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Abstract—Machine Learning (ML) has become a valuable
asset to solve many real-world tasks. For Network Intrusion
Detection (NID), however, scientific advances in ML are still
seen with skepticism by practitioners. This disconnection is
due to the intrinsically limited scope of research papers,
many of which primarily aim to demonstrate new methods
“outperforming” prior work—oftentimes overlooking the
practical implications for deploying the proposed solutions
in real systems. Unfortunately, the value of ML for NID
depends on a plethora of factors, such as hardware, that are
often neglected in scientific literature.

This paper aims to reduce the practitioners’ skepticism
towards ML for NID by changing the evaluation method-
ology adopted in research. After elucidating which factors
influence the operational deployment of ML in NID, we
propose the notion of pragmatic assessment, which enable
practitioners to gauge the real value of ML methods for NID.
Then, we show that the state-of-research hardly allows one
to estimate the value of ML for NID. As a constructive step
forward, we carry out a pragmatic assessment. We re-assess
existing ML methods for NID, focusing on the classification
of malicious network traffic, and consider: hundreds of con-
figuration settings; diverse adversarial scenarios; and four
hardware platforms. Our large and reproducible evaluations
enable estimating the quality of ML for NID. We also validate
our claims through a user-study with security practitioners.

Index Terms—Cybersecurity, Machine Learning, Intrusion
Detection, Deployment, Development, Network

1. Introduction

Machine learning (ML) techniques have become an in-
dispensable technology in many domains of computer
science, such as computer vision [1], [2], natural language
processing [3], audio and speech recognition [4], medical
applications [5], and increasingly in cybersecurity, e.g.,
malware analysis [6], spam and phishing prevention [7],
as well as network intrusion detection (NID). As stated by
Arp et al. at the beginning of their paper: “No day goes
by without reading machine learning success stories” [8].

However, deployment of ML methods in NID faces
substantial skepticism [9]–[11] among practitioners—
despite the fact that NID is one of the oldest applications
of ML in cybersecurity [12]–[14]. The main difficulty, as
pointed out by Sommer and Paxson [15], is that network
environments exhibit ”immense variability”. Hence, most
ML models for NID developed in research papers cannot

be readily transferred into operational environments due to
a large uncertainty about their genuine value. In the real
world, what matters is not the improvements over prior
work, but rather the balance between the performance and
costs in routine deployment scenarios.

The main thesis of this paper is that research evalua-
tions of ML in NID should account for pragmatic aspects
of operational deployment. We elucidate all such aspects
by proposing the notion of “pragmatic assessment”, whose
goal is ensuring that practitioners have all the necessary
information to determine whether a given ML solution is
applicable to a given NID context. From the viewpoint
of researchers, conducting such pragmatic assessments is
challenging: almost every paper on ML in NID published
in recent top-conferences has some shortcomings. How-
ever, as we will show in this work, it can be done. As such,
we endorse future efforts to adopt our proposed takeaways
so as to facilitate the integration of ML research results
into real network intrusion detection systems (NIDS).

MOTIVATIONAL EXAMPLE. Let us elucidate why
the state-of-the-art of ML in NID is still at an early stage
with respect to practical deployment. For this purpose, we
compare NID with two popular domains in which ML has
found applications: computer vision and malware analysis.

In computer vision, the evaluation methodology
adopted in research is now standardized. Current bench-
marks, e.g., ImageNet [16], were created before 2010
and are still widely used today—even in production [17],
because they contain data from the ‘real’ world. Abun-
dant literature1 implicitly established reference standards,2
thereby removing the uncertainty on the real value of
the findings obtained in research environments. A similar
case can be said for malware analysis. After the release
of Drebin [20] in 2014, containing real Android apps
(benign and malicious), abundant3 ML research has been
carried out on Drebin (e.g., [21]–[23]). Agreeably, Drebin
is not perfect (some papers found some ‘duplication’
issues [24]), and some malware families are not popular
anymore. However, a crucial fact remains: malware is
malicious everywhere and everytime [25]. Therefore, a
proficient ML model trained on Drebin can be deployed
on any system analyzing Android apps. For instance, [26]
show that the method originally proposed in [20] is effec-
tive even on (real!) apps collected in 2017–2019.

1. As of March 2022, [16] has over 35K Google Scholar citations.
2. E.g., ResNet [18] models are known to consistently achieve very

high accuracy on ImageNet, which now represent the reference bench-
mark for computer vision (even on different datasets, e.g., CIFAR [19]).

3. As of March 2022, [20] has over 2K citations on Google Scholar.
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In contrast, ML research on NID is far from such
maturity. Among the root causes is the lack of (open-
source) data that is representative of the real world.
For instance, thousands of proposals were validated on
the KDD99 dataset, usually achieving near-perfect perfor-
mance [27]. However, the data in KDD99 represents only
a single network (from 1999), preventing to estimate
the generalization capabilities of ML solutions [28]. We
observe that, recently, more datasets are being publicly
released (e.g. [29]). Surprisingly, however, such ‘abun-
dance’ increased confusion. Consider, e.g., the recent find-
ings of ML proposals evaluated on the popular CICIDS17

dataset [30]. Specifically, we focus on [31] and [32]—both
involving ML models based on diverse ML algorithms, in-
cluding Decision Trees (DT) and Neural Networks (NN).
While [31] claims that NN are better than DT—as given
by a superior F1-score (0.96 for NN, 0.95 for DT)—
the opposite occurs in [32]—with the DT reaching 0.99
F1-score, against the 0.96 of the NN. Moreover, it is
misleading to only consider a single performance metric
for NID: even a high F1 score may conceal a suboptimal
false positive rate, making a given ML solution impractical
for realistic deployments [8]. To make all of this worse,
recent efforts found that CICIDS17 is flawed [33]. Finally,
the authors of [34] showed that ML models trained on
the (fixed) version of CICIDS17 perform poorly against
‘unknown’ attacks. The current situation of ML in NID
can be summarized with a statement from Markus de Shon
(who was Lead of the Detection Engineering at NetFlix):
“Application of ML in intrusion detection has been uneven
at best, with deep and widespread (and generally justified)
skepticism among subject matter experts” [9].

CONTRIBUTION. Our aim is changing the evaluation
methodology adopted by research on ML for NID so
as to remove the skepticism of practitioners towards the
quality of scientific solutions. To reach our goal, we first
summarize Machine Learning-based Network Intrusion
Detection Systems (ML-NIDS). Then we provide four
major contributions—each discussed in a dedicated sec-
tion (§) revolving around a given research question (RQ).

• The RQ of §3 is: “What are the factors taken into ac-
count by practitioners when developing ML-NIDS?”
To answer this RQ, we: (i) elucidate the business rela-
tionships between the end-users of ML-NIDS and the
developers of such ML-NIDS; (ii) outline the chal-
lenges that such developers must face when devising
their solutions; (iii) present the factors that contribute
to the real value of a ML-NIDS; and (iv) validate our
factors by directly asking the practitioners’ opinion.

• The RQ of §4 is: “What should research on ML in
NID do to allow practitioners to estimate the real
value of the corresponding results?” To answer this
RQ, we: (i) formalize our notion of a pragmatic
assessment; (ii) explain how to conduct a pragmatic
assessment through comprehensive guidelines.

• The RQ of §5 is: “Does the state-of-the-art allow
us to estimate the real value of ML methods for
NID?” To answer this RQ, we: (i) review all papers
on ML-NIDS presented in top security conferences
since 2017; (ii) analyze to what extent they meet the
conditions of pragmatic assessments; and (iii) report
the practitioners’ viewpoint on the state of research.

• The RQ of §6 is: “Can pragmatic assessments be
done in research?”. We answer this RQ by perform-
ing the first pragmatic assessment of ML-NIDS. We
do so through a large set of experiments focused on
network traffic classification. Our evaluation reports
the (statistically validated) performance of thousands
of ML models, spanning across diverse datasets, al-
gorithms, pipelines, and labeling budgets. Moreover,
we perform our experiments on different platforms,
and showcase the importance of hardware—which is
often overlooked in literature (and also in practice!).

We discuss our results and compare our paper with related
work in §7. To ensure reproducibility we release our
code [35]: hence, our SoK can also serve as a benchmark
for future studies. Due to the sheer size of our experimen-
tal campaign, the low-level details and results are provided
in our code repository. Finally, we provide details on our
survey with practitioners in the Appendix (App.B).

2. Background and Problem Statement

We first outline the general context of NIDS (§2.1). Then,
we delve into the specific application of ML in NIDS
(§2.2), and explain how research on ML-NIDS is typi-
cally carried out (§2.3). Finally, we elucidate the problem
tackled by our SoK paper (§2.4).

2.1. Network Intrusion Detection Systems
The security of IT systems spans over three tasks: preven-
tion, detection, and reaction [36]. It is well-known that
perfect prevention is unattainable, whereas the reaction
phase implicitly assumes that the attack has already taken
place. Hence, to minimize (or nullify) the damage result-
ing from a breach, a major role is played by the detection
of cyber threats. In the case of network security, such a
role is devoted to “NIDS.” Such term encompasses diverse
meanings (e.g., [37], [38]). Let us provide the definition
of NIDS adopted in our paper:

DEF. 1. A NIDS is a system that protects a network,
i.e., a set of (IT) systems that interact with each other.

(we refer the reader to the RFC [39] for the exhaustive definitions
of “network” and “system”)

Since their conception [40], NIDS have undergone
significant improvements. Initially, NIDS only analyzed
data pertaining to network traffic, such as raw packet
captures (PCAP), and the detection was performed by
“static” methods, i.e., through human-defined “signatures”
encoding patterns of known attacks. Due to the growing
complexity of network environments as well as the ap-
pearance of adaptive attackers, however, static detection
methods became infeasible. To cope with such a dynamic
ecosystem, NIDS started to adopt automated detection
techniques stemming from the data analytics domain,
enabled by the availability of “big data” (potentially orig-
inating from diverse sources) and by advancements in
computational power [41]. Such data-driven techniques,
which include (among others) ML methods, improved
NIDS while reducing the burden on human operators.

We provide an illustration of the typical NIDS de-
ployment in Fig. 1, where the NIDS monitors all commu-
nications performed by a given organization. The output
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of a NIDS is in the form of alerts (which can be post-
processed by dedicated modules, e.g., [42]), which must
be inspected and triaged by security operators. We stress
that NIDS can be deployed anywhere in a given network,
not just at the border (e.g., [43]).

Internet

Network Intrusion
Detection System

Other
Sources

Gateway

Network 
Traffic

Alerts

Network Environment

Security Operator

Fig. 1: Typical deployment scenario of a NIDS.

Current state-of-the-art NIDS—and related tools, such
as SIEM, (e.g., [44], [45])—may correlate information
from various sources (e.g., whois geolocation [46], DNS
logs [47], or internal ACL), and can combine multiple
detection approaches (e.g., either misuse- or anomaly-
based [48]) on diverse data-types [49]. For example, a
growing trend (even among practitioners [50]) is analyz-
ing NetFlows [51], i.e., high-level metadata summarizing
the raw-communications between two endpoints [52]. We
outline the advantages of NetFlow analyses in App.A.1.

2.2. Machine Learning and NIDS
A NIDS is a system that must orchestrate multiple compo-
nents. Each component may consider diverse inputs, and
its output may also be used by other components. All such
components can adopt different analytical techniques, in-
cluding those belonging to Machine Learning.

The underlying principle of ML is to leverage the
functionality of an ML model. By applying a given ML
algorithm to some training data, it is possible to develop a
ML model that can autonomously ‘predict’ (new) data—
e.g., determining whether an activity is legitimate or not.
We provide our definition of a Machine Learning-based
Network Intrusion Detection System (ML-NIDS):

DEF. 2. An ML-NIDS is a NIDS that includes, among
its components, a (trained) Machine Learning model.

To better understand DEF. 2, we provide an exemplary
architecture of an ML-NIDS in Fig. 2. The ML-NIDS can
receive different types of input data (either in batches or in
real-time [53]), which are forwarded to specific pipelines;
such pipelines are made up of one or more components,
and analyze the given input(s). In the case of an ML-
NIDS, at least one pipeline will include an ML model—
typically preceded by a preprocessing component tasked
to transform the input data to a format accepted by the
ML model (e.g., by extracting the relevant ‘features’). The
output of all such pipelines can then be used as input
to other pipelines (and respective components), which
may leverage additional ML models (for the same, or a
different task). All such results are then aggregated into
the output of the NIDS (i.e., alerts).

Among the ML community, it is common to distin-
guish between supervised and unsupervised ML algo-
rithms [15]. The difference revolves around the notion of

Pipeline

Machine Learning-based Network Intrusion Detection System

Preprocessing ML model

Machine Learning pipeline

Input Output

[...]

Component Component

fwd aggreg

Pipeline

Pipeline
fwd

[...]

Fig. 2: Architecture of an ML-NIDS.

“label” which denotes the ground truth of a given sample.
By providing such labels during the training stage of a
supervised ML model, it is possible to ‘guide’ the learning
process and enable, e.g., classification tasks [54]. Obtain-
ing such labels is, however, expensive and often error-
prone (as shown in [33]). We provide in App.A.2 a more
exhaustive description of supervised and unsupervised ML
in the NID context—which is followed by an exemplary
application of ML to detect malicious traffic (in App.A.3).

