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Abstract—This paper studies the integration of two successful
hardware-supported security mechanisms: capabilities and
enclaved execution. Capabilities are a powerful and flexible
security mechanism for implementing fine-grained memory
access control and compartmentalizing untrusted or buggy
software components. Capabilities have a long history but
have gained significant momentum recently, as evidenced by
ARM’s experimental Morello processor that supports the
Capability Hardware Enhanced RISC Instructions (CHERI).
Enclaved execution is a popular mechanism for dynamically
creating Trusted Execution Environments (TEEs), called
enclaves. Enclaves are isolated execution contexts that protect
the integrity and confidentiality of software in the enclave
(even against compromised system software) and that sup-
port attestation.

Integrating capabilities and enclaved execution in a sin-
gle processor is challenging because they overlap partially in
their security objectives, and a clean integration should unify
the way in which these overlapping objectives are achieved.
In addition, it is not obvious how attestation should interact
with capabilities. In this paper, we propose CHERI-TrEE: a
novel design for a processor that cleanly integrates support
for both capabilities and enclaved execution. CHERI-TrEE
targets low-end embedded systems without virtual memory.
We show that CHERI-TrEE is greater than the sum of its
parts by showing how it naturally supports useful features
that have traditionally been hard to support in enclaved
execution, like dynamically growing and shrinking enclaves,
non-contiguous and nested enclaves, sharing of memory
between enclaves etc. We implement our proposal both in
hardware on a RISC-V processor, as well as in a small
software hypervisor on top of ARM Morello, and evaluate
impact on performance and hardware resources.

Index Terms—enclaves, TEE, trusted execution, capability
machines, CHERI, CHERI-RISC-V, ARM Morello

1. Introduction

There is a wide variety of hardware-supported mecha-
nisms to securely isolate software, each with its strengths
and limitations. This paper studies the integration of two
related but fundamentally different mechanisms: capabil-
ities and enclaved execution.

Capabilities are unforgeable tokens of authority grant-
ing rights to system objects. They are a powerful se-
curity mechanism for implementing fine-grained access
control and for compartmentalizing untrusted or buggy

§. Corresponding author. thomas.vanstrydonck@kuleuven.be

software components. Capability machines implement the
concept of capabilities at the machine code level: they
provide hardware support for capabilities by defining an
instruction set architecture (ISA) that provides access to
system memory only through memory capabilities, a kind
of hardware-supported fat pointers. The ISA is designed
to ensure that software can only create capabilities that
represent a subset of the authority that the software al-
ready holds. Hence, capabilities are a secure basis for
implementing memory access control and isolation. Next
to memory capabilities, capability machines can support
a wide variety of other kinds of capabilities, including,
for example, object capabilities that can control access
to software defined objects, or sealing capabilities that
can symbolically encrypt or decrypt other capabilities.
Capability machines have a long history [1], but have
gained significant momentum over the last decade with,
for instance, the development of the CHERI system [2],
and with the ARM Morello project [3] that integrates the
concepts of CHERI in the widely used ARM architecture.

Enclaved execution is a security mechanism that sup-
ports the run time creation of enclaves, execution environ-
ments for software components that are strongly isolated
and that can attest their identity to other code running
either locally on the same platform or remotely on other
platforms. The idea of Enclaved Execution Systems (EES)
is more than a decade old [4], and currently many imple-
mentations are available [5], [6], [7], [8], [9], [10], both in
research prototypes, as well as in commercial systems like
Intel’s Software Guard Extensions (Intel SGX). We will
therefore use the term enclave to designate a general pro-
tected module, rather than SGX-like enclaves specifically,
as sometimes happens in the literature.

Problem statement. Assume the designer of an embedded
system has decided to use a capability processor (we
motivate the use of capabilities on embedded processors
below). This paper then aims to find the best way to
integrate enclaved execution into the capability processor
design. This is challenging because (1) these mechanisms
overlap partially in their security objectives (for instance,
both mechanisms provide their own form of controlled
invocation) and a clean integration should unify how these
overlapping objectives are achieved, and because (2) it
is not obvious how (remote or local) attestation should
interact with capabilities.

To the best of our knowledge, this paper is the first to
propose a design that cleanly integrates both mechanisms
in a single processor ISA. Roughly speaking, our design
proceeds as follows: enclaved execution is known to be a
complex security mechanism [11], hence we first decom-
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pose it into a set of maximally independent primitives.
Next, we implement these primitives on top of the state-
of-the-art CHERI capability machine [2], [12], maximally
reusing existing CHERI mechanisms. For instance, en-
clave isolation reuses standard CHERI object capabilities.
The new mechanisms we introduce are lightweight, or-
thogonal, and contribute features that do not yet exist
in CHERI. They allow (1) obtaining guarantees about
exclusive ownership of a memory region (i.e., no other
code on the system has a reference to said memory), and
(2) obtaining sealing capabilities (a private key used to
symbolically encrypt or sign other capabilities) derived
from an enclave’s identity.

