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Abstract—Social media platforms have been establishing
content moderation guidelines and employing various mod-
eration policies to counter hate speech and misinformation.
The goal of this paper is to study these community guidelines
and moderation practices, as well as the relevant research
publications, to identify the research gaps, differences in
moderation techniques, and challenges that should be tackled
by the social media platforms and the research community.
To this end, we study and analyze fourteen most popular
social media content moderation guidelines and practices,
and consolidate them. We then introduce three taxonomies
drawn from this analysis as well as covering over two
hundred interdisciplinary research papers about moderation
strategies. We identify the differences between the content
moderation employed in mainstream and fringe social media
platforms. Finally, we have in-depth applied discussions on
both research and practical challenges and solutions.

1. Introduction

Social media and online communities allow individ-
uals to freely express opinions, engage in interpersonal
communication, and learn about new trends and new
stories. However, these platforms also create spaces for
uncivil behavior and misinformation. Uncivil behavior is
defined as explicit language, derogatory, or disrespect-
ful content, which has become native on online plat-
forms [66], [159], [331]. Misinformation is defined as
false or inaccurate information [319], which has become
rampant on social media platforms.

Uncivil behaviors like online harassment have a severe
impact on users; social media provides anonymity, which
can lead to disinhibition, deindividuation, and a lack of
accountability, that can lead to anxiety and depression;
or even suicide [68], [81], [120], [294]. Misinforma-
tion significantly impacts users with undesirable conse-
quences and wreaks havoc on wealth, democracy, health,
and national security [152]. Misinformation, conspiracies,
and coordinated misinformation campaigns were prevalent
throughout the COVID-19 pandemic [212], [276]. Such
low-quality posts can also drown out useful content and
exhaust the limited attention of users [180].

Since the early incubation of online communities,
scholars and community managers alike reminisce over
how to best manage online content and how to enable
constructive, civil conversations among the users [83],

[108]. However, there is no unified method for content
moderation among the different social media platforms.
Some employ more restrictive rules, while others emerge
promising no or minimal moderation. For example, fringe
social media platforms, such as Parler and Gab, have very
minimal restrictions and they rarely ban users [33], [35].

Content moderation consists of several levels, includ-
ing community guidelines, techniques to detect violations,
and then policy enforcement. On each platform, content
moderation is not constant but evolves as new challenges
emerge, or it becomes clear that the in-use methods are
not sufficient to protect information integrity. For example,
during the 2020 Presidential elections and COVID-19 with
the emerge of huge amount of misinformation and fake
news on Twitter, the platform started using warning labels
on posts to counter such content [2], [3]. In this paper,
we study and categorize the topics covered in content
moderation research and investigate the current state of
content moderation on several social media platforms,
focusing on the enforcement of moderation policies and
also the community guidelines and how platforms define
and moderate different types of content. With this analy-
sis, we aim to obtain a comprehensive vision of content
moderation from the points of view of both the research
community and real-world practices. In particular, we
try to answer the following research questions: RQ1: In
what aspects and how does the research community study
content moderation? What are the research gaps that need
to be filled? RQ2: How does content moderation work in
practice? What content do different social media platforms
try to moderate, and how are the content moderation
policies defined, implemented, and enforced? What are
the practical and research gaps that need to be filled?

Studying and investigating these two research ques-
tions helps us in understanding all major components of
the content moderation framework. Systemizing publica-
tions studying these components, and identifying their
overlaps and differences, can help understand the research
gaps (RQ1) in each component. Furthermore, no other
work has provided a systemization of content moderation
which are practiced in social media platforms (RQ2). To
answer these research questions, we collate more than
two hundred plus research papers describing the ever-
growing changes to the content moderation practices of
social media platforms and their impact on the end-
user, and also investigate fourteen social media platforms
to understand the current state of content moderation
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Figure 1: Content Moderation Framework

practices. With these analyses, we create three granular
taxonomies, which explain and categorize the moderation
policies, the types of content that is moderated, and the
comprehensiveness of the provided community guidelines.
To the best of our knowledge, ours is the first paper that
systematizes content moderation policies in social media
platforms. Papers studying social media as a business
(i.e., platforms as exploitative data-gathering/ surveillance
systems for advertising) are out of scope of this paper.

In our analysis, we found that there are still incon-
sistencies in the way social media platforms moderate
content and how they define the guidelines. For example,
while certain categories of abuse are banned across all the
platforms, there is no consensus among platforms on what
content to moderate and what not to. Hence, moderation
happens arbitrarily. From our analysis of previous litera-
ture on misinformation and hate speech detection and the
effectiveness of guidelines and enforcement methods, we
identified and discussed several research gaps. We believe
that our findings will help not only the computer research
community but also the social media companies, to create
a more inclusive and transparent moderation process.

2. Content Moderation

Moderation is the governance mechanism that struc-
tures participation in an online community to facilitate
cooperation and prevent abuse [145]. It determines which
posts and users are allowed to stay online and which
are removed or suspended, how prominently the allowed
posts are displayed, and which actions accompany the
content removals, i.e. chance to appeal the decision [134].
Figure 1 shows the content moderation framework, which
we generated based on an extensive review of previous
works and community guidelines. This framework in-
cludes three interconnected components: (1) terms of use
and community guidelines which define abusive content
and behavior, as well as moderation policies, (2) violation
and abuse detection methods, and (3) enforcement of the
moderation policies. Terms of use and community guide-
lines show how the platforms detect violations and abuse,
and dictate the policies that the platform tries to enforce.
Throughout this paper, we discuss the content moderation
and literature with regards to each of the components.

2.1. Terms of Use and Community Guidelines

Social media platforms define their content modera-
tion policies alongside their privacy policies, copyright

etc., in their terms of service and community guidelines.
Typically, whenever a user joins a social media platform,
they come across terms of service and they are required to
provide affirmative agreement to register an account and
use the platform. Terms of service are not particularly
useful as an education tool as they are likely written in
legal terms and previous works have found that users
rarely read them [293]. In order for the users to better
understand the rules, these platforms provide them as
community guidelines/ standards, which are established
in layman’s terms. These terms and guidelines specify the
types of content that are prohibited on the platform, and
the actions that will be taken once a violation is detected
(i.e., moderation policies). Some examples of such content
are child sexual exploitation, terrorism, and pornography,
which by law are required to be removed. Other types of
prohibited content are malicious content, which includes
spam, malware, and phishing URLs purposefully spread
on social media platforms to gain more victims [84],
[286], [287], [334]. While there are numerous works on
the moderation of such content, these works are out of
the scope of this paper. Instead, we investigate research
that focus on content, such as fake news, misinformation,
and offensive and hate speech. These are emerging and
gray areas, with no universally accepted definitions, which
contribute to controversial discussions on the trade-off
between moderation and freedom of speech.

2.2. Violation and Abuse Detection

To detect violations as well as abusive content and
behavior, social media platforms rely on a combination
of human moderators and automated algorithms, which
include heuristic-based and rule-based techniques as well
as sophisticated machine learning-based models.

Human-based Moderation: Human moderators can
be paid workers or volunteers who not only identify and
vet abusive content, but may also enforce the moderation
policies, e.g., by directly removing such content. Some
platforms, like Twitter, Facebook, etc., employ a large
group of freelancers, who work on contracts [11], [249],
while others, for example, Reddit, rely on volunteer mod-
erators, that are typically selected from the most actively
involved users in the community [165], [209]. Reddit also
gives moderators the power to create and enforce local
rules that sit below the broader rule set of the platform.
4chan is similar to Reddit, where there are additional rules
specific to each board. Some platforms, such as Facebook,
Youtube, Snapchat, etc., also rely on users, to flag content
that they deem unfit for the readers or they violate the
community guidelines [99]. These platforms may then use
heuristics or models to employ moderation policies based
on these flags, e.g., they might have a simple rule that
a post is deleted if enough users flag it, or they might
send such flagged content to their human moderators, who
closely vet and enforce the policies.

Algorithmic-based Moderation: Human-based mod-
eration though effective comes at a cost of time, labor, and
liability for the host company, and also at the emotional
cost of the workers since they are at the frontlines [99],
[249]. To minimize such trade-offs, social media com-
panies are increasingly deploying rule-based techniques
and machine learning models to automate the process of
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identifying problematic material [19]. For detecting differ-
ent types of violation and abusive content, social media
platforms develop a different set of algorithms and meth-
ods. For example, YouTube relies heavily on its automated
flagging systems to remove offensive comments [46].
Perceptual hashing [226] is used to automatically detect
pornographic images and videos, adult nudity, etc., which
involves fingerprinting some perpetually salient feature set
of the content. Combating terrorism content is challenging
and requires instantaneous removal from the platform.
Companies such as Facebook, Google, Twitter, and Mi-
crosoft created a group called Global Internet Forum to
Counter Terrorism (GIFCT), which maintains a Shared
Industry Hashed Database (SIHD) [15], [22]. To detect
misinformation in images, Meta has deployed SimSearch-
Net++, which can detect variations in an image with
high precision. Pre-trained NLP language models such
as BERT [61], [221], [256], RoBERTa [197] & XLM-
R [98] have been recently proposed to detect hate speech
and are used by Facebook [31], [32]. In academia, most
hate speech and toxicity detection studies use Google’s
Perspective API to detect toxicity in text [141]. The
API uses machine learning techniques and a manually
curated dataset of text to identify toxicity. Most social
media platforms do not publicly share the details of their
tools used to detect misinformation or offensive content,
however, in the literature, AI-based models are proposed
to detect specific types of misinformation about COVID-
19 and vaccinations [186], [273], security tools [287],
hate speech, and offensive comments [101], [333], fake
reviews [207], [222], etc.

Human-in-the-loop moderation: Relying solely on
algorithms to moderate also has some limitations, e.g., the
performance of AI-based models can significantly drop for
out-of-distribution examples that differ from the training
data [73], [169]. Hence, some studies have proposed using
human-in-the-loop moderation [189], [203], which refers
to interactive training paradigm where the AI receives in-
put from the human to improve its performance. Moreover,
some legislation, like The European Union General Data
Protection Regulation (GDPR) has mandated human-in-
the-loop moderation. Article 22 & recital 71 of GDPR
guarantees that a decision should not be based solely on
automatic systems, if the decision is challenged, it would
be subjected to human review [12], [13], [139].

