
Code Vulnerability Detection via Signal-Aware Learning

Sahil Suneja
IBM Research

Yorktown Heights, NY, USA
suneja@us.ibm.com

Yufan Zhuang
University of California San Diego

La Jolla, CA, USA
y5zhuang@ucsd.edu

Yunhui Zheng
IBM Research

Yorktown Heights, NY, USA
zhengyu@us.ibm.com

Jim Laredo
IBM Research

Yorktown Heights, NY, USA
laredoj@us.ibm.com

Alessandro Morari
IBM Research

Yorktown Heights, NY, USA
amorari@us.ibm.com

Udayan Khurana
IBM Research

Yorktown Heights, NY, USA
ukhurana@us.ibm.com

Abstract—Machine Learning-based modeling of source code
understanding tasks has been gaining popularity. Accompa-
nying their rapid proliferation is an emerging scrutiny over
the models’ reliability. Concerns have been raised regarding
the models not actually learning task-relevant source code
features, but fitting other correlated data. To improve model
trustworthiness, in this work, we explore data-driven ap-
proaches for enhancing model signal awareness, i.e., learning
the relevant signals in the input for making predictions. We
do so by incorporating the notion of code complexity during
model training, both (i) explicitly via curriculum learning,
and (ii) implicitly by augmenting the training dataset with
simplified signal-preserving programs. With our techniques,
we achieve up to 4.8x improvement in signal awareness
of vulnerability detection models. Using the notion of code
complexity, we present a novel interpretation of the model
learning behaviour from the perspective of the dataset. We
use it to introspect model learning difficulties, and analyze
the learning enhancements achieved with our approaches.

1. Introduction

Over the past few years, Machine Learning (ML) mod-
els have made significant progress in source code under-
standing tasks [1], [2], [3], [4], [5]. The wide availability
of open source codebases has fueled this progress, and
we have started to see the adoption of such ML models
of code in software development workflows [6], [7], [8].
Their growing popularity has permeated the security space
as well, including source code bug detection. What used to
be a domain traditionally dominated by static and dynamic
analysis is seeing assistance and competition from ML
models [9], [10], [11], [12], [13], [14] The high false
positives of static analyzers, and the lack of completeness
of dynamic analysis are a few reasons promoting the entry
of ML into this field [15], [16], [17].

However, unlike the rules and path/flow analysis of
static analyzers and the execution tracing of dynamic
analysis, the logic learned by the ML models for detecting
code vulnerabilities remains a black-box, and an emerging
point of concern. Recent observations highlight that many
ML models of code, despite their high F1 and accuracy
scores, are actually not learning task-relevant source code

��������	
����� ��
���
���

	
�
���

��

��
��
��
��
�	�

�
��

���
��

Figure 1: The intuition behind our model learning enhancement
efforts is to assist the model in reaching an alternate minima
(the flag in the Figure) in the loss landscape, while maintaining
similar performance as achieved in original minima (the ball in
the Figure), but potentially capturing more task-relevant features.

features [18], [19], [20]. Instead, they often fit non-
relevant but correlated data, leading to a lack of robustness
and generalizability, and limiting the subsequent practical
use of such models. This can happen when the models
pick up non-representative code features to the task at
hand, such as unexpected correlations between samples
and certain keywords, or programming constructs like ifs
/ loops / variable names, which may be more prevalent in
one sample class than the other (e.g. ‘buggy’ or ‘healthy’
code). Learning class separators in this manner may yield
great classification performance. However, the models in-
fluenced by such dataset nuances– spurious correlations,
sampling bias, labeling and other artifacts [21], [22], [23],
[24], are prone to failures when applied in real-world
settings [25], [26], [27].

Building on top of the recent works calling for model
sanity checking, in this work we focus on improving
model reliability and trustworthines. Note that we are
not arguing in favor of ML models versus traditional
code analyzers. Although the current model proliferation
trend is based on such comparison, it values statistical
performance measures (e.g., F1) over model learning
quality (e.g., source code features relevance). We be-
lieve both– ML and traditional approaches– can work in
concert to assist with code vulnerability detection. The
learned heuristics from a ML-based macroscopic approach

506

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Sahil Suneja. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00037

20
23

 IE
EE

 8
th

 E
ur

op
ea

n
Sy

m
po

si
um

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
37

to vulnerability detection can augment the microscopic
approach of static analyzers. But to achieve that, we first
need to ensure that the models are learning the task-
relevant source code features in making their predictions.
We work towards achieving this by targeting Software En-
gineering and Machine Learning collaboration, rather than
competition. In addition to adding trust in ML models,
this enables a more fair comparison between ML models,
and also with traditional code analyzers. Our hope is to
influence the future model development trend to focus
more towards model learning quality, as opposed to raw
classification performance.

To improve model reliability and trustworthiness, in
this work, we explore the option of nudging the training
process to learn models with greater signal awareness.
Signal awareness is defined as the ability of a model
in learning the relevant signals in the input for making
predictions [18], as opposed to, e.g., capturing spurious
correlations [21]. Specifically, the model itself may be
doing its job well, learning how best to separate samples
based on available input features, to reach a local minima
in the loss landscape. But, as shown in Figure 1, there can
exist other local minima in this landscape which can offer
similar model performance, but which rely on features
more in sync with the task expectation. If we can somehow
guide the model to reach an alternate minima, while using
domain-specific assistance, perhaps the model’s signal
awareness can be improved. This issue is widely seen in
Machine Learning and is typically solved by white-box
or domain-specific approaches such as robust training and
adversarial training [28], [29], [19], [30]. In this work,
we explore code-centric, data-driven approaches to guide
the models in focusing more on task-relevant aspects of
source code.

We observe that not all code snippets are the same;
some are more ‘noisy’ than others– containing code not
directly relevant to the learning task at hand. We target
reducing this noise whilst preserving task-relevant signals.
By transforming the training data using Software Engi-
neering (SE) techniques, we aim to learn models which
not only exhibit high accuracy but are also based on
features relevant to the given task. We use the concept of
code complexity to distinguish the different training sam-
ples, and explore ways to introduce this code-complexity
awareness in the models.

Furthermore, while existing approaches can detect if
the models are learning task-relevant signals, they do not
identify what aspects of source code are the models learn-
ing. This can be a valuable resource towards uncovering
the logic learned by models, and assert trust in them as
they integrate with software development workflows. To
this end, continuing along the code complexity dimension,
we present a novel approach to deduce model learning
from the perspective of the dataset.

Figure 2 presents a view of all our approaches co-
existing within the model training pipeline, described as
follows. We approach model signal-awareness enhance-
ment by marrying the SE concept of code complexity with
the ML technique of curriculum learning [31]. Specif-
ically, we introduce the notion of complexity metrics
during training, and feed program samples to the model
in increasing order of their code complexity. The intuition
is that by presenting ‘easier’ examples first, it would

�������

	�

������	�
������	�
�������

�������������������
���������������������

�����������������
��������������

 ����!������������
������������� ������

 ������ ����
�������
�������

��������
�������

�������������������	��	
������
������	
����������

	�����������������	�
������
������	
����������

Figure 2: Our model signal-awareness enhancement

(complexity-ranking and program-simplification) and

introspection approaches, augmenting the usual model

training workflow.

improve the model’s chances of picking up task-relevant
signals, helping it to sift-through noise with more complex
examples down the line.

Next, we present an alternate data-augmentation-based
approach to assist model learning, with the notion of com-
plexity of code being implicit, in contrast to the previous
approach. Here, we incorporate SE assistance into ML
model training by customizing Delta Debugging [32] to
generate simplified program samples. The intuition is that
by adding smaller and potentially de-noised code samples
to the training dataset, while preserving their vulnerability
profile, the model can learn relevant signals better. Within
the vulnerability detection setting, in particular, preserving
existing bugs while generating simplified programs is
the key difference in our approach. This is in contrast
to existing source-level bug-seeding-based augmentation
methods which can lead to previously unseen bugs [33],
[34], [35], [36], [37], [38], [39].

We continue our data-driven model exploration to vi-
sualize how the altered model training process might have
improved its signal awareness. We leverage the unique
opportunity afforded by the source code setting to develop
a code-complexity-driven black-box model introspection
approach. Specifically, we analyze a model’s predictions
from the dataset perspective, beyond the statistical mea-
sures of the model prediction accuracy. The intuition is to
analyze the characteristics of the samples which the model
predicted correctly versus the mispredicted ones. By using
code complexity metrics to group samples by prediction
accuracy, our approach uncovers model learning behavior
in terms of the aspects of code the model can grasp,
and where it faces difficulties. More concretely, using
this approach, we are able to ascertain that the models
are correctly predicting smaller and low-complexity sam-
ples (using sloc and cyclomatic complexity metrics-
Section 3.1), but facing difficulty predicting bigger and
more complex code samples. We believe that such code-
centric model learning insights offered by our approach
are more developer friendly, as compared to the black-
box quantitative measures of model performance.

Being data-driven, all our approaches are independent
of the model learning algorithm, the learning task, and
the source code programming language employed. Re-
sults show substantial improvements in a model’s signal
awareness when assisted with our approaches, across dif-

507

ferent datasets and models. Complexity-ranked training
can provide up to 32% boost to the model’s Signal-
Aware F1 (Section 4.2) whereas program-simplification-
based augmentation surpasses it, realizing up to 4.8x
improvement. We use our data-driven model introspection
approach to analyze these model learning improvements
achieved. Amongst the model learning insights provided
by our approach, in addition to the aforementioned issue
of the models facing difficulty in understanding bigger
(and more complex) code samples, our approach suggests
that this problem interestingly alleviates as augmentation
levels increase.

The main contributions of our work are as follows:
• We improve the signal awareness of ML vulnerability

detection models, using SE concepts to assist ML
understanding of source code.

• We tailor ML’s curriculum learning for the source
code domain, by coupling it with the notion of code
complexity.

• We show the superiority of targeted augmentation
with simplified programs, over generic augmentation,
to improve model learning.

• We present a novel perspective for deducing model
learning behavior using code complexity of the
dataset.

2. Background

We first summarize the friction between traditional
analysis and Machine Learning (ML) approaches. Then,
we describe the ML models of code we evaluate our learn-
ing enhancement approaches against. Next, we present
a brief primer on the Delta Debugging technique, and
it’s recent use in ML model probing. We employ it for
our program simplification approach. Finally, we briefly
describe the concept of Curriculum Learning, which we
use in our complexity-ranked training approach.

