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Abstract—Microarchitectural optimizations are expected to
play a crucial role in ensuring performance scalability in the
post-Moore era. However, recent attacks have demonstrated
that these optimizations, which were assumed to be secure,
can be exploited. Moreover, new attacks surface at a rapid
pace limiting the scope of existing defenses. These develop-
ments prompt the need to review microarchitectural opti-
mizations with an emphasis on security, so as to understand
the attack landscape and the potential defense strategies.

We provide a framework to analyze attacks on a wide
range of microarchitectural optimizations and use that to
systematize both transient and non-transient attacks and
defenses, while highlighting the similarities and differences.
We identify four root causes of timing-based side-channel
attacks: determinism, sharing, access violation and informa-
tion flow, through our systematic analysis. Leveraging our
framework, we systematize existing defenses and show that
they target these root causes in the different attack steps.
We believe that our framework can assist in understanding
the attack and defense landscape and provide guidance for
designing secure microarchitectural optimizations.

1. Introduction
Computer architecture is facing a security crisis [77],

[78]. Recent attacks [25], [50], [95], [98], [113], [122],
[152], [176], [179] have demonstrated that microarchitec-
tural optimizations, which were assumed to be fundamen-
tally secure for a long time, leak information which can
be exploited to steal secrets. Furthermore, efficient attacks
continuously emerge targeting defenses, thereby limiting
their effectiveness or even rendering the defenses moot
altogether [17], [19], [24], [26], [51], [57], [139], [140],
[142], [164], [182], [190]. Simultaneously, with the slow-
ing down of Moore’s Law, microarchitectural optimiza-
tions are expected to play an increasingly important role
in ensuring performance scalability. Consequently, there
is a strong need to be able to leverage microarchitectural
optimizations without compromising security.
Microarchitectural optimizations, implemented in

commercial processors, like branch predictors [1], [2],
[47], [49], [98], caches [66], [138], [194] and prefetch-
ers [37], [41], [111], [161], [181], among others, are
prone to attacks. A recent paper [149] demonstrated that
several optimizations proposed in literature, but not known
to be commercially implemented as yet, such as value
prediction [109], are vulnerable. This underscores the
importance of conducting a thorough review of microar-
chitectural optimizations with an emphasis on security.
Prior works have started the important task of analyz-

ing attacks and defenses for different microarchitectural
optimizations [30], [32], [34], [53], [76], [80], [117],
[166], [191]. However, most of the works focus only on
transient attacks and defenses [30], [32], [76], [80], [191],

SW-based defenses [34] or cover a limited set of non-
transient attacks [53], [166] (see Section 6 for details).
Pandora [149] considers a broader set of non-transient
microarchitectural optimizations and provides microar-
chitectural leakage descriptors (MLDs) which quantify
the information leakage. The MLDs show if a specific
optimization can leak and how much information is leaked
(1-bit or a few bits). Unfortunately, this information falls
short on providing a systematic analysis of the similarities
across different microarchitectural optimizations and the
underlying root causes which make them vulnerable to
attacks. Such an analysis can also help with the categoriza-
tion of existing defense strategies and with the potential
identification of attacks and defenses.
Our goal, in this paper, is to perform a systematic anal-

ysis to highlight the common root causes which make mi-
croarchitectural optimizations vulnerable to exploits that
reveal secrets. In order to enable analysis of a diverse set
of microarchitectural optimizations, we present an abstract
model of the architecture and the microarchitectural state
transitions involved in an attack. Using this model as a
framework, we analyze several timing-based side-channel
attacks available in the literature on an extensive set of mi-
croarchitectural optimizations: cache, prefetching, branch
prediction, computational simplification, speculative ex-
ecution and value prediction. We also analysed several
additional microarchitectural optimizations but omit them
from the discussion due to space constraints.
Our analysis reveals four root causes which are ex-

ploited in order to succeed with attacks targeting the
diverse set of microarchitectural optimizations covered.
The root causes are determinism, sharing, access viola-
tion and information flow. Here, determinism causes mi-
croarchitectural optimizations to be triggered in the same
way under the same pre-conditions, leading to predictable
microarchitectural state transitions and timing variations.
Sharing of microarchitectural state, which is accessible to
both the adversary and the victim, enables the creation of
a side-channel. Access violation enables access to a secret
outside of the intended protection domain. Finally, infor-
mation flow refers to exchange of information through
microarchitectural state. We note that a subset of these root
causes have been identified individually in the context of
specific attacks [25], [40], [80], [115], [166]. However,
in our analysis we show that a subset of, or all, the
root causes are common across attacks on a broad set
of microarchitectural optimizations.
We show that the existing defenses that focus on

addressing the vulnerabilities in different microarchitec-
tural optimizations can be classified as targeting one or
more of the identified root causes. We observe that sim-
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ilar defense strategy can be/is applied across different
microarchitectural optimizations, to target the same root
cause vulnerability. For instance, partitioning can thwart
attacks using the cache [96], [114], SMT [169] and branch
prediction [183], [199], by affecting sharing, information
flow and determinism. In addition, the defenses can also
be applied to address the applicable root causes in the
different steps of the attack. Typically, eliminating the root
cause(s) in any of the attack steps can mitigate/protect
against an attack that targets a specific resource under a
specific threat model. We show the utility of our frame-
work by identifying potential attacks and defenses for
value prediction that have not been explored in literature.
Overall, the analysis demonstrates the versatility of our

simplistic framework to capture a diverse set of attacks
and defense strategies for different microarchitectural op-
timizations. We expect that our framework can be easily
extended to study microarchitectural optimizations we do
not explicitly cover in this paper. We also believe that it
can assist in understanding the landscape of attacks on a
broad range of microarchitectural optimizations, catego-
rizing existing defense strategies proposed to thwart such
attacks, and in designing secure microarchitectural opti-
mizations. Interesting avenues for future work leveraging
this framework are discussed in Section 5.
In summary, we make the following contributions:

• We provide a framework to analyze both transient
and non-transient execution attacks on a broad
range of microarchitectural optimizations, high-
lighting similarities and differences.

• We identify four root causes: determinism, shar-
ing, access violation and information flow, that
enable timing-based side-channel attacks on a
wide range of microarchitectural optimizations.

• We analyze defenses using our framework and
make a classification based on the root causes
they address. Based on the analysis, we discuss
potential attack and defense possibilities for mi-
croarchitectural optimizations.

The paper is structured as follows. Section 2 presents
our framework and defines the root causes. Section 3 and 4
use the framework to systematize the attacks and defenses,
respectively. Section 5 presents general observations and
future research directions while Section 6 discusses the
closest related works before we conclude in Section 7.

2. Systematization Framework

We first present an abstract architecture model and
outline the steps for carrying out attacks based on the
model. We then use this model as a framework to identify
the root causes that enable attacks. Finally, we present an
actual attack in the context of this framework.

2.1. Abstract model and side-channel attack

The architecture model is represented as a finite state
machine (FSM) where the architectural state (AS), com-
prising SW-visible registers and memory, is the externally
visible interface, that is accessible to a program. An FSM
transition is caused when instruction execution leads to a
change in AS.

The microarchitecture represents an implementation of
the FSM specification and typically comprises several mi-
croarchitectural optimizations, denoted {O1,O2, ... ,On}, to
enable an efficient implementation. A microarchitectural
optimization uses a set of microarchitectural resources,
denoted R = {R1,R2, ... ,Rm}, to implement the intended
functionality. This model permits resources to be shared
across different optimizations. We define microarchitec-
tural state (MS) as a snapshot of the state of all the m
microarchitectural resources in the system at time instance
t, denoted MS = {state(R1), state(R2), ... , state(Rm)}t.

It is important to note that while the change in AS
caused by an FSM transition remains the same across
different implementations of a given FSM specification,
the change in MS varies depending on the optimizations
triggered, resources used and the implementation. Even
when considering a specific implementation, there is a
one-to-many mapping relationship between AS and MS;
i.e., a single AS can have several equivalent MS. Further-
more, the time it takes for an implementation to make a
transition between different MS (caused by an action) may
vary and this property is typically exploited by attacks.
As an example, executing a load instruction will cause a
change in the AS while the insertion of a corresponding
line in the cache hierarchy as a consequence of executing
the load instruction will cause a change in the state of the
cache(s) which is a microarchitectural resource. A typical
attack exploits information leaked through MS that is not
available through AS.

We next consider an abstract model of an attack that
shows the different steps involved while leveraging MS as
the side-channel to communicate the secret from a victim
to an adversary. In our model, we define a step as a tuple
of current state and action which leads to a new state,
{MScurrent, action}→MSnext. Figure 1 shows the different
steps listed in this model and is based on the attacks
proposed in literature [30], [32], [34], [76], [80], [117],
[166], [191]. We assume MS is in the initial state (MSI)
before any of the steps in the attack are carried out. When
the setup step is performed MSI makes a transition to
the primed state (MSP). The setup step ensures that the
necessary preconditions are in place to encode the secret
into MSP in the next step of the attack. When the interact
step is performed the secret is accessed and is encoded in
the microarchitectural state (MSE). The secret is encoded
specifically through the state of one or more microar-
chitectural resources. If the secret is encoded through a
microarchitecture resource state, that is accessible to both
the victim and the adversary, it can potentially be used as
a side-channel to communicate the secret.

Attacks optionally utilize the transmit step in case the
encoded microarchitectural resource state is not accessible
by the adversary or the specific MS based side-channel
is noisy (i.e. the channel is prone to high error rate and
has low channel bandwidth). When the transmit action is
performed the secret is usually re-encoded through the
state of a different shared microarchitectural resources
(MST) which can address the aforementioned transmission

Figure 1. MS transitions in different steps of an attack.
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limitations. When the receive step is performed, the adver-
sary accesses the microarchitectural state of the specific
resource(s) and observes timing variations based on the
encoded secret while the state transitions to MSR. Finally,
in the decode step, the timing variations observed are used
as the basis to infer the secret.
The steps outlined above that cause MS transitions and

secret information to be leaked can be performed by the
adversary, the victim or both, depending on the type of
attack. In the abstract model it is required that the state of
at least one microarchitectural resource is shared between
the victim and an adversary to enable information flow
and consequently communicate the secret. The microar-
chitectural resources that are shared between the victim
and the adversary are specific to the implementation and
the threat model (see Section 2.3 for details).
Prior works define attack steps differently which leads

to fewer/more steps. For example, Xiong et al. [117]
defines three attack steps while Hu et al. [80] use six
attack steps. In contrast, our attack model include five
steps where each step consists of action(s) performed by
adversary and/or victim on microarchitectural resource(s)
MS which leads to a new MS. Note that the difference
between the interact and the transmit step is that the
former accesses and encodes the secret on MS while the
latter re-encodes the secret on shared MS.
We exemplify the abstract model by describing the

steps in the flush+reload [194] attack. This attack uses a
single shared microarchitectural resource, a shared cache
(SC). The goal of the attack is to infer the secret which
is revealed through the victim’s cache accesses because
of data-dependent control flow. A prerequisite for the
attack is that the cache lines of interest are mapped to
a shared page that is accessible by the adversary as well
as the victim. During the setup step, the adversary uses
the clflush instruction to evict the target line(s) belonging
to the shared pages from the cache. The fact that the
pages are shared allows the adversary to evict data that is
accessed by a victim. The state of the cache after this step
is MSP{RSC[{target}=miss]}. During the interact step the
victim executes and interacts with the secret which is
encoded in the SC state by the presence/absence of the
specific target cache line(s). The cache state changes to
MSE{RSC[{target]=hit]}. Since the cache is shared the
adversary can detect the state change that has occurred as a
result of the interaction. The adversary, during the receive
step, accesses the cache line(s) (target) and measures the
time. Through timing the adversary deduces which line(s)
the victim has inserted and thereby infers the secret.