We demonstrate that the resulting system, CHERI-
TrEE, can be used as an EES, allowing other code on the
system to establish trust in an enclave. CHERI-TrEE is
greater than the sum of its parts. Our reuse of existing
CHERI features achieves economy of mechanism and
reduces complexity and cost. At the same time, the result-
ing EES innately supports features that have traditionally
been hard to accommodate in EESs: dynamically growing
and shrinking enclaves, non-contiguous enclaves, nested
enclaves, sharing of memory between enclaves, etc.

Target systems. Capabilities and enclaved execution have
been studied for both low-end embedded systems and
higher-end systems that support virtual memory or virtu-
alization instructions. In this paper, we focus on low-end
embedded systems without virtual memory. Although we
demonstrate an implementation on top of ARM Morello,
a high-end architecture, this proof-of-concept implemen-
tation does not use virtual memory and is to be interpreted
(for the time being) as a proof of feasibility of a software-
only implementation of CHERI-TrEE.

Note that there are already good arguments for ap-
plying CHERI-like primitives to embedded processors,
independently of CHERI-TrEE. The benefits and costs
of CHERI-like protection (compared to e.g., MPUs) on
embedded systems have been studied extensively in the
literature [13], [14], [15]. CHERI-TrEE is intended to
additionally offer EES security primitives when CHERI
protection is already used on an embedded system for its
other benefits. As such, the costs of supporting CHERI-
TrEE should be regarded separately from the costs in-
curred by adding support for capabilities to the processor.

Attacker model. As usual for EESs, we assume an at-
tacker that can control all software present on the sys-
tem, notably including privileged software such as the
operating system. CHERI-TrEE can be implemented in
either hardware, software, or a mixture thereof. Depending
on this choice, a small software interrupt handler and
a small hypervisor might be considered trusted. Other
desirable enclave properties that are largely orthogonal
to capabilities are left out of scope: availability guaran-
tees, hardware-based attacks (cold-boot attacks, malicious
DRAM, . . . ) or side-channel attacks (timing or cache side-
channels, memory bus snooping, . . . ). Note that this as-
sumption inherently limits the size of our TCB compared
to systems with a stronger attacker model, that implement
additional security features (e.g., memory encryption).

Contributions. To summarize, in this paper we contribute:

• A decomposition of enclaved execution into more basic
primitives.

• The design of CHERI-TrEE, a capability-based ISA
extension that supports these primitives and hence in-
tegrates capabilities and enclaved execution.

• A specification and security argument for classic en-
claved execution operations (initialization, unloading,
local attestation, secure communication) on top of
CHERI-TrEE.

• An open-source implementation of CHERI-TrEE on top
of RISC-V, including a Sail specification of the ISA
and a hardware implementation on FPGA, as well as a
proof-of-concept implementation on ARM Morello [3].
Our evaluations and benchmarks are open source. 1

• An evaluation of the impact on performance and hard-
ware resources of the extension on the considered plat-
forms.

For reasons of anonymity, we cannot provide the im-
plementation sources during the review process. Files can
be made available to reviewers on request.

2. Background

We implement all EES primitives by extending
CHERI-like capability machines [2]. We thus briefly recap
the background on enclaved execution and capabilities.

2.1. Enclaved execution

Enclaved execution is a security mechanism that en-
ables secure remote computation [16] with a small Trusted
Computing Base (TCB). It supports the runtime creation
of enclaves, strongly isolated software components that
can attest their identity to other code running either locally
on the same platform or remotely on other platforms. A
number of variations on this idea have been designed
and implemented by researchers [4], [6], [9], [8], [10],
and Intel have commercially implemented the Software
Guard Extensions (Intel SGX). We provide an overview
of existing designs in Section 7.

The typical life cycle of an enclave goes as follows:
First, untrusted code creates the enclave and initializes
it from a static binary code image (e.g., a .dll file).
After initialization, the enclave is supposed to be isolated
from all other (non-TCB) software, and has an enclave
identity based on the code image initially loaded. At this
point, interaction with the enclave is possible: the enclave
context (untrusted code and/or other enclaves) can call into
the enclave, and the enclave can call out to its context.
Such interactions can be authenticated: the context can
get proof of the identity of an enclave (attestation), and
similarly, the enclave can get proof of the identity of
other enclaves calling in. Most EESs extend attestations
to remote platforms: a remote party can get proof of the
identity of an enclave it is interacting with. Finally, an
enclave can be terminated. Care must be taken to ensure
that enclave secrets do not leak on termination.

Existing EESs vary widely in the implementation de-
tails of this life cycle. There are differences in the way
isolation is implemented, in the interaction with other
isolation mechanisms (like virtual memory), and in how

1. See https://github.com/proteus-core/cheritree
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termination is handled. However, all existing systems face
challenges in securely handling natural features, including:
nesting of enclaves, non-contiguous enclaves, dynamic
enclave memory (de-)allocation, efficient memory sharing
between enclaves, the number of supported enclaves, etc.