2.1. Traditional vs. ML approaches

ML approaches for vulnerability detection cite some
known shortcomings of traditional analysis to make their
case. These include the potential of False Positives (flag-
ging healthy code as being buggy) in static analysis (e.g.,
Clang [40]), as well as lack of completeness in dynamic
analysis (e.g., Pin [41]). This happens due to the vast
search space in case of a static analyzer’s reasoning over
all possible program states, which necessitates employ-
ing information-losing abstractions during the analysis. In
case of rule-based linters and taint analysis, the quality
of the rule-based static analyses depends on the quality
and bug coverage of the rules. On the other hand, gen-
erating specific inputs to drive execution to relevant re-
gions (e.g., potential vulnerability), as in dynamic analysis
(e.g, fuzzing or symbolic execution), can be challenging
in terms of achieving good code coverage or satisfying
particular path conditions.

ML approaches try to alleviate these issues by learning
code-to-vulnerability mapping heuristics automatically. As
opposed to classical ML, which requires converting code
into explicit features, such as number of lines, call-stack

depth, library-calls, and code complexity, etc., deep learn-
ing models can extract code features automatically. With
their success in the natural language processing (NLP)
tasks, combined with the language-like ‘naturalness’ of
source code [42], neural network based models have made
significant inroads in the vulnerability detection task. By
being exposed (trained) to enough examples (and counter-
examples), the model can automatically learn relevant
code features or vulnerability templates [43], to be able
to differentiate between buggy and healthy code.

ML models of code have been shown to outperform
static analyzers in recent work [44], [9]. However, ML
approaches are not free of flaws. Unlike the rules and flow
analysis of static analyzers and the execution tracing of
dynamic analysis, the logic learned by the ML models
for detecting code vulnerabilities remains a black-box,
and an emerging point of concern. Recent observations
highlight that many ML models of code, despite their high
F1 and accuracy scores, are actually not learning task-
relevant source code features [18], [19], [20]. Instead their
supposedly high classification performance is derived in
part by learning spurious correlations, which can happen
owing to dataset nuances, sampling bias, labeling and
other artifacts [21], [22], [23], [24].

We believe a collaboration, instead of competition,
between ML and traditional approaches can lead to im-
proved code vulnerability detection. Thus, in this work,
we build on top of the recent works calling for model
sanity checking, and focus on improving model reliability
and trustworthines.

2.2. ML Models of Code

Follwing are three neural network architectures which
have been popularly employed for learning over source
code, each operating at a different code representation.
We evaluate our learning enhancement approaches atop
these for the vulnerability detection task.

Convolutional neural networks (CNNs) learn on image
inputs, and have served as a fundamental tool in com-
puter vision, particularly in image recognition and object
detection [45], [46], [47], [48]. CNNs and their variants
have also found utility in the domain of source code
analysis [3], [49], particularly in the area of vulnerability
detection [9]. In this context, source code tokens are first
projected into an embedding space that is later fed into
a CNN, like an image. A typical CNN is composed of
convolutional and pooling layers. The former act as filters
that extract features from inputs, learning progressively
more intricate patterns as the neural network becomes
deeper. Pooling layers, on the other hand, downsample
the features in order to enhance the signal and regulate
the neural network’s size. Pooling is accomplished either
by selecting the most strongly activated neurons (i.e., max-
pooling) or by taking their average (i.e., mean-pooling).
Consequently, the convolutional layers learn abstract rep-
resentations of source code tokens while the pooling
layers filter out extraneous inputs, yielding the source
code regions most discriminative of the samples belonging
to different classes (buggy vs. healthy). For example,
learning the correlation between the token region around
memory allocation or a size parameter, to an overflow bug.

508

Recurrent neural networks (RNNs) are specifically con-
structed to learn from sequential inputs, such as text and
audio [50], [51], and have been adapted to source code
vulnerability detection by processing the input program
as a sequence of tokens [9], [10], [12]. Within an RNN,
working memory is maintained and modified by a se-
quence of input, output, and forget gates, using both
the current input and the previous memory state at each
step [52], [53]. RNNs allow for sequential token depen-
dencies to be captured; for example, tracking the flow
of a token across the program statements, and learning
what flow sequences (and what portions within them) are
indicative of (ab)normal program behavior, based upon the
corresponding samples’ class labels.

Graph neural networks (GNNs) have gained increas-
ing popularity due to their unique ability to learn over
graph-structured data, such as social network graphs and
molecular structures [54], [55]. Applying GNNs to source
code is a natural fit since various forms of graphs can be
constructed on top of source code, such as abstract syntax
trees (AST), data flow graphs, and control flow graphs.
Most GNNs consist of three modules: (i) message passing,
which determines how information is exchanged among
nodes via edges, (ii) message aggregation, which deter-
mines how each node combines the received messages,
and (iii) message updating, which controls how each node
updates its representation after one cycle of information
propagation [55], [56], [57]. GNNs have achieved state-of-
the-art performance on several software engineering tasks,
including vulnerability detection [11], [58], [59]. When
source code is represented as a graph, the nodes represent
string tokens (or intermediate representation labels such as
those of an AST, etc.), and edges represent their relation-
ships (e.g., use-define). A vulnerability can be defined as
a specific template of relationships between the different
nodes and edges, to be learned during training. For exam-
ple, the absence of a ‘variable sanitization template’ [43],
i.e. value-range validation prior to being used as a memory
allocation size argument, may indicate a potential buffer
overflow vulnerability.

Depending upon the composition of the training
datasets (Section 4.1), the models can be trained to detect
different kinds of software vulnerabilities, including buffer
overflows, integer overflows, resource leaks, deadlocks,
null pointer dereference, and OS injection, amongst others
[60]. The goal with our learning enhancement approaches
is to assist the models in picking code features relevant to
vulnerabilities, while learning their vulnerability detection
logic, as opposed to capturing spurious correlations.

2.3. Delta Debugging

Delta Debugging (DD) was first proposed to mini-
mize long crash-inducing bug reports for Mozilla’s web
browser. The DD algorithm iteratively reduces an input
sequence of instructions (e.g., the bug report) to a minimal
snippet (called 1-minimal), while preserving the original
outcome (e.g., browser crash). It involves the following
sequence of operations, illustrated in Figure 3: (i) The
input sequence is split into N segments (starting at N=2),
and their complements. All splits are tested against an
oracle function to checks if any of them lead to the same

� ������� 	�
�� 	

� ���������	�
������
�����������
������������������������������ � �
� ������������������������ �
� ���������	�
������
�����������
������ �
� �
�����������
������������������������������ �
� ���������	�
��� �

������
�� ���������	�
������
�����������
������������������������������ � �

������
�� ���������	�
������
�����������
������������������������������ �
�� ���������	�
������
�����������
������������������������������ � �

������

Figure 3: Generating signal-preserving simplified programs

with our program simplification approach. Iteration #1 shows

a valid but vulnerable program. In #2-3, DD first cuts it into

half but fails to find a valid sub-program. DD repeatedly tries

a finer granularity until reaching a single-token level. It finds

two valid and vulnerable subprograms in #13 and #22. Further

reduction possible but omitted.

outcome as the original input. (ii) If the test result of
a segment is the same as that of the original input, it
is treated as the sequence for the next iteration and the
split granularity is reset. Otherwise, if the complement
split has the original outcome test result, it becomes the
exploration candidate for the next iteration. (iii) If none of
the segments preserve the original outcome during testing,
N is doubled to split the sequence into smaller segments.
In each round, DD tries to reduce the scope to a subset,
till not a single element can be removed whilst preserving
the original outcome, thereby yielding the 1-minimal. For
more details, please refer [32].

2.3.1. ML model probing with DD.
Recent works [20], [18] use DD for probing ML models
of code to explain them, or expose a lack of signal
awareness. Given a trained model and an input program
correctly predicted by the model, DD is used to extract
the minimal sub-program (1-minimal) which preserves the
model’s prediction, by iteratively reducing the program
and querying the model on it. This represents the minimal
excerpt of the original program which the model requires
to arrive and maintain its original prediction. Finally, the
model’s signal-awareness is determined by testing the
1-minimal (which the model predicts to be vulnerable)
for the original vulnerability existence. Widespread oc-
currence of cases as shown in Figure 4 expose the lack
of signal awareness in today’s ML vulnerability detection
models, despite their high F1 and accuracy scores.

Model probing customizes DD’s test oracle function
by employing the Infer tool [62] to verify bug existence
in the reduced subprograms. At each iteration of the re-
duction cycle, Infer’s analysis of the reduced subprogram
is compared with that of the original program sample,
to ensure that the reduced subprogram is either bug-
free, or possesses only the same bug as the original
program sample. The latter is detected by a hit for the
original bug in Infer’s preexisting.json and a miss
in introduced.json differential analysis comparison
files.

Although the existence of a perfect bug checker pre-
cludes the need for ML for code analysis, yet the latter

509

Figure 4: Example showing lack of signal awareness in a
vulnerability detection model (Model: CNN, Dataset: Juliet, F1:
97). Comparing original code vs. it’s extracted 1-minimal. The
model predicts both as being buggy even when the 1-minimal
doesn’t contain the actual buffer overflow bug of the original
parent code (shown in red). This suggests that the model learns
signals not relevant to the task. Note that the model is trained
on “regular” C/C++ examples of healthy and buggy code from
the Juliet dataset [61], and not “artificial” looking code as in the
right half of the figure. The latter is what is extracted using the
model-probing approach of [18], and shows the actual “focus
areas” of the trained model.

proliferates unvetted (Section 1). To help with model qual-
ity control, model probing approaches aim to incorporate
such SE-tool-driven sanity check into ML model learning.
Furthermore, although Infer as a bug checker is a fortunate
fit for the vulnerability detection task, like other static
analysis tools it is not perfect. But it is at least more
strongly vetted and based on traditional hardened static
checking principles, being used in popular open source
projects.

2.3.2. Program simplification with DD.
We also adapt DD for program simplification, translating
the DD process of continuously reducing the input while
maintaining the same output, into successively simpli-
fying the input program while maintaining its vulner-
ability profile. Each valid DD iteration generates code
simpler than the parent, which we augment to the original
dataset for subsequent model training. Note that there
is no measurement bias in the previous use of DD for
signal-awareness measurement [18], and its use in our
program simplification approach. Unlike signal-awareness
measurement, program simplification does not include the
model in the DD reduction process. While the former
preserves the original prediction of the model-under-test
while reducing an input program, and only then tests
whether or not the original bug is present in the 1-
minimal, our program-simplification approach preserves
the bug while successively simplifying an input program,
independent of any model. Model signal-awareness gets
tested as before on the original test-set samples, not on
any new simplified samples. The reduced programs used
to query the model during signal probing are not ‘leaked’
to the augmented training dataset.

Finally, while we use DD to reduce and simplify
program samples, our approach are not reliant on it. DD
offers an efficient reduction solution and can be substituted
by other alternatives along the efficiency vs. simplicity
spectrum (Section 6.3). Also, in our experiments, we use
the Infer tool to verify bug existence in the reduced sam-

ples. However, our approach is independent of the specific
bug-checker being employed (alternatives in Section 6.2).