2.3. Content Moderation Policy Enforcement

Terms of service and community guidelines may also
define the policies that the platforms enforce when viola-
tions of service or abusive behavior are detected. These
policies can take place at various levels, e.g., at the post
level vs. account level [191], [225], and also specify var-
ious consequences, e.g., showing a warning vs. removing
the abusive account. We found two popular moderation
policies that platforms use: hard and soft moderation.

Hard Moderation: Hard moderation is the most
severe way a platform enforces its policies, which removes
the content or entities from the platform [90], [155], [257],
when a violation of community guidelines occur. Then,
other users cannot access the content or connect with
the abusive account. Platforms provide an option for the

affected users to appeal for the content that might be
wrongly removed by the platform [47], [51].

Soft Moderation: Nowadays, soft moderation is
the platforms’ first line of defense to counter content
that violates their content guidelines. In soft moderation,
platforms do not remove the content. However, they aim
to inform the users about potential issues with the content
by adding a warning label, substantiating the post with
labels in order to inform and educate the users, or limiting
the reach of the doubtful content by putting it in quar-
antine [130], [213], [330]. Soft moderation has recently
received a lot of attention, both in academic circles and
by social media platforms, because of the broader effects
and effectiveness of this approach. For example, since
the invasion of Ukraine by Russian forces, Twitter started
adding labels to tweets from Russian & Belarusian state-
affiliated media websites [74]. Reddit started quarantining
r/NoNewNormal, a subreddit that is generally antimask,
anti-vax, and is against any governmental COVID-19 re-
strictions across the world [43]. In quarantine, users are
shown a warning page, and they have to make a delib-
erate choice to view the content. Facebook, Instagram,
and Twitter have a strike system in place to discourage
users from posting misleading false content [3], [44]. For
example, if a user gets two or three strikes, then they will
not be able to access their account for 12 hours. These
steps are still considered as soft moderation, as the user
is not permanently banned from the platform.

3. Content Moderation in Literature

To answer our first research question, we examined
the last five years of research from the top security
conferences (1.45%), such as IEEE Security and Pri-
vacy, USENIX Security, NDSS, ACM CCS, IEEE Euro
S&P, top data mining conferences (4.5%), such as KDD,
WSDM, CIKM, and ICDM, top machine learning confer-
ences (4%), such as AAAI AI, IEEE/CVF, top linguistic
conference (13.5%), such as ACL Anthology, and also
from the top HCI and social science conferences and
journals (35.7%), such as CHI, CSCW, ICWSM, The
Web Conference, New Media & Society, Political Be-
haviour, etc. While this distribution shows that content
moderation is an interdisciplinary topic, our paper can
spark further research from the security community. We
list the distribution of papers in Table 4 in Section B. In
our study, we focus on publications investigating topics
related to content moderation practices for countering
online hate speech, online harassment, trolling, cyberbully
or in general online toxicity as well as misinformation,
disinformation and fake news. We used the snowballing
approach [140] for finding relevant papers. We started our
search by a set of keywords (i.e., content moderation, hate
speech, misinformation, detection, etc.), and expanded our
search, by studying their references and related work sec-
tions. The overall set of keywords are: content moderation
+ (social media, tools, effectiveness, engagement, sup-
port, removal, removal comprehension, bias), (soft, hard)
moderation, and (hate speech, misinformation) (detection,
identification, system, automatic, methods, tools, NLP).

To create categories for papers about detection of hate
speech and misinformation as well as the moderation
studies, three authors classified the papers using the open
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coding process [135]. The three authors, independently
studied the papers to determine themes, sub-themes, and
the approaches and methods that are employed to address
a specific task. To find the agreement score, we gave
a value of 1, if three authors had a perfect agreement
on the categories, otherwise, we divided the number of
matched categories by the number of possible categories.
Using this methodology, we found substantial agreements
of 75% and 70% for groupings of detection methods and
moderation studies, respectively. In Section 3.1, we list
the identified categories for the publications that are about
the detection techniques focusing on Hate Speech and
Misinformation, and in Section 3.2, we list the identified
categories for publications regarding moderation policies.
If a study fits in multiple categories e.g., using content
based features and DNNs, then we label that study as
hybrid approach.

3.1. Detection Techniques

Some recent surveys [122], [148], [161], [265], [327],
[339] have reviewed detection techniques with respect
to either hate speech or misinformation. However, these
works focused on specific methods (such as NLP, graph-
based, etc.). Our work, in contrast, studies methods de-
tecting both types of abuse on social media and, more
importantly, studies these methods considering the entire
moderation ecosystem. We systemize the detection tech-
niques based on their methods, grouping them by simi-
larities and differences between the underlying methods
(e.g., propagation-based techniques, lexicon-based tech-
niques, etc.) under a common taxonomy. We identified
five and seven broad categories for hate speech detec-
tion and misinformation detection, respectively, which is
shown in Table 6 in Section C. We found that both hate
speech detection and misinformation detection systems
equally use features derived from the textual part of
the social media posts, such as TF-IDF, Part of Speech
(POS) tags, etc. [101], [104]. Lexicon-based methods
are more common in hate speech detection [72], [307].
Propagation structure, crowd intelligence-based methods,
and knowledge-based methods are popular in misinfor-
mation detection due to their spread on social media
platforms [241], [262]. We found that both hate speech
and misinformation detection systems have leveraged the
advances of Deep Neural Networks (DNNS) advances,
eliminating the need for feature engineering and domain
expertise [217], [318]. Misinformation and hate speech
have evolved across modalities, including images and
videos. We found methods combine these different modal-
ities to identify misinformation (e.g., fauxtography) and
hate speech (e.g., hateful memes) [239], [315].

Hate Speech Detection Previous works have exten-
sively used Machine Learning (ML) techniques to detect
hate speech, offensive language and toxicity online. Some
works [126], [310] have proposed detection methods for
specific types of hate speech such as misogyny, sexism, Is-
lamophobia, etc. Other works [101], [237] have proposed
methods for detecting offensive language. In this work, we
refer to all of them as hate speech detection. We identified
four categories of detection studies, based on the features
and machine learning algorithms that they employ: Tra-
ditional Machine Learning: Many works have proposed

using traditional ML algorithms such as Support Vector
Machines [101], [126], [258], Logistic Regression [255],
etc. We characterized these studies based on the proposed
features into content and lexicon based. Content Based:
includes works that have obtained features solely from the
text to detect hate speech, toxicity and offensive language,
i.e., TF-IDF, n-grams, POS tags, BoWV etc. [101], [102],
[255], [258]. Lexicon Based: Scholars have extensively
used syntactic and semantic orientations of the existing
lexicons for detecting hate speech because keyword-based
approaches show high false positive rates, mostly due to
ignoring the context [72], [87], [115], [126], [205], [263],
[297], [307], [310], [321]. Deep Neural Based: With the
advancements in the Deep Neural Networks, a majority
of existing literature has used neural networks and deep
neural networks to detect hate speech [59], [65], [95],
[110], [127], [160], [237], [328], [336], [337], [341] and
toxic comments [114], [132], [292], [305]. Note that there
are methods that use DNN based architectures together
with the content, and lexical based features, which we
list separately in the subsequent category of hybrid ap-
proaches. The methods categorized as Deep Neural based
use CNN, LSTM, Transformers to detect hate speech.
CNNs have been used in a variety of works for hate speech
detection tasks [175], [177], [233], [247], [253], [317].
Sequential models such as LSTM have been effective in
detecting hate speech on social media [58], [71], [192],
[217], [229], [242], [245], [308]. Following the success
of transformer networks trained on large amount of data
(or Large Language Models), pre-trained models such as
BERT [106], GPT [82] and RoBERTa [197] have been
used successfully in hate speech detection [61], [88],
[220], [221], [256], [322].

Hybrid Approaches: Previous works have effectively
combined features derived from the content, lexicon and
deep neural network, and several works have proposed
hybrid approaches, using an ensemble of classifiers using
different sets of features [63], [70], [94], [103], [124],
[128], [146], [206], [208], [235], [259], [340]. Grondahl
et al. [146] evaluated four state-of-the-art hate speech
detection models trained on different datasets and found
that the models only work well within their respective
trained datasets, failing to generalizing across datasets.

Multi-modal Based: Hate speech can span across
multiple modalities such as images, videos, memes, etc.
Hence it is imperative to detect this type of content [137].
Works have used text and images together to detect
hate speech [285], [325] text and socio-cultural informa-
tion [311] and memes [137], [179], [194], [239], [309].

Misinformation Detection Scholarships have also ex-
tensively used ML techniques to detect misinformation/
fake news. We identified four categories, based on the
features and the machine learning algorithms that they
use: Traditional Machine Learning: Many works have
proposed using traditional ML algorithms such as Random
Forrest [126], [287], [338], Logistic Regression [104], etc.
We characterized these studies based on the proposed
features into content based, propagation based, hybrid
and crowd intelligence. Content Based: features such as
number of content words (nouns, verbs, adjective), and the
presence and frequency of specific POS patterns, TD-IDF,
have been employed, to detect misinformation, in [104],
[119], [150], [154], [156], [238], [243], [287], [313],
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[314], [338]. Propagation Based: Different to methods
extracting features from the textual content, there are mul-
tiple works using the propagation structure, or spreading
networks of content on social media to detect misinforma-
tion [262], [318]. These works leverage the peculiar traits
in underlying network structure of the dissemination of
misinformation [281], classifying news propagation paths
for early detection [195], and identifying higher-order
mutual attention paths in the propagation structures [216].
Scholarships have also used user based features such as
number of friends, followers etc, to identify misinforma-
tion/ fake news [282], [284], [287]. Hybrid Approaches:
Combining the features derived from both the content
and propagation structure of content on social networks,
several works have proposed hybrid approaches to detect
misinformation [153], [170], [176], [254], [283]. Crowd
Intelligence: Wisdom of the crowd can be effectively
used to detect misinformation. Multiple works have lever-
aged implicit crowd intelligence as the content spreads on
a social media for early detection of misinformation [171],
[181], [202], [241], [280], [301], [312].