2.2. Root causes

We define the root causes of an attack in the context
of the abstract model and exemplify with an actual attack.

2.2.1. Determinism. We define determinism as the char-
acteristic of a microarchitectural optimization whereby
microarchitectural resource(s) used by an optimization,
under the same pre-conditions, is/are triggered in the same
manner and cause a predictable microarchitectural state
transition and timing variation. In other words, determin-
ism causes an expected MS transition and timing variation
upon an action by the adversary and/or the victim. In

the abstract model of the attack, determinism enables the
adversary to control MS transitions from MSI through to
MSR across multiple steps.

2.2.2. Sharing. We define sharing as the characteristic
of a microarchitectural optimization whereby the state of
the microarchitectural resource(s) used by an optimization
is/are shared between a victim and an adversary. In the
abstract model sharing allows for the creation of a side-
channel between the victim and the adversary’s protection
domain through MS.

2.2.3. Access violation. We define access violation as
the characteristic of a microarchitectural optimization
whereby one/many microarchitectural resource(s) per-
mit(s) access to secret data at the microarchitectural level
which is outside the protection domain of the program.
This consequently enables information to flow outside
the intended protection domain and occurs either in the
interact or the receive step of the attack which causes
secret information to be encoded into MS.

2.2.4. Information flow. We define information flow as
the characteristic of a microarchitectural optimization to
exchange information through the state of one or many
microarchitectural resource(s). Information flow enables
the adversary to infer the secret by observing the state
change of microarchitectural resource(s).
The flush+reload attack, discussed earlier, exploits

determinism, sharing and information flow in each of the
steps of the attack. Determinism guarantees that the three
state transitions occur in the attack; firstly, the eviction
of the target line(s) from the cache in setup, followed
by insertion of a cache line in interact. Finally, timing
differences are observed based on the presence and/or
absence of specific cache lines in receive. Likewise, in-
formation flow and sharing guarantee that the secret is
encoded and communicated, through MS of the shared
SC, from the victim to the adversary, across the different
steps. Access violation is not exploited in this attack since
the interact step, executed by the victim, does not lead to
an access outside its own protection domain, i.e., there
is no access violation on the microarchitectural level. In
general, attacks can exploit a subset or all of the root
causes as we will show in Section 2.4 and 3.

2.3. Threat Model

We consider four types of threat models in our clas-
sification. Across the different threat models, the secret,
that the adversary attempts to steal, resides in a different
protection domain from that of the adversary.
An adversary can execute on a separate core from

the victim, referred to as CrossCore; be time-multiplexed
on the same core as the victim process, referred to as
SameThread; run on distinct SMT threads executing on
the same core, referred to as SMT or run in isolation,
referred to as Solo. In the Solo threat model the adversary
only needs to have a pointer to the location of the victims
data (kernel memory). The threat model determines which
set of microarchitectural resources are shared or private
in the attack setting on a given machine. A CrossCore
threat model leads to a scenario where fewer microarchi-
tectural resources are shared. In contrast, assuming the
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SameThread or the SMT threat model leads to potentially
more microarchitectural resources being shared between
victim and adversary, leading to a broader attack surface.
Another dimension of the threat model is based on

whether the adversary or the victim performs the different
actions in an attack. In a typical attack the adversary
performs one or more steps. However, it has been shown
that an adversary can manipulate the victim to perform
some of the required actions through the use of specific
gadgets. This is especially useful in scenarios where the
adversary does not have access to a shared microarchitec-
tural resource state to facilitate the MS transitions. This
strategy increase the scope of possible attacks even in
cases where the threat models limit the attack surface.
One example is the Spectre v2 attack [98] which

requires training the Branch Target Buffer (BTB) as part
of the setup step. Without gadgets such attacks would
only be possible with the SMT/SameThread threat models
since the BTB is not shared between cores. However, when
the victim can be manipulated to perform the training, a
CrossCore threat model can be used. The manipulation
from the adversary can be performed by calling a function
in the victims code with a controlled input, i.e., the action
of triggering a gadget. The gadget can be constructed
using Return Oriented Programming (ROP) [158] where
code snippets ending with a return instruction are used by
changing the return address and thereby chaining the dif-
ferent snippets together. However, these attack scenarios
depend on the availability of gadgets and/or vulnerabil-
ities, such as buffer overflows, and most have not been
demonstrated outside of specific environments [32].
For some optimizations and attack scenarios the side-

channel can be noisy and/or obscured by other optimiza-
tions, thereby making it difficult to decode the secrets
based on MS transition and the consequent timing vari-
ations. Amplification gadget(s) can be used by the adver-
sary to enhance the timing differences and ease the decod-
ing of the secret. A simple example is on the cache side-
channel, where prefetching can obscure the secret-related
accesses. This can be circumvented by using a linked
list [174] or by spreading accesses across pages [98]
since most prefetchers only target linear or strided access
patterns and do not prefetch across page boundaries.

2.4. Case Study

Next, we will describe an actual attack, Spectre v1, us-
ing the abstract model, the root causes we have identified
and the threat model, as a framework.

2.4.1. Spectre v1. Spectre v1 [98] leverages three differ-
ent optimizations: branch prediction, speculative execution
and a shared cache. The example code for the attack is
shown in Figure 2, where x is controlled by the adversary
and is used to represent the address delta between the base
address of array1 and the secret’s location. The attack
involves speculatively executing the if-clause code block,
by training the branch predictor to predict taken. When the
taken code block is speculatively executed the adversary
can cause speculative access to array2 indexed using
the adversary controlled x. Even when the speculatively

Figure 2. Example code for Spectre v1 attack [98].

Figure 3. MS transitions and actions in Spectre v1.

executed instructions are eventually rolled back this still
leaves a trace in the cache, as a consequence of the access
to array2, which is then used to infer the secret.
Figure 3 show an overview of the attack steps and MS

transitions. The setup step consists of (mis)training the
branch predictor Pattern History Table (PHT) by adver-
sary/victim to change the prediction for the targeted con-
ditional branch from MSI{RPHT[[target]=Not taken]} to
MSP{RPHT[[target]=Taken]}. The necessary (mis)training
can either be performed by the adversary, restricting the
threat model to SMT/SameThread, or be performed by the
victim. To make the victim perform the (mis)training of
the specific conditional branch a gadget must be located
in the victim binary containing instructions which execute
and train the target PHT entry to mispredict on the condi-
tional branch. Setup of the SC, as in flush+reload, is also
needed since it will be used later in the transmit step.
In the interact step the victim executes speculatively

and accesses the secret because of the (mis)prediction.
Speculative execution allows the CPU to temporar-
ily violate program semantics by transiently execut-
ing code that accesses the secret and leave a trace
in the MS. In the transmit step the secret is re-
encoded in the state of another microarchitectural resource
through a secret dependent access to the SC (load (se-
cret*page size)). This access causes the SC to transition to
MST{RSC[{(secret*page size)}=hit]}. The MS transition
occurs before the processor detects that the speculative
execution was erroneous and rolls back the register state,
leaving a trace in the state of the SC. In the receive step
the adversary accesses the cache, measures the time and
infers the secret based on timing variations for cache lines.
The root causes which enable this attack are deter-

minism, sharing, access violation and information flow.
Determinism guarantees that, the adversary can cause
a PHT state update in an intended entry in the setup
step, which is then used in the interact step. In addition,
determinism ensures that the SC becomes primed, as a
result of the flush, in setup and that the secret-dependent
loads will result in timing variations corresponding to the
presence/absence of lines observed in the receive step.
Access violation enables access to the secret which resides
in a different protection domain, through speculative exe-
cution. Sharing is exploited in both the PHT and the SC
during the setup step and in the cache during the receive
step. Information flow is allowed through each of the state
of the shared resources, across the different attack steps.

3. Systematization of Attacks

In this section we use the abstract model, the root
causes and the threat model as a framework to systematize
attacks on a broad set of microarchitectural optimizations.
We describe a typical attack on each optimization and
analyze the necessary root causes exploited in the different
steps of the attack. We group attacks wherever possible
and also discuss dissimilarities between the attacks on the
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same microarchitecture optimization. Note that the goal of
this analysis is not to exhaustively discuss all the attacks
proposed in literature. Rather, through the discussion, our
aim is to highlight commonalities and differences across
different attacks that target a microarchitectural optimiza-
tion by addressing the following questions:

1) Which microarchitectural resource(s) are ex-
ploited in an attack?

2) Which root cause(s) are necessary to enable the
attack and in which attack step(s)?

3) Under which threat model(s) is/are the attacks
possible?

To simplify the discussion, we categorize the mi-
croarchitectural optimizations into two broad groups –
non-transient and transient optimizations – and analyze
attacks on each of them. The systematization of attacks
is presented in Table 1. Finally, we also analyse security
vulnerabilities in value prediction to demonstrate that our
framework can identify new attacks.