2.2. Capability machines and CHERI

Capability machines define an ISA that provides ac-
cess to system memory only through memory capabilities,
a kind of unforgeable hardware-supported fat pointers that
carry metadata about the bounds over which they grant
authority. The ISA is designed to enforce monotonicity of
authority: software cannot forge capabilities that increase
the access to memory that it initially possessed. Hence,
capabilities can be used to enforce memory access control
and isolation; properties we will rely on when designing
secure enclaves in Section 3. The base platform on which
we build our design is a variant of CHERI-RISC-V. The
CHERI-RISC-V capability metadata relevant for this pa-
per includes base and length fields, otype, permissions and
an address field. A memory capability can be used in store
and load instructions to access its address, provided the
address is in the range [base, base+length), and compliant
with the permissions specified in the permissions field
(e.g., read, write, execute). The ISA provides instruc-
tions to inspect and modify metadata fields, but only
in ways that respect the aforementioned monotonicity of
capability authority. For instance, bounds can be reduced
but not expanded, e.g., the CSetBoundsExact cd,
cs1, rs22 instruction takes an existing capability in
cs1 and a new bound length in rs2, which must be
equal to or less than the length of cs1, and creates a new
capability in cd with the specified bound length.3

CHERI supports other kinds of capabilities besides
memory capabilities, for which the interpretation of the
metadata and the possible uses vary. Notable for our
purposes are so-called sealed capabilities [2], a type of
CHERI capability that cannot be used in operations like
stores and loads or have its fields altered; only reading
fields is allowed. Sealed capabilities are sealed with a
specific seal (i.e., a key), represented by a value in the
otype field. The highest otype value represents an unsealed
capability.

Capabilities can be sealed and unsealed through the
CSeal and CUnseal instructions. The CSeal cd,
cs1, cs2 instruction takes unsealed capabilities in cs1
and cs2, and seals cs1 with otype equal to the address
field of cs2, placing the result in cd. To avoid arbitrary
capabilities being used to seal other capabilities, cs2
must have the bespoke Permit_Seal permission bit
set, which allows it to seal other capabilities with otypes
within its bounds. The CUnSeal cd, cs1, cs2 in-
struction is the dual of CSeal; cs1 must now be sealed,
and cs2 is required to have the Permit_UnSeal per-
mission bit set. The otype in the address field of cs2 must
match the otype of cs1. The unsealed result is placed
in cd. Software cannot bypass the security guarantees

2. As in the RISC-V and CHERI specifications, we use rs1 and rs2
for source and rd for destination integer registers, while using cs1,
cs2, and cd for capability registers throughout this paper.

3. Assuming the requested bounds can be represented in CHERI’s
compressed capability representation.

offered by sealed capabilities: as capability authority must
evolve monotonously, not even privileged software can
set the Permit_Seal/Unseal bits or forge sealed
capabilities.

The purpose of these capabilities in CHERI is dual.
First, otypes can be used to implement efficient symbolic
encryption and signing, using the aforementioned permis-
sion bits. A capability that has both Permit_Seal and
Permit_UnSeal bits set can be used for symmetric
encryption, because it can both encrypt (seal) and decrypt
(unseal) messages (capabilities). If a capability carrying
the Permit_Seal permission is made public and a
Permit_UnSeal counterpart is kept private, we get
public key encryption. The converse setup results in a
digital signature scheme. These observations form the
basis of our design for secure enclave communication in
Section 3.2.

Secondly, sealed capabilities can be used to implement
the aforementioned object capabilities that control access
to software defined objects. The CInvoke cs1, cs2
instruction enables this functionality and permits secure
domain transitions. If both cs1 and cs2 contain capa-
bilities with matching otypes and solely cs1 has exe-
cute permission, then the two capabilities are atomically
unsealed, and cs1 is installed in the program counter
register, continuing execution from the invoked domain.
Together, cs1 and cs2 are said to constitute a sealed
pair, with cs1 the code and cs2 the data capability.
Such pairs can safely be passed to adversarial code, as
both capabilities are sealed and can only be invoked
together. To distinguish sealed pairs from other sealed
capabilities, a permission Permit_CInvoke determines
whether sealed capabilities can be invoked together. We
will use sealed pairs to perform secure domain transitions
into enclaves in Section 3.2.

3. The design of CHERI-TrEE

In this section, we propose decomposing the require-
ments for enclaved execution into orthogonal properties
(Section 3.1). These properties serve as a guideline for
the design of CHERI-TrEE, our capability-based EES.
Section 3.2 considers the CHERI capability machine as
a starting point and lists for each property whether it
can be enforced through existing capability primitives or
whether extensions have to be defined. With this analysis
in hand, Section 3.3 discusses the security model and the
operations offered by the TCB in a backend-agnostic way.
Section 3.4 discusses implementation details that Sec-
tion 3.3 brushed over, and Section 3.5 contains an abstract
discussion of why our design ensures isolation and secure
communication. Finally, Section 3.6 highlights how our
bottom-up approach, maximally reusing the flexibility of
architectural capabilities, allows for greater flexibility than
the state of the art.

Capabilities and enclaved execution have been studied
for systems that support virtual memory and systems
with a single physical memory address space. This paper
focuses on the latter kind of system. The combination with
virtual memory and address translation brings additional
challenges that are left for future work discussed in Sec-
tion 6.
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3.1. Decomposing enclaved execution into core
properties

In our view, the core security properties required to
build an EES can be decomposed into the five categories
listed below. Some other properties (e.g., confidential de-
ployment [9], secure storage) are also relevant, but either
not essential to the construction of a functional EES, or
outside our attacker model. The core properties are:

1 Exclusive access: A mechanism to guarantee ex-
clusive access to specific memory areas is required for the
secure initialization of an enclave. In principle, the enclave
can be allowed to share its uniquely owned memory once
it has been securely initialized, but few enclaved execution
systems support this. For example, Intel SGX relies on
Processor Reserved Memory and the initialization process
to guarantee exclusive access, while Sancus relies on
program-counter based access control.