Deep Neural Networks: Recent advent of Deep
Learning algorithms have allowed researchers to build
detection systems without feature engineering. Multi-
ple works have used advanced deep learning techniques
such as self-attention [64], adversarial learning [246],
graph neural networks [76], [329], recursive neural net-
works [202], and other deep learning architectures [174],
[196], [198], [219], [254], [280], [315], [318] to detect
misinformation. Knowledge Based: Another line of re-
search uses Knowledge Graph built through relational
knowledge extracted from the Open Web and evaluate
the truthfulness of contents by verifying them against the
“gold” Knowledge Base [100], [112], [157], [185], [231].
Scholarships have used a combination of Knowledge Base
and deep neural networks to find misinformation [100],
[211], [291], [324]. Multi-modal Based: The scope of de-
tecting misinformation expands beyond just detecting text
based misinformation but to identifying multi-modal mis-
information. Researchers have proposed multiple methods
to tackle this problem leveraging the relationship between
different modalities of content on social media [288],
learning shared representations of text and images [178],
learning the shared representations of audio and visual in-
formation [274], learning transferable multi-modal feature
representations [315], and fusion based methods [240],
[290], [320].

Research Gaps. Bozarth and Budak [80] evaluated
five representative classifier architectures for misinforma-
tion detection, and found that the performance of detection
systems vary across datasets, hence prompting a need
for building comprehensive evaluation systems. Similarly,
the evaluation of hate speech detection methods by [146]
suggests that traditional machine learning based methods
can be as good as Deep Neural Networks based methods,
and the focus of researchers should be more on designing
richer, robust datasets. The sizes of existing datasets for
hate speech detection range from 6K comments [103]
to 100K tweets [125]. However, Madukew et al. [204]
identified multiple limitations with the existing datasets
for hate speech detection: i) conflating class labels, ii)
varying definitions of hate speech across manual anno-
tations, and iii) class imbalance issues, thus highlighting

the need for benchmark datasets. Fairness remains a key
challenge when building these detection tools, as the
underlying biases in the groundtruth dataset or lack of
various dialects can reflect in the classification results [79],
[264]. Scholarships should focus on building standard
benchmarks for evaluating hate speech detection systems
across different domains, different languages, and across
different nuances of hate speech such as implicit hate
speech [67], [218], [327]. Misinformation detection meth-
ods are topic specific, e.g., they detect misinformation
about presidential election or COVID-19, etc. However,
misinformation about other topics are under-worked and
under-studied. For example, Singhal et al. [287] found
that misinformation regarding security and privacy threats
are also prevalent on social media. Despite the promise
of zero shot, cross-lingual language models, such as mul-
tilingual BERT [106], they are limited for cross-lingual
hate speech detection [227]. Future works should focus
on building efficient and scalable cross-lingual hate speech
detection methods. Scholarships should focus on detect-
ing domain independent multi-modal misinformation [57],
and generalizable multi-modal hate speech capturing the
complexities of hate speech embedded in memes [163].

3.2. Moderation Policies

We identified six broad categories from our analysis of
papers that are shown in Table 5 and Table 7 in the Sec-
tion C: Consumption of (fake/ misinformation) news:
Some research studies have tried to understand how the
users consume the news online, and what methods are em-
ployed by social media to verify the information shared on
these platforms. Geeng et al. [130] focused on the effect of
warning labels that were added on Twitter, Instagram, and
Facebook on posts related to COVID-19 misinformation.
They found that most of the survey takers had a positive
attitude however, a majority of participants discovered
or corrected misinformation by using other means, most
commonly web searches. Zhang et al. [335] found that
most participants determined the credibility of news re-
garding COVID-19 using other heuristics such as web
searchers. This research corroborates with other research,
where authors found that people use multiple heuristics
on and off social media to determine the credibility of
information [75], [121], [131], [151], [162], [199], [200],
[279], [302], [306]. Research Gaps: While these research
studies give direction on how users investigate fake news
and employ warnings, there are some research gaps that
the research community should investigate. The study
demographics concentrate in the US and had a large
percentage of young, tech-savvy participants (18–25 years
old) as shown in Table 5. The study also uses textual
data, such as articles and some images. Studies with more
diverse participants, and also those which focus on specific
demographics, e.g., certain age, gender, ethnicity can help
our understanding of the acceptance of different content
moderation policies in different communities. Also, most
of these works are simulation-based, where, for example,
participants interacted with simulated web pages that show
fake news. Users might show a different behavior, or use
different approaches for investigating statements given in
images, memes, and videos, therefore more observatory
studies are needed to understand the problem.

872



Engagement of users: Some studies investigated how
users interacted with moderated postings and the con-
sequences on engagement when certain communities or
influencers are deplatformed and moved to stand-alone or
fringe websites. Zannettou [330] performed a data driven
study on the soft moderation interventions employed by
Twitter. He found that tweets that have warning labels
tend to have a higher user engagement. This was also
corroborated by researchers in [232]. However, [182],
[193] found a contrasting results, where user engagement
on content with warning labels on TikTok and YouTube
was found to be less. Mena [213] conducted a user study
to understand the effect of warning labels on the likelihood
of sharing fake news on Facebook. He found that flagging
fake news has a significant effect on users’ sharing inten-
tions; that is, users are less willing to share content with
the labels. This was corroborated in [116], [168], [234],
[236], [272], [326]. Chandrasekhran et al. [90] found that
quarantine made it more difficult to recruit new members
on r/TheRedPill and r/The Donald, however they find
that the existing members hateful rhetoric remained the
same. Similarly, Shen and Rose [278] found that Reddit’s
quarantine was effective in decreasing the posting levels,
however the toxicity of users remained the same. Trujillo
et al. [300] found that quarantine did in fact reduced the
activity of problematic users, however it also caused an
increase in toxicity and led users to share more polarized
and less factual news. A similar result is seen in the data
driven study done by works of [62], [91], [155], [244],
[299] which studied the effectiveness of deplatforming.
Works such as [166], [257] found that deplatforming
significantly decreased posting level, user engagement and
toxic rhetoric of the users. Research Gaps: Most user
studies have a skewed demographic (shown in Table 5),
especially in terms of self-reported political views, as there
were more liberals than conservatives, which could have
affected their findings. More studies with diverse partici-
pants can fill the gap. Also, data-driven studies focusing
on specific groups of users with different cultures and
backgrounds can help understand the factors that affect
user engagement in practice. While works have studied the
effect of deplatforming, they only study on a few platform,
including Reddit, Gab, and Twitter which can be seen in
Table 7. Studies on other platforms, such as Facebook and
Instagram, can provide more insights, as these platforms
are more popular among different populations. Moreover,
as content moderation policies on these platforms are
constantly evolving, the impact of such changes on user
engagement can be studied. Future scholarships could
propose and study interventions that can be placed during
sharing process, e.g., disabling sharing or displaying a
splash warning screen on the shared content, similar to
quarantine.

Effectiveness: Works have examined the effective-
ness of both soft and hard moderation techniques on
social media platforms. Some works investigated whether
moderation can lead to users moving to less moderated
platforms.

Soft Moderation Interventions: A 2018 Gallup survey
found that more than 60% of U.S. adults were less prone
to sharing stories from sites that were clearly labeled as
unreliable [23]. Saltz et al. [260] found that participants
had a different opinion regarding Facebook COVID-19

warning labels, some perceiving them necessary step to
inform users whereas others saw them as politically biased
and an act of censorship. Many studies [168], [173], [183],
[213] found that interstitial covers, labels and flagging
decrease the perceived accuracy of COVID-19 misinfor-
mation and fake news on Twitter [275] and Facebook [97],
[213]. Previous research has also found that correcting
or debunking fake news can significantly decrease users’
gullibility to the story [89], [182], [199], [228], [232],
[234], [272], [326]. Seo et al. [271] investigated users per-
ceptions when they were exposed to fact checking warning
labels and machine learning generated warning labels.
They found that users tend to trust fact checking warning
labels more than machine learning generated warning
labels. However, previous works also demonstrated some
fortuitous consequences from the use of warning labels.
Pennycook et al. [236] found an implied truth effect,
where the posts that included misinformation but were not
accompanied by a warning label were considered credible
by the users. Studies found that there can be an unintended
backfire effect, where participants strengthen their support
for the false political news that has a warning label or
they distrust the source that fact checked it [129], [144].
A few studies [278], [299] found that Reddit’s quarantine
was ineffective and may also increase the polarization in
political spaces.

Hard Moderation Interventions: Chandrasekharan et
al. [92] studied the Reddit comments that were removed
by moderators to find macro, meso, and micro norms
enforced to remove problematic content such as hateful
content. Chandrasekhar et al. [91] found that Reddit’s ban
on r/fatpeoplehate and r/CoonTown was effective, where
users drastically decreased their hate speech usage. A
similar result was seen in [257]. Schoenebeck et al. [266]
showed that users prefer that the platforms remove ha-
rassing content. Thomas et al. [298] found that content
creators felt platform policies and community guidelines
were at least somewhat effective at keeping them safe
from hate and harassment. In [223], the author found
that when a user was blocked by a user who had a
large number of followers, that user significantly reduced
their use of a racist slur. However, Jhaver et al. [167]
found that users who use blocklist on Twitter were not
being adequately protected from harassment. Targets of
online harassment expressed frustration with the lack of
available support tools and the ineffectiveness of current
hard moderation interventions of social media [77], [109],
[164], [224], [261], [323]. Facebook, Twitter, Instagram,
YouTube, and other platforms have all banned controver-
sial influencers for spreading misinformation, conducting
harassment, or violating other platform policies [16], [17],
[20], [27]. With these social media banning or fact check-
ing posts, many right-wing individuals, citing censorship,
are flocking to communities with fewer restrictions such
as Parler, Gab, etc. [30], [33]–[35]. Scholars have exten-
sively studied this migration and how it affects content
moderation, and whether it increases or decreases hate
speech, etc. Jhaver et al. [166] studied the effectiveness
of permanent bans on Twitter of three influencers. They
found that banning significantly reduced the number of
conversations about all three individuals on Twitter and
the toxicity levels of supporters declined. This finding
has been corroborated by studies carried out in [155],
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[300]. Some scholarships have examined the effects on
users rhetoric and whether their followers discuss the
influencers who were deplatformed by social media [62],
[90], [244], [251]. They found a common result, that
deplatforming significantly decreased the reach of the
deplatformed users, however the hateful and toxic rhetoric
increased. Kumarswamy [188] studied the changes to
Parler moderation strategies after it was taken offline by
Apple, Google and Amazon Web Services. He found
that the overall toxicity of the users decreased. Research
Gaps: Scholarships should investigate if labeling every
news article can decrease the implied truth effect. Further,
the impact of changes in content moderation policies can
be studied on different platforms. One possible avenue for
future scholars, could be to understand if there is an echo
chamber effect on users, when they are given the option
to toggle off content with soft moderated label.

