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Abstract—Transparency protocols are protocols whose ac-
tions can be publicly monitored by observers (such observers
may include regulators, rights advocacy groups, or the
general public). The observed actions are typically usages
of private keys such as decryptions, and signings. Examples
of transparency protocols include certificate transparency,
cryptocurrency, transparent decryption, and electronic vot-
ing. These protocols usually pose a challenge for automatic
verification, because they involve sophisticated data types
that have strong properties, such as Merkle trees, that allow
compact proofs of data presence and tree extension.

We address this challenge by introducing new features
in ProVerif, and a methodology for using them. With our
methodology, it is possible to describe the data type quite
abstractly, using ProVerif axioms, and prove the correctness
of the protocol using those axioms as assumptions. Then,
in separate steps, one can define one or more concrete
implementations of the data type, and again use ProVerif to
show that the implementations satisfy the assumptions that
were coded as axioms. This helps make compositional proofs,
splitting the proof burden into several manageable pieces.
We illustrate the methodology and features by providing the
first formal verification of the transparent decryption and
certificate transparency protocols with a precise modelling
of the Merkle tree data structure.

Index Terms—protocols, transparency protocols, automatic
verification, ProVerif, symbolic model

1. Introduction

Many security protocols assume the availability of
trusted third parties, such as cloud computing operators.
These are entities which are inherently trusted by def-
inition, and whose corruption or misbehavior might be
undetected and have catastrophic consequences from a
security standpoint. With the advent of web3 and dis-
tributed ledger technologies, there is an ever growing
interest in the concepts of transparency and accountability
of misbehaviour in security protocols: whereas we cannot
prevent a malicious action from happening, we can track
actions and take the appropriate corrective measures on the
entities that have broken the presumed trust assumptions.

The focus of this paper is on transparency. In general
terms, we say that a protocol is a transparency protocol
if (some of) its actions can be publicly monitored by a
collection of observers, which can, at a later stage, pro-
vide evidence that certain actions occurred. By technical

measures to ensure that the details of such actions are
made available to relevant parties (whether the general
public, regulators, rights advocacy groups or individuals),
the protocol reduces the amount of trust required of trusted
third parties, and deters malicious actions.

To motivate our work, we consider two prominent use
cases of transparency protocols. On one hand, we consider
the Google initiative on certificate transparency [1] for
monitoring and autiting digital certificate issuance which
has become an IETF standard [2]. It enables the detec-
tion of illegitimate certificates that have been produced
either erroneously or deliberately. On the other hand,
we also consider transparent decryption [3], a protocol
that ensures visibility of decryption requests, and has
applications in a variety of areas such as surveillance, data
sharing and location-based services, among many others.

Appropriate transparency conditions for a protocol can
be defined using an append-only ledger, or a blockchain.
We assume that some party is willing to maintain the
ledger, and we demonstrate how this can be organised in
such a way that the maintainer can produce data demon-
strating that it is, indeed, maintaining the log correctly.
The ledger contents are intended to be accessible by any
party to whom transparency is being offered. Therefore,
any such party can determine that the ledger is running
correctly (or that it is not running correctly, or that their
access to it has been denied).

Automatic verification. Our paper concerns how to
verify systems for transparency protocols. That is, how to
prove that the system really does guarantee that the actions
of monitored parties are made available to observers.

Several tools have been proposed for automated anal-
ysis of security protocols. Some of these tools impose
restrictions on the protocols in order to achieve termina-
tion of the analysis. For example, the tools may assume a
bounded number of sessions, like Avispa [4], DeepSec [5],
or Akiss [6]. These tools are efficient at finding attacks on
small protocols but quickly face state explosion for com-
plex protocols. Hence for large and complex protocols,
tools like Tamarin [7] and ProVerif [8] are often preferred.
They both offer a flexible framework to model a protocol
and its primitives, as well as their security properties. One
key feature of Tamarin is that it offers an interactive mode
when the tool fails to prove a protocol, while ProVerif
typically offers more automation.

We work within the framework of ProVerif. It sup-
ports cryptographic primitives including symmetric and
asymmetric encryption; digital signatures; hash functions;
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bit-commitment; and signature proofs of knowledge. The
tool is capable of evaluating secrecy properties, authen-
tication properties, and indistinguishability properties. In
ProVerif, protocol analysis is considered with respect to an
unbounded number of sessions and an unbounded message
space. The tool is capable of attack reconstruction: when
a property cannot be proved, an execution trace which
falsifies the desired property can often be constructed.

The transparency ledger may be implemented as a
Merkle tree, which means that the ledger maintainer can
produce proofs that a data item is in the ledger (proof
of presence), and that the ledger is only being appended
to (proof of extension). To model this in ProVerif, we
use user-defined predicates whose semantics is defined
with Horn clauses. ProVerif can work with arbitrary Horn
clauses, but adding them often leads to non termination
of the ProVerif resolution strategy. Recent work [9] has
extended ProVerif with notions of lemmas and axioms, in
an effort to address this non-termination issue. However,
lemmas and axioms have strong limitations with user-
defined, attacker or message predicates. We address these
limitations in this paper.

Our contributions. The paper develops new ProVerif
capabilities and a methodology for using them. Our con-
tributions are as follows:

• We introduce new capabilities in ProVerif; more
precisely, we define semantics and algorithms that
allow ProVerif to work with lemmas and axioms that
involve user-defined predicates.

• We prove soundness of the algorithms, and imple-
ment them in a new version of ProVerif.

• We introduce a new methodology for ProVerif, in
which the proof of a protocol can be given based
on assumptions about the behaviour of a data type
(we code these assumptions as an interface); then,
in separate steps we formally prove the assumptions
hold for one or more concrete realisations of the data
type. This methodology would syntactically not be
possible without our extension of ProVerif.

• We model two transparency protocols (transparent
decryption and certificate transparency), and success-
fully instantiate the proposed methodology.

The paper is supported by our new version of ProVerif
and the ProVerif scripts for transparent decryption, which
can be found in [10]. Our code has been reviewed by
the ProVerif owners, and it will be incorporated in the
next ProVerif release. Detailed definitions and proofs are
provided in [11].

2. Background and related work

2.1. Transparency protocols

Several recent protocols use a publicly-accessible
append-only log data structure to achieve a transparency
property. One of the earliest and most widely deployed
protocol in this category is certificate transparency [1].
The core idea of certificate transparency is that certificates
are accepted by browsers only if they are accompanied
by a proof that they are present in an appropriate log.
Insisting on certificates being in a publicly-accessible log
means that the existence of the certificate is transparent.

It prevents situations in which corrupted CAs issue rogue
certificates without being noticed. This idea has been
generalised to define more ambitious public-key infras-
tructures, such as ARPKI [12] and DTKI [13], which aim
to make all the infrastructure parties behave transparently.

The log and its proof data. As mentioned, trans-
parency protocols rely on an append-only log. The log
is not assumed to be trustworthy; rather, anyone can
verify the data it outputs, and if this verification succeeds,
then the transparency property is upheld. The expected
behaviour of the log may vary from protocol to protocol;
here, we give a generic example [14]. The log L is organ-
ised as an append-only Merkle tree. For our purposes, a
Merkle tree storing data R1, R2, . . . , Rn is a binary tree
whose leaves (when considered in left-to-right order) store
the data R1, R2, . . . , Rn and whose non-leaf nodes store
H(c�, cr) where H is a hash function and c� and cr is the
data stored at the left and right child node respectively.
The maintainer of L runs three protocols:

• On request, it outputs the current value h stored at
L’s root (called the root tree hash of L).

• On input R, it outputs data which proves that R is
present in L (or it outputs ⊥ if that is not the case).
This data consists of data stored in some of the nodes
of L, and its size is O(log n).

• On input h1 and h2, it outputs data which proves
that L previously had the root tree hash h1, and
subsequently the root tree hash h2 (or it outputs ⊥
if this is not the case). This data also consists of
data stored in some of the nodes of L, and its size
is O(log n).

The log’s behaviour is fully verifiable, and therefore
there is no trust assumption on the log maintainer. It can
be malicious, and still the security property is upheld.