3.1. Non-transient attacks

3.1.1. Cache. The last-level cache is typically shared
among cores to improve cache utilization and to reduce
costly off-chip accesses. The SC is vulnerable to side-
channel attacks and is an attractive attack surface be-
cause of the channel characteristics (i.e., low noise and
high attack bandwidth [163]). There exist three high-
level attack categories: i) reuse-based [66], [70], [87],
[194] where data is shared between adversary and victim
allowing both to access it, ii) conflict-based [86], [91],
[112], [133], [134], [138], where an adversary creates
conflicts to evict target lines belonging to the victim,
and iii) observation-based [67], [162], i.e., brute-force
conflicts. In observation-based attacks the conflicts and
observed behaviour relates to the cache as a whole and is
not restricted to a selected target set/line, as in conflict-
based attacks. Furthermore, in our classification, attacks
that rely on port contention [20], [195] fall in the conflict-
based attack category. We note that these categories are
common across attacks on other shared resources and have
implications for the defense strategies (see Section 4).
Prime+probe [138], a typical conflict-based attack

[86], [91], [112], [133], [134], [138], is used in the absence
of data sharing between an adversary and a victim. The
threat model is CrossCore, since the SC is shared between
cores. In the setup step, the adversary first finds the set
of cache lines (eviction-set) which will create conflicts
in the targeted index shared with cache lines belonging
to the victim and evict them from the cache. The state
changes to MSP{RSC[[target]=Aadversary]} for all the lines
in the target index. Next, in the interact step, the victim
accesses the secret during execution which is in turn
encoded in the SC state through the presence/absence
of the specific cache line(s). The state can change to
MSE{RSC[[target]=Bvictim]} for at least one line. In the
receive step the adversary re-accesses the primed cache
line(s) and based on the timing variations infers the secret.
The root causes determinism, sharing and information

flow enable the attack, as shown in Table 1. Determinism
provides different guarantees in the three steps of the
attack. First, in the setup step it ensures that conflicts can

be created at a specific index in the cache which causes an
eviction of the targeted cache line. Second, in the interact
step it ensures the secret is encoded through the MS of the
SC. Third, it also causes a timing variation corresponding
to the presence/absence of the cache line. Sharing and
information flow ensures that the secret is encoded and
communicated, through MS of the SC, from the victim to
the adversary, across the different steps.

Observation-based attacks [67], [162] work by observ-
ing set conflicts in all the sets in the cache instead of
actively causing them in a few sets like prime+probe.
These attacks leverage the observation that the same con-
flict patterns will re-occur because the cache behavior
of a program is deterministic. An alternative setup step
is used, without relying on using clflush or a specific
eviction-set, which involves accessing a large buffer [124],
[154], [162] to flush all cache lines in the SC and creating
conflicts across all the sets in the cache. This approach,
however, has the drawback of a lower bandwidth since
filling the SC is time consuming. These observation-based
attacks are challenging to defend against since they rely on
determinism and the shared MS of the SC in the interact
and receive steps. This limits defenses that can be used to
avoid the attack (for details see Section 4.1.1).

A number of attacks show that other state can also
be used for attacks, such as the state of replacement
metadata [96], cache coherence [72], [173], way predic-
tion [112], interconnect [135], [184], cache banks [195],
a translation-lookaside buffer (TLB) [60], [171] or a
memory management unit (MMU) [178]. Using other
microarchitecture resource state (related to SC) makes it
possible to circumvent defenses targetting SC. Van Schaik
et al. [178] propose a prime+probe-like attack where an
eviction-set is found and used in the MMU instead of the
SC to overcome defenses targeting conflict-based attacks
in the SC. Wan et al. [184] show an attack using temporal
contention on the mesh interconnect, while Paccagnella et
al. [135] show an attack on the ring interconnect. These
attacks exploit determinism, sharing and information flow
as previously discussed in the SC attacks. However, shar-
ing in other microarchitectural resources such as theMMU
or the interconnect are exploited, instead of the SC. We
do not exhaustively cover all SC related attacks since our
goal is to discuss a representative set to demonstrate the
applicability of our framework.

3.1.2. Prefetching. Prefetchers predict addresses that will
be used by a program and proactively fetches them to
help hide memory access latency. The attacks exploiting
prefetching can be broadly grouped into two fundamen-
tally different categories, 1) SW-based and 2) HW-based.
Attacks that belong to the latter category exploit the avail-
ability of a HW prefetcher (microarchitectural resource)
and specifically utilize theMS of the prefetch tables and/or
the SC as the side channel while attacks that belong to
the former category exploit different prefetch instructions
directly which exhibit different timing depending on the
state of the TLB and/or the SC. The attacks exploiting
SW-based and HW-based prefetching mechanisms can be
grouped into two categories, 1A and 2A) which exploit the
lack of permissions check and 1B and 2B) which exploit
a secret/state dependent variations.
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Microarchitectural Attack(s) Resource(s) Attack steps Threat
optimization AS AI AT AR model
Shared cache (SC) flush+flush [66], flush+reload [70], [87], [194] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1,2,3

prime+probe [86], [91], [133], [134], [138] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1,2,3

observation [162], C5 [124] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1

collide+probe [112] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 2

load+reload [112] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 3

xlate+probe/abort [178] RSC, RMMU D/S/I [A] D/S/I [V] - D/S/I [A] 1,2,3

TLBleed [60], [171] RSC, RTLB D/S/I [A] D/S/I [V] - D/S/I [A] 2,3

CacheBleed [195] RSCT
bank

D/S/I [A] D/S/I [V] - D/S/I [A] 3

MemJam [127] RSC D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3

LoR [135] RringT D/S/I [A] D/S/I [V] - D/S/I [A] 1

MeshUp [184] MeshAround [42] RmeshT D/S/I [A] D/S/I [V] - D/S/I [A] 1

CacheTiming [20], [175] RSC - [A] D/I [V*] - D/I [A] 1/-2̂

Prefetching (P) Prefetch SCAs [65], [111] RSC,RTLB D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3

prefetch+reload, prefetch+prefetch [72] RSC D/S/I [A] D/S/I [V] - D/S/I [A] 1

LeakingControlFlow [37] RP,RSC,RTLB D/S/I [A] D/S/A/I [V] D/S/I [V] D/S/I [A] 2,3

DMP [149], [181] RP,RSC D/S/I [V*/A] D/S/A/I [V*/A] D/S/I [V*/A] D/S/I [A] 2

Unveiling [161] RP,RSC D/S/I [A] D/S/I [V] D/S/I [V] D/I [A] 1,2,3

FetchingTale [41] RP,RSC D/S/I [A] D/S/I [V] D/S/I [V] D/S/I [A] 2,3

Branch JumpOverASLR [47] RBTB D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3

prediction (BP) PredictingKeys [1]–[3], [47] RBTB D/S/I [A] D/S/I [V] - D/S/I [A] 2,3

BranchScope [49] RPHT D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3

BranchShadowing [107] RPHT,RLRB D/S/I [A] D/S/A/I [V] - D/S/I [A] 2,3

Computational Subnormal FP [13], [100] RFPU (D/S/I)1 [A] D (S/I)1 [V] - (D/S/I)1 [A] -

simplification (CS) Early termination [62] RMUL - [A] D [V*] - - [A] 2,3

Transient attacks: Spectre v1 [98], [173], v1.1 [97] RSC,RPHT,RBHB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2

Speculation-based Spectre v2 [17], [36], [98], [190] RSC,RBTB,RBHB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2

Spectre v4 [125], LVI [177] RSC,RSTL D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2

Spectre v5 (ret2spec) [102], [121] RSC,RRSB,RBTB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2

BranchSpec [88] RPHT D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2,3

NetSpectre [154] RPHT,RAVX2/RSC D/S/I [V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] -2

CROSSTALK [143] RSC,RLFB,Rstaging buf. D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1

SMoTherSpectre [23] RSC,RPHT,RportsT D/S/I [A] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 3

SpectreRewind [51] RSC,RBTB,RportsT D/S/I [A] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2,3

Speculative interference [19] RSC,RBTB,RMSHR,RRS,REUT D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2,3

ROB cont. [4] RPHT,RROB D/S/I [A/V*] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 1,2,3

Transient attacks: Meltdown [113], [173] RSC,RBTB [PF-US] D/I [A] D/S/A/I [A] D/I [A] D/I [A] 4

Exception-based Foreshadow [176], [188] RSC,RTLB [PF-P] D/I [A] D/S/A/I [A] D/I [A] D/I [A] 4

Spectre1.2 [97] RSC,RTLB [PF-RW] D/I [A] D/S/A/I [A] D/I [A] D/I [A] 4

LazyFP [165] RSC,RFPU,RSIMD [#NM] D/S/I [V] D/S/A/I [A] D/I [A] D/I [A] 2,3

Fallout [126] RSC,RSB D/S/I [A] D/S/A/I [A&V] D/I [A] D/I [A] 2,3

RIDL [179] ZombieLoad [152] RSC,RLFB D/S/I [A] D/S/A/I [A&V] D/I [A] D/I [A] 2,3

LVI [177] RSC,RFPU,RSB,RLFB [PF] D/S/I [A] D/S/I [V*] D/S/A/I [V*] D/S/I [A] 2,3,4
TABLE 1. ATTACK SYSTEMATIZATION. ROOT CAUSES: DETERMINISM (D), SHARING (S), ACCESS VIOLATION (A), INFORMATION FLOW (I).
ATTACK STEPS: SETUP (AS ), INTERACT (AI ), TRANSMIT (AT ), RECEIVE (AR), PERFORMED BY ADVERSARY [A] OR VICTIM [V]. GADGET*.

THREAT MODELS: 1) CROSSCORE, 2) SAMETHREAD, 3) SMT, 4) SOLO.1IN SW.2REMOTE.T TEMPORAL RESOURCE.

One typical attack from category 1A, a SW-based
attack that exploits the lack of permissions check, is the
address-translation attack by Gruss et al. [65] where the
goal of the attack is to translate between virtual and
physical addresses from unprivileged user-space and over-
come the protection provided by user-space and kernel-
space Address Space Layout Randomization (ASLR). We
focus on the first phase of the attack where the adver-
sary searches through possible addresses and tests if two
virtual addresses, a and a′, map to the same physical
address by performing the attack. Here, address a′ can
be a kernel address or a non-mapped address and not
be directly accessible to the adversary. In the setup step,
the adversary flushes the candidate collision address, a.
The state changes toMSP{RSC[{a}=miss]}. In the interact
step, the adversary prefetches the address a′, and performs
an access violation. The access violation is due to spec-
ulative dereferencing of kernel-space registers from user-
space [155], and not because of the prefetch instruction
as suggested by Gruss et al. [65]. The state can change to
MSE{RSC[{a′}=hit]}. In the receive step, the adversary
accesses address a and based on the timing variations
infers if there is a match between a and a′.
The root causes exploited by the attack are determin-

ism, sharing, access violation and information flow, as
shown in Table 1. Determinism enables all the three steps
of the attack. First, in setup step, it causes the cache line

corresponding to a to be evicted. Second, in the interact
step, it causes the prefetch of a′ to be encoded through the
MS of the SC. Third, it makes timing variation to be ob-
served corresponding to the presence/absence of the cache
line. Access violation enables the attack by permitting the
adversary to prefetch inaccessible address(es). Sharing and
information flow guarantees that the secret is encoded and
communicated, through MS of the SC.
In the second category in SW-based attacks, 1B,

the attacks [72] use a SW-controlled prefetch instruc-
tion (PREFETCHW), in the setup and the receive, to
reveal cryptographic keys through the (coherence) state-
dependent timing variation for prefetch instructions.
The attacks in category 2A, HW-based without per-

missions check, use HW prefetchers to prefetch addresses
outside of a sand-box [181] or in kernel-space [37]. The
prefetcher is trained in the setup step, in order to issue a
prefetch to the target address in the interact step. Chen
et al. [37] show that an adversary trained prefetcher can
prefetch kernel addresses. In [181] a data memory-
dependent prefetcher (DMP) is trained to perform out-of-
bounds reads on pointers, since the prefetcher is allowed to
use memory content to prefetch irregular address patterns.
The root causes exploited by the attacks are determinism,
sharing, access violation and information flow. In both
attacks, the state of the prefetcher and SC are primed
to access secrets in the interact step and transmit them
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through SC state leading to timing difference in the receive
step. Access violation is exploited in the interact step
since the prefetch is issued without permission checks.
Lastly, the attacks [37], [161] in category 2B, leak se-

crets through secret data-dependent prefetching pattern(s).
Both conflict-based [41] and reuse-based attacks [37] have
been explored using prefetch tables entries in this cat-
egory. Similar to the previously discussed attacks using
SW-based prefetching, which also leak secrets through
secret/state dependent prefetch access patterns, the root
causes are determinism, sharing and information flow.