2 Controlled invocation: To avoid reasoning about
the correctness and security of many possible control-flow
paths, enclaves can only be invoked at predefined entry
points. Examples are ecalls in Intel SGX and entry points
in Sancus. In most systems, entry points are declared at
enclave creation time, but at least conceptually, new entry
points could also be created dynamically.

3 Enclave identities and attestation: To enable
multi-enclave/distributed applications, enclaves and third
parties require a mechanism to establish trust in the cor-
rect initialization and execution of another enclave. This
authentication process, called attestation, occurs either
locally or remotely. It requires a notion of enclave identity,
usually based on a cryptographic hash of the enclave
code and metadata. Locally, the architecture provides a
mechanism to communicate identities and authenticate
enclaves to other code running on the same platform.
Remote attestation requires cryptographic support, either
in the form of a public key infrastructure (as in Intel SGX)
or a symmetric key derivation scheme (as in Sancus).

4 Secure communication: A mechanism to securely
communicate between two enclaves, both locally and
remotely, is essential to achieve integrity and confiden-
tiality. Locally, either CPU registers or shared memory
can be used. Because enclaves might be deinitialized and
replaced at any point, encrypting and signing messages
cryptographically is required to ensure integrity and con-
fidentiality. The efficiency of the involved cryptography is
performance-critical. To avoid having to sign and encrypt
messages, some EESs have built-in mechanisms to check
liveness of the sender and receiver enclave. Here, time-of-
check to time-of-use (TOCTOU) attacks can be an issue
(e.g., for Sancus). For the remote case, the key distribution
infrastructure of attestation can often be reused for secure
communication with standard protocols.

5 Secure interruptability: When an enclave’s ex-
ecution is interrupted, its register state should not be
accessible to untrusted code as this potentially breaks
confidentiality guarantees offered by the enclave. Addi-
tionally, the enclave’s register state must be correctly and
securely restored after servicing the interrupt.

Because capabilities provide no protection during net-
work transition, the design of remote attestation and re-
mote secure communication would mostly reuse existing

solutions. The remote aspects of enclaved execution are
therefore left for future work and further discussed in
Section 6.

3.2. Satisfying the security properties

We now discuss how we enforce these properties in
our design that builds on CHERI, reusing CHERI primi-
tives where possible (�) and extending the TCB otherwise
(�). In the remainder of Section 3, the TCB is taken to
be hardware-only (except for a small software interrupt
handler). However, Section 4.4 illustrates that this is not
required.

� Exclusive access at runtime is not supported out
of the box in CHERI, so we add memory sweep func-
tionality to the TCB. During a memory sweep, the TCB
checks the whole memory and all architectural registers
(including special registers) for the presence of capabili-
ties that overlap with a given capability. To successfully
complete enclave initialization, the unique ownership of
an enclave’s code and data sections needs to be verified
through such a sweep. The memory sweep is a simple
solution to exclusive access that can be optimized further
and for which alternatives exist. We discuss these in more
detail in Section 6.

� Controlled invocation can be implemented using
the aforementioned sealed capability pairs [2]. Concretely,
if the enclave only shares sealed capabilities to specific en-
try points with adversary code, then capability monotonic-
ity ensures that the enclave cannot be otherwise entered.
Alternatively, controlled invocation can be implemented
through so-called enter capabilities [17], which intuitively
combine both the code and data capabilities of a sealed
pair into a single capability. This alternative could have
simplified a few aspects of our design, but we did not
implement it, as enter capabilities have only recently been
added to CHERI.

� Enclave identities and attestation are not built
into CHERI. The architecture hence has to use a cryp-
tographic hash function to calculate an enclave’s identity
by hashing the code section. Additionally, to enable local
attestation, an instruction needs to be added to securely
look up this generated identity.

� Secure communication can be efficiently imple-
mented locally through the symbolic encryption provided
by sealed capabilities. Every enclave has a signing capa-
bility cap sign with otype o sign in its address and both
Permit_Seal and Permit_UnSeal set. The enclave
solely shares the Permit_UnSeal part of this capability
with other code, so that it can exclusively authenticate its
messages and other enclaves can verify them. Although it
might seem unintuitive that a capability (rather than just
the integer otype o sign) is required to verify a signature,
without this capability, recipients of signed values would
have no way to remove the signature and access the
payload underneath. Dually, the enclave has an encryption
capability cap enc with otype o enc and shares only its
Permit_Seal part so that only the enclave can decrypt
messages encrypted with o enc. We refer to the shared
halves of both capabilities as an enclave’s public keys,
and to the full-authority versions as its private keys.

