
MicroProfiler: Principled Side-Channel Mitigation
through Microarchitectural Profiling

Marton Bognar
marton.bognar@kuleuven.be
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Hans Winderix
hans.winderix@kuleuven.be
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Jo Van Bulck
jo.vanbulck@kuleuven.be

imec-DistriNet, KU Leuven
3001 Leuven, Belgium

Frank Piessens
frank.piessens@kuleuven.be
imec-DistriNet, KU Leuven

3001 Leuven, Belgium

Abstract—Preventing information leakage through microar-
chitectural side channels is notoriously challenging and, as
a result, an important research question. Recent work has
shown the viability of compiler-assisted instruction balancing
for small, embedded processors with deterministic timing be-
havior. However, even in such small processors, more subtle
microarchitectural side channels continue to be discovered,
complicating mitigation efforts.

We propose a methodology for augmenting an existing in-
struction set architecture (ISA) specification with instruction-
specific microarchitectural leakage traces obtained through
principled microarchitectural profiling. Building on this aug-
mented ISA, it becomes possible to construct software tools
to detect and mitigate certain side-channel vulnerabilities.
As a case study, we instantiate our methodology on a
recently uncovered microarchitectural side channel, which
is based on cycle-level timing differences of direct memory
access (DMA) requests on 16-bit openMSP430 processors.
Using the augmented ISA obtained for this side channel
through microarchitectural profiling, we develop practical
attack scenarios and extend a state-of-the-art compiler-based
mitigation and a binary validation tool, both of which orig-
inally targeted a coarser-grained, instruction-granular side
channel. Our benchmarks show that our extended compiler
mitigation, while still mitigating the instruction-granular
leakage, also eliminates the cycle-accurate DMA information
leakage without incurring any additional overhead.

1. Introduction

With the rise of the Internet of things (IoT), embedded
devices are increasingly used for security- and safety-
critical tasks and, as a result, are subject to attacks at dif-
ferent levels of the hardware-software stack. However, to
meet stringent cost, power consumption, and real-time re-
quirements, these devices are typically not equipped with
established security features that are commonly found
in higher-end CPUs. A proposed solution for improving
security in embedded systems is trusted execution environ-
ments (TEEs) [1]–[8], which offer a lightweight hardware
root-of-trust for isolation and attestation of small, security-
critical software components, called enclaves.

While the architectural isolation guarantees offered by
embedded TEEs are well-understood, even to the point of
formal verification efforts [5], [8], enclave secrets may still
leak through microarchitectural side channels, which are
notoriously hard to reason about [9]. Importantly, however,

due to the absence of microarchitectural optimizations
such as caches, pipelining, and speculative execution,
embedded processors commonly feature predictable in-
struction timings. This results in a significantly reduced
attack surface in terms of side channels. Nevertheless,
even on embedded processors with fully deterministic
instruction timing behavior, it has been shown that secrets
may still leak through the overall execution time of secret-
dependent branches [10] and even through individual in-
struction latencies within those branches [11].

The most general way to rule out information leak-
age from timing side channels is to adopt constant-time
programming practices such as control and data flow lin-
earization [12]–[15] to eliminate all secret-dependent code
and data transfers directly at the application level, e.g.,
through the use of vetted cryptographic libraries [5], [16].
Unfortunately, proper constant-time programming requires
significant expert developer effort and has been repeatedly
shown to be prone to oversights [17]. The constant-time
approach, hence, does not scale well to general-purpose
applications, highlighting the need for automated side-
channel hardening approaches.

In the context of embedded processors with deter-
ministic instruction timing behavior, Winderix et al. [18]
recently proposed a transparent, compile-time transfor-
mation that carefully balances secret-dependent branches
with compensation code, making sure that both sides of
a secret-dependent branch exhibit the same leakage. This
transformation makes branches indistinguishable, even for
advanced adversaries who can observe not only start-to-
end execution time but also individual instruction timings
in a so-called Nemesis [11] interrupt-latency timing attack.
Their work also highlights the potential performance ben-
efit the balancing approach has over linearization in this
class of systems. Other works have shown that automated
side-channel validation can be performed at the binary
level to ensure that programs are free from start-to-end
timing [19] and instruction-granular interrupt-latency [20]
leakage. Importantly, these works rely on readily available
instruction leakage traces (i.e., precise descriptions of the
instruction’s side channel leakage), which in the case of
execution times are often included in the instruction set
architecture (ISA) specification of embedded, real-time
processors [21], [22]. However, relying on such relatively
coarse-grained information may not suffice in the face
of more advanced and undocumented microarchitectural
effects [23].

651

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Marton Bognar. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00045

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
45

ISA

LLVM

TableGen

∿
∿∿
∿∿

∿∿

(Simulated) execution,

trace extraction

Augmented ISA

1. Profiling

Compiler

C code

2. Mitigation

Mitigated binary

Binary analysis

3. Validation

(Existing) binaryxisting) bina

tigated bina

Figure 1: Overview of our approach.

Methodology. In response to these advanced attack vec-
tors, we propose a methodology to detect and mitigate
known side channels that expose predictable, instruction-
dependent behavior. We systematically augment a vendor-
provided ISA with instruction-granular, microarchitectural
leakage traces that can subsequently be used in tools for
mitigating or detecting the side channel. Our three-step
approach is outlined in Figure 1.

First, in a profiling step, we execute and analyze
each instruction supported by the ISA, extracting its side
channel leakage trace. This analysis can happen via a
cycle-accurate Verilog simulation or on real hardware. To
ensure that this profiling is systematic and complete, we
use LLVM’s TableGen tool [24] to enumerate all valid
instructions and their addressing modes. The result of
this initial profiling step is an augmented ISA with a
microarchitecture- and side-channel-specific leakage trace
(denoted � in the figure) for every instruction.

Second, we extend an open-source compiler pass [18]
that performs instruction-granular balancing to eliminate
side-channel leakage in secret-dependent branches. This
step is also dependent on the augmented ISA. Concretely,
the extracted leakage traces of the instructions determine
how to perform the balancing so that the two branches
exhibit the same leakage, making them indistinguishable.

Finally, we extend an open-source binary analysis
tool [20] with the augmented ISA. The resulting tool can
validate whether binaries exhibit secret-dependent leakage
under the profiled side channel, making it possible to find
vulnerable third-party binaries and validate the correctness
of our compiler defense.

DMA side channel. To demonstrate the applicability of
our methodology, we instantiate it for a recently described
side-channel attack [23] exploiting subtle timing differ-
ences of direct memory access (DMA) requests due to
contention in openMSP430 processors [25]. The open-
MSP430 core is an open-source implementation of Texas
Instruments’ popular, low-power MSP430 [22] microcon-
troller, which has been the basis of several academic
security architectures, such as SMART [1], Sancus [2],
and the VRASED family of systems [5]–[7]. Notably,

several of these security architectures [2], [5]–[7] support
untrusted peripherals by explicitly limiting DMA requests
to unprotected parts of the memory. However, it has been
recently discovered that such unprivileged DMA requests
can trigger contention on the shared memory bus, caus-
ing a delay in the request depending on any concurrent
memory accesses by the CPU [23]. As a result of this
contention, the timing of untrusted DMA requests can
reveal a cycle-accurate memory access trace of a victim
program executing on the CPU.

We apply our methodology to defend against a capable
adversary that combines both the cycle-granular memory
access sequences obtained via DMA contention and the
instruction timing sequences leaked via interrupt latency
differences with Nemesis [11]. First, in the profiling step,
we augment the ISA by systematically collecting leakage
traces for all instructions under both DMA and Nemesis
attacker models. Next, showing the increased power of
DMA attackers and underlining the importance of ade-
quate mitigations, we demonstrate several practical, end-
to-end attacks on binaries hardened by a state-of-the-art
Nemesis compiler mitigation [18]. Afterward, we use our
augmented ISA to extend this compiler pass to mitigate
leakage not only from overall execution time and interrupt
latencies but also cycle-accurate DMA delays. Our exper-
imental evaluation shows that this additional protection
does not cause an increased performance impact on the
original benchmarks. Finally, by extending an existing
binary analysis tool [20] with our augmented ISA, we
further increase confidence that the resulting binaries are
free from secret-dependent side-channel leakage under the
considered adversary model.

During our work, our systematic approach enabled
us to uncover oversights in the original binary validation
tool and several (documented as well as undocumented)
derivations of the openMSP430 [25] core from the base
TI MSP430 instruction timing specification [22].

Contributions. In summary, we make the following con-
tributions.

• We provide a principled methodology for pro-
filing and mitigating microarchitectural leakage
on embedded processors exhibiting deterministic
instruction timing behavior.

• We perform the first in-depth study of a recently
described DMA-based side channel [23] on the
openMSP430 platform, including several practical
end-to-end attacks on programs that were pro-
tected by a state-of-the-art compiler mitigation.

• We develop an improved compiler defense, in-
formed by the instruction profiling step, to pro-
tect against both instruction-granular Nemesis and
cycle-accurate DMA side-channel attacks.

• We extend a binary validation tool that is likewise
informed by the instruction profiling step to stati-
cally detect DMA-based leakage in programs.

• We evaluate the security and performance of the
defense and find that it incurs no additional over-
head compared to the original mitigation.

Our profiling toolchain, the case study attacks, our
extended tools, and the benchmarks used are available at
https://github.com/martonbognar/microprofiler.

652

2. Background

2.1. The openMSP430 microcontroller

OpenMSP430 [25] is an open-source implementation
of Texas Instruments’ 16-bit MSP430 microcontroller ar-
chitecture [22]. OpenMSP430 implements the TI MSP430
ISA with almost cycle-level accuracy, with only a few
well-documented differences [25]. The openMSP430 core
is implemented in the Verilog hardware description lan-
guage (HDL), allowing the design to be simulated in soft-
ware with cycle-level accuracy. It can also be synthesized
and flashed onto an FPGA or converted into an ASIC.

The schematic view of the openMSP430 core is shown
in Figure 2. There are no caches, branch predictors,
or other advanced microarchitectural features. All CPU
memory accesses take a single clock cycle to complete,
regardless of their origin and destination. The only two
stages of the CPU pipeline are the frontend (FE), which
fetches and decodes instructions from program memory,
and the execution unit (EU), which handles all arithmetic
and memory operations. Application software is presented
with a classical Von-Neumann architecture view with a
single address space for data and code, even though the
physical memory is composed of three separate partitions:
data memory (DMEM), program memory (PMEM), and
memory-mapped I/O (MMIO). These partitions are con-
nected to the memory backbone through different inter-
faces and can serve requests in parallel.

2.2. DMA contention side channel

Microarchitectural side-channel attacks [9] often rely
on contention for a resource shared between the victim and
the attacker. Examples include caches [26], DRAM [27],
or a CPU execution unit [11].

The DMA side channel [23] recently demonstrated on
openMSP430 platforms results from contention for the
memory bus. As illustrated in Figure 2, the shared memory
bus connects the three memory partitions to the memory
backbone, which in turn serves the memory requests of
the connected CPU and any DMA devices. As there is
one bus between each memory partition and the memory
backbone, if multiple devices issue requests to the same
partition in parallel, only one can be handled at a time,
the others are delayed. If the CPU has priority, which
is the default case on openMSP430, any DMA requests
made to the same partition in the same cycle as the CPU
will be delayed until the next available cycle (as indicated
by the clock symbol in Figure 2 where both the DMA
device and the CPU concurrently access data memory).
Hence, attackers controlling untrusted peripheral devices
can create contention for the shared memory bus and mea-
sure delays in their DMA requests to learn in which exact
cycles the CPU accessed a specific memory partition.