2.4. Curriculum Learning

Curriculum learning [63] is a training strategy that
mimics the way humans learn, by gradually introducing
easier tasks before tackling more complex ones. The basic
idea behind curriculum learning is to use a sequence of
tasks, ordered by increasing level of difficulty, to train a
model. By doing so, the model can learn more effectively
and achieve better performance than training on a random
task order. One key advantage of curriculum learning is
that it can help prevent the model from getting stuck in
suboptimal solutions, since it starts by learning simpler
patterns before moving to more complex ones. Moreover,
curriculum learning can reduce the amount of data needed
for training since the model is gradually introduced to the
complexity of the task. In this work, we tailor curriculum
learning towards source code modeling, by coupling it
with the notion of code complexity, as described in Section
3.1.

3. Design

Figure 2 (Section 1) presents a high-level overview of
all our data-driven approaches coexisting within the typ-
ical ML modeling pipeline. Our program-simplification-
based augmentation technique resides in the dataset cu-
ration phase, while our complexity-ranking approach is
applicable during the model training phase. Finally, once
a trained model is available, our introspection approach
comes into play to deduce model learning behavior. All
approaches can exist independently of each other.

3.1. Code-complexity-ranked Training

Our model training approach marries the ML concept
of curriculum learning [31] with the SE notion of source
code complexity. The idea is to present the learner with
simpler code samples initially during training, and to
increase sample complexity progressively, influenced by
the human learning procedure. Coming from the original
training set, these initial samples still contain the same
traits which we want the model to learn, while being
relatively easier than their counterparts. This can improve
the model’s chances of picking task-relevant signals bet-
ter, with less interference from potential ‘noise’ existing
in more-complex samples- in the form of statements or
constructs not relevant to the task at hand. The intention
is that equipped with the knowledge of the right ‘signals’
to look for, the model will be better able to sift through
noise in the rest of the samples, and refine its learning
while maintaining task-awareness.

Figure 5 presents our complexity-ranking training
approach. The first step is the extraction of code
complexity metrics from the training set samples. We
used Frama-C [64] and Lizard [65] tools to extract
relatively straightforward counters such as sloc, ifs,
loops, as well as higher-order cyclomatic and
halstead (volume, difficulty, effort)
complexity metrics, measuring concepts such as linearly

510

����������	��
�
���	��
�����������������������	��

���
����	����
����	����
����	�����	��

���������
���	��
������
��

������	�
������	�
������	�
������

Figure 5: Our complexity-ranked training approach: 1. Extract
code complexity of training samples. 2. Rank them in increasing
order of complexity. 3. Feed them to model in complexity-ranked
order.

�����������	

���	����	

"������	

���	��	��
������

���
������	��
�������
�

����

�

�������
�������

#��	
�� �������

$�������� ����������	�

Figure 6: Our program-simplification-based augmentation ap-
proach: 1-2. For a training set sample, reduce it via DD. 3-4:
Validate, label and emit reduced sample; continue reduction. 5-
6: Train model on training set augmented with all simplified
samples.

independent paths and coding effort required, amongst
others. These commonly used code metrics serve to
highlight the potential of complexity-ranked training, and
can be replaced by other appropriate metrics of choice.

Next, the samples are ranked in the increasing order of
their corresponding metric(s) score. Finally, the samples
are then fed to the model for training in their complexity-
ranked order (e.g. difficulty 12 → 17 in the left
half of Figure 7), as opposed to generic random-sampling
based training. As we show in Section 5.1, introducing
code complexity awareness into model training in this
manner, can improve the model’s signal awareness sig-
nificantly. The multiple complexity metrics options, in
this setting, serve as tunable knobs to influence model
learning.

3.2. Augmentation via Program Simplification

For our second model learning enhancement approach,
we use a data-augmentation route with the notion of com-
plexity of code being implicit, in contrast to the previous
approach. However, instead of just offering more exam-
ples, we ‘simplify’ them while preserving the signals.

Figure 6 presents the overall flow. We borrow the pop-
ular fault-isolation technique of Delta Debugging (DD),
shown as Simplifier in Figure 6, to generate simplified
program samples from the training dataset. We follow the
same procedure as outlined in Section 2, wherein DD
reduces the program samples at the level of source code
tokens. For each input sample, the intermediate subpro-
grams generated during the reduction cycle, which satisfy
certain prerequisites, are emitted to serve as augmentation
candidates. Each valid iteration of the reduction cycle
generates code smaller than the parent. The successive
denoising achieved as a result, carries the potential of
assisting the model in learning the relevant signals better,

��� ��� ��� ���

���

����

���	

�

����

��� ���
�

��

��

� � �� �� �� �� �� �	 �
 �� ����
��

��

��
�
�
��

�
��
�
��

�

�������������������	
���

���������������	
��

��
 ���
���

���	

�
�

����
����

����
���

��� ���
�

��

�

� � �� �� �� �� � �	 �
 �� ����
��
��
��

��
�
��
��

��
��
�
��

�

��������������������
����

��	��������������	
�

Figure 7: Complexity distribution of s-bAbI training set before
and after augmentation. Note the histogram left-shift, signifying
increased proportion of lower-complexity samples, as our sim-
plification approach augments the training set.

when trained on the augmented dataset. Figure 7 shows
the effect of our augmentation approach adding simpler
examples, in terms of the dataset complexity distribution.

The iterative DD process is driven by an oracle [32],
which decides whether or not an intermediate reduced
subprogram should be picked for subsequent reductions.
We customize the oracle with a Verifier and a Labeler to
require the reduced subprograms to satisfy the following
properties:

• Valid program (Verifier). We enforce that the reduced
subprogram is valid and compilable, to ensure models
aren’t trained on incorrect code later on.

• Vulnerability type (Labeler). We additionally check
the reduced subprogram for either possessing the
same bug as the original sample, or being bug-free
(mechanism details in Appendix A.3). By ensuring
no new bug gets introduced during reduction cycle, it
maintains dataset integrity, so as not to emit samples
with out-of-dataset labels.

Each reduced subprogram satisfying above properties is
correspondingly labeled and emitted, and the reduction
cycle continues. Figure 3 illustrates an example reduction.

The overall reduction cycle results in multiple simpli-
fied samples being generated from each training sample,
with each valid iteration generating code smaller than the
parent. The final step is to assist model learning by adding
these smaller, potentially de-noised code samples into the
training mix.

3.2.1. Discussion. Use-Cases. While we use program
simplification to improve signal awareness, our approach
can be used as a standalone augmentation scheme to either
reduce overfitting- by adding all generated samples to the
training set, or to reduce class imbalance- by adding only
minority-class generated samples. It can also be combined
with our complexity-ranked training approach, by (i) ap-
plying the latter atop the augmented set to assist model
learning (Section 5.3), or (ii) training and comparing the
model on subsets ordered by program simplicity to verify
model capacity and quality.

Labeler Customization. For the experiment settings and
the datasets considered in this paper (Section 4.1), we
found the Infer analyzer [62] to work quite well as a
labeler (Infer mechanics as in Appendix A.3). However,
our approach is not reliant on it– Section 6.2 discusses
other alternatives.

511

���
�����
�

	��
�����
��������

��
	�
�
��
���
�

	�
�
��
���
�

	�
�

����
����
����
����

� � � 	
 � � �� �� �� �� �� �� �	

�
��

�

�

���
���
�����
�����

����������	
������

��
�
��
���
�

��
�
��
���
�

���
�

����
����
����
����

� � � 	
 � � �� �� �� �� �� �� �	

�
��
�
��
	

��	�����	�����	����

�������	
	�������

������������
������	
��

��
�
��
���
�

��
�
��
���
�

�

Group samples by
prediction results

Extract program
complexity metrics

Compare distributions
across groups

Figure 8: Our code-complexity-driven model learning intro-
spection approach.

3.3. Model Learning Introspection

Moving beyond model learning enhancement, while
still maintaining the notion of code complexity, we tackle
another awareness-related aspect of ML models of code–
uncovering the black-box model learning. Unlike our pre-
vious two approaches which change the model training
routines, the goal here is to interpret the learning of an
already trained model. Unlike the few existing model
explanation approaches (Section 7), we approach the prob-
lem from the dataset’s perspective. Specifically, we use
the code complexity of the test set samples, coupled with
the models’ predictions, to deduce what aspects of code
the model is able to grasp versus those where it is facing
difficulties. Note that our goal here is not to say how
complexity metrics influence model training, but to use
them to interpret the learning of an already trained model.

Figure 8 shows the overall flow of our model learning
introspection approach, outlined in Algorithm 1:

1) Given a trained model and the corresponding model
predictions for the test set samples, we first group the
samples by their prediction accuracy, as shown in steps
2-4 of the algorithm:

• True Positive Samples (TP)- e.g., samples correctly
predicted by the model as being ‘buggy’

• False Negative Samples (FN)- e.g., samples incor-
rectly predicted by the model as being ‘healthy’.

2) Then, for each group, we generate a distribution of the
samples with respect to their complexity metrics (steps
5 and 6 in the algorithm), as discussed in Section 3.1.
This is shown in the Figure as a histogram of sample
counts for different complexity values, ranging from 7
to 13 (generic complexity metric, for exemplification).

3) Finally, we compare and contrast the complexity met-
rics distributions across groups (step 7 in the algo-
rithm), to concretely highlight the differing aspects of
code grasped or missed by the model. Figure 8 shows
an example where the model almost always predicts
high complexity samples (with complexity values 12
and 13) incorrectly. This is indicated by the highlighted
FN bars having negligible presence in the TP samples
distribution.

Thus, the intuition with our introspection approach is
to compare and contrast such complexity distributions,
across the different test set samples grouped by their
model prediction outputs. This can then highlight the

Algorithm 1 Code Complexity Driven Model Learning
Introspection

Input:
M : A trained model
S: Test set corresponding to the dataset model M is trained

upon
F : Filtering function for samples in test set S, based on

predictions by model M
Output:

• Code-characteristics differences across filtered sample
groupings

1: function ANALYZE(M,S, F)
2: C ← EXTRACTCOMPLEXITYMETRICS(S)
3: G← s for s in S if MAP(F,M(s))
4: G′ ← S −G
5: H ← DISTRIBUTIONHISTOGRAM(C(s) for s in G)
6: H ′ ← DISTRIBUTIONHISTOGRAM(C(s) for s in G′)
7: return DIFF(H,H ′)

nature (complexity) of the samples the model is under-
standing well (e.g., the TPs), versus where it is struggling
(e.g., the FNs). In our experiments, we use such data-
driven model prediction analysis to trace how model learn-
ing evolves across the iterations of our aforementioned
program-simplification-based augmentation.