� Secure interruptability cannot be guaranteed in
the presence of an untrusted interrupt handler: the confi-
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dentiality and integrity of an enclave depend on an ad-
versarial interrupt handler not being able to read security-
critical capabilities (e.g., the capability for the data sec-
tion or cap sign) from its register state. We resolve this
problem by installing a minimal, trusted interrupt handler
that cannot be altered or bypassed by untrusted code.
The handler performs the necessary register sanitization
before passing control to the adversary and restores the
register state on return. This solution is similar to the
security monitor employed in Keystone [10], but our
handler is more limited in scope (e.g., it does not need
to manipulate memory protection state). Although we
currently implement interrupt handling in software as a
proof of concept, a Sancus-style hardware implementation
is entirely feasible.

3.3. Fleshing out the design

Having studied the security of enclaves at a conceptual
level in Sections 3.1 and 3.2, this section now discusses
the modifications we made to the CHERI architecture to
implement our design.

Our first addition to the TCB is the enclave table in
Fig. 1, which connects enclave identities to their otypes.
The table enables local attestation: a new operation per-
forms a secure lookup of the enclave identity associated
with an otype that was received from untrusted code.

Each enclave entry in the table contains three otypes:
the aforementioned otypes o enc and o sign, that serve
as otypes for the enclave’s cap enc and cap sign capabil-
ities, and an otype o entry that will be used to create
a sealed entry point from the enclave’s unsealed code
and data section. We allocate these otypes such that they
are consecutive and 2-bit-aligned. This allows the TCB
to store only the common prefix in the enclave table,
which we call the enclave identifier (eid) and allows an
enclave to represent ownership of all three otypes in a
single capability cap seals (cf. Fig. 1).

We ensure that otypes are spatially and temporally
unique to avoid collisions with previously allocated en-
claves and other usages of sealed capabilities. In case
otypes are required for other purposes on the capability
machine, the otype space should be split up.

We now study the operational aspects of our design in
more detail. We discuss (de)initialization, local attestation,
communication between enclaves, stand-alone memory
sweeps and secure interrupts.

Initialization. Enclaves register themselves with the TCB
by invoking an initialization operation, passing capabilities
cap code and cap data as arguments. Initialization will
perform the following steps:

1. Perform a memory sweep to check unique ownership
of cap code and cap data.

2. Allocate fresh otypes for the enclave and store the
capability cap seals for them to the start of cap data
so that the enclave can set up its symbolic encryption
upon invocation.

3. Use o entry to seal cap code and cap data, transform-
ing them into a sealed pair and ensuring controlled
invocation.

4. Compute the enclave’s identity I by hashing its code
section.

5. Store this identity I in the TCB along with its eid to
allow secure lookups. If the TCB is full, the instruction
fails.

After successful completion, the enclave has been
initialized and the TCB contains an appropriate entry (cf.
Fig. 1, we explain the Temporary field below). Untrusted
code can now invoke the enclave by executing CInvoke
on cap code and cap data.

Upon first invocation, the enclave’s code will initialize
any necessary state and enable symbolic encryption by
returning the public parts of its sealing and encryption
keys. The enclave can create a so-called fast entry point
at a different offset to skip initialization on subsequent
invocations (taking care that the initial entry point does
not reinitialize the enclave if it is invoked again).

Deinitialization. A TCB operation deinitialize allows an
enclave to deregister itself. The enclave authenticates
itself by providing its cap seals capability (with both
Permit_Seal and Permit_UnSeal permissions set).
Thus, only the enclave itself or parties that were granted
access to (subranges of) cap seals can deinitialize it.
After deinitialization, an enclave can clear sensitive data
(including its seals) and return the capabilities for its
code and data section to untrusted code. As in Sancus, a
processor reset is required to deinitialize rogue enclaves.
A processor reset is also required to reuse the otypes
of decommissioned enclaves, since we do not support
memory sweeps to reclaim otypes.

Local attestation. An enclave gets access to another en-
clave’s entry points and public encryption/signing keys by
e.g., retrieving them from an (untrusted) enclave registry.
Regardless of the origin, enclaves require a way to verify
that an otype corresponds to an enclave of interest. The
TCB offers a local attestation operation that takes an
otype and returns the enclave identity of the corresponding
enclave (by storing it to memory through a provided
capability). Note that when an enclave calls into another
enclave, the callee is not required to attest the caller
ahead of time. Indeed, the caller can pass its public keys
along with the arguments, so the callee can perform local
attestation of the caller while processing the call.

Secure communication. Different primitives combine to
secure communication between enclaves. First, any con-
fidential arguments or return values are encrypted with
the recipient’s public encryption key. Additionally, as ca-
pabilities carry authority, even non-confidential capability
arguments and return values must be encrypted if their
authority should not be made available to untrusted code.

Second, when returning from a call, the callee should
sign (part of) the return value to allow the caller to confirm
that its call was indeed processed by the callee. Con-
versely, the callee might also require the caller’s signature
to authenticate the caller; the callee could e.g. have a
whitelist of enclaves whose requests it services. Lastly, to
avoid replay attacks, the caller can make use of a nonce
as part of its requests.