Verification of transparency protocols. Several pre-
vious papers have applied protocol verification techniques
to transparency protocols. The papers on ARPKI and
DTKI [12], [13] both use the Tamarin prover to prove
some security properties. However, both papers make the
same huge abstraction: they treat the log as a list. The
DTKI paper acknowledges that formalising and modeling
the complex data structures of transparency protocols is
an unsolved problem. Certificate Transparency was proved
using Tamarin in [15] using a simplified setting, for ex-
ample by modelling the log as a trusted global database
shared between agents. Additionally, in that work, proofs
of presence and proof of extension were not modeled; in-
stead, they use placeholders in the shared trusted database
to act as proofs. In contrast, we model proofs and their
data structure precisely.

2.2. Transparent decryption

Transparent decryption is a transparency protocol,
aiming to prevent certain decryptions from being per-
formed stealthily; rather, the decryption operation in-
evitably produces evidence of the fact that the decryption
has taken place. This can be used, for example, to support
privacy: it can mean that a subject is alerted to the fact
that information about them has been decrypted. Among
other uses, transparent decryption has been proposed for
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accountable execution of search warrants and data inter-
ception [3], [16], [17]; data sharing between organisations
[18]; in vehicle and IoT data applications [19]. A com-
pany has begun building products using these ideas [20].
Transparent decryption is an accountable algorithm in the
sense of [21].

In transparent decryption, the decryption key is dis-
tributed among a set of agents (called trustees); they use
their key share only if the required transparency conditions
have been satisfied. Typically, the transparency condition
can be formulated as the presence of the decryption re-
quest in a transparency log [22].

We present a minimal system for transparent decryp-
tion below. The system satisfies the basic security property
for transparent decryption, which we also detail below.

How it works. More formally, the system works as
follows:

• Subjects create ciphertexts using a public encryption
key ek.

• Shares dk1, . . . , dkn of the decryption key are held
by trustees T1, . . . , Tn. For example, this might be a
threshold decryption system, so that any m out of n
trustees are sufficient to decrypt.

• A decryption requester G can request the decryption
of a ciphertext. This involves recording the request
in a log L.

• L is organised as a Merkle tree. This means that
the maintainer can issue data that demonstrates it’s
maintaining L in an append-only fashion (see below).

• Trustees are automatic processes which accept ci-
phertexts and log data as input. The log data attests
that certain information has been placed in the log L,
and that L has been maintained append-only since it
was last seen by the trustee. The trustees verify the
log data. If (and only if) the data verifies correctly, a
trustee will perform its part in decrypting the relevant
ciphertext and output the result.

• Subjects can try to inspect the log contents. If their
attempt is successful, they will see from the log
whether their ciphertexts have been decrypted or not.
If they are not successful (for example, the data is in-
consistent or their access is denied) then they should
assume that their ciphertexts have been decrypted.

The trust assumption for transparent decryption is that
the trustees behave correctly. As mentioned, this means
that they perform their part of the decryption if, and
only if, the verification of the proofs in the input data
is successful.

Security property. We aim to prove the following
property:

Suppose an honest subject encrypts a secret s
with ek, and later the secret s becomes known
by some other party (e.g., any of the mentioned
parties, or an attacker, or anyone else). Suppose
the subject successfully accesses the log L and
successfully verifies the log data. Then the sub-
ject sees the decryption request for s in L.

Trustees and their actions. Trustees are designed to
be very simple and to have minimal computational re-
quirements, so that their trustworthiness can be established
as straightforwardly as possible. They do not have to store

Ti stores: h, dki, ski

• Input: R, h′, π, ρ
• Compute:

– Verify π: R in h′
– Verify ρ: h′ extends h
– result := dec(dki, R)
– h := h′

• Output: result

• Input: v
• Compute:

r := sign(ski, (v, h))
• Output: r

Figure 1. Protocols run by trustee Ti. The trustee stores the most recent
root tree hash h of the log that it has seen, and a decryption key dki
and a signing key ski share. The protocol on the left inputs a request R
and some other parameters, and outputs a decrypted result. The protocol
on the right inputs a nonce v, and outputs a signature on (v, h).

any voluminous data; they store just three data items, and
they run two protocols (see Fig. 1).

Trustees can be implemented in a variety of ways. For
example, they may be cloud-based software processes run
by organisations with a high reputation such as charities
and foundations. These organisations can use hardware-
based attestation to give further confidence about the
binary code trustees are running, and the secure storage
and use of their keys. Alternatively, trustees could be
implemented on dedicated hardware modules, such as the
TPM [23] or Google Titan chip [24], or a RISC-V chip
like Open Titan [25], [26].

The system we have described is a minimal one that
provides decryption transparency. It could readily be ex-
tended to have some additional properties, such as trustee
obvliviousness (namely, the inability of a trustee to obtain
any information about the decryption request or its result),
and proper authentication of the decryption request (see,
e.g. [16]).

Applications. Transparent decryption can be applied
in many areas to enhance privacy. We give some examples.

• Alex can choose to share her location in encrypted
form with some nominated friends and family, called
angels by the app that implements this idea [27]. No-
one except her angels can view her location; and she
can monitor whether and when they do so.

• Suppose Alex is being investigated by the police. In
an effort to establish her innocence, she may choose
to hand over her phone. With transparent decryption,
Alex can upload her phone contents in encrypted
form. Then Alex gets evidence of what part of this
uploaded material is decrypted.

• Alex provides know-your-customer (KYC) informa-
tion to her bank, so that if necessary later, it can
carry out anti-money laundering procedures. Recent
proposals [28] suggest centralising KYC registers, to
make the procedure more efficient. With transparent
decryption, the ill effects of such centralisation can be
mitigated by making money laundering investigations
more transparent.

2.3. ProVerif

ProVerif is a software tool for automated reasoning
about the security properties of cryptographic protocols.
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It was first released in 2002, and has been continuously
developed for the last 20 years. It has been used to analyze
hundreds of protocols, including major deployed protocols
such as TLS [29], Signal [30], Noise [31], avionic proto-
cols [32], and the Neuchâtel voting protocol [33].

A cryptographic protocol in ProVerif is specified as
follows:

• Cryptographic primitives (such as symmetric and
asymmetric encryption or digital signatures) are
specified typically as reduction rules, such as this
one for public key encryption and decryption:
decr(k, encr(enc key(k),m)) = m.

• The behaviour of the protocol participants is de-
scribed using the process calculus syntax (see below).

• The properties which are to be checked are specified
as queries. ProVerif supports different kinds of prop-
erties; in this paper, we restrict our attention to reach-
ability and correspondence properties. For example,
the correspondence property event(ev(x)) ⇒ att(x)
says that if the event ev occurs with a parameter
value x, then the value x was previously known by
the attacker.

Syntax. A simplified syntax for the process calculus
terms, expressions, events, predicates and processes is
displayed in Fig. 2. ProVerif’s calculus also supports ad-
ditional constructs, e.g. for tables, phases, extended terms,
. . . , but we omit them for simplicity as our results can be
easily generalized to these constructs.

Terms M,N, . . . are built over variables, names and
application of constructor function symbols from a finite
set Fc. Destructor function symbols, from a finite set Fd,
can manipulate terms and must be evaluated in the assign-
ment construct. Unlike constructor function symbols, the
evaluation of a destructor may fail, or in other words,
may evaluate to the special constant fail. Typically, in
the assignment construct let x = D in P else Q, the
expression D will be evaluated; if its evaluation fails then
the process Q will be executed, otherwise the variable will
be instantiated by its result and P will be executed. The
exact behavior of a destructor function symbol is defined
by a list of rewrite rules given by the user (see [9] for the
complete definition of the evaluation of an expression).
For example,

in(c, y); let x = decr(k, y) in out(c, x) else out(c, 0)

outputs the plaintext m if a ciphertext of the form
encr(enc key(k),m) is given as input, otherwise it out-
puts 0.

A substitution σ is an assignment of terms to some
variables; for example, {x �→ encr(k,m)} is a substitu-
tion. If M is a term, then Mσ is the term obtained by
replacing any x mapped by the substitution with the term
that it maps to. For processes P and facts F , applying
the substitution to obtain Pσ and Fσ is defined similarly
(taking care not to substitute bound variables).

The process calculus also contains standard constructs
out(N,M);P (representing the output of a term M on
a channel N ), in(N, x);P (the input on channel N of
a message which gets bound to a variable x), new a;P
(the generation of a fresh name a), P | Q (the concurrent
execution of processes), event(ev(M1, . . . ,Mk));P (the

P,Q ::= processes
0 nil
out(N,M);P output
in(N, x);P input
P | Q parallel composition
!P replication
new a;P restriction
let x = D in P else Q assignment
let x1, . . . , xn suchthat p(M1, . . . ,Mk) in P else Q

predicate evaluation
event(ev(M1, . . . ,Mk));P event

Figure 2. Syntax of the core language of ProVerif.

recording of event execution), and !P (the concurrent
execution of an unbounded number of copies of a process).