3.1.3. Branch prediction. Branch predictors record his-
tory of branch outcomes in order to predict the direction
of control flow after a branch instruction, to improve
instruction flow. There are two high-level strategies for
attacks using the branch predictor, reuse-based [49], [98],
[107] where entries set by one process may influence the
other and conflict-based [1]–[3], [47] where contention is
used to evict the entry inserted by the other process.
A typical conflict-based attack is JumpOverASLR [47]

where the goal of the adversary is to determine the po-
sition of a code block in the address space of a victim.
Knowing the position of a code block can help break the
protection provided by ASLR since the randomization is
based on an offset. The attack is launched multiple times
using different index values, searching for a collision in
the BTB. A collision in the BTB can be used to infer the
address used by the victim and the offset used by ASLR.
In the setup step, the adversary inserts an entry in the BTB
which might create a collision with the entry later inserted
by the victim code. This changes the MS to primed
MSP{RBTB[[indexI]=addr. A]}. Next, in the interact step,
the victim can insert a different target address at the same
BTB position, creating a collision. The state transitions
to MSE{RBTB[[indexI]=addr. B]}. In the receive step the
adversary executes code which will trigger the BTB entry
at indexI and measures the execution time. If the BTB entry
was changed by the victim it would result in a longer
execution time since the target address is incorrect (B
instead of A).
The root causes which enable this attack are determin-

ism, sharing and information flow, as shown in Table 1.
Determinism guarantees that, the adversary can cause a
BTB state update in an intended entry, induce a conflict
on the same entry when the victim executes and measure
timing variations due to the conflict. Likewise, information
flow and sharing guarantee that the secret is encoded and
communicated, through MS of the BTB, from the victim
to the adversary, across the different steps. Note that
this attack is restricted to the SameThread threat model
(although it can be applied in SMT) and does not extend
to CrossCore because BTB state is not shared across cores.
There also exist conflict-based attacks which exploit

the observation that branch predictions can reveal data-
dependent control flow [1]–[3]. For example in [2] secrets
are inferred based on the predictions made in the BTB.
Reuse-based attacks mostly use the PHT instead of

the BTB [49]. In BranchScope [49], the branch predictor
is manipulated into using only the directional branch
predictor, PHT, where the directional prediction inserted
by the adversary is changed by the victim which reveal
the direction of conditional branches. The attack can also

be used against SGX enclaves, since the PHT is shared
between processes executing in SGX and outside. The
same root causes as in JumpOverASLR enable the attack.

3.1.4. Computational simplification. Computational
simplification comprises techniques which eliminate
or simplify instruction execution. One example is the
zero-skip multiplier and the same principle can be
applied on different instruction types such as square root,
AND/OR and to different pipeline stages. Attacks on
this type of optimizations have been studied [13], [40],
[62]. In [13] an attack is described using subnormals
in a floating-point division unit, to create visible timing
differences. Großschädl et al. [62] describe an attack
using early-termination of multiplication where the
multiplication is terminated when all remaining digits are
zero, creating observable timing differences. The goal
of the attack is to leak secret keys from cryptographic
SW such as RSA. There are two prerequisites of the
attack: Firstly, that the adversary is able to control the
plaintext which will be encrypted and, secondly, that
the timing can be observed on a side-channel. In the
setup the adversary calls the cryptographic function
on the victim with a plaintext. In the interact step the
victim encrypts the plaintext and will experience different
timings depending on the values of the key. Großschädl
et al. do not describe which side-channel could be used
in order to allow the adversary to observe the timing
difference. We note that either the MS of the SC or
execution unit contention could be used. A gadget is
likely needed at the victim for re-encoding of the secret
to the side-channel.
The root cause exploited is determinism which enables

the data-dependent behaviour of the early-termination op-
timization and the timing variability. In addition, the side-
channel, which enables the adversary to observe the timing
differences, exploits sharing and information flow.

3.2. Transient attacks

We finally discuss transient execution attacks which
exploit speculative out-of-order (OoO) execution to exe-
cute code transiently (i.e., executed but never committed).
We use the categorization provided in related works [32],
which divide the transient attacks broadly into two groups,
speculation-based [4], [19], [23], [36], [51], [88], [98],
[121], [125], [143], [154] and exception-based [97], [113],
[126], [165], [173], [176], [177], [179] attacks.

3.2.1. Speculation-based attacks. The attacks that fall
in this category exploit transient execution, due to branch
prediction and/or address/value speculation, to access the
secret. An overview of the attacks is shown in Table 1.
Spectre v2 [98] is a typical speculation-based attack. The
attack exploits an indirect branch to execute a gadget
which interacts with the secret in the victims protection
domain, leaving a trace in the MS. The prerequisites are
an indirect branch that can be (mis)trained and a known
gadget in the victim’s binary that can be manipulated to
interact with the secret. The threat models are SameThread
and SMT, since BTB is a resource private to a core. How-
ever, CrossCore can be used if a gadget is used to make
the victim perform the (mis)training. In the setup step
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the adversary/victim (mis)trains the BTB to insert a new
entry containing the address of the gadget for the indirect
branch. The state changes toMSP{RBTB[[indextarget]=addr.
Agadget]}. The root causes in the setup step are determin-
ism, sharing and information flow. Determinism guaran-
tees that the adversary can cause a BTB state update in an
intended entry, while sharing and information flow enables
the state change caused in the BTB to be observed by the
victim. Note that setup of the SC is also performed, i.e.,
clflush, since it will be used later in the transmit step.
Next, in the interact step, the victim executes the

gadget speculatively, accesses the secret and changes the
MS. The root causes are determinism, access violation
and information flow. Determinism guarantees that the
(mis)trained BTB entry is used. Access violation enables
access to the secret through execution of the gadget which
results in temporary violation of program semantics, i.e.,
instructions that access the secret are executed and are
later squashed. In the transmit step, the secret is re-
encoded in the state of the SC, by issuing load(s) to the
target address(es) by the victim. The root causes exploited
are determinism and sharing and information flow, since
the SC contains the cache line(s) and the MS of SC is
shared between the adversary and the victim. Finally, in
the receive step the adversary accesses the target cache
line(s) and based on the timing variations infers the secret.
The root causes are the same as in the previous step,
with the difference that determinism ensures observable
timing variations based on the state of the SC, i.e., the
presence/absence of the target cache line(s).
In contrast to Spectre v2, which uses the BTB, other

Spectre variants exploit different microarchitectural re-
sources to manipulate the control flow, e.g., PHT [98],
the Return Stack Buffer (RSB) [102], [121]. In addition,
address speculation has been targeted for manipulating
Store-To-Load (STL) forwarding that happens in the Load-
Store Queue (LSQ) [125]. Many of these attack variants
use SC as the side-channel for transmission.
Next, we discuss attacks which are more restrictive

since other microarchitectural resource(s) (not SC) is/are
used for the transmission of the secret. One example is
BranchSpec [88] where the PHT is used in the transmit
and receive step. The root causes exploited by the attack
are the same as in Spectre v2, while the threat model is
more restrictive since the PHT, used as the side-channel, is
not shared between cores. Another attack, SMoTherSpec-
tre [23], uses port contention to encode the secret and
transmit to a co-running SMT thread. Likewise, temporal
contention in the floating-point division unit is exploited
in SpectreRewind [51]. Like SpectreRewind, the attack
proposed by Behnia et al. [19] shows that the secret can
be encoded by affecting the timing and order of older
instructions, which are issued before the secret dependent
instruction(s) in program order. This is in contrast to prior
works [93], [108], [192] that focus on studying the secret-
dependent effect on younger instructions, issued after the
secret dependent instruction(s). In the attack, the non-
speculative instructions timing is affected either through
the miss status handling register (MSHR) or execution
unit contention. As an example, let’s consider the attack
using the MSHR described by Behnia et al. [19]. In the
setup step the adversary evicts a number of cache lines
Y . In the interact step, a gadget, depending on the secret

value, either issues independent loads to the cache lines
Y (filling up the MSHR entries) or issues loads to the
same cache line (using one entry in the MSHR). When
the target victim load occurs it will experience different
timing depending on the MS of the MSHR.