As pointed out by many reviews (e.g., [55]–[58]),
the applications of ML for NID are highly successful.
Accordingly, ML has been shown not only to automate
crucial triaging operations [46], but also to exceed the
detection capabilities of non-ML NIDS (e.g., [59], [60]).

2.3. ML-NIDS in Research
Let us illustrate the common workflow adopted in research
to assess ML-NIDS, schematically depicted in Fig. 3.
This workflow—typically borrowed from domains that are
unrelated to cybersecurity—begins by acquiring a dataset,
D. Such D is divided into a train and evaluation (or “test”)
partition—T and E respectively—by following a given
split (e.g., 80:20, i.e., 80% of D is put in T, and the
remaining 20% in E). Then, by using a given learning
algorithm A (e.g., DT) on T, a ML modelM is developed:
suchM is then evaluated on E, and its quality is measured
according to some performance metric, µ (e.g., F1-score,
Accuracy). The intuition is that if µ is ‘good enough’
and ‘better’ than existing proposals, then the respective
research has achieved its purpose (e.g. [31], [32]).

𝔼
evaluation

𝕋
training

𝔻
dataset

ML algorithm
train test

split

2

1

3MA
ML model

μ

Fig. 3: Typical ML workflow adopted in research.

Despite being correct in principle, such a workflow has
two intrinsic limitations from a practitioner’s viewpoint.

1) The lack of an “universal” dataset for NID. If
such a dataset existed, it could be used in any assess-
ment to generalize the performance of an ML-NIDS.
However, the immense variability of networks [15]
makes creating such a dataset close to impossible
(even security companies share such an opinion [61]).
Furthermore, this problem prevents [61] a reliable
‘transferring’ of ML models across different net-
works (in contrast, transfer is feasible in other do-
mains in which ML has found applications [62]).
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2) The primary focus is on the ML model, M. Such
M, however, is just a single component within the
ML-NIDS (see DEF. 2), which is a complex system.
For instance, there are many elements that come both
before and after M; moreover, M can be physically
deployed on devices mounting diverse hardware.

We claim that research papers can provide valuable in-
sights for practitioners. In this paper, we accept the first
problem (which cannot be solved today), and focus on
rectifying the latter. Specifically, we argue that practition-
ers are more interested in the (general) ML method rather
than in the (specific) ML model. Hence, practitioners will
appreciate if a research: accounts for the most likely
scenarios to be faced by the ML-NIDS; and also allows to
estimate the costs required to sustain the ML-NIDS during
its entire operational lifecycle [63], [64].

2.4. Skepticism of ML-NIDS Practitioners

According to a recent survey, over 75% of companies
employ ML solutions for network security [65]. Most
of such companies, however, delegate their cybersecurity
to third-party vendors [66]. Indeed, several commercial
products for NID actively leverage ML (e.g., [67]–[69]).
Yet, all such products adopt ML methods that are decades
old and mostly in their unsupervised form (e.g., the one-
class SVM of [50] was proposed in 2002 [70]). Simply
put, the integration of research endeavours into operational
environments is slow in the context of ML-NIDS.

Such slow-pace stems from the skepticism [9] of prac-
titioners towards the ‘successes’ of research papers. Such
skepticism is well-founded: as we will show in our SoK,
the current state of research hardly ‘complies’ with the
demands of professional ML-NIDS developers (§5). In-
deed, our own survey (§5.3) reveals that research papers—
instead of providing answers—leave practitioners with
uncertainty, which can be summarized as: “It works in
your network. But will it work equally well in my network,
and is it affordable (now, and in the long-term)?”

Our Goal. We firmly believe that the research com-
munity can answer such a question. However, providing
such an answer (which not necessarily needs to be always
positive [71]) requires a radical change of the current
assessment methodology—which should account for the
necessities of real developers. To the best of our knowl-
edge, such necessities have never been formalized in the
context of ML-NIDS (related work is discussed in §7.3).
Therefore, we first elucidate all the factors that practition-
ers must take into account whenever real deployment of
ML in NID is considered. Then, we propose the notion of
pragmatic assessment which explains what research pa-
pers must do to satisfy the needs of practitioners. Finally,
we perform the first pragmatic assessment of ML in NID.

3. Practical Deployment of ML in NID

Our first contribution addresses the RQ: “What are the
factors taken into account by practitioners when devel-
oping ML-NIDS?” To answer this RQ, we must first
elucidate the business perspective of ML-NIDS, and then
describe the deployment challenges faced by developers
when designing ML solutions for NID.

3.1. Business Perspective of ML for NID
Consider an organization that uses a NIDS (which may
or may not already leverage ML) to protect its network,
and that wants to enhance such NIDS with a new ML
solution for a given detection problem. To this purpose,
the organization can develop the ML solution in-house,
or rely on commercial-off-the-shelf (COTS) products [72].
Let us elucidate the implications of these two use-cases.
• In-house. The organization must first design the ML

solution, which can be done either by replicating
existing proposals or by devising an original one.
Then, the organization must oversee the ML solution
for its entire lifecycle, which includes: data collec-
tion, preprocessing, and labeling (for both training
and testing the ML model); development of the ML
model (including repeated testings for parameter cal-
ibration); deployment of this ML model in the NIDS
infrastructure; as well as any maintenance [73], [74].

• COTS. The organization must choose among avail-
able products on the market the one that best fits their
NIDS. Such a choice depends on the characteristics
of a given COTS solution, as advertised by its vendor.

In both use cases, the deployment of a ML-NIDS entails
two players: the end user (i.e., the organization), and the
developers (i.e., either an external vendor, or the same
organization). Such a relationship is represented in Fig. 4:
The organization needs a solution according to its security
strategy, and the developers provide a product to meet this
demand. In any case, it is the developer who has to make
technical decisions and ensure the operational quality of
the final product—during its entire lifecycle.

End User 
(an organization)

WANTS

to protect their
network via

Developers 
(from the same or a

different organization)

PROVIDE

by developing,
deploying,
maintaining

PAY / ARE PAID BY

(directly or indirectly)

ML-NIDS

Fig. 4: The business perspective of ML-NIDS.

Remark: Real ML-NIDS require developers who are
responsible for the lifecycle of the ML model (Fig. 4).

3.2. Deployment Challenges of ML for NID
Three main challenges affect the real deployment of ML-
NIDS: (1) each network is unique, (2) each network per-
petually evolves over time, and (3) the implicit presence
of adversaries. These challenges (which contribute to the
“lack of an universal dataset” mentioned in §2.3) are
emblematic of ML in NID and exist irrespective of who
oversees the lifecycle of the ML-NIDS. Let us explain.

1) The uniqueness of networks has been pointed out
in various works (old [15] and recent [28]): some ac-
tivities are legitimate in one network and illegitimate
in another network. Hence, deployment of ML-NIDS
requires training and testing operations performed on
data originating from the monitored network [75].

2) The dynamic nature of modern networks is another
major hurdle for deployment of ML in NID. Every
day, new hosts can appear or be removed; new ser-
vices may be adopted; and new network segments
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may be attached—all of which may introduce new
types of vulnerabilities. Such phenomena represent
the well-known problem of “concept drift” [76].

3) The implicit presence of adversaries implies a dif-
ferent, more serious type of concept drift [34]. While
the natural network evolution may be controllable to
some degree4, this is hardly the case for attackers
who want to evade a NIDS [77]. Such adversaries
are well motivated and may even devise evasion
strategies that specifically target the ML model [72]).

We observe that the last two challenges (intrinsic to most
ML applications in cybersecurity [8]) are unpredictable5,
and hence cannot be solved during the development of
an ML model. Overcoming these challenges is possible
but requires re-assessments of the ML model after its
deployment. If the prediction quality of the ML model
deteriorates, it must be updated or replaced. Such main-
tenance is indispensable for ML-NIDS, and accounting
for its costs—unique to each network—is crucial for
determining the pragmatic value of ML solutions for NID.

Remark: Real ML models for NID must be developed,
deployed, and maintained via periodic re-assessments.
Such operations must be performed independently for
each network monitored by an ML-NIDS.

3.3. Factors affecting the real value of ML in NID

The deployment challenges of ML for NID are well-
known by practitioners, who must take into account sev-
eral factors before developing any ML model. We now
answer our first RQ by connecting all the foundations
described insofar and elucidate all such factors.

Overview. The value of any security solution can be
expressed as the tradeoff between operational effective-
ness and expenses. An ML method for NID is effective if it
yields an ML modelM that exhibits, e.g., a high detection
rate while raising few false alarms. The expenses reflect
all costs incurred during the lifecycle of M. We denote
the value of an ML model as Ψ(M). From the research
perspective, Ψ(M) depends (at the high level) on the ML
algorithm A and on the dataset D (§2.3). However, from
the practical viewpoint, D must be collected, and M must
be deployed in the real NIDS. These operations introduce
additional dependencies that crucially affect both the ef-
fectiveness and the expenses in Ψ(M).

Factors. We propose to formalize the dependencies
contributing to Ψ(M) through the following five factors.
• Preprocessing (P). There exist a plethora of mecha-

nisms (each with its own operational costs) meant
to transform raw data into the format accepted by
an ML model M. These mechanisms affect the
information included in D and utilized by M to
make its predictions—hence influencing the effec-
tiveness of M. Consider, for instance, the generation
of NetFlows from PCAP, for which many tools are
available—each having its own logic [52]: As shown
in [29], exactly the same raw data (in PCAP) yields
different NetFlows (even if generated via similar

4. E.g., administrators know when organizations adopt new services.
5. E.g., even if administrators are aware of major changes, they do not

know if such changes will impact the performance of their ML-NIDS.

tools), leading to ML models with different perfor-
mance (we will also show this in our experiments).

• Data availability (D). The quality of a given D is linked
to its size and sample diversity, so that M can prop-
erly ‘learn’ how to predict future data [78]. However,
obtaining such a D has a cost [79], which is higher
when M requires labelled data for training6. Ground
truth verification is costly and error-prone [61], and
it can lead to noisy samples [80]. For instance, [33]
found many labelling issues in a well-known dataset
for NID (the CICIDS17 [30]). Finally, although some
tools can (synthetically) generate malicious data (e.g.,
CALDERA [81]), some companies require several
months to obtain a representative dataset of ‘normal’
network activities (e.g., CAIAC [75]).

• System Infrastructure (S). Any M is just a single el-
ement within the NIDS, and hence its effectiveness
depends on the NIDS infrastructure (§2.2). The in-
frastructure determines, e.g., the type of data ana-
lyzed by M. For instance, the information included
in the NetFlows analyzed by an M is dictated by
the sensors deployed in the NIDS infrastructure. The
infrastructure, furthermore, affects (i) the type of
decisions expected from M, (e.g., binary or multi-
class classification); as well as (ii) the logical ar-
rangement of the individual decision units within the
ML pipeline. For instance, a pipeline can include a
standalone ML model, an ensemble of ML models, or
a cascade of ML models (e.g., [82]–[84]). We provide
a schematic of an ML pipeline including a cascade
of a binary and multi-class classifier in Fig. 10.

• Hardware (H). The detection capabilities of a ML
model are hardly affected by the computational re-
sources available. However, hardware influence the
runtime for both the training and the inference stage
of M. The former is necessary for the periodic
re-training7 of M; the latter is crucial to deter-
mine where M can be physically deployed. Indeed,
ML models for NID can be placed anywhere in
a network [65], spanning from low-power IoT de-
vices [85] to high-end computing platforms [86].

• Unpredictability (U). It is impossible to know in ad-
vance how the threat landscape and the network
environment will evolve. Moreover, ML methods
introduce further uncertainty by using randomized
algorithms (e.g., Random Forests); but also because
it is not possible to know a-priori how to collect a
T that maximizes the effectiveness of M (and that
does so in the long-term).

We can hence express the value of a ML method for NID
as a function f defined with the following equation (Eq.):

Ψ(M) = f(P,D,S,H,U). (1)

Because of U , we note that Ψ(M) is not deterministic.
We stress that all the factors above influence each

other. For instance, S also implicitly affects H, but also
P. Furthermore, ML solutions for NID should be continu-
ously assessed (U), which requires both human and com-
putational resources. For instance, updatingM with new T

6. We observe that while T is required for supervised methods, a
labelled E is always necessary to validate performance [49].

7. Training-time is also crucial for fine-tuning: an optimal configura-
tion will be found in less time for methods that are faster to train.
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may require additional labeling efforts [87] (D); however,
such retraining can be computationally expensive (H), and
overlooking the training runtime can be detrimental [88].

Practitioner Validation. We conducted a survey ask-
ing the opinion of practitioners on our proposed set of
factors. Our population entails 12 practitioners with hands-
on experience in ML and NID; overall, our participants
work (or have worked) in the SOC of renown companies.
(We provide all details in App.B.) The results of our
survey are summarized in Table 1, which reports the
percentage of our interviewees that believed whether each
of our factors was: “not important” (©); “important” (!);
or “crucial” ( !©) for real deployments of ML-NIDS.

