cti,1 , cti,2 such that ni = ti,0+ ti,1+ ti,2. Hospital
hi provides a ZKP attesting that the counts are for the
given population size ni (which is public). That is, this
ZKP attests that:

• All ti,0, ti,1, ti,2 are non-negative,
• that ni = ti,0 + ti,1 + ti,2,
• and that all submitted ciphertexts are well-formed.

The contract first checks that all ZKPs are valid, then
computes the total encrypted counts from all hospitals:

ct0 =

q∑
i=1

cti,0 , ct1 =

q∑
i=1

cti,1 , and ct2 =

q∑
i=1

cti,2

After that, the contract computes four quantities:

cα = (4ct0ct2 − c2t1)
2

cβ1 = 2(2ct0 + ct1)
2

cβ2 = (2ct0 + ct1)(2ct2 + ct1)

cβ3
= 2(2ct2 + ct1)

2

The hospitals can retrieve these encrypted quantities
from the contract, collectively decrypt them using their
shares of sk, and then any hospital can compute the test
result X 2 using the formula above.

Any of these hospitals can notify the insurance com-
pany smart contract of the result, which is done by issuing
a transaction with a ZKP attesting that the test result:

• is correctly computed using the quantities computed
by the contract,

• and that this result is in a given premium threshold
range set in the contract.

This is done without disclosing the test value.

C. Proof of Theorem 1

To prove Theorem 1, we need to prove that no PPT
adversary can win the correctness and security games
defined in Section 2 with non-negligible probability.

Intuitively, our smartFHE instantiation satisfies these
properties by relying on the correctness and security of the
underlying cryptographic primitives it uses. The use of a
secure zero-knowledge proof guarantees: completeness (a
valid honest proof generated by a user will be accepted
by the miners), soundness (a user that does not own valid
private inputs cannot forge valid proofs for any transaction
or computation request), and zero-knowledge (so the proof
does not reveal anything about the private inputs and
private account state). The use of a semantically secure
FHE scheme guarantees that the ciphertexts of the inputs
and balances do not reveal anything about the underlying
(plaintext) values, and operating on them (by homomor-
phically adding or multiplying them) will produce valid
results. Also, the correctness of the locking process will
avoid invalidating any pending ZKPs, and the correctness
of the rolling over process at the end of each epoch will
gurantee that account balances are updated correctly. The
security of the digital signature scheme guarantees that a
malicious adversary cannot forge signatures, and thus steal

20
328

others’ currency, and that a man-in-the-middle attacker
cannot manipulate any of the messages sent in the system.

Formally, the proof of Theorem 1 requires proving
three lemmas showing that smartFHE is correct and sup-
ports both overdraft safety and ledger indistinguishability.

Lemma 1. The smartFHE instantiation described in Sec-
tion 5 satisfies the correctness property (cf. Definition 2).

Proof. Correctness follows by the correctness of the FHE
scheme, the security of the ZKP system and the digi-
tal signature scheme, and the correctness of the locking
and roll-over processes. Every operation, whether a valid
transaction or a circuit computation, will be processed
successfully in our instantiation and leads to a verifiable
ledger update. This can easily be seen for each transaction
type in the system. By relying on the completeness of the
ZKP systems for Bulletproofs [23] and short discrete log
proofs [34], the correctness of the BFV fully homomor-
phic encryption scheme [36], the locking process (to lock
account states to avoid invalidating any pending ZKPs),
and the rolling over process at the end of each epoch, it
can be easily seen that valid transactions will update the
ledger state as expected.

That is, an adversary, who does not own an account or
does not know the actual private inputs and data, cannot
forge valid ZKPs; thus, any operation request he issues
will not be accepted. Also, this adversary cannot forge
a signature on behalf of an honest user or manipulate
the operation requests issued by others in the system.
For computations on private inputs, the correctness of the
results is based on the correctness of the BFV scheme.
That is, operating on the ciphertexts of the inputs will
produce ciphertexts of the correct results (the same as
what would be obtained if these inputs were public and the
computation was performed in the clear). Being able to do
any of these means violating the security of the underlying
cryptographic primitives, which is a contradiction.

Furthermore, the result correctness of any FHE-based
is guaranteed by the assumption that the underlying
smart contract-enabled blockchain system is secure (so
its consensus protocol satisfies the security properties
of consensus—liveness, persistence/consistency, and chain
quality [64]). In other words, miners will accept blocks
that contain only valid results computed by correctly per-
forming a Compute request using the supplemented user
inputs, according to the circuit representing the function
call in a given smart contract. Same for transactions issued
by the users. This guarantees that the updated ledger state
contains only valid state changes even for those over
private inputs and private accounts.