As the literature shows, it is possible (but difficult)
to construct a wide variety of secure communication pro-
tocols using the available primitives (asymmetric encryp-
tion, signing, and nonces) [18]. Since our aim is to intro-
duce a capability-based design for enclaved execution, not
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Figure 1. Memory and TCB state after initialization of an enclave encl. The TCB’s four enclave table fields indicate whether an entry is in use
(Used?), whether it is temporary (Temp?), and record the enclave’s identifier (eid) and identity (Identity). Importantly, the TCB does not track the
enclave’s memory layout, but solely connects the enclave’s eid and identity to each other. All values relating to encl are typeset in blue; its identity
(I), identifier (eid), code and data sections cap code and cap data, four assigned otypes, and their capability cap seals. The reg state region stores
the enclave’s register state during an interrupt. Gray arrows illustrate how I is obtained by hashing the code section and eid by right-shifting the
otypes. Figure layout inspired by Noorman et al. [9].

design secure communication protocols on top, we defer
the development of these protocols to future work.

Separate memory sweep. As we will discuss in Sec-
tion 3.6, by offering the memory sweep functionality
as a stand-alone operation as well, we can increase the
flexibility of the enclave model. This operation performs
a memory sweep for a given capability and outputs a
boolean indicating success or failure.

Interrupt handling. For secure interrupts and system
calls, we install a fixed, non-bypassable, trusted interrupt
handler. When an enclave is interrupted, control passes
to the trusted handler. This handler is responsible for
storing enclave state to an enclave-designated location
(before control is passed to an untrusted interrupt handler)
and restoring the state afterwards. It includes measures to
prevent reentrancy issues. Much like Keystone, we leave
the extension of our scheme to a multi-threaded setting,
as well as nested interrupts, attestation of the interrupt
handler, and the delegation of synchronous interrupts and
errors to an enclave-private interrupt handler to future
work.

3.4. Technical details

Otypes and eid. As mentioned above, each enclave uses
an eid to represent all of its otypes o sign, o enc and
o entry. In fact, we reserve an additional fourth spare
otype (cf. Fig. 1), which the enclave can use to e.g. create
additional entry points, because four adjacent otypes share
all but their last two bits. The TCB allocates four fresh
seals by increasing a hardware counter (TCB eid counter
in Fig. 1), failing when the otype space has been depleted.
Any enclave otype is then efficiently convertible into the
eid by a 2-bit right shift. Note that the specific role of each
otype (except for o entry) is up to software convention.

For proper operation, we assume the otype space avail-
able to enclaves to be sufficiently large. This requirement
is currently not met for CHERI Concentrate 64 (CC64),
the compressed 64-bit representation of capabilities that
CHERI defines for RV32 (32-bit RISC-V); only 4 bits are
available for the otype field [19]. To resolve this issue, the
CHERI specification contains a proposal to store otypes
of sealed capabilities as metadata in memory instead of
having the otype be in the capability itself [12]. For
RV64 (64-bit RISC-V), 18 bits are available in CHERI
Concentrate 128 (CC128), which poses fewer problems.

Invoking sealed capabilities as entry points. One might
ask whether o enc or o sign could be reused instead
of o entry to seal the entry point. The answer is neg-
ative; reusing o sign would allow adversaries to sim-
ply unseal the enclave’s sealed code and data sections
without calling CInvoke, whereas reusing o enc would
allow the adversary to create their own code section, and
use that to unseal the enclave’s data section by execut-
ing CInvoke. For similar reasons, it is important that
Permit_CInvoke is unset on capabilities sealed with
enclave encryption keys.

Mapping TCB operations to RISC-V instructions.
Unfortunately, the initialization TCB operation is difficult
to implement as a single instruction on a RISC ISA
like RISC-V, where instructions generally have only one
output operand. Initialization produces two outputs, be-
cause it has to overwrite both cap code and cap data
with their now-sealed variants. To solve this, we split the
operation into two separate instructions; EInitCode and
EInitData, which initialize the enclave’s code and data
sections in two consecutive phases.

The EInitCode cd, cs1 instruction is called
first, with cap code in cs1. To ensure that the unsealed
cap code is overwritten by its sealed counterpart, cd and
cs1 are required to be equal. For efficiency reasons,
EInitCode does not yet check uniqueness of cap code,
as EInitData will perform a single sweep for cap code
and cap data simultaneously. Computing the enclave’s
identity is also deferred until EInitData, since adver-
sarial code might still have access to cap code.

Once the eid has been generated, EInitCode seals
cap code with o entry, sets its address to its base (to avoid
arbitrary entry offsets) and writes it to cd. EInitCode
will generate the following temporary TCB entry (cf.
Fig. 1), to be later finalized by EInitData, which
does contain the enclave’s eid but not its identity:

� � eid Don’t care . Note that EStoreId ignores
TCB entries marked “temporary”.

After EInitCode, the EInitData cd, cs1,
cs2 instruction finalizes the enclave’s initialization. It
requires a sealed code section cap code (the result of call-
ing EInitCode) in cs1, and an unsealed data section
cap data in cs2. As before, cd and cs2 are required to
be equal. The EInitData instruction now:

1. Looks up a temporary TCB entry with an eid corre-
sponding to cap code’s otype.

2. If found, checks unique ownership of cap code and
cap data in a single memory sweep.
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seal=o sign, perms=RO

. . . seal=o enc . . . arg . . .

reg

mem

Figure 2. Combination of different security primitives: argument arg is
encrypted with otype o enc, then signed with otype o sign.