This attack provides an important advantage over
the previous state-of-the-art, instruction-granular Neme-
sis [11] attack demonstrated on MSP430 platforms. Con-
cretely, while Nemesis exposes individual execution times
for every instruction in a victim program through interrupt
latencies, the DMA side channel reveals finer-grained,
cycle-accurate timings of memory bus accesses within
individual instructions. As such, even instructions with

CPU

FE EU
�

DMA device
� M

em
o

ry
b

ac
k

b
o

n
e

Memory-mapped I/O

Program memory

Data memory

Figure 2: Main components of the openMSP430 core.

1 2 3 4

mov #1, &ADDR

A
S

M
D

M
E

M
C

L
K

1 2 3 4

add #1, &ADDR

A
S

M
D

M
E

M
C

L
K

Figure 3: Memory traces of two instructions [23].

the same cycle length might become distinguishable by
observing in which cycle they access the memory bus.
This is shown in Figure 3, which depicts memory traces
of the mov and add instructions with the same operands.
These instructions both take 4 cycles to execute, making
them indistinguishable to both start-to-end timing and
Nemesis adversaries. With the DMA leakage, however,
an attacker can differentiate them based on whether they
access memory in the second execution cycle.

While the existence of the DMA side channel has
recently been demonstrated [23], until now no in-depth
analysis has been carried out to understand the leakage,
no practical end-to-end attacks have been demonstrated,
and no mitigations have been proposed.

2.3. Security architectures on openMSP430

OpenMSP430 does not support a memory protection
mechanism by default. However, it has been an attrac-
tive target for building security extensions thanks to its
open-source design, extensibility, software support, and
the popularity of the base TI MSP430 microcontrollers.
Some security architectures which have been built on
openMSP430 that consider DMA requests in their threat
model are the following:

2.3.1. SMART. SMART [1] adds remote attestation func-
tionality to openMSP430. Its design explicitly assumes
DMA to be disabled during the execution of security-
sensitive code. However, its implementation is not open-
sourced, so the precise impact of the DMA side channel
we examine cannot be assessed.

2.3.2. Sancus. The Sancus TEE [2] extends openMSP430
with modified memory access logic and additional instruc-
tions to allow hardware-based isolation and attestation of
embedded enclaves. While the original Sancus architec-
ture was built on an older version of openMSP430 without
DMA support, recent upstream Sancus cores [28] come
with additional memory access control logic that allows
DMA requests to unprotected memory regions during

653

enclaved execution. As a result, recent Sancus cores have
been the subject of DMA side-channel analysis [23].

2.3.3. VRASED family. VRASED [5] presents a mech-
anism similar to SMART to provide remote attestation
capabilities for openMSP430 microcontrollers. VRASED
itself has been used as the basis for several derived sys-
tems [6], [7], [29], [30]. In VRASED, DMA requests are
explicitly disallowed while protected software performs
the attestation. However, it has been shown [23] that
timing side-channel leakage from prematurely terminated
DMA requests is still possible on VRASED.

3. System model and methodology

In this section, we expand on the properties of the
systems and the attacks to which our methodology applies.
Afterward, we discuss our methodology in detail.

3.1. System model

In line with previous works [18]–[20] on side-channel
mitigations for embedded devices, we assume an ele-
mentary IoT processor that exhibits predictable timing
behavior. More specifically, we assume that the microar-
chitectural behavior (e.g., the timing of memory requests
or the number of clock cycles until instruction retirement)
for executing one instruction is fully determined by that
instruction alone. Notably, in contrast to many timing at-
tacks on higher-end platforms [9], this assumption means
that the microarchitectural behavior of a program’s exe-
cution is not in any way influenced by another – possibly
untrusted – program executing beforehand or in parallel on
the same processor. We, hence, explicitly target low-end
IoT processors featuring deterministic execution timings
and lacking advanced microarchitectural features such as
caches, branch prediction, or out-of-order execution.

As discussed in earlier work [18] and Section 8, there
are other candidates for such systems aside from the
openMSP430 platform we study, including Atmel AVR,
TI MSP430, and ARM Cortex-M23.

3.2. Attacker model

Our approach aims to mitigate known side-channel
attacks with specific properties. Therefore, we assume that
the target system executes a sensitive program, referred
to as the victim enclave, whose secrets are protected at
the architectural level (e.g., if DMA requests are enabled,
the secrets cannot be directly accessed in memory by a
malicious device). Our methodology has one important
requirement for the side-channel attack it targets: the side
channel can only leak information that depends purely
on the executed instruction and its operands, as this is
the granularity of information in the ISA at which we
augment. Otherwise, we have no additional limitations on
the profiled attack; our methodology can apply to attacks
requiring access to unprotected software, connecting pe-
ripherals, or even performing physical measurements on
the device.

Nemesis and DMA attack. The two side-channel attacks
we focus on in this paper are the Nemesis interrupt-
latency attack [11] and the DMA contention attack [23].
Nemesis relies on the attacker precisely timing an inter-
rupt request during the enclave’s execution, which im-
plies untrusted code execution and access to a cycle-
accurate programmable timer device. The DMA attack
relies on controlling a connected peripheral that can issue
and time DMA requests but does not necessarily need
additional control over the software. This requirement can
be achieved either by the attacker having physical access
to the target device or by compromising the firmware of
an already connected sophisticated peripheral, such as a
network controller [31].

3.3. Methodology

The goal of our approach is to systematically augment
the description of every instruction in a given ISA with mi-
croarchitectural leakage traces, representing the leakage
of the given instruction in an appropriate format for the
given side channel. This augmented ISA can subsequently
inform compiler defenses and binary validation tools to
ensure that a given program can execute on the target
platform without leaking secret-dependent control-flow
decisions to a side-channel adversary. For an overview
of our approach, see also Figure 1.

Profiling. Our microarchitectural profiling approach com-
plements and refines state-of-the-art embedded side-
channel mitigations [18]–[20], which rely solely on
vendor-provided, ISA-level timing information. This in-
formation is sufficient to protect against previous side-
channel attacks, such as Nemesis [11], based on the exe-
cution times of instructions, which is part of the MSP430
ISA specification [22]. However, we show that vendor-
provided information is insufficient to protect against ad-
vanced adversaries who exploit finer-grained microarchi-
tectural side-channel leakage, for example resulting from
DMA contention.

In our approach, we augment the ISA with additional
microarchitectural leakage traces. To ensure complete cov-
erage, we automate the generation of instructions. The
enumeration of all possible instructions could be extracted
manually from a vendor-supplied ISA specification. How-
ever, for our case study, we use LLVM TableGen [24]
to generate all valid MSP430 instruction instances based
on a structured description of the MSP430 ISA [22] in
the MSP430 backend of the LLVM compiler framework
[32]. For each instruction in the ISA, we extract a leak-
age trace for the microarchitectural side channel under
consideration, e.g., the DMA contention side channel in
our case. In our experimental setup, we derive the leakage
trace by running the openMSP430 instruction in an HDL
simulator and extracting the exposed microarchitectural
signals directly from the resulting value change dump
(VCD) file. Alternatively, however, the leakage trace for
an instruction could also be extracted by running it on real
hardware and using the same attack technique that would
be used by an attacker when trying to extract information
from real software. This latter approach is especially appli-
cable when no white-box, cycle-accurate HDL simulator
is available for the target system that could model the

654

side-channel leakage. For example, it is also possible to
synthesize commercial hardware designs onto an FPGA or
ASIC and collect the leakage traces by loading attacker
software or attaching custom measurement hardware.

Compiler mitigation. The resulting augmented ISA, ex-
tended with leakage traces for each instruction, can be
viewed as a refined contract between the hardware and
the compiler. The contract describes the microarchitectural
behavior and leakage of instructions, which in turn can
be used by the compiler to compile side-channel hard-
ened programs. That is, for secret-dependent branches,
the compiler takes care to generate balanced code such
that all instructions in both paths exhibit identical leakage
traces, making them indistinguishable for a side-channel
adversary. The compiler can insert dummy (no-op) in-
structions as needed and can also take into account leakage
traces from different side channels when generating the
balanced branches. In Section 6, we show that a single,
well-informed compiler pass can simultaneously address
information leakage from the Nemesis interrupt latency
and DMA contention side channels.

Binary analysis. Lastly, we also use the augmented ISA to
extend a standalone, open-source binary analysis tool [20],
which was originally developed to detect start-to-end and
instruction-granular timing leakage on TI MSP430 plat-
forms. For third-party programs, this extended tool can
detect potential vulnerabilities resulting from the analyzed
side-channel attack. By analyzing binaries generated by
our compiler defense, we can also validate that our de-
fense functions correctly and fully mitigates the studied
vulnerability.

4. Instruction profiling and analysis

As a case study to demonstrate our methodology,
we instantiated it to mitigate the DMA contention side
channel described before. This section describes the pro-
filing step for this attack and an extensive analysis of the
extracted leakage traces.

4.1. Instruction generation

We used LLVM’s TableGen tool [24] to generate all
possible MSP430 assembly instructions to avoid overlook-
ing any instruction or addressing mode during the profiling
step. TableGen provides the internal LLVM representation
of all instructions, specifically the opcode and the operand
types for each supported instruction. This information is
(with the notable exception of additional delays when
writing to program memory [23]) sufficient to statically
determine the Nemesis leakage trace, i.e., the individual
execution timings of every MSP430 instruction.

For the considered DMA side channel, however, the
TableGen information in itself is insufficient for multiple
reasons. First, in contrast to the instruction timings, the
DMA leakage trace is not included in the ISA specifi-
cation [22], [25]; it requires profiling via executing the
instruction. Second, the TableGen representation uses an
abstract representation for register and memory operands,
but as we will show, the concrete operand values also
influence the leakage trace. For this reason, we generate

multiple assembly instruction instances from one Table-
Gen representation, instantiating it with different register
and memory values, for example addressing the three sep-
arate memory partitions of openMSP430. We discuss the
challenges we encountered with generating the instruction
instances in Section 8.

Next, we feed the generated assembly instructions
into a testbench program. We extract the memory leakage
trace of each instruction instance by running the testbench
program in the openMSP430 Verilog simulator (based on
Icarus Verilog [33]). The simulation includes the complete
microprocessor and all signals with cycle-level accuracy,
ensuring that the generated traces are correct and identical
to a core synthesized to an FPGA or ASIC.

4.2. Microarchitectural analysis

Although automatically profiling the instructions is
enough for constructing the compiler defense and the
static analysis tool, it is important to better understand
the source of the leakage (see also our discussion in Sec-
tion 8). In the following, we provide a detailed explanation
of the factors that influence the memory leakage trace of
a given instruction on the openMSP430 core.

4.2.1. Leakage granularity. Some properties of the open-
MSP430 design contribute to the high granularity of this
side channel’s leakage:

• As mentioned in Section 2, the captured leak-
age traces have a cycle-accurate granularity due
to memory accesses on openMSP430 taking one
cycle to complete.

• The three memory partitions (Figure 2) have sep-
arate buses connecting them to the memory back-
bone, which means the contention between the
CPU and the DMA device only happens if they
target the same partition. This enables the attacker
to distinguish accesses to the different partitions.