TABLE 1: Viewpoint of practitioners on our set of factors.

Factor © ! !©

P 0% 9% 91%
D 9% 18% 73%
S 9% 27% 64%
H 9% 64% 27%
U 9% 18% 73%

On average, 66% of practitioners consider all our factors
to be “crucial” for estimating the real value of a ML-
NIDS. Interestingly, 0% believe that preprocessing (P) is
“not important,” which was ranked as the most crucial
factor by all our respondents. The unpredictability (U)
and data availability (D) are also deemed to be pivotal
by 73% of our population. The least relevant factor is
hardware (H), which is considered “important” by 64%.
However, as we will show, H can be the deciding factor
to assert which ML solution is truly the best (§6.3).

Takeaway: Our proposed five factors (P,D,S,H,U) are
considered to be relevant for estimating the real value
of ML in NID by most practitioners.

4. Pragmatic Assessment of ML-NIDS

We now address our second RQ: “What should research
on ML in NID do to allow practitioners to estimate the
real value of the proposed solutions?” Indeed, practitioners
must account for all the factors in Eq. 1: they will not
implement an ML method without knowing how much
training data is required. They would also be reluctant to
reproduce an ML method if it is not clear whether such
a method is truly superior to existing solutions. Finally,
an ML method for NID that has not been tested in an
adversarial environment may contain security risks [89].

To answer our second RQ, we propose the following
notion of pragmatic assessment which draws on several
past works from both the research (e.g., [8], [90], [91])
and industrial (e.g., [92], [93]) domains.

DEF. 3. A pragmatic assessment allows practitioners to
assert the value of an ML method for NID iif:
• the reported results are free of any experimental

bias, and present high degree of confidence;
• the evaluation is carried out on testbeds resembling

the (likely) operational scenarios of the NIDS;
• all requirements for developing the proposed ML

method are clearly specified.

.Let us explain how these three conditions can be met
in research and at a high level, starting from the last one.

4.1. Development Requirements
A pragmatic assessment must transparently disclose all
information pertaining to the requirements for developing
(and maintaining) a given solution. In the context of
research on ML-NIDS, such information must include:
• The schematic of the NIDS infrastructure with re-

spect to the proposed ML method (S in Eq. 1). Such
schematic must pinpoint ‘where’ the corresponding
ML model is meant to be deployed. Such information
serves to establish: (i) the function of the ML model;
(ii) which components/specifications are required to
operate the ML model; and (iii) whether additional
components are required to post-process its output.

• The hardware specifications of the platforms used to
train and test the ML model, which affect its run-
time (H in Eq. 1). Such specifications must include
the RAM, the CPU (i.e., model, threads, maximum
frequency) and—if necessary—the GPU. It is also
important to report the CPU utilization during its
runtime (i.e., how many threads were used, and at
what frequency), because it plays a crucial role in
the energy consumption. In particular, especially for
the CPU, the exact model must be reported8. For
instance, stating that “the CPU is an Intel Core i5”
(e.g., [95]) is misleading because there are hundreds
of such CPUs with significantly different perfor-
mance: according to PassMark, an i5-470M is 35
times slower than a i5-12600KF [96]. To demonstrate
the effects of ‘superficial’ hardware specifications,
we perform an original experiment §4.4.

• The dataset composition for both the training T and
evaluation E partitions (D in Eq. 1). Such information
is crucial for supervised ML methods, as it allows
determining the amount of labeled data necessary to
develop the respective ML model. Such information,
however, is also relevant for unsupervised ML algo-
rithms, because even unlabelled data has a cost [79].

• The details of the ML method used to develop the ML
model. Such details include the feature set, the exact
algorithm (e.g., DT) and its parameters, the task (e.g.,
binary or multi-class classification), and the design of
its pipeline (e.g., stand-alone or ensemble). All such
information contributes to P and S in Eq. 1.

Finally, it is (obviously) desirable that the implementation
code is openly released, and if the adopted dataset is pub-
licly available. As stated by Lindauer et al. [97], scientific
reproducibility “facilitates progress”: if the entire testbed
is publicly accessible, then developers can determine if
there are any similarities between the real and experimen-
tal environments—potentially enabling a direct transfer of
the resulting ML model (if the environments are similar).

Reporting all the above-mentioned details also allows
to roughly estimate the expenses for maintaining the ML
solution (therefore accounting for part of U in Eq.1).

4.2. Likely Operational Scenarios
Security systems must face real threats, hence pragmatic
assessments must consider scenarios that are likely to
occur in reality. To meet this condition, we propose three

8. Note that CPUs can be under/overclocked and therefore exhibit
different frequencies than those reported by their manufacturers [94].
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complementary use-cases that can be taken into account
in research on ML for NID. Given the lack of an universal
dataset (§2.3), our underlying intuition is to maximise
the utility of a given dataset. Doing this requires the
researcher to use their domain expertise and ‘creativity’.

4.2.1. Closed and Open World. It is not wrong to
consider “closed world” scenarios, i.e., where the ML
model expects each sample to resemble those seen dur-
ing its training stage. However, ML methods should be
assessed also in “open world” scenarios [91], due to
the unpredictability of the threat landscape (U in Eq. 1).
Indeed, these are the scenarios that ML methods origi-
nally intended to address [15]. For unsupervised anomaly
detection, open world scenarios are implicit: after learning
a given concept of ‘normality’, no pre-existing knowledge
is required to detect anomalous behaviors (unsupervised
methods have no notion of ‘classes’). In contrast, for
classification problems (common in NID) assessing open
world scenarios requires additional effort: Testing ML
classifiers only on a E having the exact same classes as
T (closed world) prevents estimating any form of adapt-
ability of the ML-NIDS. For a pragmatic assessment, the
ML classifier should be evaluated also on an E containing
attacks different than those in T (open world).

This can be done by (a) injecting in E some mali-
cious classes not included in the original D – e.g., by
borrowing malicious samples from other datasets [32]; or
by entirely creating novel attack classes via, e.g., [81] (as
done in [98]). Alternatively, it is possible to (b) exclude
some malicious classes in D from being put in T, and
put such classes in E instead. Both approaches are viable
and can be combined in principle. However, as pointed
out by Apruzzese et al. [28], “mixing data from different
networks presents some fundamental issues”. For instance,
if two networks are considerably different then it is dif-
ficult to trust the resulting performance of an ML model.
Therefore, mixing data from different networks should be
done only after thorough topological analyses.

4.2.2. Static and Temporal Data Dependency. ML
methods were originally conceived by assuming the va-
lidity of the iid principle, i.e., “independent and identi-
cally distributed random variables” [99]. However, the iid
principle does not always hold in network environments
because the data (both benign and malicious) analyzed by
a NIDS is likely to present temporal dependencies. As an
example, a botnet-infected machine will first contact its
CnC, and only afterwards it will execute the malicious
commands received by the CnC. For this reason, it is
recommended (e.g., [8]) to choose E so that its samples
come ‘after’ T. Investigating only this ‘temporal’ case,
however, prevents a generic assessment: the results will
only resemble the ‘sequence’ of the samples captured by
a given D. Hence, to provide more general results, we
propose to consider both cases, i.e., by assuming that:
(a) samples are all independent of each other; (b) temporal
dependencies may be present in the data stream.

Investigating both cases in research9 requires a dataset

9. We note, however, that investigating both cases may not be ‘uni-
versally’ possible. Sequential ML methods that specifically look for
temporal patterns (e.g., [53]) implicitly assume the presence of temporal
dependencies; whereas some datasets may simply not provide time-
related information to investigate any form of temporal dependencies.

D containing time-related information. Assessing the
‘static’ case is straightforward: it is sufficient to compose
T and E by randomly sampling from D. On the other hand,
for the ‘temporal’ case, it is necessary to split D into T
and E according to sensible temporal criteria. For instance,
the split can be based on the timestamp associated to
each sample; it is also possible to choose as E the ‘last’
portion of D, and use as T the ‘first’ part (assuming that
D is chronologically ordered). Nevertheless, the time-gap
between T and E should not be overlooked. For example,
the results can differ if only minutes pass between T and
E, compared to when the gap is days or weeks.

4.2.3. Naive and Adaptive Adversaries. Security sys-
tems must always assume the presence of adversaries.
Such adversaries can be ‘naive’ and rely only on known
offensive strategies (i.e., hoping to bypass an unpatched
system). However, the most serious threats come from
‘adaptive’ attackers who actively attempt to exploit the
specific vulnerabilities of their target. In the case of
ML methods, such vulnerabilities involve the so-called
adversarial examples [100]. After more than a decade of
research demonstrating their effectiveness, it is paramount
for pragmatic assessments to also consider such a threat.

There are dozens of ways to bypass ML systems via
adversarial examples [101] and considering all such ways
is clearly infeasible since they are ultimately unpredictable
(U in Eq. 1). As stated by Biggio and Roli, priority should
be given to the “more likely threats” [89]. The idea is
endorsing defensive proactivity: the developer evaluates an
ML method in advance against the adaptive “adversarial”
attacks that are more likely to occur in reality. To this
end, it is crucial to consider adaptive attacks that conform
to a threat models that are both viable and feasible. We
provide the following recommendations (extending those
by [72]) to facilitate the design of such threat models.

• Adversarial Mindset. Real attackers adopt a cost/ben-
efit rationale [64]: they will not launch attacks re-
quiring huge resource investments—even if they are
likely to succeed, there may be other targets (i.e.,
different from ML models) that yield a better ‘profit’.

• Consider the right “Box”. Adversarial ML threat
models are often expressed with the notion of a “box”
that identifies the system targeted by the attacker. In
the case of ML methods for NID, the “box” is the
entire NIDS—and not just the specific ML model.
Hence, when considering a “white-box” attacker,
such an attacker would have complete knowledge of
the entire NIDS—i.e., a rather extreme circumstance,
as such information is well-protected [72]. For this
reason, we recommend not to place “white-box”
settings at top priority (contrarily to [8]): such worst-
case scenarios are feasible in general security, but not
very likely against NIDS.10

• Realizable Attacks. Aside from conforming to the
assumed threat model, the perturbation used to create
an adversarial example should be physically real-
izable [102]. This does not mean that it must be
created in the “problem-space” [103], as this may

10. We argue that attackers with full knowledge of the whole NIDS
would opt for more disruptive strategies than data perturbations.
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not be feasible11 in research when operating on a
pre-collected dataset D. Indeed, as observed by [72],
even perturbations in the feature space can be real-
istic if the manipulation preserves the dependencies
between features, and considers features on which a
real attacker has some influence.12

• Unbounded Perturbations. Research on adversarial
ML usually aims at devising minimal perturba-
tions that are subject to self-imposed constraints
(e.g., one pixel attacks [105]). However, as also
remarked by Carlini et al. [106] (and, more recently,
also by [107]), real attackers are not interested in
‘bounded’ perturbations, as long as they achieve their
goal (e.g., evading a security system).

We make an important remark. Assessing the robustness to
adversarial perturbations serves to gauge the vulnerabili-
ties (or strengths) of an ML method before its deployment.
It is up to the end user of such an ML method to deter-
mine whether the envisioned threat deserves a dedicated
treatment—which should be economically justified [71].

4.3. Unbiased and Statistically Validated Results

The recent paper by Arp et al. [8] provides sensible rec-
ommendations on how to conduct a meaningful evaluation
of ML in cybersecurity. For instance, the base-rate fal-
lacy should be considered, the right performance metrics
should be measured, and comparisons should be made
with the right baselines. All such guidelines are relevant
for NIDS and must be followed also for our proposed
pragmatic assessments. Such guidelines, however, lack a
crucial piece: the performance of an ML method should
be statistically validated. The motivation is simple: to
account for the (intrinsic) randomness of ML (U in Eq. 1);
and to mitigate the (intrinsic) sampling bias in T and E.

Such statistical validation is achieved by repeating
the experiments13 for a sufficient amount of trials, whose
focus is establishing the (unbiased) performance of the
ML method—and not of a single ML model. Indeed, only
by measuring the performance of a large ‘population’ of
ML models—all trained/tested in similar settings—it is
possible to estimate the real value of the corresponding
ML method. Moreover, large populations enable statistical
comparisons, a powerful tool for determining which ML
method is truly the best. Carrying out comparisons that are
statistically significant (i.e., assuming a target α < 0.05),
however, requires many trials. For instance, an ML method
yielding an ML model with 0.992 accuracy cannot be
claimed to be ‘better’ than another ML method whose
ML model exhibits 0.991 accuracy over a single trial.
Therefore, in cases where two methods yield models
with similar performance, a large amount of trials may
be required14. We thus discourage relying just on cross-

11. Complete realistic fidelity is almost impossible as it would require
to reproduce the attacker’s operations in the specific targeted network.

12. A very recent work [104] pointed out that attackers may even be
able to directly control the feature representation of a given example.

13. We stress that pragmatic assessments require such statistical val-
idation for all the ‘likely’ scenarios (§4.2). For instance, the adversar-
ial robustness should be repeated many times (as also recommended
in [106]), each applying the same perturbation but to different samples.