3. Verifies that cap code does not contain any capabilities.
Note that cap data is allowed to contain capabilities
(including internal references to cap data/cap code),
and is therefore not zero-initialized, as in e.g. Sancus.

4. Calculates the enclave identity I as the hash of the
contents of cap code, stores I in the temporary entry
for eid, and marks the entry as permanent (cf. TCB state
in Fig. 1).

5. Stores the cap seals capability in the first address of
cap data. Writes cap data, sealed with o entry, to cd.

Deinitialization is offered as a EDeInit rd, cs1
instruction taking cap seals in cs1 and indicating suc-
cess or failure in rd. Similarly, local attestation is of-
fered through an EStoreId rd, rs1, cs2 instruc-
tion, which takes an otype in rs1 (any otype assigned to
an enclave), and writes the identity of the corresponding
enclave in the TCB (if any) to memory through the capa-
bility in cs2. The separate memory sweep is performed
by the IsUnique rd, cs1 instruction, which takes its
input capability in cs1 and again indicates success in rd.

Trusted exception handler. The trusted exception handler
uses the enclave’s data capability cap data to save its
register state into the reg state region (cf. Fig. 1). Then,
it seals cap data using a unique, private otype o handler,
places the result in a predefined register, and jumps to
the untrusted interrupt handler. For this scheme to work,
cap data should be present in a fixed register at all
times. We use the idc (invoked data capability) register
because it is atomically set to the unsealed data section
when calling into an enclave using CInvoke. Once the
untrusted code finishes servicing the interrupt, it returns to
the trusted handler, which unseals the provided data sec-
tion, restores the enclave’s registers (apart from pc) and
finally returns. The return should simultaneously reenable
interrupts and restore the enclave’s code capability. In the
concrete case of RISC-V, the interrupt handler is installed
in the mtvec register. It returns to the interrupted enclave
through the mret instruction.

The tag of the pc capability stored in the reg state
region effectively functions as an “is interrupted”-flag:
the trusted handler sets it by storing an enclave’s pc
at interrupt time, and unsets it before returning to said
enclave. This flag is used by enclaves to avoid reentrancy
issues: if the tag is enabled when an enclave is invoked, the
enclave simply returns. Additionally, the trusted handler
uses the flag to avoid storing the registers of a previously
interrupted enclave and restoring the registers of a non-
interrupted enclave.

Signing and encrypting simultaneously. One might won-
der how a capability with a single otype field can simulta-
neously represent encryption and signing. Fig. 2 illustrates
that the solution is indirection: a memory argument arg

is first encrypted by an in-memory capability with otype
o enc, which is in turn signed by a capability with otype
o sign, present in one of the registers. This immediately
illustrates one of the pitfalls of secure communication in
our setting: messages are represented by capabilities rather
than bit-strings. Copying a bit-string corresponds to a deep
copy, whereas copying a capability creates an alias. This is
the reason the top-most capability in Fig. 2 has read-only
permission—if it allowed writes, an adversary could take
a copy of the capability, remove the signature on the copy
using the public signing key, and overwrite the underlying
sealed capability. This would allow the adversary to create
arbitrary capabilities, signed with a third party’s seal.
Similar concerns are at play when encrypting capabilities.

3.5. Security analysis

To summarize the above design, we now provide an
analysis for why each stage of an enclave’s lifetime re-
spects exclusive access and secure communication. This
assumes the enclave is correctly implemented and does
not leak any of its private state.
• System boot: the system boots with an omnipotent

capability. A small, trusted bootloader ensures that this
omnipotent capability does not grant access to seals
reserved for enclaves.

• Initialization: after initialization, the memory sweep
guarantees us that no aliases for the enclave’s entry
point exist. Freshness of the generated seals ensures
that no code has authority over the enclave’s otypes.

• During operation: as long as the enclave does not leak
its private state, no external code can unseal capabilities
sealed by the enclave. Additionally, the enclave can
distribute the public halves of its sealing and signing
capabilities without compromising its security, because
of the semantics of sealed capabilities.

• During interrupts: the enclave’s register state is stored
in its data section, which is sealed such that only the
trusted interrupt handler can restore the enclave’s state.
Reentrancy is currently unsupported: an interrupted en-
clave simply returns upon further invocation.

• Deinitialization: the enclave erases its seals before re-
turning its authority to the context. This ensures forward
secrecy and authenticity of messages it encrypted and
signed. Other secrets and capabilities in the data section
are scrubbed on an application-specific basis.

Formal modeling and proof of these and other properties
from Section 3.1 are left for future work.

3.6. Flexibility of our bottom-up design

There are two main reasons for the maximal reuse of
existing capability primitives: First, the size of the TCB
remains limited. Second, the resulting enclaves do not
rely on the hardware to manage their authority but are
self-governing, resulting in more flexible software-based
design patterns. The cost of this flexibility is establishing
unique ownership at runtime (i.e., the memory sweep)
and an increased burden on the software developer to
not leak security-critical capability authority. On the other
hand, spatial memory safety does mitigate some API-level
exploits of the types identified by Van Bulck et al. [20].
For example, if an enclave does not share any capabilities
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pointing into its own memory with the adversary, then it
does not require checks to ensure that pointers passed in
from untrusted memory fall outside of its bounds, avoiding
issues with improper implementation of these checks.