4. Experiment Configuration

4.1. Datasets and Models

Accurate signal-awareness measurement (as discussed
in Section 2.3.1), and it’s subsequent enhancement with
our approaches, requires compilable code with ground-
truth bug locations, beyond the class labels which vulner-
ability datasets are commonly limited to. Thus, for our
experiments, datasets from Draper [9], Devign [11] and
ReVeal [24] are excluded because they do not specify
bug locations. Also, samples from VulDeePecker [10] and
SySeVR [12] are slices converted into linear sequences,
not valid compilable code which models are trained upon
and thus excluded. The viable candidates then include
two synthetic datasets- s-bAbI [44] and Juliet [61], and
one real-world Github-derived dataset- D2A [66], each
comprising of examples of healthy and buggy C/C++
functions. As for the remaining candidates as summarized
in [24], Juliet already includes a large majority of the
C/C++ subset of SARD, whilst FFMPeg+Qemu is just a
publicly released subset of Devign, and NVD is a subset
of the VulDeePecker samples, already discussed above.

We apply our learning enhancement approaches on
three popular neural network architectures for vulnerabil-
ity detection, with the learning task framed as a binary
classification problem– predicting program samples as
healthy (label 0) or buggy (label 1). These include: (i) a
CNN learning a pictorial relationship between tokens and
underlying bugs, (ii) a RNN treating code as a sequence
of tokens, and (iii) a GNN operating on a graph-level rep-
resentations of source code. Our model implementations
are based upon the architectures presented in Russell et
al. [9], VulDeePecker [10], and Devign [11].

As is commonplace, models were trained separately
for the different datasets, each with its own {train, vali-
dation, test} sets. Appendix A.1 and A.2 contain details

512

regarding the dataset composition, model selection (e.g.,
Neural Networks vs. Classical Machine Learning) and
descriptions, and training parameters.

4.2. Metric: Signal Aware F1

We use the methodology proposed by [18] to measure
the signal awareness of the models, as well as its sub-
sequent enhancement by our approaches. Operating atop
vulnerable samples in the test set, signal-awareness mea-
surement boils down to counting how often, when a model
predicts a sample to be ‘buggy’ (i.e. True Positives (TP),
rest being False Negatives (FN)), it uses the right signals
to arrive at its prediction1. Using a Delta-Debugging-style
minimization cycle with the model in the loop, the latter
is decided by checking the 1-minimal for the presence
(TP’) or absence (FN’) of the original program sample’s
bug (Section 2).

We extend the Signal-Aware Recall metric proposed
in [18] to calculate overall model performance in terms
of Signal-Aware F1 (SAF1). While Recall is defined as
TP / (TP + FN), Signal-Aware Recall is defined as TP’ /
(TP’ + FN’ + FN) or TP’ / (TP + FN) since TP = TP’
+ FN’. SAF1 is then calculated2 using these signal-aware
variants of Recall and Precision.

By definition, SAF1 ≤ F1, and the expectation is
to observe a shortening of this gap in the experiments,
with our signal awareness enhancement approaches. We
use a relative SAF1:F1 ratio3 (≤ 1) in our experiments,
encapsulating how much of the model’s performance is
attributable to task-relevant signal learning. As shown in
Appendix Table A.1, model performance does not get
compromised in our experiments, while we strive towards
improving the model’s SAF1:F1. Appendix A.4 discusses
details regarding baseline signal awareness measurements
of the models in our experiments, and it’s comparison
to previous work. Note that F1 and SAF1 for all model
training configurations—baseline, complexity-ranked, as
well as dataset-augmented—are evaluated on the dataset’s
original untouched test-set itself.

4.3. Research Questions

Following are the main research questions we aim to
explore with our experiments:
1) What impact does complexity-ranked training have on

model learning behavior, and does it improve model
signal awareness?

2) What impact does program simplification based aug-
mentation have on model signal awareness, and is it
better than generic augmentation?

3) What sort of model learning deduction can be obtained
by leveraging the dataset’s code complexity distribu-
tion, and is it more insightful than usual statistical
measures?

1. Signal awareness measurement on other groups, e.g. False Positives
(FP; samples incorrectly predicted by the model as being ‘buggy’), is
not very useful as it doesn’t give any insights on whether the model is
learning any vulnerability-specific signals.

2. The F1 statistical measure of performance is calculated as 2 *
Precision * Recall / (Precision + Recall)

3. Mathematically, SAF1:F1 == SAR:Recall == TP’ / TP.

� ����
���� ���� ����

�

��

��

��

��

�	
���� ������
��� ������ �������	�

��
�
�
��
�

���������������

Figure 9: Model SAF1 improvements with complexity-ranked
training across different complexity metrics. [GNN; s-bAbI]

�� ���� ������ ����
����

���� ����

����

�

��

��

��

��

��� 	��
��

��
��
�
�
	�

�	�

�����������	� ������� ����	��	�����

Figure 10: SAF1 improvement over baseline (natural train)
with two complexity-ranked training schemes, across models.
[s-bAbI]

4.4. Baselines and Competing Approaches

The baseline performance metrics are gathered using
model implementations based upon the architectures pro-
posed in Russell et al. [9], VulDeePecker [10], and Devign
[11] 4. With the alternative model training approaches
proposed in this paper, the competing approaches include:
(i) the usual random-sampling based training, as opposed
to complexity-ranked training, and (ii) generic augmenta-
tion (adding more training samples from the dataset), as
opposed to augmentation with simplified programs. These
are shown as baseline configurations or leftmost bars in
the Results Section graphs (Section 5), upon which we
show superior model signal-awareness improvements with
our approaches.

5. Results

5.1. Code-complexity-ranked Training

Figure 9 shows how a model’s signal awareness can
be significantly improved by presenting it source code
samples in the increasing order of code complexity.
Shown is the SAF1:F1 ratio for a GNN model on the s-
bAbI dataset for different training configurations, includ-
ing natural random-sampling based training (baseline),
and four complexity-ranked training schemes based upon
sloc, volume, difficulty, and effort complexity
metrics respectively. As can be seen, complexity-ranked
training can significantly boost the model’s signal aware-
ness, with difficulty-ordered training achieving a
32% improvement. However, not all models show such
improvements, as shown in Figure 10 comparing CNN,
RNN and GNN models across a couple such complexity-
ranked training schemes (same results for others; not

4. While these ML approaches claim to be better than traditional
analyzers, this is not the claim or focus of this work.

513

(a) s-bAbI dataset

(b) Juliet dataset

(c) D2A dataset*

Figure 11: Comparing validation-set performance curves.
Complexity-ranked training is slower than natural training, but
eventually makes up. *: F1 curve for D2A for better visu-
alization; accuracy curve noisier but has same trend. (CC =
cyclomatic complexity). [GNN]

shown). The fact that other models aren’t able to improve
may be due to the better learning potential for a model
trained over a more natural graph-based representation of
source code, than over code-as-image (CNN) or code-as-
token-sequence (RNN) counterparts [67], [68], [69].

Figure 11a shows how the model learning changes
with complexity ranked training for the GNN model on
the s-bAbI dataset. It shows the validation accuracy curves
(i.e. model’s interim accuracy on the validation set as
it progresses along its training rounds or ‘epochs’) for
the different training configurations– natural training, and
the four complexity-ranked training schemes. As can be
seen, natural training quickly reaches quite close to its
peak performance, whereas the learning is relatively slow
with the complexity-ranked schemes. Although all even-
tually reach similar looking peaks, the crucial difference
is the minima reached by these training configurations.
Even though both natural and complexity-ranked training
schemes reach a 90%+ accuracy (and F1), the latter is
much more task-aware, as shown before in Figure 9’s
signal-aware F1 (SAF1) values. This can be attributed
to the model learning, albeit slowly, better signals from
‘easier’ examples first, empowering it to sift-through noise
with more complex examples later.

This altered training behavior is also seen in the other
models and datasets, with Figures 11b and 11c show-

��
��

	��� ���� ���� ����
���� ���� �	��

�

��

�

�

��

���

� � � � 	 �� �� �� 	�

��
��
��
�
��

�	

�����������������
����	�	���	��
����������������	���

Figure 12: GNN SAF1 improvements with random sampling
over the augmented s-bAbI dataset.

ing similar behavior for certain Juliet and D2A example
configurations (similar trend with other model-metric con-
figurations; omitted). Although complexity-ranking alters
the model’s learning route, and by itself can offer some
assistance to the models, it doesn’t seem to always help
the model reach a more task-relevant minima. The base-
line SAF1:F1, obtained with the natural training scheme,
remains unchanged for the Juliet dataset even with
complexity-ranked training, while D2A shows only a
3.5% improvement. But as shall be shown later (Section
5.3), complexity-ranking still has some benefits to offer
in those settings.

Summary: The simplicity of complexity-ranked train-
ing, together with the altered model learning, offers some
assistance to model signal awareness, although not uni-
versally.

5.2. Augmentation via Program Simplification

Our program simplification approach results in the
generation of 9x more samples for s-bAbI, 9.6x for
Juliet, and 53x for D2A, as a factor of the base dataset
size. The varying levels of augmentation are due to the
difference in the datasets’ sample sizes, which tend to be
much bigger for the real-world D2A dataset, as compared
to s-bAbI and Juliet (median sloc 36 vs. 9). The bigger
the input code sample, the more the number of reduction
iterations performed by Delta Debugging, resulting in po-
tentially more valid intermediate samples being generated.

Training the models over these additional (and sim-
plified) samples yields even greater signal awareness im-
provements than achieved with complexity-ranked train-
ing. This can be seen in Figure 12, showing SAF1:F1
values achieved with different levels of augmentation for
the GNN model over the s-bAbI dataset. The x-axis shows
the proportion of samples (in the percentage of the base
dataset size) randomly selected (repeated and averaged)
from the generated set, and added to the base dataset
for training, with the leftmost point (x=0) referring to the
baseline model performance (same as shown in Figure 9).
As can be seen, by introducing just 2% additional simpli-
fied program samples into the training mix, the model
signal awareness improvement surpasses that achieved
with complexity-ranked training. The gains continue with
more augmentation, with SAF1 reaching almost 96%
of its attainable max (i.e. F1) with 50% augmentation,
amounting to a 113% improvement over the base model
signal awareness. By presenting the model with smaller

514

�
�
 ���	
���
�	 ��

	��	

	���

�

��

��

��

��

� �� �� �� 	� ���
��

��
�
�
��
��

�	
���������������������
������������������������

Figure 13: GNN SAF1 improvements with random sampling
over the augmented Juliet dataset.

samples, while still containing the characteristics relevant
to the task at hand (i.e. bugs), it seems to be helping the
model focus more on task-relevant aspects of code and
less on noise or dataset nuances. More concrete insights
on how model learning is changing under the covers shall
be revealed in Section 5.4, highlighting the potential of
our introspection approach.