• The lack of a cache or speculative execution on
openMSP430 ensures that every memory access
is deterministically served from the main memory,
and thus visible in the leakage trace.

4.2.2. Instruction fetching. Before an instruction is ex-
ecuted, it needs to be fetched from program memory by
the processor frontend. This fetch happens in the cycle
before the instruction starts executing. If the instruction
contains one or two memory addresses or constant value
operands, these are placed next to the instruction in pro-
gram memory and fetched in the first one or two cycles
of the instruction’s execution (cf. Section 4.2.4).

4.2.3. Different instructions with identical operands.
Figure 3 illustrated that different instructions with the
same operands can produce different leakage traces. Note
that this figure only showed the data memory access trace
since the activity on the other two memory buses for these
two instruction instances is identical.

In other cases, different instructions with the same
operands can result in identical leakage traces across the
three memory buses. Figure 4 illustrates this for an add
and a sub instruction instance with the same operands.

655

1 2 3 4

C
L

K
D

M
E

M
P

M
E

M
M

M
IO

add #1, &DMEM

A
S

M

1 2 3 4

C
L

K
D

M
E

M
P

M
E

M
M

M
IO

sub #1, &DMEM

A
S

M

Figure 4: Identical leakage traces for add and sub.

TABLE 1: Addressing modes in the MSP430 ISA.

Mode Example Source Destination

Register mode r8 � �
Indexed mode 42(r8) � �
Symbolic mode ADDR � �
Absolute mode &ADDR � �
Indirect register mode @r8 �
Indirect autoincrement @r8+ �
Immediate mode #0x42 �

4.2.4. Addressing modes. The MSP430 instruction set
supports seven different addressing modes [22], which
are listed in Table 1. Depending on the addressing mode
for the source and destination operands, different memory
accesses will be made in different cycles. For instance,
register mode always reads or writes the content of a
register, thus requiring no memory access aside from
fetching the instruction word from program memory. All
other modes access at least one memory location. Indexed,
symbolic, absolute, and immediate modes load a constant
value following the instruction word in program memory
during the first cycle(s) of execution. The loaded value is
subsequently interpreted as either an immediate value or
a memory address. In the case of the latter, the memory is
once again accessed at the given address. Indirect modes
also access the memory once, at the address provided
in the source register. Symbolic and absolute modes use
the same instruction encoding as indexed mode, with
the program counter and the status register used as their
register inputs, respectively. As a result, they also have
the same TableGen representation, which needs to be
considered during the generation of instruction instances
for the profiling step.

Using different operand types for the same instruction
often changes not only the memory accesses but also
the execution time. Figure 5 depicts an example of two
mov instruction instances that differ in their first operand,
resulting in different execution times.

1 2 3 4

mov r7, &DMEM

A
S

M
M

M
IO

P
M

E
M

D
M

E
M

C
L

K

1 2 3 4 5 6

mov &DMEM, &DMEM

A
S

M
M

M
IO

P
M

E
M

D
M

E
M

C
L

K

Figure 5: Different operands producing different execution
timings.

4.2.5. Value of operands. Even if two instructions have
the same operand types, their values might still influence
the leakage trace.

Registers. Register r0 as the destination operand makes
instructions one cycle longer, as this register is the pro-
gram counter. Writing to it delays fetching the next in-
struction by one cycle, as this instruction depends on the
new program counter value.

Memory addresses. Depending on which of the three
memory partitions a memory address falls into, a different
bus will be active. Figure 6 shows such an example, where
the only difference between the instructions is the location
of the target memory address.

Writing to program memory is not a standard MSP430
feature; support for this class of instructions was added
to Sancus separately [23]. These writes take an extra
cycle for the same reason as writing to the program
counter register. If the address of the next instruction is
overwritten, the next instruction can only be fetched after
the write completes. Therefore, these instruction instances
delay fetching the next instruction by one cycle.

Immediate values. For the immediate addressing mode,
the MSP430 constant generator registers r2 and r3 need
to be considered. These special registers can efficiently
generate some commonly used constants. Most immediate
operands are stored adjacent to their instruction in pro-
gram memory and fetched from there during execution.
However, if a constant can be produced via the constant
generator registers, the memory access can be avoided and
less memory is required to encode the instruction. Figure 7
shows two instructions where the first one takes one cycle
less to execute because the number 1 can be produced by
the constant generator, while 42 is fetched from program
memory. The constant generator hardware can supply the
following numbers: {−1, 0, 1, 2, 4, 8} [22].

4.3. Leakage classes

After generating the leakage traces, we grouped the
instructions with the same leakage trace into leakage
classes. The 3,389 generated instruction instances could
be grouped into 65 separate leakage classes, some of
which contain a single instruction instance, while others
include more than 70. These leakage classes were later
used for constructing our compiler defense (cf. Section 6).

We found that the number of leakage classes can
be further reduced when only considering well-formed
programs that comply with the following reasonable re-
quirements within secret-dependent branch regions:

1) The program only executes code from program
memory. This is not a concern on openMSP430,
as the specification does not allow executing code
from data memory [25]. On other microarchitec-
tures, executing code from data memory is not
commonly needed for general-purpose programs.

2) The stack pointer always points to data memory.
This is already required for the correct function-
ing of the protected program. Moreover, stack
switching is commonly enforced by TEEs to

656

1 2 3 4

mov r7, &DMEM

A
S

M
M

M
IO

P
M

E
M

D
M

E
M

C
L

K

1 2 3 4

mov r7, &MMIO

A
S

M
M

M
IO

P
M

E
M

D
M

E
M

C
L

K

1 2 3 4 5

mov r7, &PMEM

A
S

M
M

M
IO

P
M

E
M

D
M

E
M

C
L

K

Figure 6: Different memory locations producing different leakage traces and execution times.

1 2 3 4

C
L

K
D

M
E

M
P

M
E

M
M

M
IO

add #1, &DMEM

A
S

M

1 2 3 4 5

C
L

K
D

M
E

M
P

M
E

M
M

M
IO

add #42, &DMEM

A
S

M

Figure 7: add with different constant values as source.

ensure the confidentiality and integrity of en-
claved execution. For instance, Sancus [2] and
VRASED [5] automatically switch to a protected
secret stack (in data memory) on enclave entry.

3) All software pointer dereferences resolve inside
the program’s protected data memory. This is also
a reasonable requirement, as enclave software
is supposed to explicitly validate user-provided
pointers [34] and never dereference them in-
side secret-dependent branch regions. That is, ac-
cessing attacker-controlled shared memory loca-
tions in secret-dependent branch regions exposes
greater security risks than possible side-channel
leakage, as a DMA attacker or custom MMIO
peripheral could directly detect reads and writes
to unprotected memory regions. Reading from
(protected) program memory may be a valid use
case for pointers to program constants, but the
compiler can straightforwardly ensure that such
constants are also placed in data memory.

Notably, we found that adhering to these requirements
drastically reduced the number of generated instruction
instances, from 3,389 to 551, and the number of leakage
classes, from 65 to 23 (cf. the final leakage classes in
Appendix A). These requirements also make the compiler
defense (cf. Section 6) simpler and more efficient, requir-
ing less complex analyses and less instrumentation.

5. Attack case studies

To demonstrate the feasibility and relevance of the
DMA contention side-channel attack, we describe two
end-to-end attacks and one covert channel scenario in this
section. The attacks are based on two hardened programs
from the third-party benchmark suite of the compiler
defense to protect MSP430 programs against instruction-
granular Nemesis leakage [18]. The full benchmark suite,
including the two selected programs attacked below, is
further discussed in Section 7.

5.1. End-to-end attack setup

Our experiments were conducted on the Sancus plat-
form [2], using the openMSP430 simulator. The victim
code runs inside a protected Sancus enclave, while the
attacker has full control over 1) a DMA-capable peripheral
and 2) the untrusted software on the device. The latter or-
chestrates the attack; it sets up the peripheral and launches
the target enclave.

The malicious peripheral is based on the open-source
attacker peripheral used in the original DMA side-channel
proof-of-concept attack [23], which consists of fewer than
100 lines of Verilog code. The peripheral has a timer,
which can be configured from untrusted software. Once
this timer expires, the peripheral starts issuing DMA re-
quests in every clock cycle to a specific address. This
address should lie in unprotected memory and can fall
into any of the three memory partitions depending on
the attacker’s needs. Once the peripheral is issuing DMA
requests, it also records which request is delayed. Based
on this information, it can reconstruct whether the target
program had accessed the same memory partition in a
given cycle, reconstructing the leakage trace for the mon-
itored memory partition.

To reconstruct the full leakage trace of the victim
program, it is necessary to execute the attack three times
while targeting the three memory partitions with the mali-
cious peripheral. However, we found that monitoring only
the program memory is sufficient for our attacks.

5.2. Multiplication routine

Multiplications in MSP430 programs are not natively
supported in hardware; the MSP430 ISA [22] does not
contain a multiplication instruction. Hence, the compiler is
responsible for transparently inserting a call to a software-
emulated multiplication routine which computes the result
via repeated additions [35]. A simplified version of this
code routine, provided by the Libgcc compiler runtime
library, is shown in Listing 1, where the two multiplication
operands are x and y.

Note that the unmodified multiplication routine al-
ready contains a start-to-end timing vulnerability: line 4
is executed for each 1 bit in the operand y, thus leak-
ing the Hamming weight of y through overall execution
time. Furthermore, Nemesis can significantly amplify this
leakage by leaking the exact bit values in y based on in-
dividual instruction latencies. After applying the compiler
defense for Nemesis, the hardened version was shown to
be secure [18].

657

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
M

1
P

M
2

P
M

3
C

L
K

Figure 8: Leakage traces for the multiplication routine.

1 for (bit = 0; bit < sizeof(y) * 8; bit++) {
2 if (y) {
3 if (y & 1)
4 result += x;
5 x <<= 1;
6 y >>= 1;
7 }
8 }

Listing 1: Multiplication routine by repeated addition.

Crucially, while the hardened code is no longer vul-
nerable to Nemesis, we found that, through the finer-
grained DMA side channel, the exact bit values in the y
operand can be reconstructed once again. Figure 8 shows
the program memory access trace of the code after the
if (y) statement on line 2. The figure shows three
different scenarios: the top trace displays the memory ac-
cesses when both if statements on lines 2 and 3 evaluate
to true and x is added to the result. This is the case when
the current bit of y is 1. The middle trace shows the case
when only the first if statement evaluates to true. This
happens when the current bit of y is 0, but there are still
undiscovered 1 bits left in y. Finally, the bottom trace
shows the case when both if statements evaluate to false,
signifying that all remaining bits of y are 0.

The for loop iterates through all bits of y. By captur-
ing the memory trace after the first if statement in every
iteration, the complete y parameter can be reconstructed
by a DMA-capable attacker. This has serious ramifica-
tions, as this routine is used to transparently replace all
multiplications in sensitive code. As a result, a compiler-
generated side-channel vulnerability may be introduced
even when the conditional control flow is not visible at
the application level performing x*y. If the parameters
of a multiplication are secret, which may be the case, for
example, during public-key cryptography operations, leak-
ing one of the operands can break the security objectives
of the protected software.