3.2.2. Exception-based attacks. The attacks that fall in
this category exploit transient execution, due to delayed
exception handling to access the secret. Meltdown [113]
is a typical attack from this category where the adver-
sary exploits transient execution due to delayed exception
handling, to read arbitrary kernel memory. In the setup
step, the adversary causes an exception by accessing a
kernel address that resides in a kernel memory page
without suitable permissions causing a page fault, e.g.,
PF-US. Because of the deferred exception handling the
execution continues transiently. In the interact step, the
adversary executes code that uses the loaded value from
the faulting kernel address. Suppressing the exception
enables the transient execution to continue [113]. In the
transmit step, the secret is encoded in the MS of the SC,
through a load to the data buffer, in order for the adversary
to retain the information after the transient execution is
rolled back after exception handling. In the receive step,
the secret is inferred from the state of the SC, through the
presence/absence of cache line(s). Note that all the steps
of the attack are performed by the adversary.
The root causes enabling the attack are determinism,

sharing, access violation and information flow (Table 1).
Determinism ensures transient execution due to delayed
exception handling in the setup step and that the secret is
encoded in the state of the SC in the interact step. Sharing
enables the access from the adversary to the victim kernel
address in the interact step i.e., the adversary has access
to a pointer that points to the location of the (kernel) data.
Access violation enables the adversary, in the interact
step, to access kernel data which it does not have the
right privileges to access. Information flow enables the
transiently accessed secrets to be communicated to the
non-transient execution, through the MS of the SC.
Attacks have shown that different types of exceptions,

i.e., page fault (PF), can be used in the setup step. For
instance, Foreshadow uses PF-P [176], [188], Spectre
v1.2 [97] uses PF-RW while LazyFP [165] uses #NM
(device not available). Other types of page fault excep-
tions can also be used as shown by Canella et al. [32].
Furthermore, in addition to reading from kernel memory,
attacks have also exploited delayed exception handling to
leak data across addresses spaces, virtual machines and
even from secure enclaves [176], [188].
Another group of attacks, referred to as the microar-

chitectural data sampling (MDS) attacks, exploits the state
of internal buffers in the CPU, as the Line Fill Buffers
(LFBs) [152], [179] or the Store Buffer (SB) [126], in
conjunction with delayed exception handling. Specifically,
the attacks leverage the observation that values from these
buffers can be leaked as a consequence of accesses that
trigger an exception. In the ZombieLoad v1 attack [152]
the adversary uses the kernel virtual address (k) cor-
responding to the user-space address of the victim (u)
where the secret resides. Both virtual addresses k and u
map to the same physical address s. In the setup step,
the adversary monitors the victim by performing repeated
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flush+reload attacks on the address corresponding to the
instruction just before the loading of the secret. This
enables the attacker to synchronize with the victim and
determine when it can start accessing the state of the
buffers to retrieve the secret. In addition, the contents
of the data buffer are also flushed from the SC. Next,
in the interact step, the victim performs the load of the
secret key, load u. This load operation will cause the
secret to be inserted in the LFB (on a cache miss). The
adversary performs a faulting load i.e. the ZombieLoad,
to the kernel address of the secret (load k), which causes
the adversary to retrieve the secret from the LFB. In the
transmit step, the adversary uses the secret as an index
to a data buffer to encode the secret into the MS of the
SC, before the transient execution is rolled back. In the
receive step, the adversary accesses the data buffer entries
to infer the secret based on the timing variations arising
due to SC state. In contrast to Meltdown, victim’s accesses
cause the secret to be inserted in the internal buffers
which are then leaked by loads that trigger exceptions. All
four root causes enable this attack. Determinism enables
all the steps of the attack while sharing the MS of the
LFB allows for information flow between the victim and
the adversary. Access violation occurs during transient
execution when the adversary is allowed to read stale
data from the LFB. Unlike the MDS attacks discussed
previously, Load Value Injection (LVI) [177] uses the
different types of exception-based vulnerabilities to inject
data/code and control victim’s execution by controlling the
values in the internal CPU buffers. This attack exploits the
same root causes as the MDS attacks discussed previously.

3.3. Vulnerable optimization

We discuss potential attacks on value prediction which
have not been explored in literature [43], [149].

Value prediction (VP) is a speculative optimization
that aims to increase instruction-level parallelism (ILP)
and hide memory access latency by predicting values
for load misses and consequently breaking instruction
dependencies [109], [110], [137], [157], [159]. Accurate
predictions can improve ILP by increasing the overlap be-
tween memory access(es) and useful computation(s) while
mispredictions lead to pipeline squashes and re-execution
of instruction(s). In a nutshell, VP is implemented using
table-based structures (microarchitectural resource) which
sample history to enable prediction.
Reuse-based and conflict-based attacks have been re-

cently demonstrated [43], [149] on VP. Reuse attack vari-
ants exploit the reuse behavior whereby the victim trains
the predictor leading to the secret being encoded in the
predictor state, which is then accessed by the adversary.
In conflict attack variants, the victim induces conflicts in
the predictor state tables through secret dependent usage,
which is monitored by the adversary to infer secrets. The
attack steps and the MS transitions are similar to those
described for the attacks on the branch predictor (albeit
on a different resource).
A new possible class of attacks on VP, akin to injection

attacks such as LVI [177], involves letting the adversary
(mis)train the predictor while simultaneously causing the
victim to use the (mis)trained value. This can induce
the victim to access a secret transiently (cause an access

violation) through a gadget , which can then be leaked to
the adversary through a side-channel, such as the SC. The
root causes exploited by the aforementioned attack are de-
terminism, sharing, access violation and information flow.
Determinism permits the MS of the prediction table to be
accessed and manipulated by the attacker and accessed by
the victim. Sharing permits the MS of the prediction tables
to be accessible to both the adversary and the victim while
information flow is enabled through shared MS between
adversary and victim. Access violation is exploited since
the predictions cause the adversary and/or the victim to
access data from outside the intended protection domain.
This class of attacks on the VP can be used to achieve a
similar effect as Spectre v2 and Spectre v4 variants since
predicted load values can be used to manipulate control
flow and induce secret dependent accesses. Furthermore,
defenses tailored for the BTB and STL forwarding may not
be effective at thwarting attacks using the VP. We discuss
potential defenses for these attacks in Section 5.

4. Systematization of Defenses
We present a systematization of defenses against at-

tacks targeting different transient and non-transient mi-
croarchitectural optimizations. We discuss optimizations
for which several attacks and defenses exist in literature:
cache, prefetching, branch prediction, computational sim-
plification and transient execution attacks. For each of the
defenses, we discuss which root cause(s) and attack step(s)
the defenses target. Table 1 show the different root causes
for each attack, which can be targeted by a defense. We
also categorize defenses into groups, wherever possible, in
case there are similarities. In addition, we also describe
the protection level offered against the discussed attacks
using the resources and the threat model(s) targeted by the
defense. Typically, eliminating any of the root causes, ex-
ploited in an attack, in any of the attack steps can provide
protection only for specific microarchitectural resource(s)
targeted under specific threat model(s). Note that a defense
can provide protection against an attack while still leaking
(some) information. We therefore classify a defense as
fully protected only when there is no leakage through
the resource(s) targeted by an attack. Our goal is not to
exhaustively cover defenses against all possible attacks
targeting a microarchitectural optimization. Rather, it is
to explore broad defense strategies, in which attack step
and root cause they can be applied and their limitations.

4.1. Defenses against non-transient attacks

4.1.1. Cache. Several defenses have been proposed for
securing the shared cache against side-channel attacks.
We have classified defenses for the SC based on the root
cause(s) and attack step(s) they target, into different cate-
gories, see Table 2. Each row in the table groups defenses
based on the root causes restricted in the different attack
step(s) and the targeted microarchitectural resource(s).
Disabling clflush [193], [194] only addresses reuse-

based attacks which typically uses the instruction in the
setup step. This affects the three root causes determinism,
sharing and information flow primarily in the setup step.
The defenses in the next category, partitioning (part.),

target sharing and information flow, in all the attack
steps, by providing isolation between processes/threads.
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Defense Res. Attack step Threat P
AS AI AT AR model

disable clflush [193], [194] RSC D/S/I - - - 1,2,3 ��
part.: [44], [71], [114], [186] RSC D/S/I D/S/I - D/S/I 1,2 ��

[94], [150], [156], [185] RSC D/S/I D/S/I - D/S/I 1,2 ��
part.: static [27], [96], [132] RSC D/S/I D/S/I - D/S/I 1,2 �
rand. [116], [141], [142], [172] RSC D/I D/I - D/I 1,2 ��

[167], [189] RSC D/I D/I - D/I 1,2 ��
repl. [45], [90], [92], [115], [146], [186] RSC D/I D/I - D/I 1,2 ��
const. time [21], [22], [40] - - D/I - - 1,2,3 �
TABLE 2. DEFENSES FOR ATTACKS USING THE SC. PROTECTION

(P): FULL�/PARTIAL��.
[27], [71], [73], [94], [96], [114], [131], [132], [136],
[150], [156], [185], [186]. Partitioning can, in principle,
provide full protection against reuse-based, conflict-based
and observation-based attacks where victim and adversary
share the SC state. However, the defenses provide different
levels of protection depending on the level of isolation,
i.e., whether all or only some of the data is partitioned.
For example, MI6 and IRONHIDE [27], [132] statically
partition both SC and DRAM and can thereby enable full
protection of the SC, albeit at a higher performance cost.
In contrast, STEALTHMEM [94] only provides partial
protection for a limited number of cache lines per core,
which are not allowed to be evicted. This will lead to
higher performance but also a lower protection level, since
the state of the unprotected cache lines are shared.

The next category, randomization (rand.), targets
conflict-based attacks and is typically achieved by mod-
ifying the mapping of addresses to sets in the SC [116],
[141], [142], [167], [172], [189]. Randomization target
determinism and information flow. The strategy affects
determinism by complicating the process of creating an
eviction-set needed to evict a target cache line at a specific
address. The change in mapping leads to limited informa-
tion flow. This makes randomization effective especially
against conflict-based attacks. However, in spite of de-
fense, the SC is still shared and insertions by the adversary
can result in evictions for the victim process and vice
versa. This limits the effectiveness against observation-
based attacks since the working-set size of an application
can be observed and can be leveraged by attacks [54].

The category replacement-based defenses (repl.) – in-
sertion and/or eviction – leverage randomization to pro-
vide protection [45], [90], [92], [115], [146], [186]. These
proposals mainly target determinism and information flow
through the SC state. Specifically, through randomising
insertion and/or eviction, the SC do not react in the same
way under the same preconditions. Information flow is
limited by reducing/avoiding set conflicts, i.e., by pre-
venting an adversary from evicting data inserted by the
victim. These defenses offer protection but eventually leak
information since determinism, sharing and information
flow in the SC are not completely eliminated [166].

Lastly, constant-time programming paradigm [21],
[22], [40] can be used to avoid data-dependent implemen-
tations which affects determinism and information flow.
However, this is challenging to utilize in practice since it
cannot be generically applied.