14. Some tests require a sample-size of at least 50 [108]. However,
the test may also be inconclusive: in this case, no claim can be made.

validation techniques, as they do not provide a sufficient
amount of measurements for pragmatic assessments.15

Takeaway: Accounting for all the factors contributing
to the real value of ML for NID requires pragmatic
assessments, summarized in Fig. 5. Extensive informa-
tion must be provided, diverse likely scenarios must be
considered, and multiple trials must be made to provide
statistically significant results.

Pragmatic Assessment

Statistical Validation

High Confidence Results

Statistically Significant Comparisons

+ Best Practices [Arp et al. 2022]

Realistic Circumstances

Open and Closed World

Static and Temporal Data Dependency

Naive and Adaptive Adversaries

Deployment Requirements
Envisioned NIDS Infrastructure 

Hardware specifications

Dataset composition

ML method specifications

(report) Unbiased Performance (in the) Lkely Operational Scenarios (provide) Requirements of the ML method

Fig. 5: Characteristics of Pragmatic Assessments of ML in NID.

4.4. Experiment: the importance of CPU specs

We perform a simple experiment to demonstrate the im-
portance of reporting the complete CPU specifications.

Objective. We consider the simple task of measuring
the runtime for training and testing an ML model on a
given dataset. Specifically, we train and test a Decision
Tree (DT) binary classifier on the GTCS [110] dataset (i.e.,
D); more details in App.D.1. We randomly sample 80%
(i.e., T) of D to train the DT, and test it on the remaining
20% (i.e., E). We repeat such experiments 10 times.

Specifications. We consider two different platforms,
whose setup are nearly identical “on the surface”: they
both mount 8GB of DDR3 RAM (using the same fre-
quencies), both run Windows 10 OS, and the experiments
are done on the exact same version of Python and scikit-
learn. The only difference is the exact model of the CPU:
one is an Intel i5-4670, and the other is an Intel i5-430;
both CPUs use their default clock speeds. Both training
and testing the DT require only a single CPU core.

Results. On average, training the DT on the i5-4670
requires 11.1s, but it takes 34.7s on the i5-430 (a 310%
increase). Whereas testing requires an average of 0.39s on
the i5-4670, and 1.38s on the i5-430 (a 350% increase).
Hence, reporting only a portion of the specifications (e.g.,
“an Intel i5 CPU”) introduces a lot of uncertainty on the
actual performance of the final ML model.

5. State-of-the-Art (in Research)

As a final motivation for this paper, we answer the follow-
ing RQ: “Does the state-of-the-art allow one to estimate
the real value of ML methods for NID?” We hence review
recent literature to determine how much existing works
‘comply’ to our notion of pragmatic assessment.

15. As an example, consider a D that is partitioned into T and E
with an 80:20 split. Such a split allows to apply 5-fold cross validation,
which produces only 5 results and hardly valid to determine whether
an ML model is statistically better than another. In contrast, a more
convincing and unbiased approach is to perform a large amount of trials
by randomly sampling T and E from D many times (e.g., 50), each time
with the same 80:20 split. Such an approach allows to compare two
populations of 50 samples (via, e.g., a Welch’s t-test [109]), enabling to
derive sound conclusions on which ML method is better.
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Disclaimer. Similarly to [8], [107], [111], the following analy-
sis is not meant to invalidate previous works: ultimately, none
of such works aimed at realistic deployment. Our intention
is highlighting that the current evaluation protocol adopted in
research papers can (and should) be improved. We provide a
case-study describing some ‘practical redundancies’ of a recent
work (by the same authors of this SoK) in App.A.4.

5.1. Methodology (literature review)
Scope and inclusion criteria. The amount of pa-

pers that propose to use ML for NID is off-the-charts.
To perform a feasible but comprehensive analysis, we
investigated all papers published in nine of the most
reputable cybersecurity conferences.16 For each venue,
we investigated the proceedings from 2017 to 2021,17

and selected all papers that fell within our scope. Such
selection resulted in 30 papers,18 considering diverse types
of networks (from enterprise [46] to IoT [112]) and cyber
threats (from anomalous traffic [113] to APT [114], and
even adaptive attacks [115]). Nonetheless, all such papers
shared the same underlying assumption: the usage (and
evaluation) of ML to detect ‘intrusions’ in networks.19

Analysis. We inspected each selected paper from the
perspective of our ‘pragmatic assessment’ notion. Because
each paper had different assumptions, we performed our
analysis by asking ourselves six questions—each having
a set of standardized answers (⇒). Specifically:

1) “Are the hardware specifications clearly
reported?”⇒Yes (3); partially ( , e.g., no details
on CPU model); not provided (7).

2) “Is the runtime clearly specified?”⇒Yes (3); only
training time (T); only inference time (E); no (7).

3) “Is the vulnerability to adaptive adversarial attacks
mentioned?”⇒Yes, and it is evaluated (3); yes, but
only stated as a limitation ( ); not mentioned (7).

4) “Is the statistical significance used to provide more
convincing results?”⇒Yes (3); no (7).

5) “Is the training dataset ever changed to account for
diverse data availability?”⇒Yes (3); no (7).

6) “Is the evaluation done on (at least some) public
data?”⇒Yes (3); yes, but it is not available to-
day ( ); no, such data has always been kept pri-
vate (7). We also noted how many datasets were used.

The results of such analysis are summarized in Table 2.
We also remark that we considered two additional criteria,
namely: (i) whether the ML models were tested only in a
“closed world” setting; and (ii) whether the paper consid-
ered different preprocessing operations. Such criteria are
not included in Table 2 because the response was the same
for all papers, i.e.: all 30 papers evaluated their models
(also) against unknown attacks (most of such papers are
on anomaly detection, which implicitly assumes an “open
world” setting); and none of the 30 papers considered
different preprocessing mechanisms.

16. We consider: IEEE SP and EuroSP; ACM CCS, AsiaCCS, AC-
SAC; NDSS and USENIX Security; as well as DIMVA and RAID.

17. Some of these conferences still have to be held in 2022.
18. We went through the proceedings four times over 5 months.
19. E.g., the ML-NIDS may analyze network data (e.g., Net-

Flows [46]), or may account for data generated from an entire network
(e.g., finding ‘anomalies’ in the measurements of all sensors in a given
network [116]). We do not consider “malware detectors” (analyzing, e.g.,
android apps [117] or javascript [118] or PE files [119]) as ML-NIDS.

TABLE 2: State-of-the-Art: papers published since 2017 in top cyberse-
curity conferences that consider applications of ML linked with NID.

Paper Year Hardware Runtime Adaptive Stat. Sign. Avail. Pub. Data

Bortolamelotti [113] 2017 7 7 3 7 7 7 (1)
Ho [120] 2017 7 7 7 7 7 (1)
Cho [121] 2017 7 7 3 7 7 7 (1)

Siadati [122] 2017 7 7 7 7 7 (1)

Oprea [46] 2018 7 T 7 7 7 (1)
Pereira [95] 2018 T 7 3 (1)
Kheib [123] 2018 7 7 7 7 7 (1)

Araujo [124] 2019 7 E 7 7 3 7 (1)
Mudgerikar [112] 2019 7 3 7 7 7 7 (1)

Mirsky [60] 2019 3 7 7 3 (1)
Feng [125] 2019 7 7 7 7 3 (2)

Milajerdi [114] 2019 3 7 7 3 (1)
Liu [126] 2019 7 7 7 3 (2)
Du [127] 2019 7 T 7 7 3 (3)

Erba [116] 2020 E 3 7 3 3 (2)
Bowman [98] 2020 E 7 7 7 3 (2)

Leichtnam [128] 2020 7 7 7 7 3 (1)
Singla [129] 2020 7 7 7 7 3 3 (2)
Han [130] 2020 3 3 7 7 3 (2)
Jan [131] 2020 7 7 3 3 3 7 (1)

Ghorbani [132] 2021 3 E 7 7 7 (1)
Nabeel [133] 2021 7 7 7 7 7 (1)
Wang [115] 2021 7 E 3 7 7 3 (2)

Piszkozub [134] 2021 7 7 7 7 (2)
Yuan [135] 2021 7 7 7 3 3 (1)
Yang [136] 2021 7 7 3 7 3 (1)

Barradas [137] 2021 3 7 7 3 (1)
Han [138] 2021 3 3 3 7 3 3 (2)

Liang [139] 2021 7 T 3 3 3 (1)
Fu [140] 2021 3 3 7 7 3 (3)

5.2. Major Findings (and our interpretation)
From Table 2, we see that no one fits all: despite being
published in top conferences, no single paper allows to
estimate the deployment value of the considered ML so-
lutions. Nonetheless, we highlight some intriguing trends.
D Only a snapshot. Most papers assess the quality

of ML methods by training and testing the corresponding
ML models on a single ‘snapshot’. For instance, such
ML models are often evaluated only once, preventing
to derive more general conclusions; it is concerning that
the term ‘statistical significance’ is mentioned only in 2
papers (i.e., [131], [136]). Moreover, most papers (almost
70%) do not vary the composition of their training dataset,
preventing to estimate the value of the ML method when
a company cannot afford to invest many resources in the
data collection procedures. We acknowledge that some
of these papers propose ‘unsupervised’ ML techniques;
however, even unlabelled data has a cost [79]. In addi-
tion, no paper considers different preprocessing mecha-
nisms (§5.1): we appreciate that most papers thoroughly
describe the preprocessing operations of their solutions;
however, such procedures (including all parameters) are
never changed, preventing to determine their impact on
the ML pipeline. Finally, most papers use a single dataset.
D Neglected Requirements. Only three papers

(i.e., [130], [138]) provide a holistic vision of the hard-
ware and runtime requirements used to develop the corre-
sponding ML models. For instance, the proposal in [139]
requires 2.5 hours to train, but no hardware information
is provided. We find it concerning that even papers that
specifically focus on IoT settings do not provide such
details. For instance, the authors of E-Spion [112] rightly
state that “E-Spion is specifically designed for resource-
constrained IoT devices”: they do measure the CPU uti-
lization, but without reporting which CPU was used. Such
an omission can be acceptable in research, but not when
real deployments are considered.
U Smart Attackers. On a positive note, the major-

ity of papers considers an “open world” setting in which
adversaries try to actively bypass the considered ML-
NIDS. Some papers even evaluate the impact of adaptive
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attacks in addition to measuring the performance in their
absence—which is commendable. We remark that [115],
[116] specifically focus on such a threat, and hence have
slightly diverse assumptions: for instance, not reporting
the hardware or runtime is less of a problem for [115],
[116]. However, the lack of multiple trials ensuring sta-
tistically significant results is still an issue.

5.3. Practitioners’ Opinion
In our survey with practitioners, we also asked for their
opinion on Table 2. Specifically, after asking the ques-
tions related to our factors (§3.3), we inquired whether
the fact that some columns have many “7” was: “not
very problematic” (©), “problematic” (!), or “very prob-
lematic” ( !©). The results are shown in Table 3. Most
practitioners (90%) agree that the lack of statistically
significant comparisons is “very problematic.” Moreover,
59% believe that lack of data diversity is an issue. Perhaps
surprisingly, 75% can overlook the absence of evaluations
against adaptive adversarial attacks. Finally, the lack of
hardware specifications was also deemed to be not a
crucial shortcoming—our evaluation will prove otherwise.

TABLE 3: Practitioners’ opinion on the results displayed in Table 2.

Column © ! !©

Hardware 25% 75% 0%
Runtime 0% 75% 25%

Adversarial 8% 67% 25%
Stat. Sign. 0% 10% 90%

Avail. 16% 42% 42%
Pub. Data 0% 41% 59%

Nonetheless, at the end of our questionnaire we posed
one last question to our interviewees: “In general, do you
think that research papers facilitate the practitioners’ job in
determining the real value of the proposed ML methods?”
The answers were enlightening: 92% are “uncertain”,
whereas 8% are “left with more questions than answers
after reading a research paper”.

Takeaway: Despite abundant work proposing ML meth-
ods for NID, the state-of-the-art the art does not allow
practitioners to determine the real value of existing ML
solutions. We attempt to change the current evalua-
tion protocols with our proposed pragmatic assessment
notion—which can be done, as we will now show.

(Given our findings, we wondered: “did the situation
change in 2022?” We investigate this question in App.C.1)

6. Demonstration of a Pragmatic Assessment

To bridge the gap between research and practice, we now
focus on our last RQ: “Can pragmatic assessments be done
in research?”, and make a constructive step towards the
integration of state-of-the-art ML methods into real NIDS.
Specifically, our goal is threefold: (i) Demonstrate that
our guidelines can be followed in research experiments;
(ii) showcase an exemplary case-study of ML for NID,
malicious NetFlow classification, wherein we pragmati-
cally assess existing ML methods; (iii) provide statistically
validated results for future studies, by publicly disclosing
the complete details and low-level implementation.

Our evaluation is massive, hence the complete details
are reported in the Appendix (and repository [35]). Here,

we summarize our testbed (§6.1), present some original
results (§6.2), and derive practical considerations (§6.3).