5.3. MSP430 bootstrap loader

The bootstrap loader (BSL) [36] is a protected, priv-
ileged component of the TI MSP430 system enabling
functionality such as in-field firmware updates. To access
the functionality of the bootstrap loader, programs have to
supply a secret password. This password-checking routine
has been exploited through a timing side channel [10]
and was subsequently used as a case study in the original
Nemesis [11] attack. A hardened version of this routine is
included in the benchmark of the Nemesis-resistant com-
piler mitigation [18]. The code, shown in Listing 2, iterates

1 for (i=0; i <= IVT_END-IVT_START; i++, ivt++) {
2 if (*ivt != data[i]) {
3 retValue |= 0x40;
4 }
5 }

Listing 2: BSL password checking code.

over all characters of the provided password and checks
whether they are correct. If any character is incorrect, the
variable used as the return value is modified.

While the hardened version of this code is not vulnera-
ble to Nemesis, we found that similar to the multiplication
routine, it still produces a secret-dependent DMA-based
leakage. Figure 9 shows the captured program memory
leakage traces after the if instruction on line 2. The
first trace was captured when the current character of the
password was correct, while the second trace shows the
leakage with an incorrect password byte.

Although the leakage does not expose the password di-
rectly, only the position of correct and incorrect characters,
it dramatically decreases the security of the password and
the effort required to break it. If the attacker only knows
the password length, guessing the full character sequence
can take up to 256length tries. With the knowledge of
the location of the correct bytes, the attacker can guess
the password bytes one by one, reducing the problem to
linear complexity, taking at most 256 ∗ length guesses.

5.4. DMA contention covert channel

The information leakage through the DMA side chan-
nel can also be used as a covert channel to intentionally
transfer information. A sandboxed program can commu-
nicate with a peripheral by choosing the pattern of its
memory accesses for a specific memory partition.

The theoretical upper limit for the bandwidth of this
covert channel is one bit of information per clock cycle,
where the bit is encoded by whether the monitored parti-
tion is accessed. However, according to our experiments,
the available leakage classes and the overhead of setting
up the channel limits it to approximately one bit per 12
cycles. On a 16 MHz CPU, this leakage rate translates to
a bandwidth of approximately 1.3 MBit/sec.

6. Compiler defense

The next step in our methodology is to construct a
systematic way of preventing information leakage through
both the DMA side channel and the Nemesis attack. While
our binary analysis tool can validate whether compiled

658

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

P
M

1
P

M
2

C
L

K

Figure 9: Leakage traces for BSL password check.

cmp @r6, r7 ; if (*r6 != r7) {
jz 1f ;
add #1, 0(r6) ; *r6 += 1;
jmp 2f ; } else {

1: add #13, 0(r6) ; *r6 += 13;
2: ... ; } ...

Listing 3: Example vulnerable code.

programs exhibit any secret-dependent leakage (cf. Sec-
tion 7), constructing a leakage-free program by hand is
a tedious and error-prone process. To remove this burden
from developers, we implemented an automated approach
for hardening sensitive programs, which only requires the
developer to add secrecy annotations to the source code.

We extended the LLVM compiler [32] (version 14.0.0)
with a pass that hardens secret-dependent branches by
inserting dummy instructions so that both sides of those
branches exhibit the same leakage. We implemented the
defense as a MachineFunctionPass in the LLVM
MSP430 backend, based on the open-source implemen-
tation of the Nemesis-hardening compiler pass [18]. We
rely on the analysis passes from [18], such as a control-
flow analysis (to compute the control-flow graph) and
a taint analysis (to identify the secret-dependent branch
regions). Consequently, we also inherit the limitations of
that implementation. For instance, the secrecy of values
loaded from memory is computed conservatively, and
therefore the compiler will not accept all valid programs.
We maximally reused the implementation from [18] and
only replaced the CompensateInstr method, which is
responsible for generating the actual compensation code.
For each instruction in a path that originates from a secret-
dependent branch, CompensateInstr inserts a suitable
dummy instruction at the corresponding location in the
alternative paths originating from that same branch unless
that location already contains an instruction that exhibits
the same leakage.

6.1. Balancing with dummy instructions

We demonstrate the balancing approach using the ex-
ample in Listing 3. This code features a secret-dependent
branch and two different additions depending on the out-
come of the branch. Figure 10 demonstrates the possible
control-flow paths of this code. These branches are clearly
not balanced; the left side consists of two instructions,
while the right side contains only one. Figure 7 has also
shown that the two add instructions used in this code have
different latencies and memory traces, making this snippet
vulnerable to start-to-end timing, Nemesis, and DMA
attacks. Figure 11 shows the branches after balancing.
The instructions inserted by the compiler, shown in red,
prevent the branch outcome from leaking via the control

add #1, 0(r6)
jmp 2f

1: add #13, 0(r6)

cmp @r6, r7
jz 1f

2: ...

Figure 10: Vulnerable control flow.

bic #42, &dummy
add #1, 0(r6)
jmp 2f

1: add #13, 0(r6)
swpb &dummy
jmp 2f

cmp @r6, r7
jz 1f

2: ...

Figure 11: Secure control flow.

flow for the three attacks above. The inserted instructions
do not change the behavior of the program: the bic and
swpb instructions modify a specially allocated dummy
memory cell which does not contain any useful informa-
tion, while the inserted jmp instruction jumps to label 2,
which is the next instruction in the program flow.

6.2. Selecting dummy instructions

The programs that can be hardened by our com-
piler pass have to satisfy the assumptions outlined in
Section 4.3. These restrictions are reasonable for most
general-purpose programs, and they help limit the number
of possible leakage classes for which dummy instructions
have to be selected. Dummy instructions must not affect
the live state of executing programs, and they should use
minimal resources. To achieve this, we follow the follow-
ing principles when selecting the dummy instructions:

• When a dummy instruction writes to a register, we
select the constant generator register r3. Writing
to this register has no effect. This way, we do not
need to use a general-purpose register for this type
of dummy instruction and, importantly, the register
pressure does not increase.

659

• When a dummy reads a memory address from a
register (e.g., using the indexed addressing mode),
we select the stack pointer register r1, as this
one always points to a valid data memory address
inside the enclave.

• For dummies writing to memory, we reserve a
location inside the enclave to serve as the target
for these writes.

Dummy memory accesses must always address mem-
ory inside the enclave to prevent an attacker from being
able to monitor activity at these memory locations. Fur-
thermore, special attention needs to be given to some side
effects. For instance, instructions that change the status
register (used in branch conditions) might interfere with
the intended control flow of the program.

When selecting a dummy counterpart for a given
instruction, we need to make sure that we have all the
necessary information at the compiler level to be able to
associate the instruction with a leakage class. For example,
when using indexed or indirect addressing modes, the
source register contains an address from where a value
is fetched. If the compiler could not statically determine
which memory partition the address points to, it would
need to instrument the code to determine this at runtime
before executing the sensitive instruction. This is neces-
sary since the leakage trace of the instruction depends on
the memory partition of the address. However, since we
assume well-formed programs that always address data
memory, we did not implement this instrumentation.

Using these guidelines, we selected one dummy in-
struction for almost every considered leakage class. Partic-
ularly, we found that the vast majority of sampled MSP430
instructions (527 out of 551) fall in leakage classes for
which a dummy instruction could be constructed. For the
few remaining leakage classes, it was not possible to select
a dummy instruction, as every instruction instance of those
classes affects the live state of the program. In general,
a compiler has several generic options to work around
instruction classes without compensating dummies:

• Move the problematic instruction out of the secret-
dependent branch (while preserving the program’s
functionality).

• Emulate the instruction using others that do have a
dummy alternative (e.g., replacing push r5 with
sub #2, r1; mov r5, 0(r1)).

• Revert the effects of the instruction in the alterna-
tive path (e.g., push r5; pop r5), and com-
pensate for the reverting instruction with a dummy
in the original path (e.g., push r5; mov @r1,
&dummy).

Additionally, control-flow instructions, such as jmp,
call or reti (return from interrupt), should be balanced
with an instance of the same instruction type, although
with potentially different operands (e.g., jumping to the
next instruction as in the balanced example of Figure 11).

We refer to Appendix A for the complete list of
instruction classes with leakage traces and chosen dummy
instructions.

Automating the dummy selection. We believe that select-
ing the dummy instructions for each leakage class could be

automated in future work. Based on the ISA specification,
a tool could automatically search for a suitable dummy
instruction for a given leakage class, optimizing for foot-
print and side effects. A challenge with this approach
is that the functional specification is typically not avail-
able in a machine-readable format, making it difficult to
automatically determine whether a given instruction will
function as a no-op. Tools such as SAIL [37], a language
to formally express ISA semantics, may help automate
this selection process.

7. Validation and evaluation

After designing and implementing our compiler de-
fense, we evaluated it based on two different aspects. First,
as the final step of our methodology, we modified an open-
source binary static analysis tool [20] to detect secret-
dependent DMA leakage in MSP430 software. This tool,
apart from detecting vulnerabilities in third-party code,
can also validate the security of the binaries generated
by our compiler mitigation. Second, we measured the
performance impact of our proposed mitigation in terms
of execution time and binary size. We also quantified
the scalability of our methodology by measuring the time
taken to profile the instructions and to harden applications
with our compiler defense.

7.1. Security validation with SCF-MSP

SCF-MSP [20] is a binary analysis tool developed
to detect architectural and side-channel (start-to-end and
Nemesis timing attacks) leakage on the TI MSP430 plat-
form. We extended this tool to also detect secret leakage
via the DMA-based side channel. This implementation
also builds on the augmented ISA generated by our in-
struction profiling step; detecting leakage due to secret-
dependent branching is impossible without this informa-
tion. The tool works on arbitrary MSP430 binaries but
requires a description of the function signatures from the
developer, including security annotations.

Development process. The systematic development of
the validation tool and the compiler mitigation in parallel
has enabled us to uncover several interesting findings.
First, we discovered a mismatch in the instruction timing
specification of openMSP430 [25], which we reported to
the maintainers1. Specifically, the execution time of the
call instruction with immediate addressing mode was
incorrectly reported to be 5 cycles, while it actually takes
4 cycles. Although this is a minor deviation, it can lead to
incorrectly balanced branches in compiler mitigations that
rely on the ISA description for instruction timings instead
of profiling the instructions.

Furthermore, we discovered several instruction timing
mismatches in the static analysis tool. Some of these mis-
matches result from the original SCF-MSP tool targeting
the TI MSP430 ISA, which differs in a small number
of documented instances from the openMSP430 timing
specification [25]. We also found that the original SCF-
MSP tool did not correctly handle the edge case of writing
to the program counter register, which always incurs an

1. Available at https://opencores.org/projects/openmsp430/issues/40.

660

additional penalty cycle according to the TI MSP430
specification (see also Section 4.2.5).

Using the binary analysis tool to validate develop-
ment versions of the compiler mitigation has also un-
covered some issues. Among others, we discovered that
the MSP430 assembler [35] optimizes instructions with
a zero-indexed register operand 0(rx) as the source
operand into a different instruction that uses the indirect
mode addressing @rx, changing the leakage trace of the
instruction. Since this assembler optimization happens
after the compilation step, this is not yet visible during
our hardening pass. However, the binary analysis tool
can show that this optimization makes target programs
insecure. This example illustrates the strength of a separate
binary validation step in our systematic approach.