4.1.2. Prefetching. Existing defenses to protect against
prefetch-based attacks can be categorized broadly into
different groups, as shown in Table 3. Disabling the
prefetcher [37], [41], [111], [161] impacts determinism,
sharing, access violation and information flow, in all the
attack steps. This strategy is equally applicable to attacks

Defense Res. Attack step Threat P
AS AI AT AR model

disable [37], [41], [111], [161] RPref. D/S/I D/S/A/I - D/S/A/I 1,2,3 �
privilege checks [65] RPref. - A - A 1,2,3 ��
kernel/user isol. [64] RTLB - S/A/I - - 2 ��
flush [37], [41] RPref. I I - I 2 ��
replicate [37], [41] RPref. S/I S/I - S/I 2 ��
const. time [22], [40], [59], [161] - - D/I - - 1,2,3 ��
SC defenses RSC D/S/I - - D/S/I 1,2,3 ��
TABLE 3. DEFENSES FOR ATTACKS USING THE PREFETCHER.

using HW- or SW-based prefetching. However, the per-
formance cost can be high since prefetching can provide
significant speedups.
The defense in the second group, by Gruss et al. [65],

propose introducing privilege checks on prefetch instruc-
tions. This would cause a segmentation fault when there
is an attempt to prefetch kernel data. This prevents access
violation in the interact step and affect all SW- and
HW-based attacks that exploit the lack of permission
checks [37], [65], [111], [149], [181].
Another strategy is to provide stronger isolation be-

tween kernel and user-space to protect against attacks that
leverage the lack of permission checks [64]. This approach
has been adopted in both Linux [56] and Windows [89].
This would provide protection against SW-based attacks
using the prefetch instruction [65], [111] and against HW-
based attacks [37], [149], [181]. This approach restricts
sharing and information flow through the page tables (and
TLB), in the interact step of the attack.
The next group of defenses targets attacks that ex-

ploit the state of HW-based prefetchers (prefetch tables).
Specifically, these defenses replicate and flush prefetcher
state at context switches [37], [41]. This ensures that state
is no longer shared across context switches which restricts
sharing and information flow. This only affects the HW-
based attacks which rely on MS in the prefetcher. Further-
more, the threat model targeted is limited to SameThread
since the technique does not affect concurrently executing
SMT threads sharing prefetcher state.
Another strategy is to change the SW implementa-

tion to ensure that any prefetch activity is not dependent
on any secret. This would affect the attacks relying on
data-dependent execution paths and observing prefetch
patterns [37], [72], [161]. This can be achieved using
constant-time programming practices [21], [161], for ex-
ample, rewriting table based look-ups to be immune to
prefetches [59], [161]. This strategy affects determinism
and information flow and can theoretically protect against
attacks that exploit prefetch patterns. However, it is chal-
lenging to implement this broadly in practice.
Lastly, it should be noted that some of the attacks rely

on the shared state of the SC [37], [65], [72], [161], [181].
The defenses proposed for the SC could be used to defend
against these attacks as well.

4.1.3. Branch prediction. The defenses against branch-
prediction based attacks can be grouped into five cate-
gories, see Table 4. The first group relies on SW-based
techniques, as if-conversion, where the compiler restruc-
tures code to avoid conditional branches and use predica-
tion instead [38]. This restricts determinism, sharing and
information flow since branching is avoided and is akin to
disabling the direction prediction. However, the applicabil-
ity to real-world code with complex control flow is limited
[49]. Furthermore, highly predictable branches have been
shown to perform poorly when if-converted [38].
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Defense Resource Attack step Threat P
AS AI AT AR model

if-conversion [38], [49] - D/S/I D/S/I - D/S/I 2,3 �
enc.: [106] RBTB/RPHT D/I D/I - D/I 2,3 ��

[48], [61], [199] RBTB/RPHT D/I D/I - D/I 2,3 ��
flush [183], [199] RBTB/RPHT/RBHB I I - I 2 �
part. [183], [199] RBTB/RPHT S/I S/I - S/I 2 ��
rand. [79], [198] RBTB/RPHT D D - D 2,3 ��

TABLE 4. DEFENSES FOR ATTACKS USING THE BRANCH PREDICTOR.

The next category of defenses use randomization to
thwart attacks. Specifically, encryption of the BTB/PHT
have been proposed [48], [61], [106] to prevent the adver-
sary from easily manipulating the branch prediction logic.
Encryption restricts determinism and information flow, in
all the steps of the attack. Determinism is affected in the
setup step because the target is encrypted which makes
manipulating collisions difficult. Information flow is also
hindered since a process can only access correct entries
in the presence of a valid key. The limitation of these
encryption-based solutions is that they cannot guarantee
protection against brute-force approaches.

Defenses in the next category flush the state of the
branch predictor, i.e., BTB/PHT/BHB, on context switches
[183], [199]. This would affect information flow in the
context of the SameThread threat model. However, the
performance overhead is usually high [183] and the
effectiveness is restricted to the SameThread model.
Partitioning has been shown to thwart attacks on the

branch predictor [49], [199]. Partitioning affects sharing
and information flow, in all the steps of the attack, since
the state of the BTB/PHT is isolated. HyBP [199] com-
bines isolation and encryption, and selectively replicates
parts of the predictor state, while using encryption for the
larger tables. The focus of these proposals is to use parti-
tioning/replication to avoid the high performance cost of
flushing the entire branch prediction state upon a context
switch. Replicating the entire prediction state among SMT
threads, although a possibility, is prohibitively expensive.

The last category makes the state transition of the pre-
dictor probabilistic, by affecting the saturating counters,
as proposed by Zhao et al. [198]. This defense restricts
determinism in all the steps of the attack. However, the
protection offered by the technique is limited since an
adversary, through repeated measurements, can eventually
infer the secret from the state of the branch predictor.

4.1.4. Computational simplification. A few strategies
have been proposed for protecting against attacks using
computational simplification, see Table 5. One strategy
is to selectively disable the optimization for parts of the
program which accesses sensitive information [40], [62].
Disabling restricts determinism in the interact step.
The other strategy is to change the implementation

to avoid any data-dependent timing variations, even for
computational simplification. This strategy targets deter-
minism in the interact step. One way to achieve data-
independent implementation is to use constant-time pro-
gramming practices [13], [21], [22], [40]. In [13] an FP
library (LibFTFP) is shown, providing a fixed-point data
type with all library operations executing in constant time.

Defense Resource Attack step Threat P
AS AI AT AR model

disable [40], [62] RMUL/RFPU - D - - 2,3 �
const. time: [14], [40], [62] RMUL/RFPU - D - - 2,3 ��
[13], [21], [22], [144] RMUL/RFPU - D - - 2,3 ��

TABLE 5. DEFENSES FOR ATTACKS USING COMP. SIMPLIFICATION.

This approach may, in some cases, preclude the benefit
from the optimization altogether.
Lastly, in the case of the browser-based attack [13] the

SW-construct which enables the sharing and information
flow, can be disabled i.e. cross-origin SVG-filters [100].

4.2. Defenses against Transient Attacks

4.2.1. Defenses against speculation-based attacks. The
defenses against speculation-based attacks can be broadly
grouped into four high-level categories based on the
defense strategy: localized defenses, disabling defenses,
restriction defenses and isolation defenses, see Table 6.
Localized defenses leverage the defenses available

for individual optimizations/resources that interact with
speculative execution, such as the BP and/or SC. Branch
prediction can be targeted in the setup step to stop the
adversary from being able to (mis)train the predictor,
see Section 4.1.3. The defense is only applicable for the
attacks which uses the specific predictor resource. Another
approach is to target the side-channel that permits infor-
mation flow across protection domain through transient
execution. In most attacks the SC is used since it can offer
the highest bandwidth, which makes the defenses in Sec-
tion 4.1.1 applicable. However, studies have demonstrated
that a wide variety of microarchitectural resources can be
used, such as execution units, ports, PHT, MSHR etc. This
is a challenge because multiple resources may need to be
protected, since they can all act as potential side-channels.
By defending the resource which enables the easily acces-
sible (high bandwidth and low noise) side-channels, the
attack bandwidth can be reduced. In addition, limiting the
threat model (for instance to CrossCore) can restrict the
number of resources which can be used as side-channels.
The second category involves disabling the optimiza-

tion. This approach has been proposed in specific sce-
narios where other defenses are not applicable. Support
for disabling indirect branch predictions using a barrier,
Indirect Branch Predictor Barrier (IBPB) [9], [11], has
been adopted in commodity HW. Likewise, to thwart
Spectre v4 attack, the STL mechanism can also be dis-
abled using Speculative Store Bypass Disable (SSBD)
microcode updates from Intel and AMD [9], [10]. These
techniques affect the root causes determinism, sharing and
information flow in the predictor, in all the steps where
it is used. However, the performance cost is potentially
high since the predictions are restricted. Another defen-
sive measure is to limit the threat model by disabling
SMT [58], [74], [105]. However, disabling SMT comes
at a potentially high performance cost.

Defense Resource Attack step Threat P
AS AI AT AR model

local: BPU RBTB /RPHT D/S/I - - - 2,3 ��
SC RSC D/S/I - - D/S/I 1,2 ��

disable: IBPB [9], sb [15] RBTB /RPHT D/S/I - - - 1,2,3 ��
SSBD [9], [10] RSTL D/S/I - - - 1,2,3 ��
SMT [58], [74], [105] - D/S/I D/S/I - D/S/I 3 �

restrict: IBRS,STIBP [9], [11] RBTB /RPHT D/S/I - - - 1,2,3 ��
retpoline [12], [85] RRSB I - - - 1,2,3 ��
randpoline [28] RRSB D - - - 1,2,3 ��
lfence, serial. [9] - - D/I - - 1,2,3 ��

fence: [103], [170], [180] RμOP Q - D/I - - 1,2,3 ��
[33], [130], [160] - - D/I - - 1,2,3 ��

delay: [16], [52], [151], [187] RROB , Rreg. - D/I/A - - 1,2,3 ��
[29], [196] RROB , Rreg. - D/I/A - - 1,2,3 ��
[108], [118], [148] RROB , Rreg. - - D/I - 1,2,3 ��

rollback [119], [147] RSC - - D/I D/I 1,2 ��
isolate: [5], [6], [93], [192] Rbuf./RL0 - - D/S/I - 2 ��

TABLE 6. CLASSIFICATION OF DEFENSES FOR TRANSIENT ATTACKS.
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The third category is restriction-based defenses. Here,
the high-level idea is to restrict the speculative execution,
selectively, to avoid the attacks. Speculation restriction
can be performed in the different steps of the attack
and using different mechanisms in HW and/or SW. One
HW mechanism, adopted in commodity HW to avoid
(mis)training, is Indirect Branch Restricted Speculation
(IBRS) [9], [11], which affects the setup step. Using IBRS
restricts the training of indirect targets inside an enclave.
Likewise, using Single Thread Indirect Branch Prediction
(STIBP) restricts the use of prediction entries trained in
another SMT thread. A recent attack [17] has shown that
isolation defenses only affects the BTB while the Branch
History Buffer (BHB) is still shared and exploitable. Spec-
ulative execution have also been restricted using micro-
code updates [84]. SW-based defenses [12], [28], [85] also
aim to restrict speculation by avoiding the state transition
MSI→MSP, and preventing the speculation triggered by
the the branch prediction. Here, the (exploitable) indirect
branch is replaced by a retpoline sequence which will
cause the code to execute a controlled loop sequence until
speculation has been resolved. To lower the performance
cost of the technique both a probabilistic variant, rand-
poline [28], and a HW variant [12] have been proposed.
The root cause exploited is information flow. A recent
paper, RETBLEED [190], has shown that the retpoline
strategy only provides partial protection, since it can be
circumvented using manipulation of return instructions.
Another mechanism to restrict speculation is to intro-

duce fences to limit transient execution. Many existing
attack mitigations use the serializing lfence instruction
before sensitive parts of the code. In order to improve the
usability and performance cost, defenses have been pro-
posed which selectively and automatically choose when
to use fences, either in SW [103], [160], [170], [180] or
in HW [170]. For example Shen et al. [160] split code
into small blocks and insert fences between the entry point
and a potentially leaking memory access to defend against
Spectre attacks. The root causes affected are determinism
and information flow, depending on the solution. Another
example is Context-Sensitive Fencing (CSF) [170] which
uses customized decoding from instructions to micro-ops
to insert fences after a conditional branch instruction and
before a subsequent load instruction. The root causes
affected by fences are determinism and information flow,
in the interact step. However, Ren et al. [145] show that
lfence can be circumvented since the younger instruc-
tions are fetched and then stalled, leaving a footprint in
the micro-op cache. Another way similar to fences is
Speculative Load Hardening (SLH) [33] a compiler-level
technique where the idea is to introduce a data dependency
on the condition, in order to guarantee that the control
flow is valid. The technique is supported in LLVM and
GCC [46]. Oleksenko et al. [130] restrict speculation by
introducing a data dependency in order to guarantee that
a load will only start if the comparison is in registers or
L1 cache. However, the technique is only effective if the
load is performed after the comparison.
Another method to restrict speculations is to wait for

authorization or until data is no longer transient [29], [52],
[108], [118], [148], [151], [187] which affect the execution
in the interact and/or transmit steps. Here, the defenses
delay to avoid the access violation which leads to leakage

(in interact) or stall the load which would update MS of
SC (in transmit). For example NDA (Non-speculative Data
Access) [187] provide different policies for controlling
control flow and data propagation in interact. The root
causes affected are determinism, sharing and information
flow. SpectreGuard [52] also affects the interact step and
proposes to mark secret data and selectively restrict spec-
ulation only for data from sensitive pages. These defenses
affect the root cause determinism, access violation and/or
information flow in the interact step. CondSpec [108]
affects transmit by handling loads differently, a load that
hits in the SC can read the data and complete its execution
while a load that experience a cache miss will be stalled
and re-issued later. This affects the root cause access
violation and/or information flow. CleanUpSpec [147], on
the contrary, restricts how speculative updates are encoded
in the MS of the SC. Speculative accesses are allowed
to progress and make changes to the SC but these are
removed in case of miss-speculation [119]. This has been
shown to be insufficient in certain conditions [19]. This
defense affects the root causes determinism and informa-
tion flow, in the transmit and receive step of the attack.
The performance cost of the restriction-based defenses

depends on how restrictive the rule set is, i.e., how much
execution differs from the unconstrained speculation sce-
nario. Introducing protections at a later attack step gener-
ally leads to more flexibility, since more speculation can
be allowed, and comes at a lower performance cost [80].
The trade-off is that more possible side-channels can be
used for the state transitions MSI→MST and MST→MSR,
which makes ensuring full protection challenging.
The last category targets isolation by introducing a

shadow structure to hold the speculative MS until it is
deemed safe [5], [6], [93], [192]. For example, in Moun-
Trap [6] an L0 filter cache is used for speculative data,
which is only allowed to propagate to the rest of the cache
hierarchy after commit. This allows the speculation and
potential access violation to occur but not affect MS of
the SC, for example. This restricts information flow from
the transient execution to the non-transient execution.

4.2.2. Defenses against exception-based attacks.
Exception-based attacks typically exploit implementation
oversight in HW. The Meltdown attack exploits a race
condition between authorization and access [75] which
enables transient execution to continue with an unautho-
rized value, leading to access violation. Newer CPUs con-
tain patches whereas existing ones are mostly protected
through microcode updates or other workarounds [30].
For instance, the issue has been addressed on newer Intel
microarchitectures [9], Whiskey Lake and onward, by
returning zero when accessing privileged memory [31].
In the case of the MDS-attacks the leaks are attributed to
a use-after-free vulnerability where stale data is read in the
internal registers [152], allowing unintended information
flow through shared CPU buffers. The issue is solved
by flushing the internal buffers to restrict the information
flow. Similarly, to defend against LazyFP, FPU registers
are flushed on context switches when changing protection
domains with SGX, for hypervisors and for logical cores.
In addition, since Linux 4.6 eager FPU switching is used
by default [120]. This disables the fault since the FPU
is always available. Foreshadow has been mitigated on

642



Intel CPUs through setting a physical page number field
of unmapped page-tables to refer to non-existing physical
memory [83], [188], thereby restricting access violation.
The LVI attacks [177] are no longer possible when the
corresponding fault or microcode assist is mitigated.
Another defense strategy is to provide stronger address

space isolation [55], [64], [82], [101], which mitigates
or limits the possible access violation in the attacks. For
example MemoryRanger [101] isolates drivers, kernel and
user space into separate address spaces using Extended
Page Table (EPT). This defense restricts access violation
in the interact step, by providing isolation.

4.3. General defense strategies

Broader system-level strategies for providing protec-
tion have also been proposed. Leveraging constant-time
programming paradigm is one such strategy where the
key idea is to rewrite the SW-implementation to avoid
timing variability. The challenge with constant-time pro-
gramming is to provide protection for all types of attacks.
Another strategy is to decrease the accuracy of timing
measurement [39], [81], [99], [123]. One recent proposal
by Cook et al. [39] introduces noise in the timer. This
strategy affects determinism in the receive step and can be
used as a defense against several attacks on different op-
timizations. The strategy leads to lower attack bandwidth
but has been shown to be ineffective in providing complete
protection since many attacks can amplify the timing dif-
ference [125] or use other timer mechanisms [153]. An-
other strategy is to leverage detection to identify/document
an attack and/or apply defenses selectively [53]. Several
mechanisms for detecting attacks on different microarchi-
tectural optimizations have been proposed [168], [193],
[197]. Leveraging detection based strategy can lower the
performance cost of applying a specific defense since
the defense only need to be enabled when an attack is
detected. However, prior work have shown that it is very
complex to detect all attacks especially as new attacks are
discovered and attack behaviour can be tailored to bypass
detection [53]. Another approach is to classify sensitive
data and only apply the defence selectively [44], [185].
Another strategy is to use formal models [35], [68], [69],
[75], [128] in order to automatically synthesize vulnera-
bilities. This strategy could potentially find all exploitable
scenarios in the design phase itself. However, identifying
all vulnerabilities complicate the model building process
and current proposals therefore only target a limited set.
Additionally, leveraging programming language based se-
curity [104] is another option wherein defenses are co-
designed leveraging programming language annotations to
mark sensitive parts of the programs, along with suitable
HW primitives. However, a recent analysis [129] found
that most programming languages and their execution en-
vironments does not have support for Spectre mitigations.
This shows the challenge of relying on programming lan-
guages and execution environments to provide complete
protection. Finally, a promising strategy is to combine de-
fenses with different characteristics and/or explore cross-
layer approaches spanning hardware and software support
to target multiple root causes as a way to achieve better
performance/security trade-off. HyBP [199], for instance,
combines partitioning and flushing to secure the branch

Microarchitectural Defense Performance overhead (%)
optimizations

Cache part. DAWG 0-15 [96], MI6 16.4 [27]
part. IRONHIDE -20 [132], CATalyst 0.5-0.7 [114]
rand. CEASAR 1.1 [141], NewCache -0.5-1 [116]
repl. NoMo 0.2-0.8 [45], Mirage 2.2 [146]

Prefetch flush 0.2 [37]
Branch part./flush HyBP 0.2-0.6 [199]
prediction rand. 17.17 [79], 0.2-2.2 [198]
Comp. simp. if-conversion 0-24 [40]
Transient SSBD 2-8 [10], retpoline 5-10 [85]
execution serial. 62-74.8 [33], SLH 29-36.4 [33]

NDA 10.7-125 [187], SpecShield 10-20 [16]
ConTExT 0.1-71.1 [151], STT 8.5-27 [196]

CondSpec 6.8-53.6 [108], DOLMA 10.2-42.2 [118]
InvisiSpec 5-17 [192], SafeSpec -3 [93]
MounTrap -5-4 [6], CleanupSpec 5.1 [147]

TABLE 7. PERFORMANCE OVERHEADS FOR DEFENSES. A NEGATIVE

VALUE INDICATES PERFORMANCE IMPROVEMENT.

predictor, by targeting both sharing and information flow
while CATalyst [114] uses HW/SW support to isolate
sensitive data with low overhead.

4.4. Performance overheads

The performance overheads reported by some of the
existing work for defenses that target different microar-
chitectural optimizations are shown in Table 7. We report
a range for cases where performance differs between de-
fense variants and/or benchmarks. Note that the numbers
cannot be directly compared since they are measured on
different configurations, simulators, while running differ-
ent benchmarks and assuming diverse threat models. In
general, the reported performance overhead varies widely
across different defenses that attempt to thwart the same
attack. Furthermore, the overhead is mostly lower for
defenses that focus on a specific microarchitectural re-
source such as the cache, prefetch and branch prediction
(PHT, BTB) whereas the overhead, in general, is larger for
defenses against transient execution attacks that severely
restrict speculative execution or disable it altogether. Ad-
ditionally, the overheads for transient execution defenses
vary widely, even for the same defense, based on the
targeted threat model. We believe that to facilitate a
clear comparison of the overheads across defenses and
make insights, it is essential to standardize the evaluation
methodologies used in the community.

5. Discussion
Commonalities: We have shown that the root causes

for attacks are common, across a wide range of mi-
croarchitectural optimizations. Furthermore, our analysis
of the defenses show that these target one or more root
cause, across the different steps of an attack. There are
commonalities even in the defense strategies used to pro-
tect against attacks on these diverse microarchitectural
optimizations. Some of those include disabling the op-
timization to restrict all the root causes; isolating the state
related to the optimization, to restrict sharing; applying
randomization and/or restriction to limit information flow
and introducing permission checks to limit resources from
exposing/accessing state outside of the intended domain.
Using these common strategies together with the root

causes enable us to envision new defenses for vulnerable
microarchitectural optimizations. For instance, we can
apply these common strategies to defend against potential
attacks exploiting value prediction (Section 3.3). Possi-
ble new hardware defense strategies, that have not been
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explored in literature [43], [149], include flushing the
table at context switches, isolating and/or partitioning the
table to avoid conflict and reuse-based attacks, introduc-
ing randomization to limit information flow, selectively
disable the optimization when running sensitive parts of
the program or combining some of the aforementioned
defenses to improve performance/security trade-off.