6.1. Experimental Setup

Our evaluation revolves around the well-known problem
of malicious NetFlow classification, which can be done
via ML.20 We chose this problem because it allows one to
devise diverse ML pipelines. Indeed, NetFlow is generated
by preprocessing raw PCAP data; moreover, detecting
malicious NetFlows can be seen either as a binary or
multi-class classification problem (because a sample can
belong to diverse malicious classes). Such a problem can
be tackled through diverse ML pipelines, e.g., it is possible
to create an ensemble of ‘specialized’ binary classifiers
(each trained on a subset of the available data—similarly
to [60]); but it is also possible to create a cascade of a
binary and multi-class classifier: the former determines
whether a NetFlow is benign or malicious, and the latter
infers the specific class of a malicious NetFlow, e.g., a
DDoS or a Botnet (a schematic of such ‘cascade’ is shown
in Fig. 10). Moreover, many (labeled) datasets are publicly
available, ensuring scientific reproducibility.

These characteristics enable a broad coverage of use-
cases. In particular, we consider thousands of different
configurations, which vary depending on the following:
• Source Dataset (5): CTU13, NB15, UF-NB15,
CICIDS17, GTCS. Each of these datasets is created
via a different NetFlow tool: Argus, nProbe, Zeek,
FlowMeter. An overview of these datasets is in
Table 4, while more details are in App.D.1.

• Data Availability for training (4): Abundant (80%
of D), Moderate (40%), Scarce (20%), Limited (only
100 samples per class in D). Refer to App.D.3.

• Size of the feature set (2): Complete (i.e., using all
features provided by the NetFlow tool) or Essential
(using only half of such features). Refer to App.D.4.

• ML Pipeline (6): a single binary detector (BD); a
single multi-class detector (MD); a cascade of BD and
MD (BMD); as well as three ensembles which vary
depending on how the output is determined: via a
logical or (ED-o), through majority voting (ED-v), or
via a stacked classifier (ED-s). Refer to App.D.5.

• ML Algorithm (4): Random Forest (RF), Logis-
tic Regression (LR), Histogram Gradient-boosting
(HGB), Decision Tree (DT). Refer to App.D.6.

• Hardware specifications (6): a high-end computing
appliance, a workstation, a common desktop, an old
laptop, a virtual machine with reduced capabilities,
and a Raspberry Pi 4B. Refer to App.D.2.

Each combination can be seen as an unique ML-NIDS,
which is assessed against: known (by testing on the
same attacks seen at training), unknown (by testing on
attacks not seen during training), and adversarial attacks
(based on [141], as they are feasible and hence likely to
occur [72]). A detailed description of all these distinct
operational scenarios’ is provided in App.E. For each ML-
NIDS, we compute the true and false positive rate (tpr
and fpr); accuracy (Acc, but only for multi-classification
tasks); and runtime (for both training and testing).

20. Out of the 30 papers in Table 2, 16 use NetFlow-related data: [46],
[60], [113], [115], [124], [126], [128], [129], [132], [134]–[140].
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TABLE 4: Summary of the datasets of our experimental evaluation.

Dataset
Name

Benign
Samples

Malicious
Samples

Attack
Classes Features NetFlow

Software

CTU13 [142] 16.7M 403K 6 30 Argus [143]
NB15 [144] 2.2M 105K 7 45 Zeek [145]

UF-NB15 [29] 2.3M 78K 7 40 nProbe [146]
CICIDS17 [30] 1.6M 433K 9 76 FlowMeter [33]
GTCS [110] 140K 378K 4 80 FlowMeter [147]

To provide statistically significant results and remove
any bias, we repeat all our experiments (both training and
testing) multiple times, specifically: 1000 times for the
limited data availability (as there is a high chance of bias),
and 100 times for the three other availability settings.
Such repetitions are done by randomly sampling T from
D according to the data availability setting; whereas E is
always chosen by randomly selecting 20% of the available
samples of each class available in a given D. Moreover, we
always follow the “dos” proposed by Arp et al. [8]. (Our
evaluation is fair: for each trial, we train all our models
on the same T, and evaluate them on the same E.)

Finally, we also perform an extra set of experiments in
which T and E are chosen by taking the temporal domain
into account, i.e.: E contains only the ‘last’ 20% samples
of a given dataset, and T contains the ‘first’ samples.

Remark: our evaluation is massive, and is due to our
goal of providing a benchmark for future studies. A
single research paper needs not to perform an evaluation
of the same magnitude as the one in this SoK.

6.2. Main Results (Quantitative Analysis)
Let us discuss the results of detectors using HGB, since
it is a very recent algorithm for NID. Here, we aggregate
the results of all datasets, and we focus on the detection
performance on the high-end platform. Fine-grained re-
sults are in App.F, which reports the multi-classification
performance, and the runtime on different hardware.
6.2.1. Baseline Performance. We report in Fig. 6 the
boxplots showing the tpr and fpr of our detectors for
increasing (left to right) data availability settings. We can
see that detectors using ED-v exhibit the worst tpr but the
best fpr, which is understandable because they require
multiple classifiers to agree on the maliciousness of a
sample. In contrast, the other detectors appear to have
comparable performance. We find it intriguing that MD
detectors appear to be effective even using a very limited
amount of labels (see rightmost plot in Fig. 6).
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Fig. 6: Baseline Performance.

6.2.2. Detection of unknown attacks. We report in Fig. 7
the performance against unknown attacks—which is com-
puted by excluding one malicious class from a given T,
re-training all the involved ML models on such new T, and
testing them on the benign portion of E (for the fpr), and
on the ‘excluded’ malicious class (and then averaging the
resulting tpr). From Fig. 7 (which has the same structure
as Fig. 6) we can see that the tpr decreases, which is
expected because the attacks are unknown. The detectors
based on BD appear to be the most robust. It is intriguing

that the best results are achieved in the Limited data
availability setting. Such phenomenon can be explained by
the fact that training on few samples allows ML models
to generalize better on ‘unseen’ classes.
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Fig. 7: Detection of unknown attacks.

6.2.3. Adversarial Robustness. We measure the robust-
ness of our detectors against the evasion attacks proposed
in [141]. The results are shown in Fig.8, reporting the tpr
both before (green bars) and after (red bars) the applica-
tion of the adversarial perturbations for all the detectors
and for increasing amounts of training data (left to right).
From these results, we can see that our detectors are more
robust when they are trained with less data: indeed, the
red bars in the leftmost graph are always higher than those
in the other graphs (a similar phenomenon as the one
in Fig. 7). In particular, we observe that BD is the most
resilient detector when using limited data, but the weakest
(aside from ED-v) when more data is available for training.
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Fig. 8: Robustness to adversarial attacks.

6.2.4. Runtime. We report the operational runtime (as
measured on the high-end platform) for all our detectors
(ED includes both ED-o and ED-v) in Fig. 9. Each plot
(related to a specific data availability setting) reports the
time (in seconds) for training (blue bars) and testing
(brown bars) the respective detectors. We can see that,
on limited data, training is computationally less expen-
sive than testing. Moreover, we also observe that training
the ensembles is much more resource intensive than the
simple MD and BD (the latter being the ‘cheapest’ to train).
More details are in App.F.3).
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Fig. 9: Runtime (on the high-end platform).

6.3. Practical Considerations
By inspecting all our results (App.F), we conclude that
the “no free lunch” statement [148] is, once again, correct.
For instance, methods based on HGB can have a slightly
superior performance than, e.g., RF (cf. the fpr and tpr
of BD using the complete feature set with limited training
data on GTCS in Table 9a). However, the HGB is worse
in “open world” scenarios (Table 10a)—but it has a lower
runtime (cf. Tables 23 and 28). In this cases, it is up to
practitioners to decide which method to deploy in their
NIDS. Our pragmatic assessment, which reports both the
effectiveness (i.e., tpr, fpr, or Acc) and expenses (i.e., all
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the requirements as well as the operational runtime) en-
ables practitioners to make informed decisions. Let us use
our experiments to draw some practical considerations.

The power of statistical comparisons. By performing
a massive amount of trials, it is possible to carry out
statistical tests that can be used to infer which ML method
truly ‘outperforms’ other competitors.21 For instance, by
looking at the multi-classification tables (App.F.2), we can
see that the Acc of BMD and MD tend to be close (e.g.,
on GTCS using HGB with Limited data, BMD has 0.994
while MD 0.982). With a Welch’s t-test, we find that the
resulting p-value is less than 0.0001 (i.e., below the usual
target α = 0.05), which statistically proves that BMD is
better than MD (accuracy-wise). Despite being powerful,
such verifications are underused in NID literature (§5).

Hardware can determine the winner. Let us recall
our motivational example (§1). By looking at the detection
results in the closed world scenario using the complete
feature set on CICIDS17 (Table 15a), we can see that—
with the exception of LR methods—almost all detectors
(BD, MD, ED-s and ED-o) achieve near-perfect performance
in the abundant data availability setting, with tpr close
to 1, and fpr close to 0; even a statistical test cannot
determine the best method. In these cases, the ‘winner’
can be determined by looking at the runtime in Table 26.
We can see that the fastest method to train is the BD using
HGB, which requires 9s. However, HGB uses all 36 cores
of the high-end platform: in contrast, training the BD using
DT requires 25s but by using only one core. From a CPU
utilization perspective, the HGB is 13 times slower than
DT. Hence, our takeaway is that the ‘best’ ML method
for NID on CICIDS17 uses DT as ML algorithm.22

Small or Big Data? Some intriguing results have been
obtained by ML models trained with limited amount of
labeled data (see the leftmost plots in Figs. 6 to 8). Some
of our ML models exhibited similar tpr as those trained
with a considerably higher budget, but they had a higher
tpr against both unknown and adversarial attacks (but
at the expense of a slightly higher fpr against ‘known’
attacks). This finding is noteworthy, as it may help in
demystifying the necessity of having training datasets that
count millions of samples. To quote a recent statement by
Andrew Ng: “Collecting more data often helps, but if you
try to collect more data for everything, that can be a very
expensive activity” [149]. We hence endorse development
of ML methods that require smaller training datasets.

Concrete use-case. Suppose an organization wants
to deploy an ML method in their NIDS for identifying
malicious NetFlows. The organization can compare their
own network environment with those captured by our
five considered datasets, and see whether there exist any
similarities between our testbed and their real network.
Suppose that the organization finds some similarities with
the networks contained in NB15 and UF-NB15: at this point,
the organization can determine whether the NetFlow tool
used by their NIDS is compatible to those used in NB15

and UF-NB15 (potentially by also considering the Essential
and Complete feature set considered in our experiments).

21. In real scenarios, even a 0.0001% can be significant: a single false
negative can compromise a system, whereas the fpr must be close to 0.

22. We reached out to some of the respondents of our survey (after
they filled the questionnaire), and told them about such a finding: this
made them change their mind on the importance of hardware.

For example, if the organization has already a NetFlow
tool using nProbe, then such an organization can almost
directly transfer our ML methods trained on UF-NB15 onto
their NIDS. Otherwise, the organization needs to manually
deploy nProbe into their NIDS first (which requires some
expenses). In the (likely) chance that the organization finds
no similarities with their own network and those captured
by our chosen datasets, such an organization can choose
to develop the solution that best fits their necessities, e.g.,
by choosing the one that provides the best performance
while requiring the least amount of labels.

7. Discussion and Related Work

We present some intrinsic difficulties of pragmatic assess-
ments, perform some reflective exercises on our findings,
and compare our paper with related literature.

7.1. Challenges of Pragmatic Assessments
A research paper that fulfills each criteria in DEF. 3 would
be appreciated by practitioners. However, while some
conditions are easy to meet, others are more difficult. Let
us discuss some (current and future) challenges, so as to
clarify the function of pragmatic assessments.

Statistical Significance. Obtaining results that are
devoid of bias requires to perform multiple randomized
trials. The experiments carried out in this paper required
weeks of computations—some of which are performed
on expensive hardware. Furthermore, some ML methods
are rooted on the existence of temporal patterns among
data (e.g., [53]): in these cases, performing many trials
for statistically significant comparisons requires to either
split the original D into different subsets or use completely
different D. Therefore, we acknowledge that pragmatic
assessments are not simple—which explains the situation
portrayed in Table 2. They are, however, doable: for
instance, Liang et al. [139] performed more than 50 trials
for some of their experiments. Nonetheless, in some cases
(i.e., if the results are ‘notably’ different) only few trials
are sufficient: the crux is reporting how many trials have
been performed. Finally, we encourage future works to
rely on statistical tests when claiming that a given ML
method “outperforms the state-of-the-art.”

Shortage of Public Data. A well-known problem
in NID is the lack of datasets usable for research pur-
poses [75]. Such a lack makes it impossible for scien-
tific papers to exactly replicate the (real) network en-
vironment in which the proposed ML method can be
deployed. Therefore, a pragmatic assessment is meant to
“allow practitioners23 to estimate the real value of an
ML method for NID,” and not to “ensure that every
ML method for NID is deployed in practice.” Indeed,
the latter requires researches to evaluate their ML-NIDS
in every possible network environment, which is clearly
unfeasible. Nonetheless, future endeavours should attempt
to evaluate their ML methods on diverse datasets—which
is important to practitioners (§5.3). We outline the opinion
of practitioners on NID datasets in App.C.2.