Support: Works have studied if users tend to support
or disapprove the interventions (i.e., moderation) taken
by social media. Through a user study, one research
found that 45% of Americans think that social media
companies should have a role in moderating user-created
content, however that same research also found that 41%
of Americans think that social media sites suppress free
speech [25]. Geeng et al. [130] found that users had a
positive outlook on moderation interventions. Gonçalves
et al. [138] found that algorithmic moderation is perceived
more favorable then human moderation, while in contrast
Lyons et al. [201] found that human moderation was
perceived more favorable than algorithmic moderation.
Riedl et al. [248] found that users grouped by their age,
their education level, and their opposition to censorship,
supported social media content moderation intervention.
Xiao et al. [323] found that users want social media
platforms to improve design and moderate content more
proactively. Works such as [78], [111], [164], [199], [260],
[267] have found opposition to content moderation inter-
ventions, finding that users tend to echo that they are
biased and are arbitrarily applied. Participants in [225]
echoed that there should be governmental regulation as
they felt that it infringes their First Amendment right to
free speech. Research Gaps: Most user studies focused on
participants that were using mainstream social media web-
sites. Future scholarships should have participants from
fringe websites, to understand what kind of regulations
would be most interesting to them. Most of the user
studies did not account for ethnicity as well as cultural
differences.

Removal Comprehension: A key aspect of under-
standing trust & support in social media interventions is to
understand if end-users can comprehend why their content
was removed. Jhaver et al. [164] found that over a third
of the participants did not understand why their content
was removed and 29% expressed frustration. Haimson et
al. [149] found that conservative users echoed the claim
that their content was removed because they perceive
social media platforms as heavily controlled by liberals,
whereas black and transgender participants echoed that
their content was removed because they were expressing
their marginalized identities. Schoenebeck et al. [267]
found that 41% of the youth participants do not trust social
media platforms, this can directly point to youths not com-
prehending why their content was removed. Works such

as [111], [138], [172], [225], [304] found that users com-
plained about social media companies not disclosing the
specifics as to why their content was removed. Scholars
have also reflected upon the importance of transparency
in content moderation systems [117], [167], [172], [270],
[296]. Research Gaps: Further research should investi-
gate novel and effective designs for a redressal system,
where users whose content is removed are given specific
details as to why their content was taken down.

Fairness and Bias: Social media platforms play a
decisive role in promoting or constraining civil liber-
ties [105]. How platforms make these decisions has im-
portant consequences for the communication rights of
citizens and the shaping of our public discourse [134].
Shen and Rose [277] studied how the discourse on content
moderation is polarized by users’ ideological viewpoints.
They found that right-leaning users invoked censorship
while left-leaning users highlighted inconsistencies in how
content policies are applied. Works have studied users’
opinions about bias and fairness of content moderation
on various social media platforms. Lyons et al. [201]
found that users perceive human moderation as more fair
and less biased than algorithmic moderation. However,
Gonçalves et al. [138] found that algorithmic moderation
is perceived to be more transparent and less biased than
human moderation. Conservatives have often described
the moderation decisions by Twitter, Facebook, etc., as
biased and they claim that these companies censor their
point of view [25], [162], [164], [190], [225], [250],
[260], [266], [296]. Jhaver et al. [167] found that users
who are on the Twitter blocklist feel they are blocked
unnecessarily and unfairly. Roberts et al. [250] found
that moderation is sometimes unfair for people in the
marginalized communities. Scholarships have also looked
into the inconsistencies and unfairness of moderation
decisions and the harm of moderation on marginalized
communities [78], [111], [134], [138], [149], [172], [224],
[267], [270], [304]. Research Gaps: Scholarship should
further investigate approaches for improving the preci-
sion and recall, as well as the algorithmic fairness of
abuse detection systems. In addition, it is necessary to
provide solutions for increasing the transparency of such
algorithms, by for example, providing accuracy labels on
the warnings, or adding sources to factchecked claims.
Moreover, since most findings on this topic are based
on user studies, more data driven studies are required to
investigate the validity of these findings. A more thorough
discussion on increasing fairness is presented in Section 5.

4. Content Moderation in Practice

To answer our second research question, we stud-
ied how various social media platforms employ content
moderation, what content do they moderate, and how the
content moderation policies are defined, implemented, and
enforced.

Choice of Platforms: We focused on the social media
platforms that were investigated by prior research stud-
ies [93], [131], [275] and from the recent events (i.e.,
the January 6 insurrection) [24], [30], [188]. We chose
fourteen diverse and popular platforms. These platforms
include both mainstream (Facebook, YouTube, Instagram,
TikTok, Snapchat, Twitter, Reddit, Twitch, and Tumblr)
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Figure 2: Content moderation categories based on analysis
of guidelines

and fringe (4chan, Rumble, MeWe, Gab, and Parler) so-
cial media platforms, with different priorities, goals, and
audiences.

4.1. Content Categories

To better understand the prevalent content categories
that are used by social media companies to regulate
and moderate content, we studied each of the platforms’
Community Guidelines/Standards (CG/CS) that were pub-
lished on their US website during June–August 2021. We
investigated and compared the community guidelines of
social media platforms for five countries, i.e., India, Ger-
many, Australia, Brazil, and South Africa. Interestingly,
we found no change in the guidelines, hence our analysis
is not specific to the US. Table 3 in Section A shows
the results of this comparison. We also studied the CG
of every platform in September 2022 to account for any
substantial changes. We found a substantial change in the
CG of Parler.1 Since each platform has a different nomen-
clature to how they describe some of the categories, we
applied the open coding process [135] to categorize them.
One of the authors manually looked at all the social media
platforms CG/CS to create categories until no new cate-
gories emerged. Then applying an iterative process new
categories were added, or existing ones were reorganized.

1. Example of changes in Parler CG: https://tinyurl.com/yda6pfmj

To create these categories, we followed certain guidelines:
(1) Read through the CG/CS, and identify themes and sub-
themes; and (2) While creating the categories, identify the
meaning. Some of the categories were added based on
majority score of where the category was placed by the
social media platforms in their community guidelines. For
example, Doxing can also be part of Harrasement & Bully-
ing, however, we found that a majority (12) platforms were
placing it in Fraud, hence we placed it in that category.
Figure 2 shows the content moderation categories. In total,
we have fifteen main classes and twenty five subcategories
in total. In the following, we define and describe each of
the categories. The definitions of these categories were
created based on differences in how various platforms
were defining the categories, for example, Parler defines
terrorism as those groups officially recognized as such by
the United States Government, whereas Twitter defines it’s
violent organization policy in a more detailed matter [6],
[37].2

Adult Nudity & Sexual Content: Any consensually
produced and distributed media that is pornographic or
intended to cause sexual arousal, full or partial nudity, and
simulated sexual acts. Exceptions include content related
to artistic, medical, health, breastfeeding or education.

Bots or Automation: Post content automatically, sys-
tematically, or programmatically, overutilize the service
via automated tooling.

Child Sexual Exploitation: Any type of abuse or
sexual exploitation, i.e., nudity toward a child, any form
of images, videos, text, or links that promote child sexual
exploitation, sending sexually explicit media, trying to
engage a child in a sexually explicit conversation.

Defamation: Attacking in the form of oral or written
communication of a false statement about another that
unjustly harms their reputation.

Fake Engagement: Artificially increasing the number
of views, likes, comments, or other metrics, selling or
purchasing engagements, using or promoting third-party
services or apps that claim to add engagement, trading, or
coordinating to exchange engagement.

Fraud, Impersonation, Doxing & Spam: Imperson-
ation of individuals, groups, or organizations with intent or
effect of misleading, confusing, or deceiving others, any
fraudulent schemes, such as fake lotteries, phishing links,
spamming users and comments, deceptive means to gen-
erate revenue or traffic, publishing of private information
about an individual for malicious intent.

Harassment & Bullying: Engage in the targeted ha-
rassment of someone, or incite other people to do so,
sending threatening messages, and establishing malicious
unsolicited contacts and threats.

Hate Speech: Direct attacks against people based on
their protected characteristics, i.e., race, ethnicity, origin
nationality, disability, religious belief, race, sexual orien-
tation, gender, gender identity, and serious illness.

Human Trafficking & Illegal Activities: Facilitate
sex trafficking, other forms of human trafficking, or il-
legal prostitution, unlawful purpose or in furtherance of
illegal activities including selling, buying, or facilitating

2. Time-specific snapshot of platforms policies can be found at: https:
//tinyurl.com/4wu9vzkc
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transactions in illegal goods or services, as well as certain
types of regulated goods or services.

Intellectual Property: Content that has the unautho-
rized use of a copyrighted image as a profile photo, alle-
gations concerning the unauthorized use of a copyrighted
video or image uploaded through our media hosting ser-
vices.

Misinformation & Election Integrity: Manipulating
or interfering in elections or other civic processes. This
includes posting or sharing content that may suppress
participation or mislead people about when, where, or
how to participate in a civic process, as well as sharing
synthetic or manipulated media that is likely to cause
harm.

Promotion or Glorification of Self-Harm: Promotes
suicide, self-harm, or is intended to shock or disgust users,
content that urges or encourages others to: cut or injure
themselves; embrace anorexia, bulimia, or other eating
disorders; or commit suicide.

Terrorism: Promotes, encourages, or incites acts of
terrorism, content that supports or celebrates terrorist or-
ganizations, their leaders, or associated violent activities.

Unsolicited Advertisements & Unauthorized Con-
tests: Unsolicited, unrelated advertisements, unauthorized
contests, sweepstakes, and giveaways.

Violence, Incitement, Gore & Mutilation Content:
Any threats of violence towards an individual or a group
of people, content inciting people to commit violence,
any media that depicts excessively graphic or gruesome
content related to death, violence or severe physical harm,
or violent content that is shared for sadistic purposes,
severely injured or mutilated animals. There are however
exceptions such as content may be made for documentary
or educational content, religious sacrifice, food processing,
and hunting.