Observations: Firstly, vulnerabilities are not always
due to the fundamental behaviour of the microarchitectural
optimization but are rather a result of the design and/or the
implementation. This points in the direction of promoting
an understanding of the root causes and the potential de-
fense strategies in the design and implementation phases,
rather than as an afterthought.
Secondly, the ease of exploiting a microarchitectural

optimization and the severity of the leak vary. There exist
limiting factors which are not easy to quantify, such as
the availability and capabilities of gadgets [32]. The link
between attack bandwidth and effectiveness in practical
scenarios is also difficult to quantify.
Finally, we think that the simplicity and the abstract

nature of the framework can aid designers and secu-
rity researchers, exploring vulnerabilities, by providing
a model to easily reason about attacks and defenses on
microarchitectural optimizations.

Future research directions: Our focus has been on
understanding the root causes behind vulnerabilities in mi-
croarchitectural optimizations that target performance and
the defense strategies that can be used to protect against
them. There are several interesting avenues for future work
leveraging our framework. An important line of future
work is to perform implementation specific analysis fo-
cusing on specific resources/optimizations in Intel, AMD
and ARM architectures. We expect that our framework
can help in the process of identifying vulnerabilities in
microarchitectural optimizations/resources. Another line
of work would be to analyze attacks and defenses on
optimizations and resources that we have not explored
(such as NoC and DRAM). We believe our framework
to be versatile to accommodate such an analysis. Lastly,
investigating and/or extending the root cause framework
to include microarchitectural optimizations for security,
such as Intel SGX, performance degradation attacks [7],
[8], [18], [63] and power-based side channel attacks are
interesting directions for future work.

6. Related Work

Prior works have analyzed attacks and defenses for
different microarchitectural optimizations and can broadly
be categorized into two groups. In the first group, focusing
on transient attacks [30], [32], [76], [80], [191], Canella et
al. [32] provide a taxonomy for classification of transient
attacks based on Spectre and Meltdown attack variants,
analyse attacks on specific microarchitectural resources
across Intel/AMD/ARM architectures and examine gadget
prevalence. Xiong et al. [191] also survey transient attacks
with an emphasis on whether the adversary/victim is
triggering the different attack steps and the threat models
used. In addition, they discuss the sources of transient
execution and discuss hardware mitigation strategies.
In the second group, considering non-transient at-

tacks [53], [166], Ge et al. [53] focus on threat models

and how it impacts microarchitectural resource sharing.
This is used as the basis to categorize attacks on dif-
ferent resources and present common defense strategies.
Szefer [166] attempts to identify key features of func-
tional units (microarchitectural resources) which makes
the side/covert channels possible. In addition, they classify
attacks based on whether the attacker/victim is operating
in a virtualised setting or not. However, the key features
identified are a mix of some root causes, attack steps and
threat model. This makes it hard to clearly distinguish
the root causes from others and limits the utility of their
approach for analysis of diverse optimizations.
We advance the understanding of attacks and defenses

by building on related work that analyses attack steps [32],
[76], [80], [191], the location of adversary/victim [32],
[53], [191], prevalence of gadgets [32], [191], and the
importance of sharing [53], [166], [191]. Our contributions
are; 1) We provide an abstract model of the architecture
and the microarchitectural state transitions involved in the
different steps of an attack. 2) Using this as a framework,
we identify four root causes which enable timing-based
side-channel attacks across diverse microarchitectural op-
timizations. 3) We show that the existing defenses for
different optimizations can be classified as targeting one
or more of the identified root causes and observe that
similar defense strategies can be applied across optimiza-
tions. 4) We review several transient and non-transient
attacks and defenses to demonstrate the versatility of our
framework. We believe that our framework can aid in the
understanding the attack and defense landscape and help
with designing secure optimizations.

7. Conclusions

Microarchitectural optimizations will play an increas-
ingly important role as the cadence of technology scaling
is expected to slow down. However, recent advancements
have demonstrated that they introduce security vulnera-
bilities that can be exploited by attacks. It is therefore
crucial to understand the causes behind why optimizations
are vulnerable to attacks and what strategies can be used
to defend against them. We provide a simple framework
to analyze attacks on a wide range of microarchitectural
optimizations and use that to systematize both transient
and non-transient attacks and defenses, highlighting the
similarities and differences. We identify four root causes
— determinism, sharing, access violation and information
flow — that enable timing-based side-channel attacks
across different microarchitectural optimizations. Based
on our analysis we discuss potential attacks and defenses
for a vulnerable optimization that have not been explored
in literature. We believe that our framework can assist
with the understanding of the landscape of attacks and
defenses across diverse microarchitectural optimizations
and in providing guidance for designing secure microar-
chitectural optimizations.
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Aurélien Francillon. C5: Cross-cores cache covert channel. In
Magnus Almgren, Vincenzo Gulisano, and Federico Maggi, ed-
itors, Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 46–64, Cham, 2015. Springer International
Publishing.

[125] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and
Toon Verwaest. Spectre is here to stay: An analysis of side-
channels and speculative execution, 2019.

[126] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz,
Jo Van Bulck, Daniel Genkin, Daniel Gruss, Frank Piessens, Berk
Sunar, and Yuval Yarom. Fallout: Reading kernel writes from user
space, 2019.

[127] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk
Sunar. Memjam: A false dependency attack against constant-time
crypto implementations. Int. J. Parallel Program., 47(4):538–570,
aug 2019.

[128] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline
Trippel. Axiomatic hardware-software contracts for security. In
Proceedings of the 49th Annual International Symposium on
Computer Architecture, ISCA ’22, page 72–86, New York, NY,
USA, 2022. Association for Computing Machinery.

[129] Amir Naseredini, Stefan Gast, Martin Schwarzl, Pedro
Miguel Sousa Bernardo, Amel Smajic, Claudio Canella,
Martin Berger, and Daniel Gruss. Systematic analysis of
programming languages and their execution environments for
spectre attacks, 2021.

[130] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silber-
stein, and Christof Fetzer. You shall not bypass: Employing data
dependencies to prevent bounds check bypass. arXiv preprint
arXiv:1805.08506, 2018.

[131] Hamza Omar, Brandon D’Agostino, and Omer Khan. Optimus:
A security-centric dynamic hardware partitioning scheme for
processors that prevent microarchitecture state attacks. IEEE
Transactions on Computers, 69(11):1558–1570, 2020.

[132] Hamza Omar and Omer Khan. Ironhide: A secure multicore that
efficiently mitigates microarchitecture state attacks for interactive
applications. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 111–122,
2020.

[133] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and
Angelos D. Keromytis. The spy in the sandbox: Practical cache
attacks in javascript and their implications. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’15, page 1406–1418, New York, NY, USA,
2015. Association for Computing Machinery.

[134] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks
and countermeasures: The case of aes. In David Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, pages 1–20, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[135] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher.
Lord of the ring(s): Side channel attacks on the cpu on-chip ring
interconnect are practical, 2021.

[136] D. Page. Partitioned cache architecture as a side-channel defence
mechanism, 2005. page@cs.bris.ac.uk 13017 received 22 Aug
2005.
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borean, and Magnus Själander. Efficient invisible speculative
execution through selective delay and value prediction. In Pro-
ceedings of the 46th International Symposium on Computer Ar-
chitecture, ISCA ’19, page 723–735, New York, NY, USA, 2019.
Association for Computing Machinery.

[149] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka
Nayak, Caroline Trippel, Adam Morrison, David Kohlbrenner,
and Christopher W. Fletcher. Opening pandora’s box: A sys-
tematic study of new ways microarchitecture can leak private
data. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pages 347–360, 2021.

[150] Sercan Sari, Onur Demir, and Gurhan Kucuk. Fairsdp: Fair and
secure dynamic cache partitioning. In 2019 4th International Con-
ference on Computer Science and Engineering (UBMK), pages
469–474, 2019.

[151] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. Context: A generic approach for
mitigating spectre. In NDSS, 2020.

[152] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. Zom-
bieload: Cross-privilege-boundary data sampling. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’19, page 753–768, New York, NY,
USA, 2019. Association for Computing Machinery.

[153] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic timers and where to find them: High-
resolution microarchitectural attacks in javascript. In Aggelos
Kiayias, editor, Financial Cryptography and Data Security, pages
247–267, Cham, 2017. Springer International Publishing.

[154] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters,
and Daniel Gruss. Netspectre: Read arbitrary memory over
network. In Computer Security – ESORICS 2019: 24th Euro-
pean Symposium on Research in Computer Security, Luxembourg,
September 23–27, 2019, Proceedings, Part I, page 279–299,
Berlin, Heidelberg, 2019. Springer-Verlag.

[155] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel
Gruss. Speculative dereferencing: Reviving foreshadow. 2021.
25th International Conference on Financial Cryptography and
Data Security : FC 2021 ; Conference date: 01-03-2021 Through
05-03-2021.

[156] Brian C. Schwedock and Nathan Beckmann. Jumanji: The case
for dynamic nuca in the datacenter. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 665–680, 2020.
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Christof Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2003, pages 62–76, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[176] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the
keys to the intel sgx kingdom with transient out-of-order execu-
tion. In Proceedings of the 27th USENIX Conference on Security
Symposium, SEC’18, page 991–1008, USA, 2018. USENIX As-
sociation.

[177] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. Lvi: Hijacking transient execution
through microarchitectural load value injection. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 54–72, 2020.

[178] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Malicious management unit: Why stopping cache attacks
in software is harder than you think. In 27th USENIX Security
Symposium (USENIX Security 18), pages 937–954, Baltimore,
MD, August 2018. USENIX Association.

[179] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cris-
tiano Giuffrida. Ridl: Rogue in-flight data load. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 88–105, 2019.

[180] Marco Vassena, Craig Disselkoen, Klaus V Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kici, Ranjit Jhala, Dean Tullsen, and
Deian Stefan. Automatically eliminating speculative leaks from
cryptographic code with blade. arXiv preprint arXiv:2005.00294,
2020.

[181] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo
Paccagnella, Grant Garrett-Grossman, Adam Morrison, Christo-
pher W. Fletcher, and David Kohlbrenner. Augury: Using data
memory-dependent prefetchers to leak data at rest. In 2022
IEEE Symposium on Security and Privacy (SP), pages 1491–1505,
2022.
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