Concept Drift and Explainability. A pragmatic as-
sessment should not aim at investigating the robustness

23. We stress that such an “estimate” is outside the scope of a research
paper, since it can only be done by the developers of real products.
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of an ML method to the concept drift problem.24 Indeed,
robustness to concept drift can be realistically assessed
only after the deployment of an ML model; in contrast,
the goal of a pragmatic assessment is to guide decision
making before such deployment. Nevertheless, we ac-
knowledge that some ML methods can better deal with
concept drift [150], such as lifelong learning (e.g., [117]),
or those methods that present a high explainability [34],
[151]. In particular, we mention that the participants of
our survey commented that providers of security solu-
tions should favor methods that are “explainable to their
clients”. Unfortunately, it is well-known that the decisions
of ML models are difficult to interpret [152]. Hence, we
cannot put the “explainability” into our proposed factors,
as it would be unfeasible to fulfill by research.

7.2. Reflections and Recommendations
Feasibility and Sweet Spots. We provide some rec-

ommendations that can maximize the pragmatic value of
research without requiring extensive effort. We focus on
those aspects that apply to “any” paper on ML-NIDS.
• Experimental details. Providing all details (§4.1) of

the testbed (including hardware) is straightforward.
The only issue are page limitations: in these cases,
researchers can provide a link to supplementary files
(but we also endorse editors and organizers to accept
longer papers during the peer-review).

• Performance. As recommended by Arp et al. [8], at
least two ‘classification’ performance metrics should
be computed (we used tpr and fpr), which is trivial
to accomplish. Moreover, measuring the runtime (for
both training and testing) is also straightfoward and
requires just few lines of code (plus, it helps in de-
vising a sound and efficient experimental workflow).

• Testbed variety. Typically, a research paper on ML-
NIDS requires to evaluate (i) the proposed method,
and (ii) a suitable baseline for comparison—both of
which should be assessed in the same settings.25

However, we endorse papers that assume ML-NIDS
requiring large T to also assess cases entailing a ‘very
small’ T (some real product require months of data
collection before they can be deployed [75]). Doing
this is feasible since the training time is shorter, and
the ‘smaller’ T can be generated as a subset of the
‘larger’ T (but in both cases, E should be the same).26

• Repetitions (supervised ML). As can be seen from
our evaluation, when using ‘large’ T the performance
does not change substantially (see the distribution
of fpr and tpr in §6.2 for the Scarce, Moderate
and Abundant data); hence, for these cases, we rec-
ommend at least 3x3 repetitions (i.e., changing E
and T three times each). However, when considering
small T (see the results for the limited data in §6.2)

24. This requires the researcher to know—in advance—whether a
given dataset contains instances of such drift, which may not be the
case. Simultaneously, concept drift is unpredictable and it is not known a
priori whether it will occur or not. Hence, results derived from ‘synthetic’
testbeds are questionable due to such unpredictability (U in Eq. 1).

25. Hence, we reiterate that it is not necessary to consider hundreds
of combinations (as we did in our demonstration).

26. Even if the performance with the ‘small’ T is subpar, it would not
subtract to the paper’s contribution (as long as it is sensible to assume
that the proposed ML-NIDS requires large T).

the performance can greatly vary; hence, for these
cases, we recommend at least 10x10 repetitions. We
stress that the training time for the Limited data was
significantly inferior than for all the other cases (refer
to Fig. 9), hence such a higher amount of repetitions
should be feasible to perform.27

Simply put, meeting the requirements for our pragmatic
assessment is well within the reach of most researchers.

The role of our factors. We discuss the relevance of
our factors (Eq. 1) by using our experiments (§6):
• P can be observed by comparing the results on NB15

and UF-NB15 (e.g., Table 12a and Table 14a), because
these datasets contain the exact same raw data, but
the NetFlow tool (i.e., the preprocessing) is different.
E.g., the MD using HGB with scarce data is robust
against our adversarial attacks on NB15 (0.96 tpr), but
the same method on UF-NB15 is very weak (0.47 tpr).

• D can be observed from any table (e.g., Table 9) as
the performance clearly changes as T increases.

• S can be observed by comparing the multi-
classification results of any table (e.g., Table 18),
as the performance of MD and BMD differs due
to different pipelines (cf. our remark on statistical
significance); but also by comparing the results of
different algorithms in any table.

• H is shown by Table 32, as the runtime changes up
to 400% under diverse hardware settings.

• U is highlighted by the great variance of results
achieved across our entire evaluation, which confirms
the role played by randomness.

The unpredictability U is also implicit: we cannot foresee
what is going to happen after any ML model is deployed.

User-study: Limitations. Our questionnaire (see
App.B) resembles that of structured interviews (used also,
e.g., by [66]), thereby allowing to derive quantitative
results, while protecting our participants against possible
NDA violations [153]. Such a design choice was chosen
because our goal is to validate the importance of our
proposed factors (§3.3), and to get the opinion of practi-
tioners on the current state-of-research (§5). Although our
closed-questions could introduce some form of bias, we
remark that (i) each question had a ‘negative’ answer; and
(ii) in some cases, the viewpoint of our population went
against our theses. We acknowledge that our questionnaire
could have been formulated in an ‘open question’ format;
however, such a design choice could also be affected by
bias, since we ultimately had to interpret the (unstruc-
tured) answers we received and map them to our proposed
factors. We therefore acknowledge that some practitioners
may have some priorities that are complementary to our
factors. To account for such a limitation, we invited our
respondents to give us some feedback after they filled their
questionnaire, thereby allowing us to derive additional
insight (discussed in App.B.3).

7.3. Related Work

Let us compare our paper with prior literature. We stress
that our focus is on ML for NID, and we do not claim

27. We believe our proposed “repetition sweet-spots” to be feasible to
integrate in any ML-NIDS paper; however, a paper can provide a valid
scientific contribution even without following our recommendations.
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generality over different domains. Nonetheless, we discuss
how our pragmatic assessment can be extended to other
security applications of ML in App.C.4.

Technical papers. Taken individually, most papers on
ML-NIDS have different goals than ours. The authors
of [154] aim to ‘outperform the state-of-the-art’; those
of [34] focus on concept drift, which is unpredictable
hence impossible to detect before the deployment of a ML
solution (as explained in §3.2). Pendlebury et al. [117]
aim to eliminate experimental bias, but ultimately con-
sider a different security problem (i.e., malware analysis).
An intriguing research area focuses on privacy of ML
(e.g., [155]), which is complementary to our goal. Finally,
a significant number of papers perform evaluations on
outdated datasets (e.g., the NSL-KDD [156]), which makes
the corresponding results of questionable value for modern
and realistic deployments. Others present uncertainties due
to overlooking some factors that real developers must take
into account (cf. §5). In contrast, our testbed involves
recent datasets (including their ‘fixed’ version [33]), in-
creasing the realistic fidelity of our experiments. Due to
(i) the broad combination of use-cases, (ii) the hundreds
of trials to remove bias, and (iii) the consideration of
many likely deployment scenarios, our evaluation enables
a fair and statistically validated benchmark of existing ML
methods for NID—benefiting both research and practice.

Reviews and Surveys. Some reviews tackle the entire
cybersecurity domain (e.g., [157]) and do not delve into
the specificity of ML; or focus on trustworthy ML devel-
opment, but not from the perspective of NID (e.g., [158]).
Some papers focus on ‘deployment’ challenges of ML,
such as: [159] and [90], which are both very generic and
do not focus on networked systems; [73], which does
not have any form of practitioner validation, nor sys-
tematically explains how research can fulfill their needs;
and [74], which is on network applications, but not spe-
cific of cybersecurity and thus do not consider the pres-
ence of malicious entities—which are intrinsic of NID. A
recent paper [11] interviewed 21 SOC analysts but neither
proposes nor empirically evaluates any solution that can
meet practitioners’ needs from the researcher perspective;
and do not focus on ML (only 10% of their population
uses ML!). We also mention [160] and [161], which pro-
pose ‘certification’ of ML models—which is not relevant
for NID research, whose focus is on the ML method (due
to the impossibility of reliably transferring ML models
across network environments [28]). More related works
provide a broad overview (e.g. [75]) or highlight the issues
(e.g., [56]) of ML for generic cybersecurity tasks; others
may focus on a single aspect of ML for NID, such as
the architecture of an ML-NIDS (e.g., [162]), the role of
features (e.g., [82]), the impact of unlabelled data [79], or
the weakness to adaptive “adversarial” attacks (e.g., [72]).
Our paper extends all such works by providing original
takeaways—some of which are overlooked, or even con-
trast those by past work. We provide in App.C.3 an in-
depth comparison of this SoK with the (closest) related
work by Arp et al. [8] (presented at USENIX Security’22).

Summary. To the best of our knowledge, no paper:
(i) elucidates the factors contributing to the real value of
ML for NID, and (ii) explains how research can account
for such factors; and then (iii) demonstrates how to do this
in practice through a statistically-validated re-assessment

of hundreds of diverse ML-NIDS; and (iv) performs a user
study with practitioners to validate its major claims.

8. Conclusion

The integration of ML methods proposed in research into
operational NIDS is progressing at a slow pace, due to
the (justified) skepticism of developers towards the results
reported in scientific literature. Our SoK paper aims to
rectify this problem by changing the existing evaluation
methodology adopted in this research domain. We do
this by proposing the notion of pragmatic assessments,
whose objective is allowing practitioners to estimate the
operational effectiveness and required expenses related
to the entire lifecycle of a ML method for NID. After
presenting irrefutable evidence that prior research does
not allow to estimate the real value of ML for NID,
we perform the first pragmatic assessment. Our massive
evaluation represents a benchmark for future research, but
is also useful for practitioners who can ascertain the real
value of existing ML methods.

One may ask: “Must any future research paper
perform a pragmatic assessment to be considered a
significant contribution?” Our answer is a clear “no”: a
paper that does not meet all requirements of a pragmatic
assessment can still be useful for research. Indeed, we ac-
knowledge that pragmatic assessments are tough to carry
out. However, as we showed, they can be done. Hence,
we endorse future work to improve their evaluations by
embracing our guidelines and using our resources.

ETHICAL STATEMENT. Our institutions do not
require a formal IRB approval for carrying out the re-
search presented in this paper. During our efforts, we al-
ways adhered to the Menlo report [163]. Our experiments
do not raise any ethical concern (they are a re-assessment
of prior work). Our survey with practitioners was done
so as to preserve the anonymity of our respondents—
which is why we cannot disclose any further information
about our population. All our participants were informed
that their responses would have been used for research.
Furthermore, all our participants know the identity and the
contact details of the authors of this paper, which they can
use to explicitly request their responses to be deleted.
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Appendix A.
Additional Background and Use-cases

We provide some supplementary descriptions and exam-
ples to facilitate the understanding of our paper.

A.1. NetFlow-based analyses (and tools)
Problem. Analyzing the all raw-data generated by

modern networks is problematic [52], due to the sheer
size of full packet captures (PCAP). Indeed, performing
deep packet inspection (DPI) is computationally demand-
ing (in terms of processing and storaging), besides also
raising [164] privacy concerns28.

Solution. To make automated analyses of network
data more feasible, a convenient alternative is to analyze
high-level summaries of the communications between two
endpoints, commonly referred to as NetFlows. A NetFlow
can be roughly expressed as the following tuple:

NetFlow= (srcIP, dstIP, srcPort, dstPort, proto, startTime endTime, ...), (2)

where the last three dots can include any element that
relates to the other fields (e.g., the amount of bytes trans-
ferred in the ‘flow’). Compared to traditional PCAP, Net-
Flows present several advantages. For instance, the PCAP
version of the CICIDS17 dataset is of 50GB, whereas
its NetFlow version requires just 1GB [33]. Such low
requirements makes NetFlow viable for real time analyses,

28. Encryption may solve the issue, but makes DPI challenging [165].
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and the implicit lack of privacy issues is appreciated in
commercial products as well as for research—including
(e.g., [29], [31], [32]), but not limited to (e.g., [52], [166],
[167]), ML-specific proposals.

Variants. Initially introduced by CISCO in
1996 [168], the concept of NetFlow has evolved
substantially over the years. For instance, besides being
available by default on most CISCO routers, it is possible
to generate NetFlows via open-source software tools, such
as Argus [143], nProbe [146], or CIC-FlowMeter [147]
(including its fixed version by Engelen et al. [33]).
We even mention that Zeek [145] (formerly BroIDS),
among the leading tools for network monitoring29,
has implemented its own variant of NetFlows, named
“connection logs” [171]. In our evaluation, we will
consider all these variants.

Disclaimer: NetFlow represent a cost-effective solution to
perform data-driven analyses for NID. However, despite be-
ing used in both research and practice, NetFlows are not a
panacea [98], [167], and we invite future work to explore also
other data-types (or create new ones!).