Less common is the construct for predicate eval-
uation, that is, let x1, . . . , xn suchthat p(M1, . . . ,
Mk) in P else Q. In this construct, the variables
x1, . . . , xn must occur in the predicate p(M1, . . . ,Mk).
If x1, . . . , xn can be instantiated, say by a substitution
σ, such that p(M1, . . . ,Mk)σ holds then Pσ is executed;
otherwise Q is executed. Note that predicate evaluations
are most commonly used with a classical if-then-else con-
ditional, corresponding in fact to the evaluation without
variables (n = 0).

User-defined predicates and clauses. ProVerif allows
users to define predicates, and to give their semantics by
means of Horn clauses. This is useful for defining pred-
icates on data types. For example, the list data structure
can be represented by a constant nil and a constructor
cons. One can define a membership predicate mem using
the Horn clauses:

∀x, �. mem(x, cons(x, �))

∀x, y, �. mem(x, �) → mem(x, cons(y, �)).

As variables in Horn clauses are always universally quan-
tified, we will omit writing the quantifier in the rest of
this paper.

Definition 1 (derivation). A derivation D of a fact F from
a set of clause Cuser is a tree whose nodes are labeled by
Horn clauses in Cuser and edges are labeled by ground
facts such that the incoming edge of the root is labeled
by F . For all nodes η in D labelled by a clause F1 ∧
. . .∧Fn ∧φ → C, there exists a substitution σ such that:
(i) the incoming edge of η is labeled by Cσ; (ii) η has
n outgoing edges labeled by F1σ, . . . , Fnσ respectively;
(iii) φσ is true.

The derivability of facts allows us to define the true
statements of a predicate p, denoted sem(p), as the set of
facts F = p(M1, . . . ,Mn) derivable from Cuser . Note that
only user-defined predicates, equalities and disequalities
on terms can occur in the clauses from Cuser . As such,
the semantics of a user-defined predicate is independent
from any protocol.

Example 1. mem(a, cons(b, cons(a, nil))) ∈ sem(mem)
as it is derivable by the following derivation with σ1 =
{x �→ a; y �→ b; � �→ cons(a, nil)} and σ2 = {x �→ a; � �→
nil}.
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mem(x, �) → mem(x, cons(y, �)) with σ1

mem(x, cons(x, �)) with σ2

mem(a, cons(b, cons(a, nil)))

mem(a, cons(a, nil))

Optionally, a predicate can be declared as a “blocking”
predicate, meaning that there are no clauses containing
the predicate in the conclusion of the clause. In this case,
ProVerif proves properties that hold for any definition of
the considered blocking predicate.

Semantics of processes. The semantics of processes

is defined by the means of a reduction relation
�−→ between

configurations which express the current state of the the
execution of the processes interacting with the attacker.
Formally, a configuration is a triple E ,P,A where E is
the set of names used in the configuration, P is a multiset
of processes, and A is a set of terms representing the
knowledge of the attacker.

The full set of rules defining the relation
�−→ is provided

in [11] (and in [34]) and we only show a small extract
below. For example, the following rule represents that an
event is triggered:

E ,P ∪ {{event(ev).P}},A event(ev)−−−−−→ E ,P ∪ {{P}},A
The rule for predicate evaluation (when the predicate
evaluates to true) is:

E ,P ∪ {{let x1, . . . , xn suchthat pred in P else Q}}
−→ E ,P ∪ {Pσ},A

when pred = p(M1, . . . ,Mk) and there exists a sub-
stitution σ such that dom(σ) = {x1, . . . , xn} and
p(M1σ, . . . ,Mkσ) ∈ sem(p).

An execution trace of a process P is then defined as

a sequence of applications of the relation
�−→ starting from

the initial configuration C1 = (∅, {{P}}, ∅), i.e. T = C1 �1−→
. . .

�n−→ Cn+1.
In addition to user-defined predicates, ProVerif con-

siders several native predicates: att(M) indicating that the
attacker knows M ; mess(M,N) indicating that a message
N has been sent on the channel M and event(ev) indi-
cating that an event ev has been raised. Satisfiability of a
fact F by a trace T , denoted T � F , is given by the labels
and configurations in T (e.g. when F = event(ev) = �i
for some i). Naturally, T � F with pred(F ) ∈ Fp when
F ∈ sem(p).

Finally, a correspondence query F1 ∧ . . . ∧ Fn ⇒ ψ
can be seen as the first order logic formula Ψ = ∀x̃.(F1∧
. . . ∧ Fn ⇒ ∃ỹ.ψ) where x̃ = vars(F1, . . . , Fn) and ỹ =
vars(ψ)\ x̃. The correspondence query holds when for all
traces T of P , T � Ψ.

Lemmas and axioms. The problem that ProVerif tries
to solve is undecidable in general [35]; therefore, by
design ProVerif is not complete: it may fail to terminate,
and it may yield false attacks. Much work has been done
to make it more complete in practice. A significant step
in this direction introduces lemmas and axioms [9] as a

way to guide derivations in ProVerif, and also to deal with
some of the abstractions introduced by the tool.

An axiom is an instruction to ProVerif to consider
some facts as true, even if they cannot be proved by
ProVerif from the protocol process. Typically, an axiom
is used if one has a separate (perhaps manual) proof of
the fact in question. Consider, for example, a smartcard
which stores two secrets, s1 and s2. It allows the user to
choose either one of them to be revealed, but not both.
(This might be used in a lottery, for example.) We could
model the smartcard with the following process:

in(c, x); (if x = 1 then out(c, s1) | if x = 2 then out(c, s2))

The user chooses to enter 1 or 2, and obtains the
corresponding secret; after that, the smartcard does not
accept any further input.

The intended security property is that at most one
secret is revealed. Unfortunately, ProVerif is not able to
prove the security of this device with the given process
description. The reason is that ProVerif introduces an
abstraction, which allows it to consider a derivation in
which x has sometimes the value 1 and sometimes the
value 2, and hence the output of s1 and s2 can both occur.
This is not a valid trace; it is a false attack introduced by
ProVerif’s abstraction.

Axioms allow us to rectify this situation. We write the
process as follows:

new st; in(c, x); event(Uniq(st, x));

(if x = 1 then out(c, s1) | if x = 2 then out(c, s2))

and we add the axiom

Uniq(st, x1) ∧Uniq(st, x2) ⇒ x1 = x2.

The axiom asserts that only one value of x is allowed.
This axiom is valid, since for a given st there can be only
a single input of x. ProVerif is able to use this axiom
to prove the security of the device. This kind of axiom,
stating that only one value of an input is allowed, is very
useful in increasing the precision of ProVerif.

A lemma is similar to an axiom as ProVerif uses it in
proofs to establish the desired property but it must be able
to prove it first (while it does not try to prove axioms).
Lemmas are therefore a useful way of decomposing a
verification into smaller pieces.

3. A methodology to model protocols with
complex data structures

An intuitive, first attempt to model the transparent
decryption protocol in ProVerif requires one to define:

• The required equational theories (e.g. public key
encryption).

• The predicates and clauses defining the data structure
for the log maintainer.

• The predicates and clauses that represent true state-
ments about the proof of presence and extension that
the data structure must satisfy.

• The process defining the protocol.
• The security properties that we are interested to test.

Unfortunately, this “monolithic” attempt to prove the
security properties does not always work when the proto-
col has to deal with complex or recursive data structures,
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Step 1

Step 2

Queries for the
data structure

(properties required
by the protocol)

Model of the protocol

Queries for the
protocol

(security properties
to be verified)

ProVerif

ProVerif

Model of the data
structure

(predicates and clauses)

Null process

Transform into an interface
 - Predicates become blocking predicates
 - Queries become axioms

Data structure
properties hold (or
counterexample)

Protocol properties
hold (or

counterexample)

Figure 3. A methodology to prove security in protocols involving com-
plex data structures

and it will often result in ProVerif failing to terminate.
In fact, we have encountered this issue even when we try
this approach by substituting Merkle trees with a simpler
data structure like a hash list.