The trend is the same for the Juliet dataset, with more
augmentation yielding greater signal awareness improve-
ments, as shown in Figure 13 for a GNN model. The
relative gains however are even more extreme, due to the
poor baseline model SAF1. SAF1 improves dramatically
across the augmentation levels, crossing 60% of F1 (a
4.8x improvement) when all generated samples are addi-
tionally used for training. The usual model quality metrics
(Precision, Recall, F1) maintain their similar high (90+)
values in all augmentation configurations, while SAF1
increases, as shown in Table A.1.

D2A records only modest SAF1:F1 improvement
of 13.3%. Interestingly, the model Recall also gains
by 22.1% during augmentation, while the Recalls in the
case of s-bAbI and Juliet datasets are stably high. This
suggests the base dataset is not sufficiently large for model
training. Just with derived simplified examples alone, we
are able to guide the model to correctly capture more
signals and thus improve both the classic model Recall
and signal-aware Recall. On the other hand, this also
points to the diversity of the real-world programs, and the
challenge of generating sufficient simplified programs that
can help models distinguish various signals from noises
in such a diverse code base. Note that the sophisticated
methodology behind D2A curation makes it non-trivial to
collect more samples and enlarge the training set [66]. It
uses differential analysis based on Github commit history,
for filtering the false positives from (presumably) a state-
of-the-art Infer static analyzer.

These performance gains are not just due to fact that
there are extra samples to train upon. This can be seen
in Figure 14 which shows the SAF1:F1 values obtained
with generic augmentation, compared to our approach,
for a few representative augmentation levels for the s-
bAbI dataset. As can be seen, just adding more samples
to the training set does not necessarily increase the
model’s signal awareness, unlike our simplified pro-
gram sample augmentation. The fact that the code sam-
ples generated by our approach are smaller and potentially
simpler than the original samples, is crucial to the model
being able to better capture task-relevant signals and sift
through noise during training. The results are the same
for the Juliet dataset, with generic augmentation not im-

�� �� ���� ���� ��
��

�	�

�	�� ����

�

��

��

��

��

���

�	
���� � �� �� ��

��
��
��
�
�
��
��

��

�����������	�	�
� ���������	�
������������	�	�
�

Figure 14: Comparing the generic and program simplification
based augmentation approaches on the s-bAbI dataset.

�

��

��

��

��

���

�������� � � �� ��

��
��
��
�
��

���

�	�
��

��� ��� ���

Figure 15: Program simplification based augmentation im-
proves the SAF1 of CNN, RNN and GNN on the s-bAbI dataset.

proving upon the baseline SAF1 at all, irrespective of the
augmentation level, very much unlike our augmentation
approach. As for D2A, since it is already very limited in
size, so there isn’t enough hold-out data to test generic
augmentation.

Unlike the case with complexity-ranked training, the
signal awareness of CNN and RNN models is also given
a boost with our augmentation approach. This is shown in
Figure 15 showing SAF1:F1 values for the three models
for a few example augmentation levels (similar trend for
other model-dataset configurations; omitted). As can be
seen, the GNN model outshines the competitors as was the
case with complexity-ranked training, again highlighting
the superior potential of code-as-graph based modeling for
better learning with appropriate guidance.

Summary: Dataset augmentation with simplified, de-
noised program samples assists models in learning task-
relevant signals better, while maintaining model perfor-
mance.

5.3. Hybrid Training

The two approaches—complexity-ranked training and
program-simplification-based augmentation—are comple-
mentary to each other, and can potentially be combined
together for different use-cases. These include schemes
such as (i) selecting only the more complex samples to
be simplified, or (ii) ordering the augmented samples in
the order of their code complexity metrics during training,
or (iii) training and comparing the model separately on
subsets ordered by complexity, for verifying model ca-
pacity and quality, amongst others. We experiment with
one such hybrid setting to explore the potential for even
more gains to be had in the model signal awareness, by

515

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��

	
�����������	����

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��

	
�����������	����

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��

	
�� ���������	����

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��

	
�����������	����

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��
	
�� ���������	����

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��

	
�����������	����

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��

	
�� ���������	����

�

����

����

����

���

� � � � � � �� �� �� �� � ��

��
��
��
��

��
�
��

��

	
�� ���������	����

������������� ���	
��������� ��	
��������� ���	
���������

��
��

��
��

�

�
��

�

�	

�

�

������

Figure 16: Insight: More augmentation is helping model better understand bigger code samples- via complexity distribution
comparison between s-bAbI SA-TP/FN groups. “X% Augmentation” = base dataset + X% augmented samples (in % of base dataset
size). Notice how the SA-TP ‘skyline’ (i.e. sample occurrence counts) rises with augmentation, while that of SA-FN falls. This
is highlighted via the upward-trending dotted line spanning the SA-TP plots (similarly, the downward-trending dotted line for the
SA-FN plots)

���� ����
����

����

����
����

����

����

��

��

��

���	
��	 � �� ��

��
��
��
�
	�

���

�������������	
����������������������
�����
�������

������������� ����������

Figure 17: Hybrid training: combining complexity-ranking with
program simplification based data augmentation on Juliet dataset

performing complexity-ranking atop the training dataset
augmented with simplified program samples. Additional
signal-awareness boost with such a combination was most
evident for the Juliet dataset, as shown in Figure 17 for a
few example augmentation configurations. This is in stark
contrast with the inability of complexity-ranking by itself
to improve model’s signal awareness for Juliet (Section
5.1). One hypothesis for this is the expanded metric range
which opens up post-simplification, as depicted in Figure
7, improving ranking granularity and thus new sample
ordering during training.

5.4. Model Learning Introspection

So far, we have shown the potential of different data-
driven approaches to improve model signal awareness.
Although we have conjectured the possible reasons behind
such improvements, we haven’t yet probed the model
black-box. In this section, we present the results of our
code-complexity-driven model introspection approach to
analyze model evolution across augmentation iterations.

5.4.1. Understanding Augmentation Evolution. Our in-
trospection approach deduces model learning behavior
by comparing the complexity distributions of the test-set
samples, grouped by their prediction accuracy. Recall that
the signal-awareness measurement results in the correctly
predicted test-set samples being divided into SA-TP and

SA-FN5, depending upon whether or not the model cap-
tured the right signals to arrive at its otherwise “correct”
vulnerability prediction. We compare the code complexity
distribution of the SA-TP and SA-FN samples, to interpret
model learning from the dataset’s perspective. While Sec-
tion 5.2 showed that training on datasets augmented with
simplified programs improves models’ signal awareness,
the goal here is to go one step beyond and trace how model
understanding of code improves with augmentation.

Figure 16 presents this comparison using sloc distri-
bution across s-bAbI augmentation iterations. Comparing
the leftmost pair of SA-TP vs. SA-FN sloc distributions
reveals the first insight regarding the baseline model (0%
augmentation) facing trouble understanding bigger
code samples. This can be seen in terms of the high
occurrence count of sloc = {12,13} samples in the SA-
FN plot, with an extremely small presence in the SA-
TP counterpart. Repeating the comparison across different
augmentation iterations enables tracing how the model
understanding of source code evolves. Specifically, the
particular code-size weakness improves as augmentation
increases, as can be seen with the rising SA-TP ‘skyline’
(i.e. sample occurrence counts), and correspondingly the
falling SA-FN skyline, most evident for sloc = {12,13}
samples. This leads to an intriguing insight about aug-
mentation helping the model better understand bigger
code samples. This is especially interesting because the
model learning was generic– the model was not explicitly
aware of code size or complexity of samples. It is only
after the fact that we analyze the model’s prediction
performance from the perspective of the test set’s code
complexity, that we uncover these findings. Furthermore,
its not that the base dataset did not have enough large-
sized samples for the model to train upon– the base
training set consists of around 17% each of sloc =
{12,13} samples. Each augmentation iteration introduces
more samples for the model to train upon, also implying
more quantity of de-noised low-complexity samples (re-
sulting from program simplification; Figure 7), gradually
improving the model’s chances to learn relevant signals.

5. Referred to as TP’ and FN’ in Section 4.2

516

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

��

��

�

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

�
��
���
���
���
���

� � � � � � � � �� �� �� �� � ��

��
��
��
��

��
�
	�

�

����	�
���	�����
���	��

� ���

� ����

�	 ����

��������
�
��� ���������
�
���

��
��

��
��

���������
�
��� ���������
�
���

Figure 18: Insight: More augmentation is helping model better understand more complex code samples- via complexity distribution
comparison between Juliet SA-TP/FN groups. “X% Augmentation” = base dataset + X% augmented samples (in % of base dataset
size)

Different insights can be derived by changing the
complexity metrics employed for model introspection. For
example, Figure 18 presents a similar model evolution
analysis for the Juliet dataset, but from the perspective of
the cyclomatic complexity (cc) metric (# inde-
pendent paths in the program). The same augmentation-
driven ‘rising / falling skyline’ behavior can be seen in
the cc distributions of TP and FN samples, revealing the
model-learning dynamic about improved understanding
of code structure with more augmentation. What does
not change, however, is the occurrence counts for more
complex samples (cc > 8) in FNs, signifying the need
for potential white-box model enhancement beyond just
data-driven simplified-program augmentation.

As for the D2A dataset, the modest 13.3% signal-
awareness improvements recorded with augmentation,
precludes observation of any meaningful evolution trends
or insights during its dataset-complexity-driven analysis.

5.4.2. Understanding Augmentation-Invariant Classes.
We now use the complexity distribution comparison ap-
proach as above, to examine the characteristics of samples
for which the model learning behavior remains invari-
ant to augmentation levels. We define two categories of
such samples as follows. As before, for each model Mi

trained under an augmentation setting (i.e. base dataset
+ X% simplified samples), subsequent signal-awareness
measurement results in it’s true positives being divided
into SA-TPi and SA-FNi, depending on if Mi captured
the real signals or not. Then, the two special classes
in focus are: (i) AlwaysTP :=

⋂n
i=1SA-TPi, samples

always captured correctly by the model; (ii) AlwaysFN
:=

⋂n
i=1SA-FNi that are consistently mispredicted. The

intersection of SA-TPi or SA-FNi allows us to focus on
samples that are not affected by the augmentations, and
thus examine the characteristics of both- the straightfor-
ward and challenging samples- for a model architecture.