Validating the compiler pass. To validate the security of
our combined compiler defense, we used the benchmarks
from the original Nemesis defense [18]. These bench-
marks contain a collection of programs with insecure
secret-dependent code. In our experiments, we used the
extended binary analysis tool to check for leakage in
these programs. First, we compiled them with the original
Nemesis defense. This pass left 11 of the 20 programs
vulnerable to DMA-based secret leakage. The full results
are shown in Table 2. Crucially, these results show that the
defense against Nemesis alone is insufficient to mitigate
the leakage from DMA. This is unsurprising, as we have
already seen that instructions with the same execution
time can have different leakage traces. In our second
experiment, we compiled the benchmark programs using
our improved Nemesis+DMA compiler mitigation. After
this pass, we confirmed that none of the programs were
reported to have either Nemesis or DMA-based leakage.

During our analysis, we discovered that the over-
approximation of SCF-MSP causes a falsely reported
Nemesis leakage in the modexp2 benchmark. We man-
ually checked that this false positive is caused by the
conservative taint tracking algorithm, which considers val-
ues read from the stack to be always secret [20]. In this
benchmark program, a public value is first spilled onto the
stack, then read back to be included in a branch condition.
This read causes the tool to falsely flag this branch as
being secret-dependent. To be able to analyze the rest of
the program, we manually patched the tool to ignore this
known false positive in this specific benchmark.

Furthermore, due to excessive false positives, we had
to disable SCF-MSP’s secret-dependent loop condition
checks, which is not an issue since none of the benchmark
programs contain secret-dependent loop conditions. We
also had to leave out one benchmark program from our
evaluation, as the original SCF-MSP tool does not support
recursion in secret-dependent branches.

7.2. Performance evaluation

To evaluate the performance overhead of our compiler
mitigation, we extended the evaluation used for the origi-
nal Nemesis defense [18]. These benchmarks measure the
overhead in terms of compiled binary size and execution
time of programs. In our evaluation, we compare the orig-
inal, non-balanced programs to hardened code by the orig-
inal Nemesis defense, as well as to code hardened by our

TABLE 2: SCF-MSP analysis results on benchmarks.

Benchmark Nemesis-hardened Nemesis+DMA-hardened

bsl � �
keypad DMA � �
modexp2 (*) � �
mulhi3 DMA � �
mulmod8 DMA � �
sharevalue DMA � �
switch16 DMA � �
switch8 DMA � �
call DMA � �
diamond � �
fork � �
ifcompound � �
ifthenloop DMA � �
ifthenloopif DMA � �
ifthenlooploop DMA � �
ifthenlooplooptail DMA � �
indirect � �
loop � �
multifork � �
triangle � �

mitigation, which defends against both Nemesis and DMA
side-channel attacks. We also compare the performance of
our compiler against a state-of-the-art linearization [12]
technique, which, as opposed to our balancing approach,
completely eliminates secret-dependent branches.

This benchmark set consists of two types of programs:
a set of synthetic benchmarks constructed to showcase
the original Nemesis defense and a set of third-party pro-
grams. The third-party programs also include a variant that
has been linearized [12]. This linearization means (man-
ually) rewriting all secret-dependent branches to straight-
line code such that there are no more secret-dependent
execution paths that could cause any observable leakage.

Changed performance numbers. The results of our eval-
uation are shown in Tables 3 and 4. Our results for the vul-
nerable baseline and the Nemesis-hardened code slightly
differ from those reported in [18]; the tables contain
our results. This difference is most likely a consequence
of using different compiler versions. Most notably, the
geometric mean of execution times of linearized programs
has increased from 76% to 87%, but these differences still
allow us to reason about relative overheads.

Synthetic benchmarks. Table 3 shows the performance
impact of applying the compiler passes to the vulnerable
synthetic benchmark programs. This table contains the
program size and execution times for each benchmark
program. The different execution times in a given row
correspond to the different paths the execution can take
depending on the inputs. The overhead is shown in terms
of size increase, as well as execution time increase for
the different paths. With code balancing, the execution
time of the balanced program can never be shorter than
the longest possible path in the original program, so this
overhead is highlighted in the last column of the table.

Notably, the evaluation resulted in the exact same over-
head for our proposed DMA+Nemesis defense as for the
Nemesis defense alone without DMA hardening applied.
This result shows that our principled microarchitectural
profiling approach allowed us to significantly improve the
effectiveness of the compiler mitigation without incurring
additional overhead.

661

TABLE 3: Performance results for the synthetic benchmark suite [18]. The reported overhead numbers are identical for
the original Nemesis defense and our combined mitigation for Nemesis+DMA.

Benchmark
Vulnerable baseline Overhead of balancing

Size Execution time Size Execution time Execution time
(bytes) (cycles) (longest path)

call 300 112, 91 1.09x 1.05x, 1.30x 1.05x
diamond 282 102, 101, 103 1.16x 1.13x, 1.14x, 1.12x 1.12x
fork 262 90, 91 1.06x 1.07x, 1.05x 1.05x
ifcompound 382 370, 371, 372 1.06x 1.02x, 1.02x, 1.02x 1.02x
ifthenloop 282 143, 96 1.29x 1.20x, 1.79x 1.20x
ifthenloopif 340 179, 108 1.39x 1.61x, 2.68x 1.61x
ifthenlooploop 306 378, 101 1.57x 1.38x, 5.16x 1.38x
ifthenlooplooptail 348 387, 387, 113 1.66x 1.27x, 1.27x, 4.35x 1.27x
indirect 272 95, 97 1.18x 1.19x, 1.16x 1.16x
loop 398 2841 1.06x 1.02x 1.02x
multifork 288 92, 100, 96, 99 1.19x 1.18x, 1.09x, 1.14x, 1.10x 1.09x
triangle 264 92, 94 1.09x 1.09x, 1.06x 1.06x

Geometric mean 1.22x 1.33x 1.16x

TABLE 4: Performance results for the third-party benchmark suite [18]. The reported balancing overhead numbers are
identical for the original Nemesis defense and our combined mitigation.

Benchmark
Vulnerable baseline Overhead of linearization Overhead of balancing (this work)

Size Execution time Size Execution time Size Execution time(bytes) (cycles)

bsl 392 984 1.28x 1.47x 1.13x 1.20x
keypad 670 1119 1.27x 1.81x 1.31x 1.56x
kruskal 632 2460 1.16x 1.24x 1.13x 1.08x
modexp2 700 23537 1.05x 1.32x 1.05x 1.31x
mulhi3 414 904 1.34x 2.01x 1.36x 1.59x
mulmod8 480 425 1.40x 1.36x 1.49x 1.07x
sharevalue 478 3398 1.05x 1.07x 1.05x 1.04x
switch16 400 115 2.29x 4.65x 1.44x 1.09x
switch8 400 115 2.29x 4.65x 1.44x 1.09x

Geometric mean 1.40x 1.87x 1.26x 1.21x

Third-party benchmarks. Table 4 shows the benchmark
results for the third-party programs. The execution time
overhead in this table refers to the overhead when tak-
ing the longest possible execution path (arguably, this
corresponds to the minimal execution time after harden-
ing). Importantly, the evaluation again showed the same
overhead for the two compiler defenses for each bench-
mark (as with the synthetic suite); thus we conclude that
our defense incurs no additional overhead compared to
the original Nemesis defense. This table also includes
performance numbers for the versions of the third-party
programs that were manually linearized. In most cases, our
compiler pass outperforms this strategy in terms of code
size. For execution times, our compiler defense is more
performant in every test case. This result clearly shows the
performance benefits of our balancing approach over the
more generic yet more costly linearization approach for
these side channels. The difference between our approach
and the state-of-the-art linearization is especially apparent
in benchmark programs with many branches, such as
switch8/16. In the case of linearization, all branches
need to be executed (in a way that only the correct one
has an architectural effect), while with our approach, only
the correct (balanced) branch executes.

Scalability and overhead. Using our methodology for
mitigating programs against the DMA side channel comes
with limited overhead. Executing the profiling step for
the restricted instruction set of 551 instructions, includ-
ing collecting the leakage traces from the cycle-accurate
simulator, takes less than 5 minutes on a consumer laptop
with an Intel Core i7-8665U CPU. Of course, instruc-
tion profiling could take longer with significantly more
complex ISAs, but this impact is limited by the fact that
this step only needs to be performed once to generate
the augmented ISA. After creating the compiler pass, the
only overhead remaining is applying the mitigation pass to
programs, which we also found to be limited: compiling
all benchmarks in Tables 3-4 adds less than half a second
overhead compared to compiling the vulnerable baseline.

8. Discussion and related work

This paper presented a principled approach to system-
atically mitigate microarchitectural side-channel leakage
on processors with predictable instruction behavior. In
this section, we discuss the general applicability of our
approach, its connection to related work, and the extent
of our case study with the DMA attack.

662

Deterministic side channels. Our profiling approach as-
sociates a leakage trace with every relevant instruction
in the ISA. As discussed in Section 3, this implies that
the leakage of the analyzed side channel only depends on
the instruction and its operands. This restricts the set of
applicable side channels considerably. Side channels that
depend on the aggregated state in a microarchitectural
component, such as the cache or the branch predictor,
etc. [9], do not satisfy this requirement. However, the em-
bedded systems we have in scope (such as openMSP430,
TI MSP430, Atmel AVR, and ARM Cortex-M23) typi-
cally lack stateful microarchitectural components, putting
these side channels out of scope. Investigating whether
our approach can be extended to consider the side effects
of previous instructions in the program is left as future
work. Simple examples of such dependencies may include
the value of the stack pointer or instruction latencies
depending on the previously executed instruction [23].
Future work could also examine whether other known side
channels, such as power consumption [38] or electromag-
netic radiation [39] satisfy our determinism criteria, and
apply our methodology to mitigating them for a given
microarchitecture.

Completeness of the approach. Previous work used
opaque-box fuzzing approaches [40], [41] to automati-
cally discover microarchitectural vulnerabilities in high-
end processors. Our goal is different: we aim to mitigate
the leakage of known side channels on small IoT proces-
sors where instruction balancing [18]–[20], [42] is feasi-
ble. Such balancing mitigations require complete coverage
of all relevant instructions, so fuzzing is not a satisfactory
option. In our methodology, we automatically enumerate
and profile all relevant instructions, which aims to ensure
that no leakage can surface as a result of an oversight or
undetected instruction or operand combination.

Practical limitations. Our prototype toolchain has prac-
tical limitations. Particularly, we build on the open-source
Nemesis-hardening compiler pass [18], inheriting its limi-
tations of static analysis techniques (cf. Section 6), which
may cause some valid programs to be rejected.

Required expertise. While many steps of our method-
ology are automated, some domain expertise is required
at all steps, and human mistakes can inevitably result in
insecurities in our approach. When performing the profil-
ing step in the context of a given side channel, we need
to know how exactly the leakage from the side channel
manifests and how it can be captured by an attacker, as
this will form the leakage trace in the augmented ISA.
Moreover, we can optimize the process by anticipating
which instruction operands or other variables will affect
the leakage traces. For instance, it would be practically
infeasible to generate an instruction instance for each
possible pair of registers and 16-bit values or to generate
an instruction instance for each possible memory address.
In our case study, knowing that the leakage only depends
on the target memory partition and certain register des-
tinations was crucial expert knowledge that allowed us
to optimize our approach. Matching the LLVM TableGen
representation of instructions to addressing modes also
came with challenges; the symbolic and absolute address-

ing modes of MSP430 use the same encoding format
as the indexed mode (cf. Section 4.2.4) and as a result,
have the same TableGen representation. However, the
different addressing modes might invoke different side-
channel leakage in the hardware, requiring us to generate
multiple instruction instances for a TableGen instruction
that uses this shared encoding format.