One way to avoid the monolithic proof is to make an
appropriate abstraction of the Merkle tree data structure.
This could be achieved by defining the properties the data
structure is expected to satisfy, and proving the protocol
based on assuming those properties. Later, as a separate
step, one can look at whether a particular implementation
satisfies the assumed properties.

This observation suggests the following generic
methodology to approach proving security when a pro-
tocol requires usage of complex data structures. The key
idea is to decompose the proof, separately proving security
for the data structure and for the protocol separately, using
these steps:

S1: Identify and extract the properties of the data struc-
ture that are required by the protocol, and prove that
there is an implementation of a data structure that
satisfies these properties. As the semantics of the
data structure are protocol-independent, so are these
properties.

S2: Assuming that we have a data structure with such
properties, prove security for the protocol itself.

We depict this methodology in Fig. 3. For the case of
accountable decryption it works as follows. In Step S1, we
propose a suitable model for the data structures employed
by the ledger, which we instantiate either as a hash list or
as a Merkle tree. We also define the desired properties of
the data structure from the point of view of the protocol.
The reason to consider two data structures is to show that
the identified “interface of security properties” and the
methodology are sufficiently generic to allocate several
data structures and be considered for several protocols.
Next, we use ProVerif to prove that the data structure
satisfies the properties in the null process.

On the other hand, in Step S2, we adopt the properties

for the data structure as an interface. This requires to
take two actions: transform these properties as ProVerif
axioms, and transform any related predicate to a blocking
predicate. This will allow us to prove the security property
of the protocol disregarding the particular implementation
of the data structure. Observe that this step is independent
from Step S1 above, i.e. they both can be executed in
parallel.

By decomposing the problem into two parts, ProVerif
has a better chance of avoiding nontermination, without
losing soundness of the proof. Moreover the “interface”
approach allows for proving security for more complex
data structures than Merkle trees, and allows proving
security of the protocol for any underlying data structure
satisfying the data structure properties.

The remainder of this section describes in detail the
methodology, by detailing the implementation of the two
data structures commented above, the interface of security
properties of the data structure, and the modelling and
analysis of the accountable decryption protocol.

3.1. Modeling the ledger data structure

Recall that the ledger is an untrusted party that main-
tains an append-only log L. From the point of view of
proving security properties for a protocol, it does not mat-
ter which is the particular data structure employed by the
log maintainer, as long as it is append-only, and provides
an interface to construct and verify proofs of presence and
proofs of extension. Whichever data structure we use must
define the clauses from which valid proofs of presence
and the proofs of extension can be derived. We discuss
two common data structures below, namely hash lists and
Merkle trees.

Even though the most interesting case is indeed the
latter one, the main ideas of our approach are more clearly
seen using hash lists. For this reason, we provide a more
detailed explanation on how to model the proofs on hash
lists, whereas we provide a brief example on Merkle trees,
avoiding routine technicalities that might hinder the main
points we want to state. The complete models, both for
hash lists and Merkle trees are available at [10].

For convenience, we parameterize the hash function
H with two values, e.g. H(x, h), where h is an output
of the hash function. This can be implemented simply
as concatenating the values x and h in a regular hash
function. Hashes of single values x are interpreted as
H(x, h0), where h0 denotes the null hash.

3.1.1. Hash lists. First, consider the case where L is a
hash list. That is, L is represented by h, where

h = H(Rn, . . . , H(R2, H(R1, h0)) · · · ).
In this case, a proof of presence of Ri in the list repre-
sented by h simply consists of the elements inserted after
Ri, plus the hash of the list before inserting Ri, i.e.

π = pp
(
(Rn, . . . , Ri+1), h

′),

where h′ = H(Ri−1, . . . , H(R1, h0) . . .) and pp is the
constructor for the proof of presence. The predicate
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verify pp(π,Ri, h) states that π is a valid proof of pres-
ence of Ri in the list represented by h. For a hash list,
verify pp will check that the following equation holds:

h = H(Rn, . . . , H(Ri−1, H(Ri, h
′)) · · · ). (1)

In order for ProVerif to handle predicates in the resolu-
tion algorithm, we need to provide the set of Horn clauses
from which all valid predicates can be derived inductively.
In the case of the proof of presence, these clauses are

verify pp(pp(nil, h′), R,H(R, h′)), (2)

verify pp(pp(�, h′), R, h) →
verify pp(pp(cons(Q, �), h′), R,H(Q, h)). (3)

Clause (2) states the “base case”: a proof of presence
to verify the last entry on a hash list is an empty list of
elements and the immediate hash h′ before inserting R.
It can be readily seen that the verification from Eq. (1)
holds. Clause (3) states the recursive nature of the proof of
presence: if a list contains R, an extension of this list with
an element Q also contains R, and a proof of presence
can be easily derived by prepending Q into the list of
elements of the original proof of presence.

For the proof of extension, let L1 and L2 be two
hash lists represented by h1 and h2, respectively, and with
lengths n1 ≤ n2. A proof of extension ρ that L2 extends
L1 simply consists of the list of elements inserted into L2

after the last element Rn1 inserted into L1, that is,

ρ = pe(Rn2 , . . . , Rn1+1),

where pe is the constructor for proofs of extension. The
implementation of predicate verify pe(ρ, h1, h2), which
verifies that ρ is a valid proof of extension for the lists
L1, L2, will check that the equation below holds:

h2 = H(Rn2 , . . . , H(Rn1+1, h1) · · · ). (4)

The predicate verify pe is defined by the following
Horn clauses:

verify pe(pe(nil), h, h), (5)

verify pe(pe(�), h1, h2) →
verify pe(pe(cons(R, �)), h1, H(R, h2)). (6)

Indeed, Clause (5) above is the “base case,” and indicates
that a hash list L represented by h extends itself trivially,
hence the proof of extension is the empty list. Clause (6)
states that given a valid proof of extension indicting that
a list L2 represented by h2 extends L1 represented by h2,
then pe(cons(R, �)) is a valid proof of extension stating
that R appended to L2 also extends L1.

Note that both π and ρ are data structures of size O(n),
and the verification of these proofs (Eq. (1) and (4)) also
takes time O(n).

Finally, we also require a predicate repr(�, h) to state
the fact that h represents a hash list data structure contain-
ing the elements in � = (Rn, . . . , R1), inserted in reverse
order. Clearly, the clauses defining this predicate are

repr(nil, h0),

repr(�, h) → repr(cons(R, �), H(R, h)).
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Figure 4. Examples of Merkle trees

3.1.2. Merkle trees. We assume that the reader has some
familiarity with Merkle trees. It is a more efficient data
structure to construct the proofs: the memory and time
requirements are reduced to O(log n) (compared with
O(n) for hash lists). We omit most of the formalities and
consider the example of Merkle trees depicted in Fig. 4.
Recall that a Merkle tree is a binary tree that assigns
a hash value for each node, computed as the hash of
its child nodes, e.g. h12 = H(h1, h2). By convention,
the hashes on the leaf nodes are defined as the hash of
the associated element, i.e. hi = H(Ri, h0). Hence, the
root tree hash that represents the tree T2 in Fig. 4 is
h = h17 = H(h14, h57).

A proof of presence that Ri is present in the tree is
constructed by providing the complementary node at each
tree level. For example, the proof of presence π of R4 in
T2 is the list of values

π = pp
(
(left, h57), (right, h12), (right, h3)

)
.

The constants “left” and “right” are appended to each
element to record the relative position of the path leading
to the root three hash. Then, verify pp(π,R4, h17) will
check that

h = H(H(h12, H(h3, H(R4, h0))), h57).

The predicate verify pp is defined by the following
Horn clauses:

verify pp(pp(nil), R,H(R, h0)), (7)

verify pp(pp(�), R, h�) →
verify pp

(
pp

(
cons((left, hr), �)

)
, R,H(h�, hr)

)
, (8)

verify pp(pp(�), R, hr) →
verify pp

(
pp

(
cons((right, h�), �)

)
, R,H(h�, hr)

)
.
(9)

It is not difficult to see that these clauses represent induc-
tively the proof of presence, starting from the base case
in Clause (7), and defining recursively the proofs whose
next step are left or right paths in Clauses (8) and (9),
respectively.
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A proof of extension for Merkle trees can be seen as
proofs that the last element of the smaller tree is present in
the smaller and the larger tree, and a relationship between
the two proofs. For example, to prove that T2 extends
T1 in Fig. 4, the proof of extension ρ must include the
following values:

ρ = pe
(
R3,

(
(left, h57), (right, h12), (left, h4)

))
.