Figure 19(a) compares the difficulty complexity
metrics distribution of the AlwaysTP samples for the s-
bAbI dataset, versus the AlwaysFN group. It provides
an interesting insight into the model learning behavior
from the point of view of the difficulty of the program to
understand (in terms operator and operand usage volune).
Across all augmentation iterations, the model is more

���

����

���

���
�
 ��	
�

��

�

��

� � �� �� �� �� � �� �� �� �� �� �� �� ��
��

��
��
��

��
�
��
��

��
��
�
��

�

�������������������������

��������

���

���
��	 ���

�	��

�
��

���
�

��

�

��

	
 �� �� �� �� � �� �� �� �	 �
 �� �� ��

��
��

��

��
�
�
��

�
��
�
��

�

������������������������

��������

����

		��

	�	
���

��	 ���
�

��

�

��

� � � � � � 	
 �� �� �� �� � ��

��
��

��

��
�
�
��

�
��
�
��

�

����������������

��������

����

	��
	�

���

	�
 ��� ��	
�� ��� ���
�� 	
�� ��	 ���

�

��

�

��

� � � � � � 	
 �� �� �� �� � ��

��
��

��

��
�
�
��

�
��
�
��

�

����������������

��������
���������	
��� ����	��

��������������������	��

Figure 19: Comparing characteristics of samples consistently
(mis)predicted by model across augmentations

easily able to correctly capture less difficult code sam-
ples (difficulty = {12,14}), while consistently mis-
predicted samples tend to be harder (difficulty
= {16,17}). This does not mean that the latter category
is never predicted correctly by the model. The model
eventually learns to be able to predict them with sufficient
augmentation, as we saw in the augmentation evolution
Figure 16, but the ones that still remain mispredicted
possess the higher metric scores.

Figure 19(b) shows the corresponding behavior for the
model augmentation on the Juliet dataset, this time taking
the example of the cyclomatic complexity (cc) metric (#
independent paths in the program). The model is able to
somewhat capture low complexity samples (cc < 5) as
opposed to the more complex ones (cc > 10), where it
fails consistently, irrespective of augmentation assistance.
The separation between the distributions for AlwaysTP
and AlwaysFN is not as clear as for s-bAbI, since model
learning isn’t as good for Juliet to begin with, with almost
half of the test-set samples are consistently mispredicted
for Juliet despite augmentation.

Using other metrics such as ifs, loops etc. yields
more fine grained insight into model learning. For exam-

517

ple, for s-bAbI, across augmentation iterations, the model
is more easily able to correctly capture code samples con-
taining no loops (77%), while consistently mis-predicted
samples tend to have a loop in them (88%).

Summary: Model introspection from the dataset per-
spective yields code-centric, developer-friendly insights
into model learning behavior, beyond the usual generic
measures of model quality.

6. Discussion and Limitations

6.1. Training Distribution Shift

During augmentation, we are adding additional data
to the training set, which can be considered as sampling
around the original data points[70], but in the discrete
program space and with an accurate labeler. Theoreti-
cally, this may add learning difficulties for models due
to the further complicated decision boundary as the data
distribution shifts away from the test set. But more im-
portantly, it would also help the model to learn real
signals, therefore improving its reliability. In practice, we
observed that the model performance did not deteriorate
with our simplified-program augmentation, while its signal
awareness increased dramatically (Table A.1).

6.2. Other Tasks, Datasets and Models

In this work, while we focus on vulnerability detection
models, our approaches are independent of the target
source code understanding task. The component that tai-
lors our program-simplification approach to specific tasks
is the labeler (or the task-profile checker; Section 3.2).
Some options, highlighting a cost vs. quality trade-off, in-
clude: human domain expert, original dataset labeler, line-
based code-feature matcher, static analyzer, and fuzzer,
amongst others. The vulnerability detection setting enables
leveraging readily available SE tools to ensure correctness
during task-profile verification, i.e. existence of ground
truth vulnerability in reduced programs.

In terms of datasets, signal-awareness measurement
as per [18] requires compilable code with vulnerabil-
ity location information, beyond the 0/1 labels which
vulnerability datasets are commonly limited to. Datasets
from Draper [9] and Devign [11] thus get excluded be-
cause they do not specify bug locations. Samples from
VulDeePecker [10] and SySeVR [12] are slices converted
into linear sequences, not valid compilable code which
models are trained upon and are thus excluded. On the
other hand, s-bAbI[44], Juliet[61] and D2A[66] do in fact
contain bug-level information, and are thus considered in
this work. While we were able show the effectiveness
of our model learning enhancement approaches on these
datasets, nevertheless, the additional ground-truth avail-
ability constraint on the datasets necessitated by signal-
awareness measurements, may limit the generalizability
of this paper’s observations.

Appendix A.2 presents our rationale behind using
neural networks as the AI model baselines in this paper, as
opposed to classical machine learning approaches. While
we apply our approaches on popular CNN, RNN and GNN
models of source code, being data-driven and independent

of the learning algorithm and the model internals, our
approaches are applicable to other AI models as well.
Approaches such as BERT and Transformers [71], [72],
which have shown great promise in the NLP domain,
have been also recently been ported to the source code
domain [73], [74]. Since these are even more complex
than the ‘vanilla’ neural network architectures, the black-
box nature of their learning is even more pronounced. We
plan to apply our model-agnostic approaches to analyze
the signal awareness of these architectures as well.

6.3. Reduction Engine Alternatives

While we use Delta Debugging (DD) [32] to simplify
program samples, our approach is not reliant on it. The
core idea behind our approach remains independent of
the specific program reduction engine employed– specif-
ically, augmenting training with simpler programs while
preserving signals. DD offers an efficient reduction solu-
tion and can be substituted by existing alternatives such
as HDD[75], Perses[76], C-Reduce[77], amongst others.
Simpler alternatives can be employed at the cost of lower
efficiency, such as a linear, brute-force or randomized
schemes for source code tokens/statements selection for
reduction. Irrespective of the reduction scheme, the more
important components are correctness validation (e.g., via
a compiler) and original task-profile checking (Section
6.2).

7. Related Work

Machine learning models have garnered increasing
popularity in the realm of security in recent years. Classi-
cal ML methods learn over explicit source code features
such as number of lines or conditional statements, library
functions, system calls, call-stack depth, complexity mea-
sures, and meta features like commit messages and bug
reports. [78], [79], [80], [81], [82], [83]. Alternatively,
statistical language models capture regularities in source
code[84] at the token level. Specific to the bug detection
task, [85] leverages N-gram language models to calculate
the probability distribution of program tokens in a project,
and flag low probability token sequences as potential bugs.
[86] similalry uses N-gram analysis to rank the executable
statements of a software by level of suspicion.

Instead of feature engineering as in classical ML, deep
learning approaches automatically extract features from
code by treating it as an image, a linear sequence or
a graph. Specific to the bug detection task, VulDeeP-
ecker [10] trained a BiLSTM model (a RNN variant) on
word2vec embeddings [87] of code snippets, surpassing
several static analysis baselines. Russel et al. [88] delved
further into representation learning, utilizing CNN and
RNN, and bootstrapping the final prediction with the
Random Forest Classical ML method. SySeVR [12] builds
on this foundation by first extracting code snippets via
program slicing on the program dependency graph (PDG)
and control flow graph (CFG), then training embeddings
via word2vec, and finally employing deep learning mod-
els, including Multilayer Perceptron (MLP), CNN, and
(bi-directional) RNN, on top of the learned embeddings.
GNNs have been shown to perform better than their other
neural network counterparts, owing to their ability to

518

learn from more semantically-rich graph representation of
source code. Li et al. [89] use a combination of abstract
syntax tree (AST), PDG and data flow graphs to encode
Java methods. Attention GRU (a RNN variant) as well as
attention convolutional layer is used to focus on buggy
paths in the code. Hoppity[90] adds a pointer mechanism
to a GNN for bug localization, operating primarily on the
AST. Unlike the general programming bugs specific to
Java, as targeted by Hoppity and Li et al., Devign [11]
targets exploitable C/C++ vulnerabiliies, learning over a
Code Property Graph [43] representation of code (essen-
tially AST + CFG + PDG). Allamanis et al. [42] surveys
several other model variants and use-cases of ML over
source code. Unlike this line of inquiry, our objective
is not to develop a better model for a specific bench-
mark dataset, but rather to enhance the overall learning
framework through signal-aware learning. As such, being
data-driven, our approaches are independent of the model
architecture, and can be used complementary to the model
under test to enhance its signal awareness.

Despite demonstrating clear superiority over tradi-
tional static analysis methods, ML-based techniques have
their own limitations and challenges. Our study is part of a
group of recent works [24], [91] that uncover the potential
drawbacks of ML-based methods and provide potential
solutions for them. Both of these works discuss issues
in the data-gathering process that could lead to dataset
bias, inappropriate modeling designs that might induce
the learning of spurious patterns, and improper evaluation
metrics that could result in unfair comparisons. Our work
complements these modeling pipeline recommendations
by proposing code-complexity inspired training alterna-
tives, to guide the model towards learning task-relevant
features.

Augmentation methods are popular in AI in general,
including domain-specific approaches such as image trans-
formations [92], text transformations [93], data-driven ap-
proaches such as SMOTE [70], and formal and empirical
augmentation [94], [95], amongst others. Complementary
to these approaches, our augmentation approach is focused
specifically towards improving the signal awareness of
source code models. A key difference is that general AI
approaches usually assume the input under augmentation
would keep the original labels since it is extremely hard
to check for images and texts without huge manual effort,
while this assumption may not always be true. Our ap-
proach utilizes the benefits of working in the well-defined
source code space, therefore we can assure the validity
and correctness of our code augmentation. In the context
of vulnerability detection, preserving existing bugs while
generating simplified programs is the key difference in
our approach. This is in contrast to existing source-level
bug-seeding-based augmentation methods which can lead
to previously unseen bugs [33], [34], [35], [36], [37], [38],
[39].

Our second approach to improving model signal
awareness combines code complexity with curriculum
learning (CL) [31], [96], [97]. While CL has previously
been applied using general complexity measures of images
and texts to rank training samples in the vision and nat-
ural language domains, we use code-specific complexity
measures to tailor the models towards source code under-
standing. Different to CL which is data-driven, denoising

approaches [98] are usually built into the model, and assist
model learning by mapping noisy input to noise-less input.

Finally, we also use the notion of code complexity
to introspect model learning. Existing explanation ap-
proaches tend to use white-box model internals to add
some transparency into the model logic. This includes
probing the model’s gradient [99], [100], [101], [102]
to highlight input regions most influencing the model’s
prediction, or fitting interpretable surrogate models to
approximate the deep learning model’s behavior [103],
[104], [105], and then using the surrogate to derive the
feature importance ranking for the input. The approximate
nature of such mappings, from the model side back to the
data, can make them misleading [106]. Explanation meth-
ods have also been created for graphical neural networks,
attributing importance to graph nodes and edges by using
attention mechanisms [107], [108], or via maximizing
mutual information between inputs and outputs [109]. Our
model learning introspection approach is complementary
to these explanation approaches as it treats models as
black boxes, deducing model learning from the dataset’s
perspective, based on concretely defined characteristics
of source code. This empowers our approach to offer
more code-centric and developer-friendly insights. This
is in contrast to certain other approximation-based black-
box explanation approaches [20] which do not require the
inputs to remain natural or valid. Furthermore, unlike our
work, these do not tie source code constructs to model
signal awareness.