Discussion: We found that interestingly some topics,
such as misinformation, have different definitions on each
platform, and certain platforms give no definition of it.
Our analysis also shows that in some categories, such
as Adult Nudity & Sexual Content & Fake Engagement,
there is no consensus among platforms on what content to
moderate, which makes moderation arbitrary. Even plat-
forms that are similar in nature (i.e., attract like-minded
people), such as Parler and MeWe, do not prohibit hate
speech content the same way. Therefore, there is a need
for not only the computer scientists but also scholars from
other disciplines such as psychology, social sciences, and
law to come together and come to a consensus at least at
the definition level.

4.2. Content Moderation Guidelines and Polices

Table 1 shows the content moderation policies men-
tioned in platforms’ CGs (soft or hard) as well as ap-
proaches used by them for enforcing these policies (human
or ML). We also checked if any of these platforms claim
to be doing factchecking. Table 1 shows No if some policy
is not defined, Yes if it is defined, Partially if it is only
defined for some moderation categories mentioned in the
previous section. Below we describe the findings based on
Table 1:

Factchecking: Parler, Gab, MeWe, Twitch, Rumble &
4chan do not perform any factchecking on the content,

also these social media platforms were created with a
promise of less content moderation, as they call them-
selves champions of free speech [18], [24], [30], [40].
Snapchat performs factchecking only on advertisements,
including political advertising [26]. Meanwhile, platforms
like Tumblr, TikTok, Reddit, YouTube, Facebook, Insta-
gram, & Twitter factcheck claims that are posted on its
platform. However, they do not specify if they fact check
all the news. Based on the previous works though it
seems these platforms only factcheck some topics, such
as COVID-19 and elections.

Hard Moderation: Parler enforces some hard mod-
eration but is kept to a minimum, as they mention “We
[Parler] prefer that removing users or user-provided con-
tent be kept to the absolute minimum” [5]. After Parler
was banned from Apple App Store & Amazon follow-
ing the January 6th Capitol roit [41], Parler changed
its community guidelines and is now not allowing hate
speech on iOS, but allowing on Android or the web [42].
However, Parler does not remove so-called fighting words,
which are not protected as an exercise of the right to free
speech [37]. On Gab, users who are posting content from
the ten categories described in Table 2, would be subjected
to a ban or their content will be taken down. MeWe also
has a very similar approach to that of Gab, however,
MeWe does not allow hate speech on its platform. 4chan,
Tumblr, Snapchat, TikTok, Reddit, YouTube, Facebook,
Instagram, Twitter, Rumble & Twitch have more stringent
hard moderation rules. Users can expect to have their
content taken down, shadow banned, temporarily banned,
or permanently banned from the platform.

Discussion: Our analysis shows that there is no uni-
versal method for hard moderation across all social media
platforms, and each platform follows a different approach,
which can be due to the limitations that each of these
methods has. Therefore, even more, rigid analysis is
needed to measure and compare the performance of these
methods and also propose new models that can improve
their performance.

ML or Human-based moderation: Parler, Tumblr,
Snapchat, TikTok, Reddit, YouTube, Facebook, Instagram,
Twitter, & Twitch have both humans and AI as modera-
tors. We were not able to find information about what
kind of moderators are employed by Gab. 4chan has
human moderators and janitors, who are volunteers that
can remove threads or replies on the imageboard they are
assigned to, they can submit a request for a ban or warning
of a user to the moderators (they themselves cannot ban
the users). MeWe and Rumble also have human modera-
tors [24], [50].

Soft Moderation: We found that Parler, Gab, MeWe,
4chan, Tumblr, Rumble, Snapchat & Twitch do not per-
form soft moderation on the content that is posted on their
respective platforms. TikTok has started putting warning
labels on the content where the facts are inconclusive
or content is not able to be confirmed, especially during
unfolding events. However, they have not specified what
is considered as “unfolding” events. When a viewer tries
to share a video that is flagged, they would be shown that
the content is flagged for unverified content, and they can
either cancel or share the post. Reddit’s soft moderation
technique is quarantine. The main purpose of quarantine
is to prevent users from accidentally viewing the content.
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TABLE 1: Content moderation policies defined and enforced by different social media platforms

Moderation Strategy Platform
Parler Gab MeWe 4chan Rumble Tumblr Snapchat TikTok Reddit YouTube Facebook Instagram Twitter Twitch

Factchecking No No No No No Yes Partially Yes Yes Yes Yes Yes Yes No
Soft Moderation No No No No No No No Yes Yes Yes Yes Yes Yes No
Hard Moderation Partially Partially Partially Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Human Moderators Yes X Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
ML Moderation Yes No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes

TABLE 2: The content categories that are moderated on different social media platforms

Abusive Content Categories Platform
Parler Gab MeWe 4chan Rumble Tumblr Snapchat TikTok Reddit YouTube Facebook Instagram Twitter Twitch

Adult Nudity & Sexual Content Partially Partially X Partially X Partially Partially X Partially Partially Partially Partially Partially Partially
Bots or Automation X X X X N/A X X X X X X X Allowed∗ X
Child Sexual Exploitation X X X X X X X X X X Partially Partially Partially X
Defamation X X X X X X X X X X X X X X
Fake Engagement N/A X N/A N/A N/A X N/A X X X X X X X
Fraud, Impersonation, Doxing & Spam X X X X X X X X X X X X X X
Harassment & Bullying N/A N/A X N/A N/A X X X X X X X X X
Hate Speech Allowed∗ Allowed X Allowed X X X X X X X X X X
Human Trafficking & Illegal Activities X X X X N/A X X X X X X X X X
Intellectual Property X X X X X X X X X X X X X X
Misinformation & Election Integrity Allowed Allowed Allowed Allowed Allowed∗ X X X X X X X X X
Promotion or Glorification of Self-Harm N/A N/A N/A N/A X X X X X X X X X X
Terrorism X X X X X X X X X X X X X X
Unsolicited Advertisements & Unauthorized Con-
tests

X X X X X X X X X X X X X X

Violence, Incitement, Gore & Mutilation Content Partially X X X X X X X X Partially Partially Partially Partially X

Reddit also gives an explanation of why the community is
in quarantine. However, a user can still view the content
by clicking on the continue button. Twitter also has the
same mechanism both for posts and also for accounts,
a user can however still view the content [4]. YouTube,
Facebook, Instagram & Twitter also have a very similar
soft moderation policy.

Gaps in Practice: Future scholarships should in-
vestigate ways where mainstream social media can also
safeguard the First Amendment rights. Also, in practice,
soft moderation has only been used for labeling misin-
formation. However, soft moderation might also be useful
in labeling other types of abuse, e.g., malicious content,
phishing urls, bot generated content, hate speech, etc.

4.3. What Content Category Gets Moderation?

We extracted the topics that social media platforms
claim to be moderating in their community guidelines. Ta-
ble 2 shows all different types of abusive content that each
of the platforms have mentioned in their CGs. Two coders
then labelled the categories for each platform. Coders
followed the given nomenclature to label the categories:
X if the content is not allowed, Partially if it is only
allowed for some sub-topics, e.g., only for specific types
of nudity and not for porn, N/A if the guidelines do not
mention that topic, Allowed if the topic is allowed in the
platform, and Allowed∗ if the topic is allowed, however,
it has restrictions. Using this methodology, we calculated
the inter-coder reliability score. We found a substantial
agreement of 0.76.

Misinformation & Election Integrity: We found that
any content that is posting misinformation about COVID-
19 or elections are not allowed on Tumblr, TikTok, Red-
dit, YouTube, Facebook, Instagram, Twitter, & Twitch.
However, Parler, Gab, MeWe, Rumble, & 4chan allows
misinformation to be present on its platform and they do
not moderate them.

Hate Speech: Hate speech is not allowed on MeWe,
Tumblr, Snapchat, TikTok, Reddit, YouTube, Facebook,
Instagram, Rumble Twitter, & Twitch. Parler does not
allow any content that is hateful on iOS devices, but it
still allows it on other devices [42]. Gab and 4chan do
not remove hate speech on their platform [45], [332].

Adult Nudity & Sexual Content:We found that adult
nudity & sexual content of any kind are not allowed
on MeWe, and TikTok. In Parler, users are allowed to
post images, videos, depictions, or descriptions of adult
nudity or sex as long as they are designated as sensitive
(NSFW) [37]. However, if a user posts any content that
is containing nudity or sexual content, and the user has
not designated it as NSFW, then that content is removed.
Exceptions are made for spiritual artwork or posts by a
verified art gallery. In 4chan, users are allowed to post
Anthropomorphic pornography, Grotesque images, and
Loli/shota pornography only in /b/ board [1]. Platforms
such as Gab, Tumblr, Snapchat, Reddit, YouTube, Face-
book, Instagram, Twitter, & Twitch allow nudity content
e.g. as a form of protest or for educational/medical rea-
sons, with Twitch allowing individuals actively breastfeed-
ing a child on stream. Twitter, Instagram, & Facebook
would apply a label to content involving breastfeeding,
and images/videos shared in medical or health context.

Bullying & Harassment: We found that any content
that is bullying & harassing a user, or a group is not
allowed on MeWe, Tumblr, Snapchat, TikTok, Reddit,
YouTube, Facebook, Instagram, Twitter, & Twitch. Parler,
Rumble, Gab, & 4chan do not have a policy outlining this
category.

Promotion or Glorification of Self-Harm: We found
that promotion or glorification of self harm is not al-
lowed on Tumblr, Snapchat, TikTok, Reddit, YouTube,
Facebook, Instagram, Rumble, Twitter, & Twitch. Parler,
Gab, MeWe, & 4chan do not have a policy outlining this
category.

Fake Engagement: We found that fake engagement
is not allowed on Gab, Tumblr, TikTok, Reddit, YouTube,
Facebook, Instagram, Twitter, & Twitch. Parler, MeWe,
Rumble, Snapchat, & 4chan do not have a policy on this
category.

Defamation: Defamation is not allowed across all the
platforms.

Violence, Incitement, Gore & Mutilation Content:
We found that some forms of Gore & Mutilation con-
tent is allowed on Parler, YouTube, Facebook, Instagram,
& Twitter. On Parler, users should designate content as
NSFW, if they fail, then the content will be removed.
YouTube, Facebook, Instagram, & Twitter have exceptions
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for religious sacrifice, food preparation or processing, and
hunting.