The verification of the proof of extension consists
of (i) verifying that the list

(
(left, h57), (right, h12),

(left, h4)
)

is a proof of presence of R3 in T2; and (ii) that
this list filtered by only keeping the elements (right, x) is
a proof of presence of R3 in T1.

We refer the reader to the repository of the models [10]
for the Horn clause definitions of the predicates repr and
verify pe.

3.2. Properties for the data structure

Regardless of what data structure is used to model the
ledger, the protocol expects that a number of properties
hold, which can be abstracted away from the particular
data structure. In order to express these properties, we
consider the same three predicates we presented above
(verify pp, verify pe and repr) and we axiomatize their
intuitive semantics, i.e. verify pp validates proofs of pres-
ence, verify pe validates proofs of extension and repr
validates that a digest represents the contents of the data
structure. We present the properties as first-order logical
formulas as follows:

Proof for the empty list. A data structure h0 represents
the situation where the list is empty:

∀h. repr(nil, h) =⇒ h = h0. (P1)

Correctness of the proof of presence. mem(R, �) iff its
presence can be proved:

∀R, �, h, π.

repr(�, h) ∧mem(R, �) =⇒ verify pp(π,R, h), (P2)

repr(�, h) ∧ verify pp(π,R, h) =⇒ mem(R, �). (P3)

Correctness of the proof of extension. A data structure
for a list � extends the data structure for any of its suffixes:

∀R, �, h, ρ. repr(cons(R, �), h) =⇒
∃h′. repr(�, h′) ∧ verify pe(ρ, h′, h). (P4)

Transitivity of the proof of extension. If h3 extends h2,
which in turn extends h1, then h3 extends h1:

∀ρ1, ρ2, h1, h2, h3.

verify pe(ρ1, h1, h2) ∧ verify pe(ρ2, h2, h3) =⇒
∃ρ3. verify pe(ρ3, h1, h3). (P5)

Compatibility of the proofs of extension and presence.
If an element is present in a list, then it remains present
after further elements have been added to it:

∀R, π1, ρ, h1, h2.

verify pp(π1, R, h1) ∧ verify pe(ρ, h1, h2) =⇒
∃π2. verify pp(π2, R, h2). (P6)

process
!
new dk; // Decryption key
new sk; // Signing key
out(c, (enc_key(dk), ver_key(sk))); // Output public

keys
new cell; // Memory cell of the trustee
new monitor; // Priv. chan. to store generated

ciphertexts
( out(cell, (0, h0)) // Initialize trustee memory cell

| ( ! // Trustee decrypt protocol
in(cell, (i, h));
in(c, (R, π, ρ, h′));
if verify_pe(ρ, h, h′) then
if verify_pp(π,R, h′) then
event Decrypted(cell,i, R);
out(c, decr(dk,R));
out(cell, (i+ 1, h′))

) | ( ! // Trustee sign hash protocol
in(cell, (i, h));
in(c, v);
event Signature(cell,i, h, sign(sk, (v, h)));
out(c, sign(sk, (v, h)));
out(cell, (i, h))

) | ( ! // Subject ciphertext generation
new s;
event Secret(s);
out(c, encr(ek, s));
out(monitor, (s, encr(ek, s)))

) | ( ! // Monitor ciphertext
in(monitor, (s, R));
in(c, =s);
new v;
event Name(v,s,enc_key(dk),ver_key(sk));
out(c, v);
in(c, σ);
let (= v, h) = checksign(vk, σ) in
event AfterSeeingSecret(R, h)

))

Figure 5. Transparent decryption model (sketch)

Consistency of digest representation. If two lists are
represented by the same digest, then they are equal:

∀�1, �2, h. repr(�1, h) ∧ repr(�2, h) =⇒ �1 = �2. (P7)

As described above, (P1)-(P7) can be regarded as an
“interface” of security properties, which is instantiated as
ProVerif queries when we prove them for the data struc-
ture in Step S1 of the methodology, and it is instantiated
as ProVerif axioms with blocking predicates when they
are used to prove security in the protocol, in Step S2.

3.3. Modelling the transparent-decryption proto-
col and its security properties

In this section, we provide the most relevant details
of the model of the protocol for transparent decryption.
A sketch of the model is depicted in Fig. 5. We omit the
definitions of the required equational theories for hashing,
public key encryption, signatures, types and events. The
model essentially consists of four sub-processes running
in parallel.

The main process starts by creating private and public
keys and initializing the public channel and two private
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channels. The requirement of private channels is because,
whereas private constant values such as private keys can
simply be defined within the scope of the trusted process
as new values, the standard way to store mutable values
in applied-pi calculus is through private channels. Thus,
the channels used by our model are:

• Channel c: public channel used for communication
across the parties.

• Channel cell: private channel used as a memory
cell for the trustee, in order to store the last seen
hash value.

• Channel monitor: private channel used to pass se-
cret values and ciphertexts from the subject party to
a “monitor process” that will be discussed below.

Below we relate how the four sub-processes map to
the different parties presented in Sec. 2.2. However, we
remark that, as our trust assumptions are very weak, we
do not require to model all the parties so that ProVerif
can reason about the security of the protocol:

• Subjects are represented by a sub-process that creates
new secrets s and output ciphertexts generated using
the trustee’s public encryption key ek. An event
Secret(s) is required to be used in the definition
of the security properties.

• Trustees run the two protocols from Fig. 1, and
thus are modelled using two sub-processes. We do
not consider threshold decryption schemes for this
proof of concept. Note that the first and last step in
each of these protocols consists in reading and writ-
ing to the trustee memory cell, respectively. Again,
the events Decrypted(cell,i, R) and Signature
(cell,i, h, σ) are used to define the security proper-
ties. The former is executed when the trustee accepts
to decrypt R, and the latter is used when the trustee
casts a signature of its last seen hash.

• The decryption requester and the log L are untrusted
entities, as discussed in Sec. 2.2. Hence, there is no
need to model them, as the Dolev-Yao adversary will
emulate their behaviour.

• Finally, a monitor process is required to ensure that
the protocol works as intended and satisfies the
claimed security properties. Its main task consists
in interacting with the trustee through its second
protocol (right column on Fig. 1) by generating a
random nonce v and obtaining the signature of the
trustee’s last seen hash. Once this happens, the event
AfterSeeingSecret(R, h) is declared, stating that
the monitor has a proof that the trustee has stored
the hash value h after the subject has created the
ciphertext.

The sub-processes are accordingly replicated to model
arbitrary executions of the protocols, and arbitrary number
of independent trustees that might monitor different logs.

The formalization of the main security property of the
accountable decryption protocol, presented in Sec. 2.2, is

∀R, h. AfterSeeingSecret(R, h) =⇒
∃π. verify pp(π,R, h). (10)

Indeed, the location of AfterSeeingSecret(R, h)
in the monitor process captures the fact that a certain

secret s associated to ciphertext (decryption request) R
has been observed in the public channel, and the last

observed hash value by the trustee is h. Therefore, any
occurrence of this event means that there must exist a
proof of presence π stating that R is in the data structure
represented by h.

In order to prove this query, we consider some addi-
tional lemmas such as the following one:

∀v, s, i, h, cell, sk, dk.
Signature(cell, i, h, sign(sk, (v, h)))∧
Name(v, s, enc key(dk), ver key(sk)) =⇒
∃j. Decrypted(cell, j, encr(enc key(dk), s)) ∧ j < i.

Notice that the memory cell of the trustee stores two
pieces of information: the number of times it decrypted
a ciphertext, and the latest hash value it received. Hence
this lemma states that when the trustee signed the name
v generated by the monitor (which monitors the trustee
with encryption key enc key(dk) and verification key
ver key(sk)) after receiving a secret s, then the trustee
must have decrypted it strictly before (i.e. j < i).

This lemma allows us to help ProVerif by linking the
content of the memory cell (i.e. the number of times it
decrypted a encryption) with the order of events that were
emitted in the trace. Such links are usually abstracted away
by ProVerif during the saturation procedure hence the need
for us to provide it within a lemma. Note that we also
considered some additional lemmas and axioms, specific
to the management of memory cells, in the vein of [36].

Our ProVerif models only take couple of seconds to
execute on a standard laptop.