To simplify our approach, some of the steps requiring
expert knowledge could be automated. One example is
selecting the dummy instructions as outlined above, but
partially generating the code of the compiler pass itself
and generating parts of the binary validator tool could
also be feasible. This automation could further increase
confidence in the correctness of the implementation of
these tools and reduce the required developer effort.

Hardware-software contracts for security. ISA-level
hardware-software security contracts [43]–[45] aim to
bridge the security gap between hardware and software
by specifying how the hardware leaks information. This
security specification can then be used by a secure com-
piler (e.g., CompCert [46], FaCT [47], and Jasmin [48])
to harden security-critical code, following the recent idea
of contract-aware secure compilation (CASCO) [49]. Our
work can be seen as a practical way of generating such
a security contract for a given microarchitecture. The
augmented ISA serves as a description of the hardware’s
behavior, based on which a compiler can generate efficient
and secure compensation code for a set of attacks.

To improve source code portability, CASCO en-
courages decoupling the security policy (e.g., constant-
timeness) from the source code. Dinesh et al. [50] ex-
plored this idea for writing portable constant-time code.
Based on a specification of safe/unsafe instructions [51],
they developed a tool to automatically create translations
for all unsafe instructions in the ISA using only instruc-
tions from the safe set. Both the safe/unsafe labeling and
the automated translations can be seen as augmentations
of the ISA, similar to how our approach automatically
augments the ISA with a leakage classification.

9. Conclusion

We presented a principled methodology for profiling
and mitigating microarchitectural leakage on embedded
processors exhibiting deterministic instruction timing be-
havior. In a case study of a recently uncovered DMA side
channel on openMSP430 platforms, we followed the life
cycle of this attack. Following an in-depth understanding
of the microarchitectural leakage traces that we used to
augment the instruction specifications in the ISA, we pre-
sented several practical end-to-end attacks on applications
that have been hardened by a state-of-the-art instruction-
balancing compiler. Next, building on the augmented ISA,
we contributed an improved compiler-based mitigation
and a binary validation tool that both take into account
the microarchitectural leakage traces of individual instruc-
tions in both paths of secret-dependent branches. Our
comprehensive experimental evaluation showed that, on
top of mitigating the state-of-the-art instruction-granular
interrupt-latency leakage, our improved compiler also
eradicates the cycle-granular DMA side-channel leakage
without incurring any additional overhead.

663

Data availability

All our materials are available in the repository at
https://github.com/martonbognar/microprofiler:

• The profiling scripts and generated leakage traces
of openMSP430 instructions.

• Our end-to-end attacks (running in the HDL sim-
ulator).

• Our compiler mitigation, implemented as an ex-
tension to LLVM.

• Our binary analysis tool, implemented as an ex-
tension to SCF-MSP.

• The benchmarks used for our evaluation.

Acknowledgements

We would like to thank Steffie Joosen for exploring
the idea of building a compiler pass based on instruction
profiling in her master’s thesis [52].

This research is partially funded by the Research Fund
KU Leuven, the ORSHIN project (Horizon Europe grant
agreement No. 101070008), and the Flemish Research
Programme Cybersecurity. Jo Van Bulck is supported by
a grant of the Research Foundation – Flanders (FWO).

References

[1] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele
Perito. SMART: secure and minimal architecture for (establishing
dynamic) root of trust. In 19th Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society, 2012.

[2] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank
Piessens, Pieter Maene, Bart Preneel, Ingrid Verbauwhede, Jo-
hannes Götzfried, Tilo Müller, and Felix Freiling. Sancus 2.0: A
low-cost security architecture for iot devices. ACM Transactions
on Privacy and Security (TOPS), 20(3):1–33, 2017.

[3] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay
Varadharajan. TrustLite: a security architecture for tiny embed-
ded devices. In 9th European Conference on Computer Systems
(EuroSys), pages 10:1–10:14. ACM, 2014.

[4] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi,
Christian Wachsmann, and Patrick Koeberl. TyTAN: Tiny trust
anchor for tiny devices. In 52nd Annual Design Automation
Conference (DAC), pages 34:1–34:6. ACM, 2015.

[5] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rat-
tanavipanon, Michael Steiner, and Gene Tsudik. VRASED: A
verified hardware/software co-design for remote attestation. In 28th
USENIX Security Symposium, pages 1429–1446, 2019.

[6] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rat-
tanavipanon, and Gene Tsudik. PURE: using verified remote
attestation to obtain proofs of update, reset and erasure in low-
end embedded systems. In International Conference on Computer-
Aided Design (ICCAD), pages 1–8. ACM, 2019.

[7] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rat-
tanavipanon, and Gene Tsudik. APEX: A verified architecture
for proofs of execution on remote devices under full software
compromise. In 29th USENIX Security Symposium, pages 771–
788, 2020.

[8] Mahmoud Ammar, Bruno Crispo, Bart Jacobs, Danny Hughes,
and Wilfried Daniels. Sμv—the security microvisor: A formally-
verified software-based security architecture for the internet of
things. IEEE Transactions on Dependable and Secure Computing,
16(5):885–901, 2019.

[9] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A
survey of microarchitectural timing attacks and countermeasures
on contemporary hardware. Journal of Cryptographic Engineering,
8(1):1–27, 2018.

[10] Travis Goodspeed. Practical attacks against the MSP430 BSL. In
25th Chaos Communications Congress., 2008.

[11] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis:
Studying microarchitectural timing leaks in rudimentary cpu in-
terrupt logic. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 178–195, 2018.

[12] David Molnar, Matt Piotrowski, David Schultz, and David A.
Wagner. The program counter security model: Automatic detection
and removal of control-flow side channel attacks. In Information
Security and Cryptology (ICISC) 2005, 8th International Confer-
ence, volume 3935 of Lecture Notes in Computer Science, pages
156–168. Springer, 2005.

[13] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and
Bjorn De Sutter. Practical mitigations for timing-based side-
channel attacks on modern x86 processors. In 30th IEEE Sym-
posium on Security and Privacy (S&P), pages 45–60, 2009.

[14] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang.
Eliminating timing side-channel leaks using program repair. In
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 15–26. ACM, 2018.

[15] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and
Cristiano Giuffrida. Constantine: Automatic side-channel resis-
tance using efficient control and data flow linearization. In ACM
SIGSAC Conference on Computer and Communications Security
(CCS), pages 715–733. ACM, 2021.

[16] Jean Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. Hacl*: A verified modern
cryptographic library. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 1789–1806. ACM,
2017.

[17] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed
Sabt, Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and
Yasemin Acar. “They’re not that hard to mitigate”: What cryp-
tographic library developers think about timing attacks. In 43rd
IEEE Symposium on Security and Privacy (S&P), pages 632–649.
IEEE, 2022.

[18] Hans Winderix, Jan Tobias Mühlberg, and Frank Piessens.
Compiler-assisted hardening of embedded software against inter-
rupt latency side-channel attacks. In IEEE European Symposium
on Security and Privacy (EuroS&P), pages 667–682. IEEE, 2021.

[19] Florian Dewald, Heiko Mantel, and Alexandra Weber. Avr proces-
sors as a platform for language-based security. In 22nd European
Symposium on Research in Computer Security (ESORICS), pages
427–445. Springer, 2017.

[20] Sepideh Pouyanrad, Jan Tobias Mühlberg, and Wouter Joosen.
Scfmsp: static detection of side channels in MSP430 programs.
In 15th International Conference on Availability, Reliability and
Security (ARES), pages 21:1–21:10. ACM, 2020.

[21] Atmel. Atmel AVR 8-bit Instruction Set: Instruction Set Manual,
2016.

[22] Texas Instruments. MSP430x1xx Family User’s Guide, 2006.

[23] Marton Bognar, Jo Van Bulck, and Frank Piessens. Mind the
gap: Studying the insecurity of provably secure embedded trusted
execution architectures. In 43rd IEEE Symposium on Security and
Privacy (S&P), pages 1638–1655. IEEE, 2022.

[24] LLVM Compiler Infrastructure Contributors. Tablegen overview.
https://llvm.org/docs/TableGen/, October 2022. Accessed 2023-04-
18.

[25] Olivier Girard. openmsp430 rev 1.17. https://github.com/olgirard/
openmsp430/blob/master/doc/openMSP430.pdf, November 2017.
Accessed 2023-04-18.

[26] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache attacks on intel sgx. In 10th European Workshop
on Systems Security (EUROSEC), pages 2:1–2:6. ACM, 2017.

[27] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. DRAMA: Exploiting DRAM addressing for
cross-cpu attacks. In 25th USENIX Security Symposium, pages
565–581, 2016.

664

[28] Sancus-core: Minimal openmsp430 hardware extensions for iso-
lation and attestation. https://github.com/sancus-tee/sancus-core.
Accessed 2023-04-18.

[29] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rat-
tanavipanon, and Gene Tsudik. On the TOCTOU problem in
remote attestation. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 2921–2936, 2021.

[30] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik.
Tiny-cfa: Minimalistic control-flow attestation using verified proofs
of execution. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 641–646. IEEE, 2021.

[31] Loı̈c Duflot, Yves-Alexis Perez, and Benjamin Morin. What if
you can’t trust your network card? In International Workshop on
Recent Advances in Intrusion Detection, pages 378–397. Springer,
2011.

[32] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization (CGO), pages
75–86. IEEE, 2004.

[33] Stephen Williams. Icarus verilog. https://github.com/steveicarus/
iverilog, 2000. Accessed 2023-04-18.

[34] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri,
Flavio D. Garcia, and Frank Piessens. A tale of two worlds:
Assessing the vulnerability of enclave shielding runtimes. In ACM
SIGSAC Conference on Computer and Communications Security
(CCS), pages 1741–1758, 2019.

[35] Texas Instruments. Msp430-gcc-opensource. https://www.ti.com/
tool/MSP430-GCC-OPENSOURCE, 2021. Accessed 2023-04-18.

[36] Texas Instruments. Msp code protection features. https://www.ti.
com/lit/an/slaa685/slaa685.pdf, 2015. Accessed 2023-04-18.

[37] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair
Reid, Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur,
Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian
Stark, Neel Krishnaswami, and Peter Sewell. ISA semantics for
armv8-a, risc-v, and CHERI-MIPS. Proceedings of the ACM on
Programming Languages (POPL), 3:71:1–71:31, 2019.

[38] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999.

[39] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj
Rohatgi. The EM side-channel(s). In Cryptographic Hardware
and Embedded Systems (CHES), volume 2523 of Lecture Notes in
Computer Science, pages 29–45. Springer, 2002.

[40] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural data leakage via automated attack syn-
thesis. In 29th USENIX Security Symposium, pages 1427–1444,
2020.

[41] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silber-
stein. Revizor: testing black-box cpus against speculation contracts.
In 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
226–239, 2022.

[42] Majid Salehi, Gilles De Borger, Danny Hughes, and Bruno Crispo.
Nemesisguard: Mitigating interrupt latency side channel attacks
with static binary rewriting. Computer Networks, 205:108744,
2022.

[43] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila.
Hardware-software contracts for secure speculation. In 42nd IEEE
Symposium on Security and Privacy, (S&P), pages 1868–1883.
IEEE, 2021.