8. Conclusion

Using SE concepts, we developed data-driven ap-
proaches to assist ML vulnerability detection models in
learning task-relevant aspects of source code better. To
enhance model signal-awareness, we incorporated the no-
tion of complexity of source code into model training. We
achieved significant improvements with our complexity-
ranked training and program-simplification-based aug-
mentation approaches, while maintaining model perfor-
mance. We carried the notion of complexity into model
introspection, and presented code-centric insights into
black-box model learning. Moving forward, we look to
explore active learning approaches, helping the model
with targeted SE-assistance, e.g. picking specific samples
for augmentation where the model is facing difficulty
learning.

9. Data Availability

The datasets, source code and model checkpoints will
be made available at Github, pending internal clearance.

A. Appendix

A.1. Datasets

We use the following datasets in this work:

s-bAbI: The s-bAbI synthetic dataset [44] contains
syntactically-valid C programs with non-trivial control
flow, focusing solely on the buffer overflow vulnerability.
We used the s-bAbI generator to create a balanced dataset

519

of almost 40K training functions. Samples with ‘UNSAFE’
tag are labeled as 1, and those with ‘SAFE’ tag as 0.

Juliet: The Juliet Test Suite [61] contains synthetic exam-
ples with different vulnerability types, designed for testing
static analyzers. From its test cases, we extract almost 32K
training functions, amongst which 30% are vulnerable.
Samples tagged as ‘bad’, and with clear bug information
as per Juliet’s manifest.xml file, are labeled as 1,
while the ones with a ‘good’ tag are labeled as 0.

D2A: D2A [66] is a real-world vulnerability detection
dataset built over multiple Github projects- OpenSSL,
FFMpeg, HTTPD, Nginx and libtiff. It contains
in-depth trace-level bug information, derived using dif-
ferential analysis atop the Infer static analyzer outputs
of consecutive repository versions, before and after bug-
fixing commits. It comprises of a variety of vulnerabilty
types including buffer overflows, integer overflows, and
memory/resource leaks. Function-level sample extraction
from D2A traces yields 6728 functions.

A.2. Models

We use neural networks as our ML model base-
lines. This is driven by two main reasons. First, existing
work [9], [11] has already demonstrated the superiority
of neural-network-based deep learning over classical ma-
chine learning models (e.g., random forest and XGboost)
of source code. And secondly, deep learning has a more
pronounced black-box nature as opposed to classical ma-
chine learning. Their ability to automatically learn input
features, while enables them to learn complex functions,
but it hampers their interpretability. This is in contrast to
classical machine learning approaches, which can better
offer visibility into their learned logic, while operating
upon explicitly defined features.

We apply our learning enhancement approaches to
three popular neural network architectures for vulnerabil-
ity detection tasks.

A Convolutional Neural Network (CNN) tries to
learn the pictorial relationship between tokens and un-
derlying bugs. Similar to [Russell et al., 2018 [9]], we
normalize the function names and variable names to fixed
tokens such as Func and Var. We set the embedding
layer dimension to 13, followed by a 2d-convolutional
layer with input channel as 1, output channel as 512, and
kernel size as (9, 13). The final prediction is generated
by a 3-layer multilayer perceptron (MLP) with output
dimensions being 64, 16, and 2.

A Recurrent Neural Network (RNN) treats a pro-
gram as a linear sequence of tokens to learn the temporal
relationship between the tokens and bugs. We implement
our RNN based on [10]. We set the embedding layer
dimension as 500, followed by a two-layer bi-directional
GRU module with hidden size equals to 256. The final
prediction is generated by a single-layer MLP. Similar to
CNN, we normalize the input functions as well.

A Graph Neural Network (GNN) operates on the
graph-level representations of source code, which are
commonly used in program analysis and compilation. For
example, in Devign[11], GNN tries to learn bug patterns
in a Code Property Graph. We set the embedding size as
64, followed by a gated GNN layer [56] with hidden size

Figure A.1: A buffer overflow example showing why a looser

signal-awareness measurement bound is measured by line-based

bug matching. Even though the model incorrectly considers the

1-minimal as buggy, a line-based checker will count this partial

match in favor of the model capturing real signals, since the

buggy line exists in 1-minimal.

TABLE A.1: Using {Juliet + GNN + augmentation} example

to show: (i) model performance is maintained (rows 1-3) as

model signal awareness improves (SAF1 in row 4) with our

augmentation approach, and (ii) improvements still achieved

with our approach, even when using a looser signal-awareness

measurement bound (SAF1’ in row 5) (similar results for other

model-dataset configurations). Note that the very high model
performance measures are in line with previously reported values
[9], [110], [111], [18], owing to Juliet’s synthetic nature. For
comparison, for the real-world D2A dataset, the model F1 is
64.2, again comparable to previously reported values [11]

base + 0% aug +10% +20% +30% +50% +100% +all

Precision 99.9 99.9 99.9 99.9 99.9 99.9 99.9
Recall 99.9 99.9 99.9 99.8 99.8 99.8 99.9
F1 99.9 99.9 99.9 99.8 99.8 99.8 99.9
SAF1 12.8 15.4 20.9 33.9 34.9 43.3 61.8
SAF1’ 49.6 51.1 54.7 61.1 61.2 65.3 74.8

256 and 5 unrolling time steps. Similar to Devign, we
do not normalize the tokens. The node representations are
obtained via summation of all node tokens’ embedding,
and the graph representation read-out is constructed as a
global attention layer. The final prediction is generated by
a 2-layer MLP with output dimensions 256 and 2.

The models are trained over the datasets presented in
Section A.1, using a 80:10:10 train:validate:test split. For
all models, we set dropout rate as 0.2 during training,
and used the Adam optimizer. We tuned learning rate in
{10−3, 10−4} and batch size in {24, 36, 128, 256, 512}.
Models are trained to minimize cross entropy loss. We
save the checkpoint with the least validation loss across
epochs, with early stopping employed (patience = 10).
Results are averages across multiple runs.

A.3. Infer as a labeler

At each iteration of the reduction cycle in our pro-
gram simplification approach (Section 3.2), we compare
Infer’s analysis of the reduced subprogram with that of the
original program sample. We ensure that the reduced sub-
program is either bug-free, or possesses only the same bug
as the original program sample. The latter is detected by a
hit for the original bug in Infer’s preexisting.json
and a miss in introduced.json differential analysis
comparison files.

520

A.4. Selecting Model Signal Awareness Baseline
for Enhancement

Previous work for measuring signal awareness [18]
uses a combination of checkers to test bug existence in
a sample’s 1-minimal: utilizing the Infer analyzer [62]
(checks existence of original bug), with fallback to line-
based bug matching (checks existence of buggy line) for
samples with differing Infer verdict and the original bug.
As compared to Infer, line-based bug matching is less
accurate, e.g. it counts even partial matches in favor of
the model as shown in Figure A.1, thereby providing
a looser signal-awareness measurement bound than Infer
analysis. Despite this partial matching benefit, a lack of
signal awareness in the models is still observed, as shown
in [18]. However, to show the true impact of signal aware-
ness improvements with our model learning assistance
techniques, which line-based matching would mask, we
instead employ the stricter Infer-based matching alone.
For correctness, we focus only on the samples where Infer
verdict matches the original bug. As a result of using the
tighter signal-awareness measurement bound, the models’
baseline performance are lower than those reported in
[18]. Using a stricter checker (limited to the applicable
test-set subset) thus reveals that the issue of the models
relying on task-irrelevant signals is more pronounced than
indicated by [18]. Nevertheless, as can be seen in the last
row of Table A.1, even when using the looser measure-
ment bound our techniques still record signal-awareness
improvements, albeit masked by the checker leniency.

References

[1] M. Allamanis, E. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names,” in FSE, 2015.

[2] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” ser. ICLR, 2018.

[3] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in ICML,
2016.

[4] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in ACL, 2016.

[5] J. Li, Y. Wang, M. Lyu, and I. King, “Code completion with
neural attention and pointer networks,” IJCAI, 2018.

[6] GitHub Copolit, “Your AI pair programmer,” 2021, https://copilot.
github.com/.

[7] S. TEAM, “Accelerating our developer-first vi-
sion with deepcode,” 2020, https://snyk.io/blog/
accelerating-developer-first-vision-with-deepcode/.

[8] J. Bader, S. S. Kim, F. S. Luan, S. Chandra, and E. Meijer,
“AI in software engineering at facebook,” IEEE Softw.,
vol. 38, no. 4, pp. 52–61, 2021. [Online]. Available: https:
//doi.org/10.1109/MS.2021.3061664

[9] R. Russell, L. Kim, L. Hamilton et al., “Automated vulnerability
detection in source code using deep representation learning,” in
ICMLA, 2018.

[10] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and
Y. Zhong, “Vuldeepecker: A deep learning-based system for
vulnerability detection,” in NDSS, 2018.

[11] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program
semantics via graph neural networks,” in NeurIPS, 2019.

[12] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnerabil-
ities,” 2018.

[13] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy,
and A. Ghose, “Automatic feature learning for predicting
vulnerable software components,” IEEE Trans. Software Eng.,
vol. 47, no. 1, pp. 67–85, 2021. [Online]. Available: https:
//doi.org/10.1109/TSE.2018.2881961

[14] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White,
and D. Poshyvanyk, “An empirical study on learning bug-fixing
patches in the wild via neural machine translation,” ACM Trans.
Softw. Eng. Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019.
[Online]. Available: https://doi.org/10.1145/3340544

[15] U. Yüksel and H. Sözer, “Automated classification of static code
analysis alerts: A case study,” in Proceedings of the 2013 IEEE
International Conference on Software Maintenance, ser. ICSM
’13. USA: IEEE Computer Society, 2013, pp. 532–535.

[16] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin, “Aletheia:
Improving the usability of static security analysis,” in Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS’14, 2014.

[17] U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter, “Learn-
ing a classifier for false positive error reports emitted by static
code analysis tools,” in Proceedings of the 1st ACM SIGPLAN
International Workshop on Machine Learning and Programming
Languages, ser. MAPL 2017. New York, NY, USA: Association
for Computing Machinery, 2017, pp. 35–42.

[18] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari,
“Probing model signal-awareness via prediction-preserving input
minimization,” ser. FSE, 2021.

[19] P. Bielik and M. T. Vechev, “Adversarial robustness for code,” in
ICML, 2020.

[20] M. R. I. Rabin, V. J. Hellendoorn, and M. A. Alipour, “Under-
standing neural code intelligence through program simplification,”
in FSE, 2021.