4. Extending ProVerif to support arbitrary
predicates in lemmas and axioms

To complete the methodology depicted in Fig. 3 on our
running example, we need to (1) prove the properties P1
to P7, and (2) prove the main protocol while expressing
the properties P1 to P7 as axioms. All the properties
in our interface are in fact correspondence properties
that are within the scope of ProVerif. For example, the
query corresponding to Property P6 would be expressed
as follows:

query pe1,pe2,pe3:proof_of_extension,
d1,d2,d3:digest;

verify_pe(pe1,d1,d2)&&verify_pe(pe2,d2,d3)
=⇒ verify_pe(pe3,d1,d3)

However, in its current version, ProVerif imposes a
syntactic restriction on axioms and lemmas: the con-
clusion of a lemma can only contain events, equalities,
disequalities and blocking user-defined predicates. Specif-
ically, the native facts att(M) and mess(M,N) as well as
the clause-based user-defined predicates cannot be used in
the conclusion of a lemma.

This restriction of facts prevents us from achiev-
ing both steps of our methodology. The second step is
unattainable as ProVerif will directly reject such a query
if it is written as an axiom. For the first step, the query will
be accepted by ProVerif but it will fail to prove it. Such
a query requires a proof by induction, which internally
corresponds to transforming a query into an inductive
lemma that has the same syntactic limitation as declared
axioms and lemmas. By extending ProVerif to allow any
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predicates in the conclusion of axioms and lemmas, we
are able to complete our methodology.

In this section, we provide a high-level description of
ProVerif’s procedure and how we extended it.

4.1. Description of ProVerif’s procedure

Horn clauses are used to describe the semantics of
user-defined predicates as previously described but they
are also the building blocks of ProVerif’s internal proce-
dure to prove a secrecy property and more generally a cor-
respondence property. Specifically, ProVerif first translates
the protocol given as input into a set C of Horn clauses.
It then proceeds to saturate this set C and the clauses
that define the user-defined predicates, yielding a simpler
set of clauses that derives the same facts. The procedure
completes by verifying that the saturated clauses satisfy
the security property.

Translation into Horn clauses. In addition to the
user-defined predicates, ProVerif considers natively four
additional predicates over terms representing the inter-
actions between the attacks and the processes: att(M),
mess(M,N), and two predicates for events s-event(ev)
and event(ev). Sure-events, i.e. s-event(ev), will only
appear in hypotheses of Horn clauses, whereas events
event(ev) will only appear in their conclusion. This sep-
aration ensures that events are not resolved during the
saturation procedure and so their occurrence in a Horn
clause is preserved through resolution rule.

Using these predicates, ProVerif generates a set of
clauses representing the capabilities of the attacker, which
include, for example:

att(x) ∧ att(y) → att(encr(x, y)) (11)

att(encr(x, y)) ∧ att(x) → att(y) (12)

att(x) ∧mess(x, y) → att(y) (13)

att(x) ∧ att(y) → mess(x, y) (14)

The first two clauses model that the attacker can encrypt
and decrypt provided that it knows the secret key. The last
two clauses model that the attacker can read and write on
a channel that it knows.

The formal description of processes into Horn clauses
is out of scope of this paper (see [9] for more details), but
we provide some intuition in the following example.

Example 2. The translation of the Ciphertext
Generator process would yield at least the clause

s-event(Secret(s)) → att(encr(ek, s)) (15)

indicating that the attacker can obtain the encryption of
the secret s by the key ek. The Horn clause also indicates
that the event Secret(s) is triggered before the encryption
is sent to the attacker.

Similarly, the translation of process modelling the
accountable decryption device will generate, in particular,
the clause:

mess(d, (i,H0)) ∧ att(encr(ek, x)) ∧ att((pi, r,H1))∧
verify pe(r,H0, H1) ∧ verify pp(pi, encr(ek, x), H1)∧

s-event(Decrypted(i, encr(ek, x))) → att(x) (16)

Current
set C

Resolution of two clauses
of C producing R

Simplification
of R into CR

Filtering of C ∪ CR

Saturated set
Csat = {R ∈
C | sel(R) = ∅}

Fix point

reached

Figure 6. A schematic summary of ProVerif’s saturation procedure

This clause represents the informal statement: Assuming
that the cell of the device contains the i-th digest received
H0, if the attacker can provide a proof of extension r from
H0 to a new digest H1, a proof of presence pi of some
ciphertext encr(ek, x) in the digest H1 then the attacker
can obtain the plain text x. As in the previous clause, the
event Decrypted(i, encr(ek, x)) will be triggered before
the attacker obtains x.

Saturation. The core step in the saturation proce-
dure consists of taking two existing Horn clauses and
combining them into a new one, hopefully simpler. This
process is called the resolution step. For example, the
hypothesis of clause 16 contains in hypothesis the fact
F = att(encr(ek, x)) representing that the attacker must
know the ciphertext encr(ek, x). In order to deduce all
the possible ways the attacker may deduce this ciphertext,
ProVerif resolves this fact by combining it with Horn
clauses whose conclusion can be unified with F . This
is the case with clause 15, which results in the following
clause:

mess(d, (i,H0))∧s-event(Secret(s))∧att((pi, r,H1))∧
verify pe(r,H0, H1) ∧ verify pp(pi, encr(ek, s), H1)∧

s-event(Decrypted(i, encr(ek, s))) → att(s).

Note that the hypothesis s-event(Secret(s)) of clause 15
has replaced F in the new clause and the unification of
the two facts resulted in x being instantiated by s.

In our example, the fact F in clause 16 could also
have been resolved with clause 12, which would result in
a new rule like clause 16 but with F replaced by the two
facts att(encr(x′, encr(ek, x))) and att(x′). This would
directly lead to a loop during the saturation procedure
as the former fact could once again be resolved by the
same clause 12. To avoid this problem, ProVerif uses a
selection function on Horn clauses that returns the set of
facts from the hypothesis of a clause that can be resolved,
i.e. sel(H → C) = S with S ⊆ H . In particular, the facts
att(x) with x a variable are never in S.

The resolution process repeats until a fixed point is
reached, i.e. until no resolution can produce a clause that
is not redundant with an existing one. Once a fixed point is
reached, ProVerif only keeps the set of saturated clauses,
which are the clauses R from C such that sel(R) = ∅. A
schematic summary of ProVerif’s saturation procedure is
given in Fig. 6.

Generalizing the events and sure-events separation.
We previously mentioned that ProVerif considers two
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different predicates for events: the sure-event predicate
s-event and the event predicate event. During the trans-
lation of processes into Horn clauses, the former type of
event only occurs in the hypotheses of the clauses whereas
the latter only occurs in the conclusion of the clauses. It
ensures that an application of the resolution rule never
resolves a sure-event s-event(ev) from a clause. This is
critical for the verification of correspondence queries. For
example, to verify the query event(A) ⇒ event(B), Pro-
Verif will check that for all saturated clauses in Csat of the
form H → event(A), the sure-event s-event(B) occurs in
H . In this case, ProVerif concludes that the query holds.
Note that to ensure soundness, the selection function will
never consider sure-events, i.e. s-event(ev) �∈ sel(R),
which guarantees that the resolution rule does not try to
resolve a fact that cannot be resolved by design.

Since sure-events are never selected by the selection
function, they can be seen as the blocking counterpart
of the predicate event. To add clause-based, user-defined
predicates in the conclusion of lemmas, as well as the
predicates att(M) and mess(M,N), we generalize this
concept by associating to all predicates p a blocking
predicate denoted b-p. Therefore, we consider natively the
predicates b-att and b-mess. Moreover, for all user-defined
predicates p ∈ Fp, we consider the blocking predicate
b-p and denote by Fbp their set. Finally, we rename the
predicate s-event as b-event.

We also amend the selection function by additionally
requiring that no blocking fact can be selected: For all F ,
b-F �∈ sel(H → C). Thus, the resolution rule will never
attempt to resolve a blocking predicate.

Application of lemmas. ProVerif axioms and proved
lemmas are applied during the simplification phase of
the saturation procedure. Consider a lemma

∧n
i=1 Fi ⇒∨m

j=1 ψj , where ψj are conjunctions of facts. In the
current ProVerif, each ψj could only be composed of
events, disequalities and inequalities. The lemma would
be applied on a clause H → C when there exists a
substitution σ such that Fiσ is in H for all i ∈ {1, . . . , n}.
The application of the lemma would then produce a set
of m clauses {H ∧ ψ′

jσ → C}mj=1, where each ψ′
j is

the disjunct ψj with events replaced by their sure-event
counterpart.