Child Sexual Exploitation: We found that Facebook,
Instagram, & Twitter, allow only educational content for
child sexual exploitation i.e., documentaries, news media
reportage. These types of content are normally accompa-
nied by a label in Facebook and Instagram. While plat-
forms explicitly do not mention how they identify images
or videos depicting child sexual exploitation, previous
works have reported that major social media companies
use PhotoDNA [143].

Fraud, Impersonation, Doxing & Spam: We found
that across all the platforms, any type of fraud, imperson-
ation, doxing & spam are not allowed.

Terrorism: We found that across all the platforms, the
promotion of terrorist propaganda, or violent extremism
are not allowed. This includes recruiting for a violent
organization, or using the insignia or symbol of violent or-
ganizations to promote them. Previous work has reported
that various social media companies use a Shared Industry
Hashed Database.

Bots or Automation: All the platforms except Twitter
& Rumble prohibit the use of bots or automation to post
content or over-utilize the service by sending excessive
queries. Twitter allows users to send automated tweets,
sending replies and mentions etc., however, they have to
authorize an app or service via OAuth [14]. We were not
able to find any such policy outlined in Rumble’s CGs.

Unsolicited Advertisements & Unauthorized Con-
tests: None of the platforms allow users to post unso-
licited advertisements or hold any unauthorized contests.
Tumblr has a separate policy outlying the rules to hold
contest, sweepstakes, and giveaways [10]. While platforms
have regulations for product placements and influencers
adverts, it is currently out of the scope of this paper.

Intellectual Property: All the platforms ban any con-
tent that infringes the copyright. Any content that infringes
the copyright will be removed. Content ID is a state of the
art system that is used to detect copyright infringement
content [289]. However, content that is satire, parody,
and news reporting among others are not in violation of
intellectual property, and countries such as the US and
some other countries, follow the fair use doctrine, whereas
the EU has some exceptions [147], [303].

Human Trafficking & Illegal Activities: All the
platforms except Rumble do not allow any content about
Human Trafficking & Illegal Activities. We were not able
to find any such policy outlined in Rumble’s community
guidelines.

Discussion: We found that content that is legally
required to be removed from the social media platforms,
such as Child Sexual Exploitation, Violence, Intellectual
Property, and Terrorism, has a more uniform moderation
across all the fourteen platforms. We also found a very
consistent pattern in fringe social media platforms with
respect to Misinformation & Election Integrity, where all
these platforms allowed them. We also see that there are
spectrum of differences in the definitions of Adult Nudity
& Sexual Content on Parler and 4chan, both allowing
them, but they have various differences to what is allowed,
however, mainstream social medias such as Twitter, Face-
book have uniformity in the content that may be allowed.

Figure 3: Community Guidelines Comprehensibility

4.4. Community Guidelines Comprehensibility

Comprehensibility of community guidelines means
whether the end-user can understand completely what type
of content is allowed on the platforms and what would be
the repercussions if there is a violation of these terms. The
goal of this analysis is to identify places where guidelines
are not comprehensible enough. For that, we first check
the granularity of community guidelines in terms of cov-
ering various content categories, and then we check if they
have provided examples, images, and videos for each of
the categories. We used the same mechanism to label the
categories as described in Section 4.2. Figure 3 shows the
results. It shows three broad categories: (1) granularity,
(2) provides an example, & (3) provides videos or im-
ages. Two authors independently coded all the categories.
For inconsistent results, coders discussed how to resolve
disagreements. To assess the inter-coder reliability, we
performed a Cohen-Kappa test [268]. The Kappa score
was 0.75, which shows substantial agreement.

Granularity: Granularity can help users to understand
in more detail the content that is allowed and what content
is not allowed. To measure granularity, we used the data
provided in Table 2 and coded Yes and Partially as 1 and
No as 0, and then computed the sum. In our analysis,
we found that YouTube, Facebook, TikTok, Instagram, &
Twitter were the top five platforms to have very granular
CGs. However, we found that MeWe and Rumble were the
only two platforms, whose community guidelines were
not granular, except for four and three sub-categories,
respectively. The average number of categories for which
the platforms’ community guidelines were granular was
ten out of fifteen categories, the minimum was four, and
the maximum was fourteen.

Provides Examples: In order to facilitate the rules,
social media companies also provide examples to help
users understand what type of content will not be per-
missible and what will be. In our analysis, we found that
YouTube, Facebook, TikTok, Instagram, & Twitter were
the top five platforms that were providing examples in
their community guidelines. Rumble and MeWe were the
two platforms with the least number of examples in the
subcategories studied (i.e., three & four respectively). The
average number of categories for which the platforms were
providing examples was ten out of fifteen, with the mini-
mum as four, and the maximum as fourteen. Interestingly,
among the fringe social media that we studied, Parler
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provided the most number of examples, i.e., nine. For
the subcategory, Violence, Incitement, Gore & Mutilation
Content we found that 4chan, & Snapchat were only
providing examples for violence and incitement, however,
these platforms failed to provide examples for gore and
mutilation content. TikTok provides examples for automa-
tion, however, the platform does not provide examples
about the use of bots. Twitch provides an ample number
of examples for misinformation, however, the community
guidelines do not mention posts/videos challenging the
integrity of an election.

Provides Videos or Images: Audio and visual context
aid users to grasp the content that will not be moderated.
We found that only YouTube provides videos for the ten
sub-categories. However, we found that for misinforma-
tion and election integrity, Facebook, Instagram, & Twitter
with YouTube provided visual material for the user. The
average number of categories for which the platforms’
community guidelines were providing videos or images
was one out of fifteen, with the minimum as zero, and the
maximum as ten.

Summary: Figure 3 shows that only Youtube commu-
nity guidelines provide videos or images. We also found
that a lot of mainstream social media, such as Tumblr,
Twitch, Reddit, etc., do not provide such. Future scholar-
ships can investigate if by providing such examples, users
would pay more attention to the guidelines and whether it
helps users to understand them. This can have implications
regarding users’ complaints that they do not understand
the reason behind the removal of their content.

5. Discussion

Content Moderation from the Legal Perspective.
Freedom of speech is equivocally a basic human right,
and prior works have found that users complain that
their voices are being suppressed by social media com-
panies [164], [225], [260], [266], [296]. Gillespie [133]
argued that platforms are innately political entities that
have attempted to maintain an image of neutrality. It is
this image of neutrality in the domain of speech that
has come under question most in recent years, and the
inability of platforms to be truly neutral is core [269].
People expect to have the same protections on social
media platforms as they would have in the real world,
while prior works have found that users want government
oversight [96], [225] and a possible solution to this is
to have government actors determine which platforms’
content moderation practices could be subject to gov-
ernment oversight, with the platforms following legally
defined set of rules. Platforms have to follow laws in the
jurisdictions in which they are operating. For example, in
the US, social media companies are not considered as a
state entity under Marsh v. Alabama, and hence do not
have to guarantee First Amendment protection to the user
for protected speech [7]. Social media platforms are also
shielded by Section 230 of the Communication Decency
Act (CDA) which gives online intermediaries broad im-
munity from liability for user-generated content posted on
their sites [8]. In the landmark case of Zeran v. America
Online, Inc., the purpose of §230 is to encourage platforms
to act as a Good Samaritans and to take an active role in
removing offensive content [9]. However, two currently

pending cases in the Supreme Court, i.e., Gonzalez v.
Google LLC [38] & Twitter, Inc. v. Taamneh [55] could
upend §230 and consequentially pose serious risks to
Internet speech [136], [184]. In India, pursuant to Arti-
cle 4(d) of India’s Information Technology (Intermediary
Guidelines and Digital Media Ethics Code) Rules, 2021,
social media platform companies must publish a monthly
report regarding their handling of complaints from users
in India, including actions taken on them [214], [215].
In Germany, The Network Enforcement Act (NetzDG)
obliges social media platforms with over 2 million users
to remove clearly illegal content within 24 hours and all
illegal content within 7 days of it being posted or face
a maximum fine of 50 million Euros [118]. While the
law is one of the most stringent in the world, scholar-
ships, and human rights organizations have criticized it
for incentivizing social media platforms to preemptively
censor valid and lawful expression [158]. In Australia,
users can submit a complaint to the Australian eSafety
Commissioner and get a remedy from the commissioner
by using the available safety tools and resources [69].

One way to moderate content in the grey areas and still
uphold the statutory and legal doctrines is to apply soft
moderation tags to posts that are inaccurate or explicit.
This would be a welcoming step for users who echo
that platforms are deliberately censoring their point of
view [149], [225].

Transparency in Moderation. Over the past few
years, researchers have reflected on the importance of
transparency in content moderation [164], [225], [267],
[270], [295], [296]. Legal scholars have argued that plat-
forms should disclose the content moderation policies and
procedures and in order to increase users’ trust [190],
[316]. Prior works have also found that users often do
not understand why their content was removed, as they
get a very generic response from the social media com-
panies [164], [225], [267]. We concur with the suggestion
from Dı́az and Hecht [107], that social media platforms
should provide transparency reports which will be an es-
sential step in allowing users and watchdog organizations
alike to identify issues ranging from lack of language
expertise to biased algorithms. The transparency report
should report the identities of organizational trusted flag-
gers and the distinct content policies for which they have
special flagging privileges, the types of automated tools
deployed to identify and remove the offending content,
such as the use of hashing systems and natural language
processing systems and whether the moderators are em-
ployed by the company itself or are they outsourced to a
third party. We also echo that platforms should make pub-
lic log reports for the moderated content and more social
media companies should provide APIs for independent
researchers to review the mechanisms and also conduct
a fairness analysis on the system. Platforms should also
publish the number of orders received from government
agencies to remove content or suspend accounts, and
whether the platform took action, and if so was it based
on actual infringements of the law or was it based on the
violations of community guidelines?