[44] Gernot Heiser. For safety’s sake: We need a new hardware-software
contract! IEEE Design & Test, 35(2):27–30, 2018.

[45] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline
Trippel. Axiomatic hardware-software contracts for security. In
49th Annual International Symposium on Computer Architecture
(ISCA), pages 72–86. ACM, 2022.

[46] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin,
Vincent Laporte, David Pichardie, and Alix Trieu. Formal verifi-
cation of a constant-time preserving C compiler. Proceedings of
the ACM on Programming Languages (POPL), 4:7:1–7:30, 2020.

[47] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer,
Yunlu Huang, Ranjit Jhala, and Deian Stefan. FaCT: A Flexible,
Constant-Time Programming Language. In IEEE Cybersecurity
Development (SecDev), pages 69–76. IEEE Computer Society,
2017.

[48] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur
Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo
Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-
assurance and high-speed cryptography. In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), pages
1807–1823. ACM, 2017.

[49] Marco Guarnieri and Marco Patrignani. Contract-aware secure
compilation. CoRR, abs/2012.14205, 2020.

[50] Sushant Dinesh, Grant Garrett-Grossman, and Christopher W.
Fletcher. Synthct: Towards portable constant-time code. In 29th An-
nual Network and Distributed System Security Symposium (NDSS),
2022.

[51] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W.
Fletcher. Data oblivious ISA extensions for side channel-resistant
and high performance computing. In 26th Annual Network and
Distributed System Security Symposium (NDSS), 2019.

[52] Steffie Joosen. Hardening enclave programs against side-channel
vulnerabilities at compile-time. Master’s thesis, KU Leuven, 2021.

A. Leakage classes

In this appendix, we provide the 23 complete leakage
classes obtained via our principled profiling methodology
for well-formed programs, as described in Section 4.3.
For every class, we first provide the extracted (common)
leakage trace as a waveform diagram that includes the
number of execution cycles (i.e., the Nemesis [11] side-
channel leakage), as well as the exact clock cycles in
which program (PMEM) and data (DMEM) memory is
accessed (i.e., the DMA [23] side-channel leakage). Note
that we do not display accesses to the MMIO partition, as
well-formed programs should only address protected data
memory. We, furthermore, provide the selected dummy
instruction for that class under the waveform. Next, we list
all MSP430 instructions that are a member of the respec-
tive class, including their opcode, source and destination
addressing modes, and operand values (cf. Section 4.2).
Instructions listed as members of the same class exhibit
identical leakage traces and are, hence, indistinguishable
to a Nemesis or DMA side-channel adversary.

Tables 5 to 8 provide the first 12 leakage classes,
which include the vast majority of sampled MSP430
instructions (527 out of 551). For these leakage classes,
we selected dummy instructions that behave as a no-
operation, as explained in Section 6.2.

For the remaining ten leakage classes, listed in Ta-
bles 9 to 11, we could not construct a suitable dummy
instruction that acts as a no-op. It is, however, possible to
get around this problem for all instructions in these classes
using the techniques outlined in Section 6. Specifically, the
control-flow instructions in Tables 10 and 11 (br, call,
reti and ret) must be balanced with an instance of the
same instruction type. The instructions in the remaining
classes in Table 9 are disallowed from secret-dependent
regions and have to be emulated by one or more instruc-
tions for which a dummy instruction exists.

665

TABLE 5: OpenMSP430 instruction leakage classes with dummies, resulting from microarchitectural profiling. For
every class, all member instructions listed in the rightmost columns exhibit the leakage trace depicted in the left column
– both in terms of total execution cycles (i.e., Nemesis side-channel leakage) and in terms of program and data memory
access traces (i.e., DMA side-channel leakage). Leakage classes are continued on the next pages.

Dummy and leakage trace Members

C
la

ss
#1

swpb &dummy

1 2 3 4

D
M

E
M

P
M

E
M

add #0x1, 42(r6) add #0x1, &dmem add r10, 42(r6)
add r10, &dmem add.b #0x1, 42(r6) add.b #0x1, &dmem
add.b r10, 42(r6) add.b r10, &dmem addc #0x1, 42(r6)
addc #0x1, &dmem addc r10, 42(r6) addc r10, &dmem
addc.b #0x1, 42(r6) addc.b #0x1, &dmem addc.b r10, 42(r6)
addc.b r10, &dmem and #0x1, 42(r6) and #0x1, &dmem
and r10, 42(r6) and r10, &dmem and.b #0x1, 42(r6)
and.b #0x1, &dmem and.b r10, 42(r6) and.b r10, &dmem
bic #0x1, 42(r6) bic #0x1, &dmem bic r10, 42(r6)
bic r10, &dmem bic.b #0x1, 42(r6) bic.b #0x1, &dmem
bic.b r10, 42(r6) bic.b r10, &dmem bis #0x1, 42(r6)
bis #0x1, &dmem bis r10, 42(r6) bis r10, &dmem
bis.b #0x1, 42(r6) bis.b #0x1, &dmem bis.b r10, 42(r6)
bis.b r10, &dmem bit #0x1, 42(r6) bit #0x1, &dmem
bit r10, 42(r6) bit r10, &dmem bit.b #0x1, 42(r6)
bit.b #0x1, &dmem bit.b r10, 42(r6) bit.b r10, &dmem
cmp #0x1, 42(r6) cmp #0x1, &dmem cmp r10, 42(r6)
cmp r10, &dmem cmp.b #0x1, 42(r6) cmp.b #0x1, &dmem
cmp.b r10, 42(r6) cmp.b r10, &dmem dadd #0x1, 42(r6)
dadd #0x1, &dmem dadd r10, 42(r6) dadd r10, &dmem
dadd.b #0x1, 42(r6) dadd.b #0x1, &dmem dadd.b r10, 42(r6)
dadd.b r10, &dmem rra 42(r6) rra &dmem
rra.b 42(r6) rra.b &dmem rrc 42(r6)
rrc &dmem rrc.b 42(r6) rrc.b &dmem
sxt 42(r6) sxt &dmem sub #0x1, 42(r6)
sub #0x1, &dmem sub r10, 42(r6) sub r10, &dmem
sub.b #0x1, 42(r6) sub.b #0x1, &dmem sub.b r10, 42(r6)
sub.b r10, &dmem subc #0x1, 42(r6) subc #0x1, &dmem
subc r10, 42(r6) subc r10, &dmem subc.b #0x1, 42(r6)
subc.b #0x1, &dmem subc.b r10, 42(r6) subc.b r10, &dmem
swpb 42(r6) swpb &dmem xor #0x1, 42(r6)
xor #0x1, &dmem xor r10, 42(r6) xor r10, &dmem
xor.b #0x1, 42(r6) xor.b #0x1, &dmem xor.b r10, 42(r6)
xor.b r10, &dmem

C
la

ss
#2

bic #0x42, &dummy

1 2 3 4 5

D
M

E
M

P
M

E
M

add #const, 42(r6) add #const, &dmem add.b #const, 42(r6)
add.b #const, &dmem addc #const, 42(r6) addc #const, &dmem
addc.b #const, 42(r6) addc.b #const, &dmem and #const, 42(r6)
and #const, &dmem and.b #const, 42(r6) and.b #const, &dmem
bic #const, 42(r6) bic #const, &dmem bic.b #const, 42(r6)
bic.b #const, &dmem bis #const, 42(r6) bis #const, &dmem
bis.b #const, 42(r6) bis.b #const, &dmem bit #const, 42(r6)
bit #const, &dmem bit.b #const, 42(r6) bit.b #const, &dmem
cmp #const, 42(r6) cmp #const, &dmem cmp.b #const, 42(r6)
cmp.b #const, &dmem dadd #const, 42(r6) dadd #const, &dmem
dadd.b #const, 42(r6) dadd.b #const, &dmem sub #const, 42(r6)
sub #const, &dmem sub.b #const, 42(r6) sub.b #const, &dmem
subc #const, 42(r6) subc #const, &dmem subc.b #const, 42(r6)
subc.b #const, &dmem xor #const, 42(r6) xor #const, &dmem
xor.b #const, 42(r6) xor.b #const, &dmem

666

TABLE 6: OpenMSP430 instruction leakage classes with dummies (continued).

Dummy and leakage trace Members
C

la
ss

#3

bic &dummy, &dummy

1 2 3 4 5 6

D
M

E
M

P
M

E
M

add 42(r6), 42(r6) add &dmem, 42(r6) add 42(r6), &dmem
add &dmem, &dmem add.b 42(r6), 42(r6) add.b &dmem, 42(r6)
add.b 42(r6), &dmem add.b &dmem, &dmem addc 42(r6), 42(r6)
addc &dmem, 42(r6) addc 42(r6), &dmem addc &dmem, &dmem
addc.b 42(r6), 42(r6) addc.b &dmem, 42(r6) addc.b 42(r6), &dmem
addc.b &dmem, &dmem and 42(r6), 42(r6) and &dmem, 42(r6)
and 42(r6), &dmem and &dmem, &dmem and.b 42(r6), 42(r6)
and.b &dmem, 42(r6) and.b 42(r6), &dmem and.b &dmem, &dmem
bic 42(r6), 42(r6) bic &dmem, 42(r6) bic 42(r6), &dmem
bic &dmem, &dmem bic.b 42(r6), 42(r6) bic.b &dmem, 42(r6)
bic.b 42(r6), &dmem bic.b &dmem, &dmem bis 42(r6), 42(r6)
bis &dmem, 42(r6) bis 42(r6), &dmem bis &dmem, &dmem
bis.b 42(r6), 42(r6) bis.b &dmem, 42(r6) bis.b 42(r6), &dmem
bis.b &dmem, &dmem bit 42(r6), 42(r6) bit &dmem, 42(r6)
bit 42(r6), &dmem bit &dmem, &dmem bit.b 42(r6), 42(r6)
bit.b &dmem, 42(r6) bit.b 42(r6), &dmem bit.b &dmem, &dmem
cmp 42(r6), 42(r6) cmp &dmem, 42(r6) cmp 42(r6), &dmem
cmp &dmem, &dmem cmp.b 42(r6), 42(r6) cmp.b &dmem, 42(r6)
cmp.b 42(r6), &dmem cmp.b &dmem, &dmem dadd 42(r6), 42(r6)
dadd &dmem, 42(r6) dadd 42(r6), &dmem dadd &dmem, &dmem
dadd.b 42(r6), 42(r6) dadd.b &dmem, 42(r6) dadd.b 42(r6), &dmem
dadd.b &dmem, &dmem sub 42(r6), 42(r6) sub &dmem, 42(r6)
sub 42(r6), &dmem sub &dmem, &dmem sub.b 42(r6), 42(r6)
sub.b &dmem, 42(r6) sub.b 42(r6), &dmem sub.b &dmem, &dmem
subc 42(r6), 42(r6) subc &dmem, 42(r6) subc 42(r6), &dmem
subc &dmem, &dmem subc.b 42(r6), 42(r6) subc.b &dmem, 42(r6)
subc.b 42(r6), &dmem subc.b &dmem, &dmem xor 42(r6), 42(r6)
xor &dmem, 42(r6) xor 42(r6), &dmem xor &dmem, &dmem
xor.b 42(r6), 42(r6) xor.b &dmem, 42(r6) xor.b 42(r6), &dmem
xor.b &dmem, &dmem