Thanks to our extension, the disjunct ψj may now
contain any type of predicate. We update the simplification
rule by first defining the transformation �ψ�b built from
ψ where all facts p(M1, . . . ,Mn) in ψ are replaced by
b-p(M1, . . . ,Mn). The rule for applying lemmas is then
defined as follows:

C ∪ {R = (H → C)} (
∧n

i=1 Fi ⇒
∨m

j=1 ψj) ∈ L
∀i, b-Fiσ ∈ H or Fiσ ∈ H

C ∪ {H ∧ �ψjσ�b → C}mj=1

Note that the application condition requires that either
b-Fiσ ∈ H or Fiσ ∈ H . Indeed, the lemma can be
applied on facts introduced by a previous application of
another lemma or more commonly on an event, hence
the condition b-Fiσ ∈ H . Since a lemma may have an
attacker fact, a message fact or a fact using a user predicate
in its premisse, we also need to match the non-blocking

form of the fact, i.e. Fiσ ∈ H . Note that all facts added
in the clauses, i.e. facts in �ψjσ�b, are blocking.

Improving other simplification rules. The purpose
of applying lemmas is to increase ProVerif precision or to
help it terminate. As such, we can amend other simplifi-
cation rules used by ProVerif to benefit from the blocking
facts. For example, ProVerif employs the following sim-
plification rule to remove tautologies:

C ∪ {F ∧H → F}
C

Now that we may have blocking predicates in the
hypotheses of the clause, we can consider an additional
tautology simplification rules defined as follows:

C ∪ {b-F ∧H → F} pred(p) �∈ Fp

C

We also improve the simplification rule that removes
the redundant facts from the hypotheses of a clause, which
is critical to avoid termination issues:

C ∪ {H ′ ∧H ∧ φ → C} �H ′σ�b ⊆ �H�b
φ |= φσ dom(σ) ∩ vars(H,C) = ∅

C ∪ {H ∧ φσ → C}
Intuitively, this rule states that to derive C, it suffices to
know the derivations of H , as a derivation for H ′ can
be build from the derivations of H ′σ ⊆ H . Note that by
requiring �H ′σ�b ⊆ �H�b, a clause att(M)∧ b-att(M)∧
G → C can be either simplified into att(M) ∧ G → C
or into b-att(M)∧G → C. Both variants are correct and
their application may be parametrized depending on one’s
needs. The former could be used to discard the application
of a lemma that is redundant with the hypothesis of the
clause whereas the latter could help terminate, as the fact
b-att(M) will not be resolved.

Verification of the query. Once the saturation process
ends, ProVerif still needs to verify the queries. Intuitively,
on a query F1 ∧ · · · ∧Fn ⇒ ψ with Fi = pi(t

i
1, . . . , t

i
mi

),
ProVerif starts by generating a clause F1 ∧ · · · ∧Fn → C
with C = q(t11, . . . , t

n
mn

) and q a special predicate only
used in the verification of query. Typically, C represents
the conjunction of facts F1, . . . , Fn. ProVerif then applies
once again a saturation of Csat ∪ {F1 ∧ · · · ∧ Fn → C}
and checks the validity of ψ on the obtained saturated set.
Note that this second saturation is slightly different from
the first saturation in the sense that it is order preserving,
i.e. in a clause F ∧ H → q(t11, . . . , t

n
mn

)σ, Proverif can
indicate, for any i, whether the fact F was generated
when resolving Fi. This property is particularly important
for proving queries by induction. The details of how the
orders are preserved can be found in [9].

Example 3. Let us show how we are able to prove by
induction the transitivity of proof of extension in the hash
list data structure:

query pe1,pe2,pe3:proof_of_extension,
d1,d2,d3:digest;

verify_pe(pe1,d1,d2)&&verify_pe(pe2,d2,d3)
=⇒ verify_pe(pe3,d1,d3) [induction].
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To ease the reading, let us denote by vpe the predicate
verify pe. Recall that the proof of extension is defined by
the following two clauses.

vpe(pe(nil), d, d), (17)

vpe(pe(�), d1, d2) → vpe(pe(cons(x, �)), d1, H(x, d2)).
(18)

These clauses will be left unchanged through the satura-
tion procedure, i.e. if C = {(17), (18)} then sat(C) = C.

To verify the query, ProVerif first considers the query
clause RQ = F1 ∧ F2 → C where F1 = vpe(pe1, d1, d2),
F2 = vpe(pe2, d2, d3) and C = q(pe1, d1, d2, pe2, d2, d3).
ProVerif then applies the saturation procedure on C ∪
{RQ}.

We illustrate the application of the inductive lemma
on one of the resolutions that ProVerif will apply dur-
ing this second saturation procedure: the resolution of
vpe(pe2, d2, d3) from RQ with the clause (18) which yields
the following clause

RQ′ = F1σ ∧ vpe(pe(�), d2, d
′
3) → Cσ

with σ = {pe2 �→ pe(cons(x, �)), d3 �→ H(x, d′3)}.
Let us denote F3 = vpe(pe(�), d2, d

′
3). Note that Cσ

represents the conjunction F1σ ∧ F2σ with:

F2σ = vpe(pe(cons(x, �)), d2, H(x, d′3))

Since F3 was obtained while resolving F2σ, any in-
stantiation F3α would be satisfied strictly before F2σα
(we detail this notion in the next section). Thus, ProVerif
can apply our inductive hypothesis on F1σ, F3 and so it
will add the blocking fact b-vpe(pe′, d1, d′3) in the hypoth-
esis of the clause, yielding:

RQ2 = F1σ∧vpe(pe(�), d2, d′3)∧b-vpe(pe′, d1, d′3) → Cσ

On the clause RQ2, ProVerif will be able prove the
query, i.e. finding a derivation of vpe(pe3, d1, d3)σ =
vpe(pe3, d1, H(x, d′3)) for some pe3, by using the blocking
fact b-vpe(pe′, d1, d′3) and the clause (18).

4.2. Soundness

The soundness of the saturation procedure comes in
three steps.

Derivation of satisfiable facts. Given a process P and
a trace T of P , one can show that that for all satisfiable
facts F in T , i.e. T � F , there exists a derivation D of F
in the set of initial clauses Cinit(P ) translated from P and
the set of clauses Cb(T ) = {�F �b | T � F}. The original
soundness result [9, Theorem 1] was only considering the
sure-events, i.e. {s-event(ev) | T � event(ev)}.

Since blocking predicates are an artifice to prevent
resolution within the saturation procedure, they should not
affect their satisfiability in a trace T . Hence, we augment
the satisfaction relation � by requiring that for all blocking
facts b-F , T � b-F if and only if T � F .

In the current ProVerif, the derivation D is shown to
satisfy an invariant on the Horn clauses labeling its nodes
that relates satisfaction of facts with the size of the trace.
Consider a ground fact F such that T � F . We define
minT (F ) = min{|T ′| | T ′ prefix of T ∧ T ′ � F} which
represents the size of the smallest prefix of T that satisfies

F . The invariant intuitively indicates that in a derivation,
all instantiated facts are satisfied by T and if a clause
H → C is used to derive C then the facts in H must be
satisfied strictly before C in the trace T . We extend this
invariant to take into account the user-defined predicates
and blocking predicates

However, when a fact F corresponds to a user-defined
predicates, e.g. F = p(M1, . . . ,Mn), we always have
minT (F ) = 0 as the satisfiability of this predicate do not
depend on the protocol but only on the value of the terms
M1, . . . ,Mn. Hence, T � F if and only if F is satisfied in
the empty trace. This prevents us from ordering the user-
defined predicates within a clause. Hence, we strengthen
the minimality function on user-defined predicates by
considering the size of the derivation of p(M1, . . . ,Mn)
in Cuser instead of its satisfiability in T . Formally, we
consider minT,Cuser

(F ) defined as:

• minT,Cuser (F ) = minT (F ) when pred(F ) �∈ Fp∪Fbp

• minT,Cuser (F ) = min{|D| | D derives F ′ from
Cuser} when F = F ′ or F = b-F ′ with pred(F ′) ∈
Fp.

We can show state the main invariant on derivations.