One Size does not Fit All. The amorphous nature of
social media platforms’ content moderation policies gives
companies enormous discretion in their enforcement, how-
ever, they should exercise this discretion in a way that
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truly balances free expression with equity and prioritizes
user safety and due process [107]. Following the death
of George Floyd, users have tried to make their voices
heard both in offline and online spaces. However, due to
companies enforcement for speech talking about terrorism
or racism, users especially those of color have found
that their voices are getting suppressed [21], [29]. Prior
researches have also corroborated that, voices of marginal-
ized communities are often suppressed [149], [250], [270].
On the other hand, hate speech policies attempt to take a
more measured approach with narrower restrictions, which
can create a convoluted order of operations that ends up
protecting powerful groups or allowing all but the most
explicit attacks based on protected characteristics [107].
Hence, platforms should take steps to redress their mod-
eration systems, so that all users are treated equally. We
recommend that social media platforms should take into
account the current political and cultural context of the
country when they are moderating content. This will help
in users from marginalized communities the freedom of
expression and at the same time punish the powerful
groups that are often involved in incitement of violence
or predominately engaging in hateful rhetoric.

Demonetization of videos is one of the broader
suites of content moderation governance mechanisms that
is available to YouTube [142]. However, creators have
echoed that inconsistencies present in the demonetization
process lead to beliefs of being algorithmically controlled
or censored [86]. Interestingly, it has been found that
YouTube was treating established media personalities dif-
ferently than they were treating users with a few thousand
subscribers [28], [113], [187]. Hence, we echo that content
moderation policy must be overhauled to account for
power flux among different groups such as users with large
follower bases, i.e., influencers, and structural inequalities
that may curtain opportunity for equal access to platforms.
Platforms should acknowledge the fact that the ability to
protect the speech of ordinary people when challenging
the elite or influential people of the society requires a dif-
ferent matrix than the protections necessary for influential
figures who often have multiple avenues for disseminat-
ing their message. Platforms should publish policies that
govern public figures, heads of state, and other influencers
in community guidelines. Social media companies should
make sure that both the automated moderation tool and
human moderators are able to accurately assess different
languages, dialects, slang, and related variations of con-
text. Social media companies should make sure that their
AI systems are not potentially discriminating because of
the train cases given to them.

Collaborative Human-AI Decision Making. With
the growing scale of content, platforms employ human
moderators, ML-based moderators, or both to regulate the
content. While human moderation comes at a cost of time
and scalability, ML-based moderation tools also suffer
from the lack of training examples specific to regions or
local dialects. It is arguably impossible to make perfect au-
tomated moderation systems because their judgments need
to account for the context, the complexity of language, and
emerging forms of obscenity and harassment, and they
exist in adversarial settings where they are vulnerable to
exploitation by bad actors [165], [210]. Even though hard
coding the criteria helps in scalability and consistency,

they still suffer from being insensitive to the individual
differences of content, for example, when distinguishing
hate speech from newsworthiness [85]. Hence, there is
a need for more proactive human interventions to offset
the errors done by ML based moderation. However, more
studies should be conducted to examine the effective-
ness of having interconnected moderation systems, where
human moderators proactively provide feedback on ML-
based moderation.

Fairness is another challenge of such systems, espe-
cially when they mainly rely on user-labeled data. There-
fore, it is also crucial to develop fully or partially auto-
mated methods and algorithms that minimize the impact
of bias on moderation decisions. One more human-based
method for increasing fairness of content moderation is
allowing users to appeal decisions, where an impartial,
independent authority can verify the decisions. An exam-
ple of this type of impartial jury is Oversight Board [39].
The Oversight Board appeals process gives people a way
to challenge content decisions on Facebook or Instagram.
While this is a good step forward, the oversight board does
not evaluate all the submitted cases but selects eligible
cases that are difficult, significant, and globally relevant
that can inform future policy [36]. Pan et al. [230] work
also found strong evidence of support for independent
expert juries, similar to The Oversight Board.

Open sourcing vs. restricting access to content. To
provide a sense of fairness and accountability, open sourc-
ing public data and public moderation logs are necessary.
As we found in Section 3, previous works have largely
studied moderation on platforms such as Twitter and Red-
dit, as they provide mechanisms for researchers to archive
data. However, there are platforms from mainstream to
fringe that are still restricting researchers from obtaining
the vast amount of public data.

Uniformity vs. favorability. With the Russian in-
vasion of Ukraine, big tech companies such as Twit-
ter, Facebook and Instagram, loosened their hate speech,
for Ukranians to post about calling for general violence
against Russians [54]. While, this was ultimately changed
three days later, such was not the case for protesters in
Iran, where posts that include death to the dictator -
a key protest slogan, are being proactively flagged and
taken down [48], [49], [52], [53]. One has to ask, if plat-
forms should remain neutral and uniform in implementing
content moderation policies? In addition, more studies
should be conducted to research the implications of using
a threshold to detect hate speech more or less rigorously
depending on the offline events.

6. Limitations & Future Work

In this work, we focus on the platforms from the
consumer point of view and not from business point of
view. We plan to study that in the future to look at the
platforms from a business point of view.

7. Conclusion

In this work, we have presented three taxonomies
based on an extensive review of the social media commu-
nity guidelines and previous works. Using the taxonomies
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we answer the two research questions. We concluded that
the most popular and mainstream social media platforms
moderate for all categories studied as well as using both
hard moderation and soft moderation categories. Out of
these six platforms, only YouTube provides image or
video examples. On the other hand, fringe platforms do
not moderate for all the studied categories and prefer
minimal interventions.
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A. Analysis of Community Guidelines of
other countries:

We investigated and analyzed community guidelines
of five countries, with the highest populations in each
continent i.e., India, Germany, Australia, Brazil, and South
Africa and used a VPN location, to access the community
guidelines for the platforms. We excluded China because
most of the platforms investigated in our paper are prohib-
ited in China, and Chinese users rely on VPNs to access
these websites, causing IP addresses to be inaccurate. In-
terestingly, we found no change in the guidelines. Table 3
shows them in detail. TikTok was banned in India in 2020,
due to a geopolitical dispute with China [56].

B. Related work conference list

Table 4 shows the distribution of papers from vari-
ous conferences and journals that were analyzed by the
authors.
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TABLE 3: Community guidelines analysis of different countries. Note that � denotes that the guidelines were similar
to USA and × that the platform is banned in the country studied.

Platforms Germany India Australia Brazil South Africa
Parler � � � � �
4chan � � � � �
Gab � � � � �
MeWe � � � � �
Rumble � � � � �
TikTok � ×∗ � � �
Twitch � � � � �
Tumblr � � � � �
Reddit � � � � �
Snapchat � � � � �
YouTube � � � � �
Twitter � � � � �
Facebook � � � � �
Instagram � � � � �

TABLE 4: Distribution of paper analyzed by the authors

Conference Number of papers
IEEE S&P 2
ACM CCS 1
NDSS 0
USENIX Security 1
IEEE Euro S&P 0
Proc. of ACM CSCW 26
ACM CHI 25
WWW 14
ICWSM 16
AAAI AI 6
ACL Anthology 37
ACM WebSci 6
NeurIPS 3
IEEE/CVF 2
ACM KDD 5
ACM WSDM 4
ACM CIKM 2
Other Conf. & Workshops 35
New Media & Society 6
Political Behaviour 5
Other Journals 52
Law Reviews 7
Thesis 1
Books 4
Transactions 4
Others 9

C. Related work paper list

Table 5 shows the paper that conducted user studies to
understand moderation. In the table, we show the category
of paper that was created in Section 3, we also show
which platform the authors conducted their study on,
the sample size, the demographics of the study and they
type of the study conducted. Note that in sample size,
if there is a number in red color brackets, that means
that the authors of the study conducted multiple studies.
We however, present the demographics of the study with
highest number of participants.

Table 6 shows the papers that are about hate speech
and misinformation detection. Table 7 shows the papers
that are data driven study to unpack the intricate details
about content moderation. Similar to Table 5, we char-
acterize the papers into the category, the platforms they
studied. In this table, we also give the size of the dataset,
if the dataset is public, whether the authors created the
dataset or they used some other papers dataset, the type
of data used and the intervention studied. The paper that
are surrounded by red brackets, signifies that the authors

studied both hate speech and misinformation moderation,
whereas, the paper that is given in blue color signifies that
that paper also conducted a user study.
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TABLE 5: User Study Paper Analysis

Hate Speech Moderation
Paper Categories Platforms Size Demographics Study
[267] Support, Removal Compre-

hension, Fairness and Bias
MyVoice 832 Only youth participants (14-24), 54.4% fe-

males
Survey

[266] Effectiveness, Fairness and
Bias

MTurk 573 Diverse demographics with transgender and
non-binary participants, left-leaning (57%)

Survey

[167] Effectiveness, Removal Com-
prehension, Fairness and Bias

Twitter 14 Mix of gender, mostly from US Semi-
structured
interviews

[77] Effectiveness HeartMob 18 10 participants females, median age of par-
ticipants was 40, high number of non-
heterosexual participant

Semi-
structured
interviews

[224] Effectiveness, Fairness and
Bias

Social
media
platforms
and flyers

49 Black female participants, 30 participates
from ages 18-30 years

Survey

[298] Effectiveness Residency
program

135 56% female, 99% created content for
YouTube, 30% from the ages 35-44

Survey

[261] Effectiveness NGOs 199 Women participants from south-east Asia,
103 from India

Survey

[109] Effectiveness Personal
contacts

17 10 females, 4 LGBTQ+ participants, predom-
inately white participants

Survey

[138] Support, Removal Compre-
hension, Fairness and Bias

Dynata 2,870 Equal representations from US, Portugal and
The Netherlands

Survey

[323] Effectiveness, Support College stu-
dents

28 All participants from 18-20 years old, 18
participants were female, 23 students were
of asian decent

Interviews

Misinformation Moderation
[131] Consumption of

(fake/misinformation) news,
Engagement of user

Facebook
and Twitter

25 One-third are college students, left leaning Semi-
structured
interviews
and
Simulation

[130] Consumption of
(fake/misinformation) news,
Support

Facebook
and Twitter

311 Majority 18-24 year old (130), 38% from
UK, majority left leaning

Mixed-
method
survey

[121] Consumption of
(fake/misinformation) news

Facebook 309 (9) Majority 18-25 year old (70%), 55% female,
All from UK

Pilot study
and simula-
tion

[173] Effectiveness MTurk 238 (40) Two-thirds male, over half of participants
from 30-49 year old (92), left-leaning (159)