[21] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pier-
azzi, C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and
don’ts of machine learning in computer security,” arXiv preprint
arXiv:2010.09470, 2020.

[22] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon,
and M. Harman, “The importance of accounting for real-world
labelling when predicting software vulnerabilities,” in FSE, 2019.

[23] M. Allamanis, “The adverse effects of code duplication in ma-
chine learning models of code,” in ACM SPLASH Onward!, 2019.

[24] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transac-
tions on Software Engineering, 2021.

[25] 0xabad1dea, “Risk assessment of github copilot,”
2021. [Online]. Available: https://gist.github.com/0xabad1dea/
be18e11beb2e12433d93475d72016902

[26] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri,
“Asleep at the keyboard? assessing the security of github copilot’s
code contributions,” in IEEE Symposium on Security and Privacy
2022, 2022.

[27] A. A. Bangash, H. Sahar, A. Hindle, and K. Ali, “On the
time-based conclusion stability of cross-project defect prediction
models,” Empir. Softw. Eng., vol. 25, no. 6, pp. 5047–5083, 2020.
[Online]. Available: https://doi.org/10.1007/s10664-020-09878-9

[28] H. Zhang, H. Chen, C. Xiao et al., “Towards stable and efficient
training of verifiably robust neural networks,” in ICLR, 2019.

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,”
in ICLR, 2018.

[30] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in ICLR, 2015.

[31] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in ICML, 2009.

[32] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Software Engineering, vol. 28, no. 2,
2002.

[33] M. Pradel and K. Sen, “A learning approach to name-based bug
detection,” ser. OOPSLA, 2018.

521

[34] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient
javascript mutation testing,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, 2013,
pp. 74–83.

[35] D. B. Brown, M. Vaughn, B. Liblit, and T. Reps, “The care
and feeding of wild-caught mutants,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York, NY, USA: Association for
Computing Machinery, 2017, p. 511–522. [Online]. Available:
https://doi.org/10.1145/3106237.3106280

[36] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White,
and D. Poshyvanyk, “Learning how to mutate source code from
bug-fixes,” in 2019 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA,
September 29 - October 4, 2019. IEEE, 2019, pp. 301–312.
[Online]. Available: https://doi.org/10.1109/ICSME.2019.00046

[37] B. Dolan-Gavitt, P. Hulin, E. Kirda et al., “Lava: Large-scale
automated vulnerability addition,” in IEEE S&P, 2016, pp. 110–
121.

[38] S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug synthesis:
Challenging bug-finding tools with deep faults,” in FSE, 2018.

[39] J. Patra and M. Pradel, “Semantic bug seeding: A learning-based
approach for creating realistic bugs,” ser. FSE, 2021.

[40] “Clang Static Analyzer,” https://clang-analyzer.llvm.org.

[41] “Pin - A Dynamic Binary Instrumentation
Tool,” https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

[42] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[43] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in 2014
IEEE Symposium on Security and Privacy, SP’14, 2014.

[44] C. Sestili, W. Snavely, and N. VanHoudnos, “Towards security
defect prediction with AI,” CoRR, vol. abs/1808.09897, 2018.
[Online]. Available: http://arxiv.org/abs/1808.09897

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” Advances in
neural information processing systems, vol. 25, pp. 1097–1105,
2012.

[46] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[48] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” arXiv
preprint arXiv:1506.01497, 2015.

[49] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional
neural networks over tree structures for programming language
processing,” in Thirtieth AAAI conference on artificial intelli-
gence, 2016.

[50] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” 2014.

[51] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network
for text classification with multi-task learning,” arXiv preprint
arXiv:1605.05101, 2016.

[52] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[53] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalu-
ation of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.

[54] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” arXiv preprint arXiv:1802.09691, 2018.

[55] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,” in Inter-
national Conference on Machine Learning. PMLR, 2017, pp.
1263–1272.

[56] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence networks,” in ICLR, 2016.

[57] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[58] V.-A. Nguyen, V. Nguyen, T. Le, Q. H. Tran, D. Phung et al.,
“Regvd: Revisiting graph neural networks for vulnerability detec-
tion,” in 2022 IEEE/ACM 44th International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2022, pp. 178–182.

[59] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang,
“Hoppity: Learning graph transformations to detect and fix bugs
in programs,” in International Conference on Learning Represen-
tations (ICLR), 2020.

[60] “Juliet C/C++ 1.3 - NIST Software Assurance Reference Dataset,”
https://samate.nist.gov/SARD/test-suites/112.

[61] NIST, “Juliet test suite for c/c++ version 1.3,” 2017,
https://samate.nist.gov/SRD/testsuite.php.

[62] Facebook, “Infer Static Analyzer,” 2015, https://fbinfer.com/.

[63] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curricu-
lum learning,” in Proceedings of the 26th annual international
conference on machine learning, 2009, pp. 41–48.

[64] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski, “Frama-c,” in International conference on
software engineering and formal methods. Springer, 2012, pp.
233–247.

[65] Lizard, “A simple code complexity analyser,” 2012. [Online].
Available: https://github.com/terryyin/lizard

[66] Y. Zheng, S. Pujar, B. Lewis, L. Buratti et al., “D2a: A dataset
built for ai-based vulnerability detection methods using differen-
tial analysis,” ser. ICSE-SEIP, 2021.

[67] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” in International Conference on
Learning Representations, 2018.

[68] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang,
“Hoppity:learning graph transformations to detect and fix bugs
in programs,” in ICLR, 2020.

[69] S. Suneja, Y. Zheng, Y. Zhuang, J. Laredo, and A. Morari,
“Learning to map source code to software vulnerability using
code-as-a-graph,” CoRR, vol. abs/2006.08614, 2020. [Online].
Available: https://arxiv.org/abs/2006.08614

[70] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial
intelligence research, 2002.

[71] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[72] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[73] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong,
L. Shou, B. Qin, T. Liu, D. Jiang et al., “Codebert: A pre-trained
model for programming and natural languages,” arXiv preprint
arXiv:2002.08155, 2020.

[74] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning
and evaluating contextual embedding of source code,” in Inter-
national Conference on Machine Learning. PMLR, 2020, pp.
5110–5121.

[75] G. Misherghi and Z. Su, “Hdd: Hierarchical delta debugging,”
in Proceedings of the 28th International Conference on Software
Engineering, ICSE’06, 2006.

[76] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided
program reduction,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 361–371.

522

[77] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang,
“Test-case reduction for c compiler bugs,” in Proceedings of
the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation, 2012, pp. 335–346.

[78] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and
L. Mounier, “Toward large-scale vulnerability discovery using
machine learning,” in Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy. ACM, 2016, pp.
85–96.

[79] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day
malware detection based on supervised learning algorithms of api
call signatures,” in Proceedings of the Ninth Australasian Data
Mining Conference-Volume 121. Australian Computer Society,
Inc., 2011, pp. 171–182.

[80] R. Malhotra, “Comparative analysis of statistical and machine
learning methods for predicting faulty modules,” Applied Soft
Computing, vol. 21, pp. 286–297, 2014.

[81] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indica-
tors of software vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, no. 6, pp. 772–787, 2010.

[82] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Pre-
dicting vulnerable software components via text mining,” IEEE
Transactions on Software Engineering, vol. 40, no. 10, pp. 993–
1006, 2014.

[83] Y. Zhou and A. Sharma, “Automated identification of security
issues from commit messages and bug reports,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 914–919.

[84] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 2012, pp. 837–847.

[85] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, “Bugram:
bug detection with n-gram language models,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated
Software Engineering, 2016, pp. 708–719.

[86] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi, “Soft-
ware fault localization using n-gram analysis,” in International
Conference on Wireless Algorithms, Systems, and Applications.
Springer, 2008, pp. 548–559.

[87] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing sys-
tems, 2013, pp. 3111–3119.

[88] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. Ellingwood, and M. McConley, “Automated vul-
nerability detection in source code using deep representation
learning,” in 2018 17th IEEE international conference on machine
learning and applications (ICMLA). IEEE, 2018, pp. 757–762.

[89] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving
bug detection via context-based code representation learning and
attention-based neural networks,” Proceedings of the ACM on
Programming Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019.

[90] E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang,
“Hoppity: Learning graph transformations to detect and fix bugs
in programs,” in International Conference on Learning Represen-
tations, 2019.

[91] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts of
machine learning in computer security,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 3971–3988.

[92] C. Shorten and T. M. Khoshgoftaar, “A survey on image data
augmentation for deep learning,” Journal of Big Data, 2019.

[93] T. Brown, B. Mann, N. Ryder et al., “Language models are few-
shot learners,” in NeurIPS, 2020.

[94] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence gener-
ative adversarial nets with policy gradient,” ser. AAAI, 2017.

[95] C. Laidlaw, S. Singla, and S. Feizi, “Perceptual adversarial ro-
bustness: Defense against unseen threat models,” in ICLR, 2020.

[96] G. Hacohen and D. Weinshall, “On the power of curriculum
learning in training deep networks,” in ICML, 2019.

[97] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and
K. Kavukcuoglu, “Automated curriculum learning for neural net-
works,” in ICML, 2017.

[98] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising
sequence-to-sequence pre-training for natural language genera-
tion, translation, and comprehension,” in ACL, 2020.

[99] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in CVPR,
2016.

[100] R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-cam: Visual explanations via gradient-based
localization,” ser. ICCV, 2017.

[101] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in ICML,
2017.

[102] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for
deep nets,” ser. ICML, 2017.

[103] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should I trust
you?” Explaining the predictions of any classifier,” in KDD, 2016.

[104] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna:
Explaining deep learning based security applications,” in CCS,
2018.

[105] S. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in NIPS, 2017.

[106] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and
B. Kim, “Sanity checks for saliency maps,” in Proceedings of the
32nd International Conference on Neural Information Processing
Systems, 2018, pp. 9525–9536.

[107] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Confer-
ence on Learning Representations, ICLR’18, 2018.

[108] T. Xie and J. C. Grossman, “Crystal graph convolutional neural
networks for an accurate and interpretable prediction of material
properties,” Physical review letters, vol. 120, no. 14, 2018.

[109] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gn-
nexplainer: Generating explanations for graph neural networks,”
2019.

[110] G. Yan, S. Chen, Y. Bail, and X. Li, “Can deep learning mod-
els learn the vulnerable patterns for vulnerability detection?” in
2022 IEEE 46th Annual Computers, Software, and Applications
Conference (COMPSAC). IEEE, 2022, pp. 904–913.

[111] Y. Ding, S. Suneja, Y. Zheng, J. Laredo, A. Morari, G. Kaiser, and
B. Ray, “Velvet: a novel ensemble learning approach to automat-
ically locate vulnerable statements,” in 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2022, pp. 959–970.

523