Invariant 1. Let T be a trace. Let Cuser a set of clauses
defining predicates in Fp. Let D a derivation. We say that
the invariant InvT,Cuser

(D) holds when for all nodes of D
labeled by a Horn clause R = H → C and a substitution
σ, T � C and for all F ∈ H , T � F . Moreover,

• if R is the attacker rule (13) then
minT (att(x)σ) < minT (att(y)σ) and
minT (mess(x, y)σ) = minT (att(y)σ);

• otherwise for all F ∈ H , if (pred(C) �∈ Fp

and pred(F ) �∈ Fp ∪ Fbp) or (pred(C) ∈ Fp

and pred(F ) ∈ Fp) then minT,Cuser
(Fσ) <

minT,Cuser
(Cσ)

As previously mentioned, the invariant intuitively
states that all facts in the derivation are satisfied in T .
The first bullet point indicates that in the case of the
attacker rule (13), representing that the attacker may listen
on a channel if it can deduce it, the two facts mess(x, y)
and att(y) are satisfied at the same moment on T . The
second bullet point indicates that for all other rules, the
hypohteses are satisfied strictly before the conclusion, in
the sense of minT,Cuser

(·) and if they belong to the same
category, i.e. standard or user-defined predicates.

Preservation of the invariant during the saturation.
In the second step of the soundness proof, one can show
that one round resolution-simplification-filtering preserves
the derivability of facts, i.e. if C′ is the new set of clauses
after a round of resolution-simplification-filtering on C,
then F derivable in C implies that F is derivable in C′,
with both derivations satisfying Invariant 1.

The soundness of the new tautology rule is directly
given by Invariant 1. Indeed, if pred(F ) �∈ Fp then
pred(b-F ) �∈ Fp ∪ Fbp and so minT,Cuser

(b-F ) <
minT,Cuser

(F ) which contradicts minimality.
Note that the soundness of the new rule for redundant

facts is direct from the fact that invariant 1 is stable by
removal of hypotheses.

Finally, we show that the application of lemmas is
also sound. This is achieved thanks again to Invariant 1.
In particular, when a lemma

∧n
i=1 Fi ⇒

∨m
j=1 ψj matches
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H , i.e. Fiσ is in H for all i ∈ {1, . . . , n}, it implies that
each Fiσ are satisfied in T . Since the lemma holds on T ,
at least one of the ψjσ also holds in T and so all facts in
�ψjσ�b are derivable from Cb(T ).

Application of inductive lemmas. In [9], a query
F1 ∧ · · · ∧ Fn ⇒ ψ may be proved by induction on the
multiset {{minT (F1σ), . . . ,minT (Fnσ)}} when T � Fiσ
for all i = 1, . . . , n. In practice, ProVerif transforms the
query into an inductive lemma which is typically a lemma
implied by the query. This lemma will be applied as a
normal lemma during the saturation procedure except on
the attacker rule (13).

The main soundness argument for applying
inductive lemma during the saturation procedure
is as follows. As we prove the query by
induction on M = {{minT (F1σ), . . . ,minT (Fnσ)}},
we can assume that the query holds for any
instance of the premise F1σ

′, . . . , Fnσ
′ such that

{{minT (F1σ
′), . . . ,minT (Fnσ

′)}} < M. Now consider a
rule H → C used in a derivation of F1σ, . . . , Fnσ, we
know from Invariant 1 that all facts F in H are satisfied
strictly before C which is itself satisfied strictly before
at least one of the Fiσ, i.e. minT (F ) < minT (Fiσ).
Therefore, if F1σ

′, . . . , Fnσ
′ ∈ H then we deduce that

{{minT (F1σ
′), . . . ,minT (Fnσ

′)}} < M and so we know
that the conclusion of the inductive lemma holds, which
allows us to apply it.

With user-defined predicates, we cannot use minT (·)
because the satisfiability of a user-defined predicate does
not depend on the trace but on the set of Horn clauses
Cuser given as input. Instead, we base the induction on
the minimal size of the derivation of Fi in Cuser , i.e.
minT,Cuser (Fiσ). More specifically, if for all i = 1, . . . , n,
pred(Fi) is a user-defined predicate, we prove the query
by induction on the multiset {{minT,Cuser (Fiσ)}}ni=1.

To prove a query by induction whose premises contain
both user-defined predicates and standard predicates, i.e.
att and mess, we combine the two inductive measures
into a single one: without lost of generality, consider the
query F1∧· · ·∧Fn ⇒ ψ where pred(Fi), . . . , pred(Fk−1)
are standard predicates and pred(Fk), . . . , pred(Fn) are
user-defined predicates. We prove the query for all traces
T and all substitutions σ with T � Fiσ, for all i =
1, . . . , n, by induction using the lexicographic order on
({{minT,Cuser (Fiσ)}}k−1

i=1 , {{minT,Cuser (Fiσ)}}ni=1).

Restriction to Csat . The third and final step consists
of showing that when the fix point is reached, restricting
the C to Csat also preserves derivability. This step remains
unchanged from [9, Theorem 2].

The general soundness of the saturation procedure is
given by the following property.

Theorem 1. Let P a process and T a trace of P . Let L a
set of lemmas that hold on P . Let Li be a set of inductive
lemmas. We denote by Cinit(P ) the set of initial clauses
translated from P . Let F be a fact such that T � F .
Let M = (∅,minT,Cuser

(F )) when pred(F ) ∈ Fp and
M = (minT,Cuser

(F ), ∅) otherwise.
If the lemmas in Li hold up to M excluded then there

exists a derivation D of F from sat(Cinit(P )) ∪ Cb(T )
such that InvT,Cuser (D).

This theorem is a simplified version of [9, Theorem
1 and 2, simplified] adapted to user-defined predicates
and generalised lemmas. In particular, the key difference
between these two soundness results is that we consider in
the set Cb(T ) the blocking counter part of all satisfiable
facts by the trace T . Note that Cb(T ) also includes the
blocking counter part of all true instances of predicates
p(M1, . . . ,Mn) where p is a user-defined predicate.

4.3. Applications

As we previously showed, generalizing lemmas, ax-
ioms and inductive proofs is paramount for our new
methodology. Thanks to the inductive proofs, we are able
to show with ProVerif all the properties P1 to P7 for
both hash list and Merkle tree data structures. Moreover,
as illustrated in Section 3.3, we are also able to prove
the security of certificate transparency and transparent
decryption with all properties P1 to P7 declared as axioms.
All the proofs of the properties in the interface are proved
in a single file for hash list in less than a second. For
Merkle trees, the proofs are separated in five different
files, each taking less than a second to be verified. The
proofs of the protocols themselves with the interface are
also done in less than two seconds.

Note that the generalisation of lemmas and axioms can
also be of use outside of our methodology. For instance,
an earlier version of our work has already been used to
prove the Encrypted Client Hello extension of the TLS
protocol [37]. Specifically, the saturation procedure was
entering into a loop when trying to resolve a clause of the
form psk(id, k, c, s)∧H → att(id) where psk(id, k, c, s)
intuitively represented some shared key k with identity id
between a server s and a client c. To prevent the loop,
they added a lemma indicating that when psk(id, k, c, s)
holds then the identity was already known to the attacker
or else was honestly generated:

lemma id,k,c,s:bitstring;
psk(id,k,c,s) =⇒ attacker(id) |

id = honest_id(s,c,k) [induction].

The application of the inductive lemma on
psk(id, k, c, s) ∧ H → att(id) would yield two clauses,
one with b-att(id) in the hypothesis and one where id
is instantiated by honestid(s, c, k). The former would
be removed by our new tautology rule, whereas the
instantiated second clause would avoid the loop during
the saturation.

5. Conclusion

Transparency in security protocols plays a fundamen-
tal role in minimizing the trust conditions for the parties
involved. A clear example is that of certificate trans-
parency, where strong security and trust assumptions on
certificate authorities can be relaxed by requiring that
they publish certificate issuances on a public ledger. In
many cases, transparency might well constitute a required
building block expected by users of a certain service,
especially when it involves incursions into their privacy
for a variety of reasons, a situation which is handled by
transparent decryption protocols.
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For these reasons, it is important to properly verify
the core security property of transparency protocols, e.g.
that only legitimate certificates are produced (certificate
transparency) or that decryptions only take place if the
requests for them are entered in a public ledger, i.e. visible
to users (transparent decryption).

Because of the complex data structures that trans-
parency protocols rely on, verifying their properties has
led to designing a proof-decomposition methodology for
ProVerif, as well as adding new features to the way
lemmas and axioms are handled. We expect that our
methodology and ProVerif enhancements can be applied to
other kind of protocols involving tree-based data structures
(binary trees, radix trees) and perhaps also other kinds of
data structures (e.g. Bloom filters).
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