Pilot study
and simula-
tion

[162] Consumption of
(fake/misinformation)
news,Fairness and Bias

MTurk 1,807 47% left-leaning, median age 35 year old,
42% females

Pilot Study
and survey

[213] Engagement of users, Effec-
tiveness

Facebook 501 51% females, majority left-leaning (47.6%),
avg. age 36 year

Survey

[97] Effectiveness Facebook 2,994 Majority female (54%), majority left-leaning
(58%)

Survey

[275] Effectiveness Twitter 319 56.4% males,33.3% from 25-34 age group,
highly left-leaning (49.2%)

Survey

[129] Effectiveness MTurk 122 60% females, almost equal number political
leaning, 80% from 25 to 54 year old

Survey

[260] Effectiveness, Support, Fair-
ness and Bias

Dscout 23 (15) Equal genders,multiple ethnicities,balanced
political views

Semi-
structured
interview
and diary
study

[228] Effectiveness Morning
Consult and
MTurk

4,186
(1,546)

54% females, largely left-leaning (49%),
42% from 18 to 34 years old

Survey

[271] Effectiveness MTurk 800 55% females, 75% participants between the
age of 20 to 40 years

Survey

[116] Engagement of users, Effec-
tiveness

Lucid 1,473 Mean age of participants were 47.87, 54.1%
were female

Survey

[236] Engagement of users, Effec-
tiveness

MTurk 5,271
(1,568)

Female dominated (55%), largely left leaning Survey

[252] Effectiveness Facebook 151 57% females, mean age was 25 year old Survey
[234] Engagement of users, Effec-

tiveness
MTurk 11,145 52.9% female participants Pilot study

and survey
[279] Consumption of

(fake/misinformation) news
MTurk 1,456

(24)
Almost equal number of male and fe-
males,large number of participants from 31-
40 year of age

Pilot study
and survey
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[302] Consumption of
(fake/misinformation) news

Twitter 15 66% females, non-native English speakers Survey

[306] Consumption of
(fake/misinformation) news

WhatsApp 28 53% males, average age of 32 Survey

[151] Consumption of
(fake/misinformation) news

Facebook 519 74% of the participants were from the 21-30
age range,64% were students

Survey and
interviews

[199] Consumption of
(fake/misinformation) news,
Effectiveness

WeChat 44 23 were male participants, 38 partipants were
residing in China

Semi-
structured
interviews

[168] Engagement of users, Effec-
tiveness

MTurk 1,677 Majority left-leaning 52%, majority female
55%

Simulation

[144] Effectiveness MTurk 376 57% females, 39% from the ages 18-24 years,
52% students

Survey

[183] Effectiveness Respondi 2,057 Mostly male participants Survey,
Semi-
structured
interview
and
simulation

[272] Engagement of users, Effec-
tiveness

MTurk 2,841 Mostly female (52.3%), largely between the
ages of 28-37

Survey

[326] Engagement of users, Effec-
tiveness

MTurk 1,512 mostly male participants (51%), slightly
older crowd mean age 38

Survey

Moderation Techniques
[248] Support U.S.

national
panel
survey

1,022 53.2% female, 75% white ethnicity, 38.4%
from the ages 30-49

Survey

[225] Support, Removal Compre-
hension, Fairness and Bias

OnlineCensors
hip.org

519 Participants largely from US (295) Survey

[164] Effectiveness, Support, Re-
moval Comprehension, Fair-
ness and Bias

Reddit 907 Participants from 81 countries, highest from
US (61%), majority male (81%), under 25
year old (55%)

Survey

[149] Removal Comprehension,
Fairness and Bias

Prolific,
Qualtrics

909
(207)

Mixed genders, balanced ethnicity’s, largely
young, mix of conservatives and moderates

Survey

[270] Removal Comprehension Twitch,
Reddit,
Facebook

56 Largly female and LGBTQ participants Semi-
structured
interviews

[117] Removal Comprehension Yelp 15 40% were between ages 35-44 Survey
[75] Consumption of

(fake/misinformation) news
Twitter 430 (12) Slightly skewed towards females, higher

number of independents and republicans
Pilot Study
and Simula-
tion

[200] Consumption of
(fake/misinformation) news

WeChat 33 More number of females (18), average age of
34

Semi-
structured
interviews

[335] Consumption of
(fake/misinformation) news

Qualtrics 177 (21) Largely female (66%), between the ages of
25-34

Pilot study
and survey

[172] Removal Comprehension,
Fairness and Bias

Reddit 13 70% male population, 2 people from other
countries other than US

Interviews

[96] Support Prolific,
Qualtrics,
Embrain

5,392 Diverse population from US, UK, South Ko-
rea and Mexico, female dominated study
(52.35%), older participants (median age =
41)

Survey

[111] Support, Removal Compre-
hension, Fairness and Bias

TikTok,
YouTube,
Twitch

30 All participants had historically marginalized
identities

Semi-
structured
interviews

[201] Support, Fairness and Bias MTurk 100 62% male participants, all from USA, older
participants (avg. age = 37)

Survey

[296] Removal Comprehension,
Fairness and Bias

OnlineCensors
hip.org

380 N/A Survey

[78] Support, Fairness and Bias Twitter, In-
stagram

262 Females, 38.9% were sex workers and ac-
tivists

Survey
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TABLE 6: Papers about Detection Techniques

Hate Speech Detection
Categories Broad Description Papers
Content
based

What type of features (i.e., TF-IDF, BoWV, POS tags etc.) can we
obtain solely from the content to detect hate speech?

[101], [102], [255], [258]

Lexicon
Based

How can we utilize the syntactic and semantic orientations of the
existing lexicons to identify hate speech?

[72], [87], [115], [126], [205], [263], [297], [307], [310],
[321]

Deep Neural
Based

How can we use the advancements in Deep Neural Networks to
identify hate speech in platforms without using the handcrafted
features ?

[58]–[61], [65], [70], [71], [82], [88], [95], [106], [110],
[114], [123], [124], [127], [132], [137], [146], [160], [175],
[177], [192], [197], [206], [217], [220], [221], [229], [233],
[237], [242], [245], [247], [253], [256], [292], [305], [308],
[317], [322], [328], [336], [337], [340]

Hybrid
Approaches

How can we effectively combine content based, lexicon based and
deep neural based methods to identify hate speech?

[63], [94], [103], [128], [208], [235], [259]

Multi-modal
Based

How can we combine multiple modalities of posts (such as images,
texts, memes) together to identify hate speech?

[137], [179], [194], [239], [285], [309], [311], [325]

Misinformation Detection
Content
Based

What type of features (i.e., TF-IDF, BoWV, POS tags etc.) can we
obtain solely from the content to detect misinformation?

[104], [119], [150], [154], [156], [238], [243], [287], [313],
[314], [338]

Propagation
Structure

How can we detect posts that contain misinformation by mining
their spreading patterns in the underlying social networks?

[195], [216], [262], [281], [282], [284], [287], [318]

Hybrid
Approaches

How can we effectively combine both content based features and
propagation structure to detect misinformation?

[153], [170], [176], [254], [283]

Crowd Intel-
ligence

Can we use the wisdom of the crowd to identify misinformation on
the platform?

[171], [181], [202], [241], [280], [301], [312]

Deep Neural
Based

How can we use the advancements in Deep Neural Networks to
identify misinformation in platforms without using the handcrafted
features ?

[64], [76], [100], [174], [196], [198], [202], [211], [219],
[246], [254], [280], [291], [315], [318], [324], [329], [341]

Knowledge
Based

Can we effectively use Knowledge Graphs to identify and automat-
ically detect posts that contains misinformation?

[100], [112], [157], [185], [211], [231], [291], [324]

Multi-modal
Based

How can we combine multiple modalities of posts (such as images,
texts, and audio) together to identify misinformation?

[178], [240], [274], [288], [290], [315], [320]
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TABLE 7: Data Driven Study Paper Analysis

Hate Speech Moderation
Paper Category Platforms Size of Dataset Is Dataset

Public?
Created the
dataset?

Type of Data
used

Intervention
Studied

[90] Engagement of
users, Effectiveness

Reddit ∼85M No Yes Posts and meta-
data

Soft Moderation

[155] Engagement of
users, Effectiveness

Reddit ∼6.3M Yes Partially Comments, posts
and metadata

Hard Moderation

[91] Engagement of
users, Effectiveness

Reddit ∼100M Partially No Comments and
posts

Hard Moderation

[62] Engagement of
users, Effectiveness

Gab, Reddit
and Twitter

∼30M Partially Partially Posts and meta-
data

Hard Moderation

[166] Engagement of
users, Effectiveness

Twitter ∼49M No Yes Tweets and meta-
data

Hard Moderation

[257] Engagement of
users, Effectiveness

Reddit ∼1.9M Partially No Comments and
metadata

Hard Moderation

[92] Effectiveness Reddit ∼2.8M No Yes Comments Hard Moderation
[223] Effectiveness Twitter N/A No Yes Tweets and meta-

data
Hard Moderation

[300] Engagement of
users, Effectiveness

Reddit ∼15M Yes No Posts Soft Moderation

[244]
Engagement of
users, Effectiveness

YouTube and
BitChute

∼11K No Partially Videos and meta-
data

Hard Moderation

[251] Effectiveness Telegram N/A No Yes Posts and meta-
data

Hard Moderation

[188]
Effectiveness Parler ∼200M Partially Partially Posts and meta-

data
Hard Moderation

[278] Engagement of
users, Effectiveness

Reddit ∼3.7M Partially No Posts, metadata Soft Moderation

Misinformation Moderation
[330] Engagement of

users
Twitter ∼18K Yes Yes Tweets and meta-

data
Soft Moderation

[193] Engagement of
users

TikTok ∼41K No Yes Videos and meta-
data

Soft Moderation

[182] Engagement of
users, Effectiveness

YouTube 105 No Yes Videos metadata Soft Moderation

[232] Engagement of
users, Effectiveness

Twitter ∼2.4M Yes Yes Tweets and meta-
data

Soft Moderation

Moderation Techniques
[277] Fairness and Bias Reddit ∼9K Yes No Posts Soft Moderation
[299] Effectiveness Reddit N/A Partially No Posts and com-

ments
Hard Moderation

[172]
Removal
Comprehension,
Fairness and Bias

Reddit ∼0.5M No Yes Moderation logs Hard Moderation
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