C
la

ss
#4

bic @r1, &dummy

1 2 3 4 5

D
M

E
M

P
M

E
M

add @r6, 42(r6) add @r6, &dmem add @r6+, 42(r6)
add @r6+, &dmem add.b @r6, 42(r6) add.b @r6, &dmem
add.b @r6+, 42(r6) add.b @r6+, &dmem addc @r6, 42(r6)
addc @r6, &dmem addc @r6+, 42(r6) addc @r6+, &dmem
addc.b @r6, 42(r6) addc.b @r6, &dmem addc.b @r6+, 42(r6)
addc.b @r6+, &dmem and @r6, 42(r6) and @r6, &dmem
and @r6+, 42(r6) and @r6+, &dmem and.b @r6, 42(r6)
and.b @r6, &dmem and.b @r6+, 42(r6) and.b @r6+, &dmem
bic @r6, 42(r6) bic @r6, &dmem bic @r6+, 42(r6)
bic @r6+, &dmem bic.b @r6, 42(r6) bic.b @r6, &dmem
bic.b @r6+, 42(r6) bic.b @r6+, &dmem bis @r6, 42(r6)
bis @r6, &dmem bis @r6+, 42(r6) bis @r6+, &dmem
bis.b @r6, 42(r6) bis.b @r6, &dmem bis.b @r6+, 42(r6)
bis.b @r6+, &dmem bit @r6, 42(r6) bit @r6, &dmem
bit @r6+, 42(r6) bit @r6+, &dmem bit.b @r6, 42(r6)
bit.b @r6, &dmem bit.b @r6+, 42(r6) bit.b @r6+, &dmem
cmp @r6, 42(r6) cmp @r6, &dmem cmp @r6+, 42(r6)
cmp @r6+, &dmem cmp.b @r6, 42(r6) cmp.b @r6, &dmem
cmp.b @r6+, 42(r6) cmp.b @r6+, &dmem dadd @r6, 42(r6)
dadd @r6, &dmem dadd @r6+, 42(r6) dadd @r6+, &dmem
dadd.b @r6, 42(r6) dadd.b @r6, &dmem dadd.b @r6+, 42(r6)
dadd.b @r6+, &dmem sub @r6, 42(r6) sub @r6, &dmem
sub @r6+, 42(r6) sub @r6+, &dmem sub.b @r6, 42(r6)
sub.b @r6, &dmem sub.b @r6+, 42(r6) sub.b @r6+, &dmem
subc @r6, 42(r6) subc @r6, &dmem subc @r6+, 42(r6)
subc @r6+, &dmem subc.b @r6, 42(r6) subc.b @r6, &dmem
subc.b @r6+, 42(r6) subc.b @r6+, &dmem xor @r6, 42(r6)
xor @r6, &dmem xor @r6+, 42(r6) xor @r6+, &dmem
xor.b @r6, 42(r6) xor.b @r6, &dmem xor.b @r6+, 42(r6)
xor.b @r6+, &dmem

667

TABLE 7: OpenMSP430 instruction leakage classes with dummies (continued).

Dummy and leakage trace Members
C

la
ss

#5

bic #1, r3

1
D

M
E

M
P

M
E

M

add #0x1, r10 add r10, r10 add.b #0x1, r10
add.b r10, r10 addc #0x1, r10 addc r10, r10
addc.b #0x1, r10 addc.b r10, r10 and #0x1, r10
and r10, r10 and.b #0x1, r10 and.b r10, r10
bic #0x1, r10 bic r10, r10 bic.b #0x1, r10
bic.b r10, r10 bis #0x1, r10 bis r10, r10
bis.b #0x1, r10 bis.b r10, r10 bit #0x1, r10
bit r10, r10 bit.b #0x1, r10 bit.b r10, r10
cmp #0x1, r10 cmp r10, r10 cmp.b #0x1, r10
cmp.b r10, r10 dadd #0x1, r10 dadd r10, r10
dadd.b #0x1, r10 dadd.b r10, r10 mov #0x1, r10
mov r10, r10 mov.b #0x1, r10 mov.b r10, r10
mov.b r10, r10 rra r10 rra.b r10
rrc r10 rrc.b r10 sxt r10
sub #0x1, r10 sub r10, r10 sub.b #0x1, r10
sub.b r10, r10 subc #0x1, r10 subc r10, r10
subc.b #0x1, r10 subc.b r10, r10 swpb r10
xor #0x1, r10 xor r10, r10 xor.b #0x1, r10
xor.b r10, r10 mov.b r10, r10

C
la

ss
#6

bic #42, r3

1 2

D
M

E
M

P
M

E
M

add #const, r10 add.b #const, r10 addc #const, r10
addc.b #const, r10 and #const, r10 and.b #const, r10
bic #const, r10 bic.b #const, r10 bis #const, r10
bis.b #const, r10 bit #const, r10 bit.b #const, r10
br r10 cmp #const, r10 cmp.b #const, r10
dadd #const, r10 dadd.b #const, r10 jn const
jmp const mov #const, r10 mov.b #const, r10
sub #const, r10 sub.b #const, r10 subc #const, r10
subc.b #const, r10 xor #const, r10 xor.b #const, r10

C
la

ss
#7

mov &dummy, r3

1 2 3

D
M

E
M

P
M

E
M

add 42(r6), r10 add &dmem, r10 add.b 42(r6), r10
add.b &dmem, r10 addc 42(r6), r10 addc &dmem, r10
addc.b 42(r6), r10 addc.b &dmem, r10 and 42(r6), r10
and &dmem, r10 and.b 42(r6), r10 and.b &dmem, r10
bic 42(r6), r10 bic &dmem, r10 bic.b 42(r6), r10
bic.b &dmem, r10 bis 42(r6), r10 bis &dmem, r10
bis.b 42(r6), r10 bis.b &dmem, r10 bit 42(r6), r10
bit &dmem, r10 bit.b 42(r6), r10 bit.b &dmem, r10
cmp 42(r6), r10 cmp &dmem, r10 cmp.b 42(r6), r10
cmp.b &dmem, r10 dadd 42(r6), r10 dadd &dmem, r10
dadd.b 42(r6), r10 dadd.b &dmem, r10 mov 42(r6), r10
mov &dmem, r10 mov.b 42(r6), r10 mov.b &dmem, r10
mov.b 42(r6), r10 mov.b &dmem, r10 sub 42(r6), r10
sub &dmem, r10 sub.b 42(r6), r10 sub.b &dmem, r10
subc 42(r6), r10 subc &dmem, r10 subc.b 42(r6), r10
subc.b &dmem, r10 xor 42(r6), r10 xor &dmem, r10
xor.b 42(r6), r10 xor.b &dmem, r10

C
la

ss
#8

mov @r1, r3

1 2

D
M

E
M

P
M

E
M

add @r6, r10 add @r6+, r10 add.b @r6, r10
add.b @r6+, r10 addc @r6, r10 addc @r6+, r10
addc.b @r6, r10 addc.b @r6+, r10 and @r6, r10
and @r6+, r10 and.b @r6, r10 and.b @r6+, r10
bic @r6, r10 bic @r6+, r10 bic.b @r6, r10
bic.b @r6+, r10 bis @r6, r10 bis @r6+, r10
bis.b @r6, r10 bis.b @r6+, r10 bit @r6, r10
bit @r6+, r10 bit.b @r6, r10 bit.b @r6+, r10
cmp @r6, r10 cmp @r6+, r10 cmp.b @r6, r10
cmp.b @r6+, r10 dadd @r6, r10 dadd @r6+, r10
dadd.b @r6, r10 dadd.b @r6+, r10 mov @r6, r10
mov @r6+, r10 mov.b @r6, r10 mov.b @r6+, r10
pop r10 sub @r6, r10 sub @r6+, r10
sub.b @r6, r10 sub.b @r6+, r10 subc @r6, r10
subc @r6+, r10 subc.b @r6, r10 subc.b @r6+, r10
xor @r6, r10 xor @r6+, r10 xor.b @r6, r10
xor.b @r6+, r10

668

TABLE 8: OpenMSP430 instruction leakage classes with dummies (continued).

Dummy and leakage trace Members
C

la
ss

#9

mov #1, &dummy

1 2 3 4

D
M

E
M

P
M

E
M

mov #0x1, 42(r6) mov #0x1, &dmem mov r10, 42(r6)
mov r10, &dmem mov.b #0x1, 42(r6) mov.b #0x1, &dmem
mov.b r10, 42(r6) mov.b r10, &dmem push #const

C
la

ss
#1

0

mov #0x42, &dummy

1 2 3 4 5

D
M

E
M

P
M

E
M

mov #const, 42(r6) mov #const, &dmem mov.b #const, 42(r6)
mov.b #const, &dmem

C
la

ss
#1

1

mov &dummy, &dummy

1 2 3 4 5 6

D
M

E
M

P
M

E
M

mov 42(r6), 42(r6) mov &dmem, 42(r6) mov 42(r6), &dmem
mov &dmem, &dmem mov.b 42(r6), 42(r6) mov.b &dmem, 42(r6)
mov.b 42(r6), &dmem mov.b &dmem, &dmem

C
la

ss
#1

2

mov @r1, &dummy

1 2 3 4 5

D
M

E
M

P
M

E
M

mov @r6, 42(r6) mov @r6, &dmem mov.b @r6, 42(r6)
mov.b @r6, &dmem

TABLE 9: OpenMSP430 instruction leakage classes without dummies (disallowed; need to be emulated).

Dummy and leakage trace Members

C
la

ss
#2

0

NO DUMMY

1 2 3

D
M

E
M

P
M

E
M

push #0x1 push r10 push.b r10

C
la

ss
#2

3

NO DUMMY

1 2 3

D
M

E
M

P
M

E
M

rra @r6 rra @r6+ rra.b @r6
rra.b @r6+ rrc @r6 rrc @r6+
rrc.b @r6 rrc.b @r6+ sxt @r6
sxt @r6+ swpb @r6 swpb @r6+

669

TABLE 10: OpenMSP430 instruction leakage classes
without dummies. The listed call instructions need to
be balanced with an identical call instruction in the
compensation path.

Dummy and leakage trace Members

C
la

ss
#1

5

NO DUMMY

1 2 3 4

D
M

E
M

P
M

E
M

call #const

C
la

ss
#1

6

NO DUMMY

1 2 3 4 5

D
M

E
M

P
M

E
M

call 42(r7)

C
la

ss
#1

7

NO DUMMY

1 2 3 4

D
M

E
M

P
M

E
M

call @r7

C
la

ss
#1

8

NO DUMMY

1 2 3 4

D
M

E
M

P
M

E
M

call @r6+

C
la

ss
#1

9

NO DUMMY

1 2 3

D
M

E
M

P
M

E
M

call r10

TABLE 11: OpenMSP430 instruction leakage classes
without dummies. The respective control-flow-transfer in-
structions need to be balanced with an identical instruction
in the compensation path.

Dummy and leakage trace Members

C
la

ss
#1

3

NO DUMMY

1 2 3

D
M

E
M

P
M

E
M

br #const

C
la

ss
#1

4

NO DUMMY

1 2 3 4

D
M

E
M

P
M

E
M

br 42(r7)

C
la

ss
#2

1

NO DUMMY

1 2 3

D
M

E
M

P
M

E
M

ret
C

la
ss

#2
2

NO DUMMY

1 2 3 4 5

D
M

E
M

P
M

E
M

reti

670