A.2. Supervised vs Unsupervised ML
It is common to distinguish between supervised and un-
supervised ML algorithms [15]. Supervised algorithms
require the training data to be provided with labels that
denote the ground truth of each sample, and are hence
suited to ‘specific’ tasks (e.g., distinguishing benign from
malicious samples). In contrast, unsupervised algorithms
do not have such requirement, making them applicable
only to more ‘generic’ tasks (e.g., grouping similar data):
indeed, without ground truth labels it is not possible to
‘supervise’ what the ML model is actually learning [54].

At a high-level, both supervised and unsupervised ML
algorithms are applicable to either misuse or anomaly
detection approaches. For instance, labelled data can serve
as a guide to produce the signatures (for misuse detection,
e.g., [32]) or to establish the notion of normality (for
anomaly detection, e.g., [172]); at the same time, the sig-
natures can be determined by extracting some rules after
clustering (e.g. [173]), while the normality can be deter-
mined from the clusters with most data points (e.g., [174]).

A.3. An use-case of (supervised) ML in NID
Consider a NIDS that includes a ML model analyzing
NetFlows. Such ML-NIDS will receive the raw network
traffic from the gateway (Fig. 1). Such data is in PCAP
format, and not usable by the ML model: hence, the
PCAP is preprocessed into NetFlows (e.g., by using Ar-
gus [143]), and the resulting NetFlows are sent as input
to the ML model. The output of such ML model can
be further utilized, e.g., by an additional ML model. For
instance, it is possible to create a cascade of a binary
and multiclass classifier (depicted in Fig. 10): the first
ML model determines whether a NetFlow is benign or
malicious, and the second ML model analyzes only the
malicious outputs—according to the M ‘known’ classes.

The initial PCAP can also be analyzed via traditional
signature-based approaches (but in separate pipelines).

29. Zeek also provides additional logging tools (e.g., [98]), and is
frequently mentioned in research papers (e.g., [61], [128], [169], [170]).

Binary 
Classifier

Benign

Malicious (M) class 
Classifier

Attack1

...
AttackM

Binary+Multiclass Detector (BMD)

sample

Fig. 10: An ML pipeline representing a detector by cascading a 2- and M-
class classifier. The Binary classifier first analyzes a sample, predicting
whether such sample is benign or malicious. If the sample is malicious,
then it is forwarded to a M-class classifier that determines the specific
malicious class (out of M possible classes).

A.4. A ‘practically redundant’ ML-NIDS
We present a case-study of a ‘redundant’ ML-NIDS
adopted in a recent paper in a high-quality journal, [175].
Our objective is showcasing the immaturity of related
research from the perspective of operational deployment.30

In [175], an ML-NIDS is first developed, and then
assessed in adversarial scenarios. The evaluation is based
on the CTU13 dataset, which contains malicious samples
belonging to 5 different botnet families. The adversarial
attacks are carried out by applying small perturbations
to the malicious samples of each family: the ML-NIDS is
then tested on such adversarial samples. From a ‘research’
perspective, such methodology is correct, because the
goal in [175] was the assessment of adversarial attacks.
However, from a ‘practical’ perspective, the ML-NIDS
considered in [175] is redundant due to a questionable
architectural design (schematically depicted in Fig. 11).
Indeed, such ML-NIDS consists in an ensemble of ML
models, with the logic that each model is dedicated to
a specific family; however, each model of the ensem-
ble is tested only on the samples of its specific family.
Hence, the ML models of [175] can only be viable if
the NIDS knows—in advance!—which ‘attacks’ should
be forwarded to the ML model(s), therefore defeating the
entire purpose of using ML to detect an attack.

Binary 
Classifier

Benign ?
Attack1 ?

Benign
Attack1

[...]

Binary 
Classifier

Benign ?
AttackM ?

Benign
AttackM

Fig. 11: Exemplary design of a ‘redundant’ ensemble of ML models
for NID (used in [175]). Each classifier is trained on a specific attack
(out of M); however, each classifier receives only samples that are either
benign, or belong to the specific attack that the classifier can recognize.

Furthermore, the ML-NIDS analyzes samples that are
either benign, or correspond to one among 5 botnet fam-
ilies, i.e., a “closed world” setting. For instance, how
would the ML models in [175] behave on samples that are
generated via different malicious activities (e.g., a brute-
force attack)? Finally, all the experiments in [175] are
performed by attacking only a single ML model (based
on RF). Hence, the effectiveness of the resulting attacks is
questionable: what if the attacked ML model was slightly

30. To avoid ‘pointing-the-finger’, we observe that some of the authors
of [175] are shared with those of this SoK; nonetheless, we note that the
methodology adopted in [175] derives from others peer-reviewed papers.
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different from the one considered in the evaluation? We
acknowledge that some adversarial attacks can be “trans-
ferred” [176], but such operations do not guarantee the
same degree of effectiveness. By performing many trials,
all such uncertainties could be removed.

In the pragmatic assessment carried out in this SoK,
we do not make any of such ‘redundancies’, and hence
our results have a higher practical value.

Appendix B.
Survey with Practitioners

A crucial contribution of our paper is the survey we
carried out with real practitioners. Our aim was to sub-
stantiate two of our major claims: (i) whether our factors
were truly relevant for practitioners; and (ii) whether prac-
titioners truly see research proposals of ML for NID with
skepticism—and, if yes, what are some possible reasons.

Let us explain how we performed our survey, which
is rooted in fairness and transparency to minimize bias.

B.1. Selection of Participants

Eligibility Criteria. Our goal was collecting the opin-
ion of ‘practitioners’ in the context of Machine Learning-
based Network Intrusion Detection. For our survey, such
“practitioners” entail people that have (had) first-hand
experience with such technologies in the industrial sec-
tor. In-line with what we described in §3.1, we hence
focused on people who either work, or have worked for,
companies that either: (a) provide cybersecurity to third-
parties, e.g., by monitoring the networks of their clients
via ML-NIDS; or (b) manage their own cybersecurity, e.g.,
they have a section entirely devoted to developing ML-
NIDS that protect the network of the entire organization.
Furthermore, since we were also interested in collecting
meaningful opinions on the current state-of-research, our
participants had to have some connection with the research
domain (most co-authored peer-reviewed publications).

Population. Overall, we reached out and found agree-
ments with a total of 12 ‘practitioners’. To prevent bias,
the companies for which our practitioners work (or have
worked) are all different. To provide comprehensive and
diverse opinions, we did not set ourselves any boundary
to either the location of the company (some are from the
USA, some are based in the EU), or in its size (some
have dozens of employees, some are world-leaders in cy-
bersecurity). Although our population may appear small,
we stress that the corresponding companies have clients
distributed everywhere in the World. To ensure fairness,
all our interviewees were unaware of the specific research
we were carrying out; and none of the authors of this
SoK had ever asked the opinion of the respondents of our
survey beforehand.31 Finally, also for fairness, we reached
out to our population by sending a generic email, stating
that “we want to collect the opinion of practitioners on
ML-NIDS about the current state of research and practical
deployment of such technologies.”

31. In other words, we did not ‘cherry pick’ people that we knew
would confirm our claims (some responses go against some claims!)

B.2. Survey Design

We carry out our survey through an online questionnaire
having 13 questions with fixed answers.32

B.2.1. Organization. The 13 questions were distributed
into four ‘pages’ (P), each with a specific purpose:
P1) Introducing the questionnaire to the participant, and

determining their suitability for our questions.
P2) Collecting the opinion on our proposed factors.
P3) Collecting the opinion on the situation of Table 2.
P4) Collecting the opinion on the state of research.
Aside from P1, all the questions in the other pages had
three possible answers, which can be summarized as:
“yes”; “yes, but”; and “no”.

To prevent ‘snooping bias’ [8], the questionnaire was
designed so that participants could not see the questions
of a given page until they answered the previous ones.
We gave the possibility of participants of not answering
questions, because some participants may not have had
the expertise to answer all of them. Once they submitted
their answers, their response was recorded and no changes
could be made. There was no time limit for any question.

We distributed the questionnaire to our participants
(after reaching an agreement) via email, which included
the link to our questionnaire. We asked each participant to
provide us some form of confirmation that they submitted
their answers—this was necessary to avoid cases in which
a participant filled the questionnaire more than once.

B.2.2. Questions. Only one question was asked in P1 and
P4: in P1, we asked whether the company of the participant
had a connection with ML and NID; such a question
acted as a form of verification (a ‘negative’ answer would
terminate the survey); in P4, we asked the simple question
reported (verbatim) at the end of §5.3.

In contrast, P2 and P3 had 5 and 6 questions, re-
spectively. In P2, we: considered each of our proposed
five factors (§3.3); provided a brief explanation of such
factor; and then asked “how important” such factor was
for the respondent. In P3, we first displayed an anonimysed
(author names were hidden) version of Table 2, and briefly
explained what each column represented. Then, for each
of the six columns in table, we asked “how problematic”
it was that such a column had a certain amount of 7.

B.3. Analysis and Feedback

After filling the questionnaire, some of our respondents
gave us some feedback, which we now summarize.
• “It depends!” Many respondents commented that

they felt the urge to answer all questions with “it
depends”. We were expecting this, which is why we
did not include such a possibility in our questions:
all participants would have chosen that option.

• “I did not expect that!” Some respondents stated
that hardware is often not a concern in operational
environments, because computational resources are
abundant. We responded to them by showing some of
our results, and they changed their mind: apparently,

32. We created a copy of our questionnaire for reviewing purposes,
accessible at this link: https://forms.gle/TxfwmAqG7zi5WCsZ9
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they did not expect that some ML methods may ex-
hibit similar detection performance, while requiring
substantially different time to train or test.

• “It must be explainable!” Some respondents com-
mented that their clients always ask for “reasons why
something (bad) happened,” thereby inducing secu-
rity providers to favor ‘explainable’ ML methods.
We were aware of the importance of this ‘factor’
(as also evidenced in [11]) but we could not include
it in our list because it would be unfeasible for any
research to provide an exhaustive answer for practical
purposes—at least today [152] (even [11] argues that
explanations are client-specific!).

Let us provide some additional information.
• Timeline. The first response was registered at the end

of Jun. 2022, and the last at the start of Oct. 2022.
• Missing answers. One of our respondents did not

answer any of the questions in P2, whereas two
respondents skipped the “Stat. Sign.” question in P3.

• Length. Filling the questionnaire required ∼20 mins.
Our repository [35] also includes some code-snippets pro-
viding a breakdown of the answers received.

Appendix C.
Complementary Analyses

We provide in this Appendix some additional considera-
tions that further enrich the contributions of this SoK.

C.1. State of Research (in 2022)

In §5 we presented the state-of-research from 2017 until
2021. This was because we carried out our survey with
practitioners in Summer’22 (i.e., 2022 was still ongoing).
However, at the time of writing, all venues considered
in our analysis have been held also in 2022: we find
instructive to analyze also this year to see if there are
any ‘improvements’ w.r.t. the situation portrayed in §5.

Methodology. We perform the exact same analysis
described in §5, but by considering the proceedings of
2022. We repeated our analysis twice, between Feb. and
March 2023. We identified 16 papers, reported in Table 5.
Altogether, these papers have various goals related to ML-
NIDS (e.g., evaluating novel attacks [177], or proposing
explainability methods for ML [178]). Similarly to §5, all
these papers consider a single preprocessing mechanism
(the only exceptions are: [79], [179], which consider data
generate via different NetFlow tools); and consider open-
world settings (aside from [79], wherein the evaluation
represents a closed-world setting).

Improvements. By looking at Table 5, we observe
an improvement w.r.t. Table 2 Notably, we appreciate
the utilization of more public datasets (which we believe
stems from the increased release of open NID datasets33)
and the consideration of diverse data availability scenario.
The hardware also appears to be reported more often w.r.t.
Table 2. However, we believe that the most significant
improvement (which is not captured in these tables) is an
increased release of source-code. Indeed, out of the 30
papers in Table 2, only 10 publicly disclosed their source

33. Papers using NetFlows: [8], [79], [170], [178]–[182], [186], [187].

TABLE 5: State-of-the-Art (2022): papers published in top cybersecurity
conferences that consider applications of ML linked with NID.

Paper Year Hardware Runtime Adaptive Stat. Sign. Avail. Pub. Data

Apruzzese [79] 2022 3 T 7 3 3 3 (3)
Arp [8] 2022 7 7 7 7 3 (1)

D’hooge [179] 2022 7 7 7 7 3 3 (8)
Dodia [170] 2022 7 7 7 3 7 3 (1)
Erba [177] 2022 7 7 3 7 7 3 (1)
Feng [180] 2022 3 3 7 3 3 (1)
Fu [181] 2022 3 E 7 7 3 (2)

Jacobs [178] 2022 7 7 7 7 7 3 (6)
King [182] 2022 3 3 7 7 3 3 (3)

Landen [183] 2022 7 T 3 7 3 7 (1)
Sharma [184] 2022 7 7 7 7 (1)
Tekiner [185] 2022 3 E 3 3 3 3 (3)
Van Ede [61] 2022 3 3 3 7 3 3 (1)
Wang [186] 2022 3 3 3 7 3 3 (1)
Wang [187] 2022 7 7 7 7 7 3 (3)

Wolsing [169] 2022 7 7 7 7 7 3 (3)

code (i.e., [60], [113], [116], [124], [130], [136]–[140]),
which is a mere 33%. Such a low percentage dramatically
increased to 75% in 2022: 12 out of 16 papers in Table 5
published their code (i.e., [61], [79], [170], [177]–[180],
[182], [184]–[187]). Such a positive trend is encourag-
ing for both research and practice, since it facilitates
reproducibility and can also allow practitioners to directly
assess research proposals in production environments.