Accordingly, in the INCGame game, applying Ops to
accpub and applying an equivalent private version Ops′ to
accpriv, will lead to the same final balance value. Given
that all balance values are not allowed to exceed some
maximum value MAX determined by the system’s setup,
the homomorphic operations on account balances will
not cause an overflow that may lead to invalid updates.
Thus, A will have a negligible probability to succeed in
producing an operation transcript that leads to different
account balances, which completes the proof.

Lemma 2. The smartFHE instantiation described in Sec-
tion 5 satisfies the overdraft safety property (cf. Defini-
tion 6).

Proof. To prove that our instantiation supports overdraft
safety, we must consider Transfer, Shield, Deshield, and
PrivTransfer, and show that none of these transaction
algorithms can be used to send more currency than a user
rightfully owns with non-negligible probability. Recall
that our instantiation satisfies correctness (as shown in
Lemma 1) so that private computations cannot be used
to falsely increase a user’s account balance. Ultimately,
operations on private balances and transfer amounts will
be captured in the transactions listed above.

In Transfer, all account and transaction details are
associated with public accounts so are publicly verifi-
able information (e.g. sender/receiver’s balances, trans-
fer amount). Thus, if the sender attempts to send more
currency than he rightfully owns, VerifyTransfer would
output 0 and the transaction would be rejected.

In Shield, the state of the sender’s account can be pub-
licly tracked and verified. The encrypted transfer amount
will be checked to ensure that it matches the published
plaintext transfer amount (with the randomness used in
encryption), and that the sender’s remaining balance is
non-negative. If the sender attempts to send more currency
than he rightfully owns, VerifyShield will output 0.

In Deshield, the state of the sender’s account is private.
The encrypted transfer amount will be checked to ensure
it matches the published non-negative plaintext transfer
amount with the corresponding encryption randomness.
The ZKP showing that the sender has enough currency
in his private account to perform this transfer will also
be verified as part of VerifyDeshield. Thus, if the sender
is able to send more currency than he rightfully owns
(i.e. VerifyDeshield(txdeshield) = 1), he has violated the
soundness of the ZKP systems of Bulletproofs or short
discrete log proofs (which happens with at most negligible
probability).

In PrivTransfer, the state of the sender and receiver’s
accounts are private. As part of VerifyPrivTransfer, ZKPs
will be checked showing that the sender has enough
currency in his account to perform the transaction and
that the transfer amount encrypted under the sender and
receiver’s public key is identical and non-negative. Thus,
if the sender is able to send more currency than he
rightfully owns (i.e. VerifyPrivTransfer(txprivtransf) = 1),
he has violated the soundness of the ZKP systems of
Bulletproofs or short discrete log proofs (which happens
with at most negligible probability).

As in the proof of correctness, by the assumption that
the underlying blockchain system is secure, the miners
will reject any invalid operations and transactions. Thus,
any transaction in which its corresponding verify opera-
tion outputs 0 will be rejected, so it will not impact the
updated ledger state.

Accordingly, in the OSGame game, the adversary A
will have a negligible probability to succeed in spending
more currency than what it owns. That is, regardless of
how A interacts with the PPSC scheme (by instructing
honest parties to place transactions and computation re-
quests, or by inserting its own via its accounts or those that

21
329

it corrupted), the probability of breaking overdraft safety
is negligible, which completes the proof.

Lemma 3. The smartFHE instantiation described in Sec-
tion 5 satisfies the ledger indistinguishability property (cf.
Definition 8).

Proof. Recall that in the LINDGame, starting with some
ledger state, A interacts with the PPSC scheme (through
OPPSC) and can initiate any of the query types this oracle
provides. A can request creating (public and private)
accounts, transfer currency between them, request any
(public or private) computation execution in any smart
contracts it wishes, instruct honest parties to initiate trans-
actions and computation requests, and can corrupt any of
these parties and control it. At the end, A chooses two
operations (transactions or computation requests) among
which the challenger C will choose one at random and
request OPPSC to execute it. Based on the updated ledger
state, A will guess which operation was chosen and will
win if the guess is correct. To rule out trivial wins of A, the
two operations op0 and op1 must be publicly consistent
in the sense of Definition 7.

The proof must show that for all operation types in the
system (including all transaction types and private compu-
tation requests), A will not be able to win the LINDGame
with non-negligible probability. Without loss of generality,
we show that for private computation requests; a similar
proof and reasoning arguments can be applied to the rest
of the operation types.

Using a proof technique inspired by the one in [37],
we prove ledger indistinguishability for private computa-
tion operations using a series of hybrids starting with an
LINDGame with b = 0 (Hybrid0), and finishing with an
LINDGame game with b = 1 (Hybrid7). By showing that
all these hybrids are indistinguishable, we prove that A
cannot tell which operation C has chosen for execution.