C.2. NID datasets: practitioners’ opinion

The real-world utility of public NID datasets has been
scrutinized by many works—the most relevant being the
paper by Kenyon et al. [188]. In what follows, we extend
the main takeaways of [188] by providing some original
observations based on our interactions with practitioners.

Context. The performance of any ML method depends
on its training data (§2.3). Due to the increasing popularity
of ML, the research community on ML-NIDS can now
benefit from dozens of publicly available datasets. We
refer the reader to some surveys of recent datasets for
diverse domains related to ML-NIDS: [29], [58], [179],
[189], [190]. Despite the usefulness of such datasets in
research, from the operational perspective the sheer con-
cept of a dataset has intrinsic limitations. Let us explain.

Problem. We (informally) asked practitioners about
the practical relevance of publicly available datasets for
ML-NIDS. The general consensus is that all datasets they
are aware of are inappropriate to derive sound conclusions
on the applicability of a given ML method. The reasons
are diverse, but can be summarized as:
• Unrealistic assumptions. Many datasets have samples

generated via ‘simulations’ (e.g., NB15 [144]), and
the labelling may be done either too rigorously or
too loosely (e.g., [33]). For instance, assuming that
the ground truth is known for each sample is overly
optimistic (practitioners use coarse labelling strate-
gies [61], [191], [192]).

• Fixed point in time and space. In order to serve as
a “benchmark” for research purposes, a ML-NIDS
dataset must be immutable. As a result, even if the
data comes from real networks and corresponds to
true attacks (e.g., CTU13 [142]), its practical value
quickly deteriorates as the state-of-the-art advances
(e.g., new network services may replace previous
standards, and the threat landscape evolves). For
instance, showing that a ML-NIDS can detect botnet
samples that were ‘problematic’ 10 years before is
not very relevant today (from a practical perspective).
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Practitioners also remarked that these problems do not
undermine the scientific contribution of research papers.

Mitigation. We asked practitioners if they had any
recommendations to mitigate the problems affecting pub-
lic datasets for ML-NIDS. Accordingly, existing datasets
could be enhanced by generating ‘new’ datasets that
capture recent trends—e.g., by using CALDERA [81].
For instance, the IDS17 [30] was updated with a more
comprehensive version.34 Doing this, however, may be
tough for researchers: creating a new dataset makes the
result of prior works not comparable, thereby requiring the
researchers to assess previous methods on the new dataset
(which is necessary for a meaningful comparison [8]). Un-
fortunately, performing such re-assessments is not simple
due to the lack of source code,35 preventing a simple (and
bias-free) implementation of prior baselines [107], [169].
For this reason, practitioners endorse researchers to be
as open as possible with their implementation: alongside
being helpful for future research, a ‘plug-and-play’ artifact
enables practitioners to assess the proposed ML-NIDS
on their own environments—provided, of course, that
the corresponding paper allows practitioners to estimate
whether it would work in the first place.

C.3. Comparison with a closely related work
We compare our SoK with the work by Arp et al. [8].

Different goals. Arp et al. [8] aim to provide rec-
ommendations that improve the soundness of ML assess-
ments for future research; in contrast, our recommenda-
tions aim to reduce the practitioners’ skepticism on the
practical value of research papers. For this reason, some
of our recommendations focus on aspects that are orthogo-
nal to research, and contrast those of [8]. For instance, [8]
claim that “an evaluation of adversarial aspects is [...] a
mandatory component in security research”, and suggest
“focusing on white-box attacks where possible”; in con-
trast, we argue that attackers with full-knowledge of the
ML-NIDS is an extreme assumption in real environments
(as also mentioned in [107]), and our experiments focus
on adaptive attackers with partial knowledge (which are
more likely in reality).

Different focus. Arp et al. [8] focus on generic ap-
plications of ML for security, and some recommendations
have poor relevance in the specific NID context (which
is our focus). For example, [8] emphasize the problem of
“temporal snooping”, which may be relevant when, e.g.,
analyzing malware samples, but not-so-much in when the
analyses focuses on network activities over short times-
pans (as we explained in §4.2.2; even our results show
that there is barely any difference, performance-wise).

Overlapping and Actionable recs. While some rec-
ommendations by [8] can be applied for our cases (e.g.,
the base-rate fallacy §4.3), some of our recommendations
are not elaborated in [8]. For instance, although [8] rec-
ommend to “move away from a laboratory setting [e.g.,
for runtime] and approximate a real-world setting [e.g.,
for open-world]”, there is no mentioning of how this could
be done in NID: in contrast, we propose, e.g., ‘leaving-
out’ some malicious samples (§4.2.1), and we perform

34. Unfortunately, even this version was found to be flawed [193].
35. Among the 46 papers we analysed in this SoK, only 22 released

their source-code at the time of acceptance (i.e., 48%, see App.C.1).

an original experiment to showcase the importance of
hardware on runtime (§4.4).

Literature Analysis and Validation. The main theses
of [8] rely on an analysis of 30 papers over 10 years
(from 2011 to 2021): in contrast, our SoK considers a
higher number (46 in total) of more recent works (from
2017 until 2022). Finally, the contributions by [8] are
exclusively based on prior literature and “laboratory find-
ings”, whereas our SoK has an additional validation phase
supported by a user study with real practitioners.

C.4. Pragmatic Assessments for other IDS

The focus of this SoK is on Machine Learning applications
for Network Intrusion Detection Systems. Let us explain
how our pragmatic assessment can be applied to other
types of Intrusion Detection Systems (IDS) [48].

Context. What sets a (ML-based) NIDS apart from
other IDS is the presence of a ‘network’ element in its
analysis (refer to §2). By removing such an element, the
“Uniqueness of networks” deployment challenge (§3.2)
disappears. From a practical perspective, this leads to a
narrowing-down of the problem: if the IDS does not have
to account for the underlying network complexity, then
it is easier to define the boundaries of what represents
an ‘intrusion’ or not. For example, detecting malware
at the host level can be done a-priori, since “malware
is malicious everywhere, everytime” (§1). Consequently,
we argue that the results of similar researches are more
directly applicable to reality. As a matter of fact, many
commercial security products integrate state-of-the-art ML
methods: e.g., deep learning is used by Sophos to detect
malware [194]; and also by other companies to detect
phishing webpages [107]. Therefore, we believe that there
is a reduced necessity for pragmatic assessments in IDS
that do not envision the underlying network complexity.

Extension. Research papers on other IDS can, how-
ever, still embrace our proposed pragmatic assessment
notion: all our recommendations can be broadly applied
to ML-IDS. Nonetheless, in these cases, we argue that the
role of hardware is even more important. Indeed, while
an organization (may) have the possibility of deploying
the ML elements of a NIDS on diverse machines, in
the case of host-IDS there is less room for doing this,
since the analysis must be performed on the specific
host36. For example, consider our original experiment in
§4.4: the inference time can be substantially different
(3x in our case) even for CPUs mounting “an intel i5”.
Hence, papers on host-IDS (including, e.g., commodity
antiviruses) should put high emphasis on the size of T and
E, and on the runtime for both training and testing—while
clearly specifying the hardware specifications. We also
endorse future researchers to consider different hardware
configurations: this can be done, e.g., by downclocking
the CPU, or running the experiments on a virtual machine
and regulating the allocated computational resources (as
we did in our experiments).

36. Of course, an organization can choose to deploy the ML element
of a host-IDS on a powerful remote machine, but doing this for all
machines of an organization may be impractical. Alternatively, if an
organization used a centralized server that simultaneously analyzes all
the low-level operations of the hosts, then this would resemble a NIDS.
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Appendix D.
Experiments: Configuration Settings

We now provide an exhaustive description of our mas-
sive experimental campaign. Our experiments focus on
supervised ML models for NID that analyze NetFlows. As
explained in §6.1, such settings allow to witness the effects
of all the ‘factors’ described in our paper—while guaran-
teeing reproducibility. Indeed, using NetFlows showcases
the role of data preprocessing, supervised settings high-
light the importance of labelling, the generic ‘intrusion
detection’ epitomizes the distinction between open and
closed worlds, and several public datasets are available.

We begin by presenting the considered datasets. Then,
we thoroughly explain all the diverse configuration set-
tings to meet all the conditions of a pragmatic assessment.

Remark: Due to page restrictions, all content beyond
App.D.2 is omitted. Such content includes: the addi-
tional low-level details (from App.D.3 to App.D.6);
the description of the considered operational scenarios
(App.E); and the tables containing the complete bench-
mark results (App.F). However, we provide all these
appendices in a dedicated document,a which is meant
to complement our SoK paper (these materials were pro-
vided during the peer-review process of EuroS&P’23).

a. Available in our repository: https://github.com/hihey54/
pragmaticAssessment/blob/main/supplementary.pdf

D.1. Public Datasets

To provide meaningful results, for our evaluation we
consider five datasets that include recent traffic and attack
patterns, and which span across large and small network
segments. We focus on datasets that are publicly available
and validated by the state-of-the-art. In particular, we
consider the following five datasets: CTU13, NB15, UF-NB15,
CICIDS17, GTCS. Let us explain our choice.
• CTU13 [142] is one of the largest publicly available

datasets for NID. The data in CTU13 is generated
in a large network environment (∼ 300 hosts), and
contains attacks generated by diverse botnet families.

• NB15 [144] is well-known [129], [135] and contains
many attacks, from DoS [195] to shellcode injections.

• UF-NB15 [29] is generated from the exact same traffic
of NB15, but the NetFlows derive from a different tool
(i.e., UF-NB15 has different P than NB15).

• CICIDS17 [30] is among the most popular datasets
(e.g., [32], [128]) for NID. Its original version was
found to present labelling flaws [33], so we perform
our experiments on the fixed version of CICIDS17.

• GTCS [110] is a very recent dataset. It includes similar
attacks as those in CICIDS17, but the network is
smaller (i.e., it has less than a dozen hosts).

An in-depth view of such datasets is provided by
Table 6, showing the exact amount of samples per class.
For CICIDS17 we merge some underrepresented families
into a single class (i.e., other); whereas for NB15, UF-NB15
we exclude some families because they had significantly
mismatching numbers (in terms of available samples)
which—we believe—could be due to labelling issues.

TABLE 6: Distribution of samples for each Dataset.

Dataset Class Attack
Family Samples

CTU13

0 Benign 16 748 326
1 neris 205 928
2 rbot 143 918
3 nsis 2 168
4 virut 40 904
5 donbot 4 630
6 murlo 6 127

GTCS

0 Benign 139 186
1 ddos 131 211
2 bot 93 021
3 brute 83 857
4 inf 70 202

NB15

0 Benign 2 218 764
1 expl 44 525
2 recon 13 987
3 dos 16 353
4 shell 1 511
5 fuzz 24 246
6 bdoor 2 329
7 ana 2 677

UF-NB15

0 Benign 2 295 222
1 expl 31 551
2 recon 12 779
3 dos 5 794
4 shell 1 427
5 fuzz 22 310
6 bdoor 2 169
7 ana 2 299

CICIDS17

0 Benign 1 666 837
1 ddos 95 123
2 geye 7 567
3 hulk 158 469
4 http 1 742
5 loris 4 001
6 ftp 3 973
7 pscan 159 151
8 ssh 2 980
9 other 971

In our experiments, we treat each dataset D as a
separate environment, and we do not perform any mixing
due to the intrinsic risks of such operations [28].

D.2. Hardware specifications
We carry out our evaluation on three different platforms
each with different computational resources.
• High-end (default). A dedicated server for ML ex-

periments, running an Intel Xeon W-2195@2.3GHz
(36 cores), 256GB RAM. The OS is Ubuntu 20.04.

• Desktop: Intel Core i5-4670@3.2GHz (4 cores) and
8GB of RAM. The OS is Windows 10.

• Laptop: Intel Core i5-430M@2.5GHz (4 cores) and
8GB of RAM. The OS is Windows 10.

• Workstation: Intel Core-i7 10750HQ@2.6GHz (12
cores) with 32GB RAM. The OS is Windows 10.

• Low-end. A ‘downclocked’ variant of the worksta-
tion, running on a Virtual Machine (using Ubuntu
20.04) that is set up to use only 4 cores (using at
most 40% of the frequency) and 8GB of RAM.

• IoT. A Raspberry Pi 4B with 2GB of RAM (4 cores).
We do not use GPU acceleration to ensure fairness.

We perform the majority of our experiments on the
high-end platform. The reason (as explained in §3.3) is
that hardware only affects37 the runtime of an ML model.
Hence, we use the other platforms to compare the training
and inference runtime of each ML model. We do this only
on the GTCS dataset, as runtime scales almost linearly with
the size of the analyzed data.

37. We verified this manually: all our ML models we develop across
all our platforms achieve ultimately comparable detection performance—
despite being trained/tested on different platforms
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