A private computation operation is composed of a
public computation circuit (or code) to be executed, a
set of private inputs that are encrypted using the BFV
FHE scheme, and ZKPs (using the Bulletproofs and
the short discrete log proofs system) to attest for the
well-formedness of the input ciphertexts and that these
inputs respect all conditions specified in the system.
Based on that, we show the following series of hybrids:

Hybrid0: The game LINDGame with b = 0.

Hybrid1: Same as Hybrid0, but we replace the zero-
knowledge proofs with simulated ones, i.e., we invoke the
zero-knowledge property simulator for each of the input
values, and we replace the actual proofs in aux0 and aux1
with simulated ones.

The hybrids Hybrid0 and Hybrid1 are indistinguishable
by the zero-knowledge property of the ZKP systems we
use. If A can distinguish these two hybrids, then we
can use A to build an adversary B that can break the
zero-knowledge property of the underlying ZKP systems,
which is a contradiction.

Hybrid2: Same as Hybrid1, but we replace the input ci-
phertexts in aux0 and aux1 with fresh ciphertexts (for
plaintext inputs that may have different values than the
original ones, but produce same circuit behavior but not
necessarily same output value). That is, we choose a fresh

FHE keypair and fresh input values, then we encrypt these
values using the fresh secret key and use them to replace
the original input ciphertexts in aux0 and aux1.

The hybrids Hybrid1 and Hybrid2 are indistinguishable
by the zero-knowledge property of the ZKP system and
the semantic security of the FHE scheme. These imply
that, regardless of the actual plaintext input values,
the input ciphertexts are indistinguishable—neither the
ZKPs nor the FHE ciphertexts will reveal anything
about the plaintext values. In other words, if A can
distinguish these two hybrids, then we can use it to build
two adversaries: B1 that can break the zero-knowledge
property of the underlying ZKP systems, and B2 that can
break the semantic security of the FHE scheme, which is
a contradiction.

Hybrid3: Same as Hybrid2, but we replace the output of
the execute query with fresh output produced by executing
opb using the fresh inputs generated in Hybrid2.

The hybrids Hybrid2 and Hybrid3 are indistinguishable
by the semantic security of the FHE scheme that our
smartFHE instantiation uses. Similar to above, if A can
distinguish them, then we can use it to build B that can
break the semantic security of the FHE scheme, which is
a contradiction.

Hybrid4: Same as Hybrid3, but with b = 1. The hybrids
Hybrid3 and Hybrid4 are indistinguishable by the same
argument described above. Since the computation is
identical for both op0 and op1, by the semantic security
of the FHE scheme and the zero-knowledge property
of the ZKP scheme, and regardless of the actual input
values, A will not be able to deduce anything about these
inputs or the computed output. Thus, A will not be able
to tell that op1 has been executed instead of op0 in this
hybrid. Otherwise, we can use A to break the security of
the FHE and ZKP schemes that our instantiation uses (as
described above), which is a contradiction.

Hybrid5: Same as Hybrid4, but with aux0 and aux1 used
in the original game (i.e. original inputs ciphertexts). So
this is Hybrid3 with b = 1. The hybrids Hybrid4 and
Hybrid5 are indistinguishable by the indistinguishability
argument of Hybrid3 and Hybrid2.

Hybrid6: Same as Hybrid5, but with the original output
(i.e. ledger sate updates) that will be produced by opb
using the original aux0 and aux1 from the original game.
So this is Hybrid2 with b = 1. The hybrids Hybrid5 and
Hybrid6 are indistinguishable by the indistinguishability
argument of Hybrid2 and Hybrid1.

Hybrid7: Same as Hybrid6, but with the real (original)
ZKPs used in the original game instead of the simulated
ones. So this is the original LINDGame with b = 1. The
hybrids Hybrid6 and Hybrid7 are indistinguishable by the
indistinguishability argument of Hybrid1 and Hybrid0.

This sequence shows that LINDGame with b = 0
is (negligibly) indistinguishable from LINDGame with
b = 1. This means that publicly-consistent private compu-
tation requests in our smartFHE instantiation are indistin-
guishable and will not give A any additional information
that allows it to win LINDGame with non-negligible
advantage.

22
330

Similar hybrid sequence can be developed for other
operation types, and by relying on the security of the ZKP
systems and the FHE scheme we use, similar reasoning
as above can be used to show that they do not give A any
non-negligible advantage in winning LINDGame, which
completes the proof.

Proof of Theorem 1. Follows by Lemmas 1, 2, and 3.

23
331