Although some EESs offer enclaves that are flexible in
some of the below respects (see Section 7), the combina-
tion of different types of flexibility in our design, without
requiring additional architectural changes, is novel. We
support flexibility in the following ways:

Growing, shrinking, nested and non-contiguous en-
claves. All of these are supported by our design because
an enclave’s footprint is not managed by the TCB, but
rather determined by the capabilities it owns.

To grow an enclave, we employ the previously intro-
duced IsUnique instruction. An enclave can request a
sweep for a capability provided by untrusted code to verify
unique ownership and add it to the enclave’s memory
footprint. In order to shrink, an enclave simply shares
capabilities for part of its footprint with untrusted code.

In state-of-the-art EES, nesting enclaves (i.e., creating
an enclave inside an existing enclave) is usually impos-
sible because the hardware disallows enclave footprints
from overlapping. One motivation for having nested en-
claves is that it would allow for easy virtualization (inside
an enclave) of code that itself uses enclaves. Nested
enclaves can be initialized anywhere inside an enclave’s
uniquely owned memory. The only restriction is that the
memory sweep fails if an external party holds a sealed pair
for an entry point that overlaps with the nested enclave.

Enclaves can have non-contiguous footprints, e.g., to
take exclusive ownership of an MMIO region mapped to
a peripheral, reported to be impossible in Sancus [21].

Sharing memory. Sharing memory between enclaves
amounts to simply sharing a capability for a uniquely
owned memory region between said enclaves. No encryp-
tion is required. Once enclaves are done sharing memory,
there needs to be a way to revoke access to this memory.
For short-term sharing of e.g., arguments in memory, so-
called local capabilities [12] (which reside in registers
only) could be used. Alternatively, an enclave can check
whether its shared memory has been released using the
IsUnique instruction. Lastly, to repeatedly share non-
confidential memory that will never contain any security-
critical capabilities, enclaves can simply share a read-only
view of said memory.

Early EDeInit. Once all parties that wish to commu-
nicate with an enclave complete local attestation, there is
no need to keep the enclave’s entry in the TCB. This is
possible as the TCB entry does not provide any hardware
protection, but serves the purely informative purpose of
linking otypes and enclave identities. Hence, enclaves can
prematurely execute EDeInit to free TCB space and still
operate correctly.

Secure communication without liveness checks. One
interesting characteristic of enclave communication in
our design is that we do not need to rely on liveness
checks (such as the ones present in Sancus) during secure
communication. The caller enclave can invoke the callee
without verifying whether the callee enclave still exists,

and the callee returns to the caller without checking its
liveness. We can afford to omit these checks because the
alternative, namely both signing and encrypting messages,
is very cheap (taking a single instruction, contrary to non-
symbolic solutions), and hence can be applied by default.
The advantages of omitting liveness checks are that the
hardware is simplified and any TOCTOU issues related
to checking and then invoking an enclave are avoided.

Two-way sandbox. The spatial memory safety offered by
capabilities naturally turns enclaves into two-way sand-
boxes [22], meaning that other code running in the same
address space is protected from the enclave: enclaves can
only manipulate memory they have appropriate capabili-
ties for. This prevents e.g. Boomerang attacks [23].

Dynamic entry points. Traditionally, enclaves either list
their entry points at creation time or have standard, pre-
defined entry points. As we reuse sealed pairs to enforce
entry points, an enclave can create more entry points
at runtime by creating a sealed pair. Such dynamically
created entry points could be selectively shared with at-
tested counterparties to avoid the need to re-attest them
on subsequent calls. To avoid mixing parts of different
pairs, the enclave either needs to use different otypes for
different entry points or have an entry point identifier in
each data section.

Relocatable enclaves. EInitData does not include the
enclave’s base into the hash, contrary to hashing in e.g.,
Sancus [9]. Consequently, a deployer is not required to
know the memory address at which an enclave is located
beforehand, providing greater ease in deployment. This
does place the requirement of writing Position Indepen-
dent Code (PIC) on the developer, but RISC-V has effi-
cient support for this [24]. This design decision implies
that multiple instances of the same enclave have the
same identity. Fortunately, this poses no security risk, as
these enclaves would have different otypes and are hence
distinguishable locally. In the remote case, key derivation
can include each enclave’s otype to create different keys.

4. Implementation

We now discuss three different implementations of
our design from Section 3: one RISC-V specification
of the ISA extensions that is written at the instruction
level, abstracting away from the hardware, one RISC-
V hardware implementation for studying performance,
and a prototypical implementation on the ARM Morello
platform to show commercial feasibility.

4.1. Sail specification of the extended ISA

To obtain a more formal account of the architectural
extensions proposed in Section 3.3, we created a software
implementation of our design in Sail [25].

Sail is an ISA specification language used to formalize
ISA semantics. On top of that, Sail models serve various
purposes: documentation can easily be generated from
them, emulators (in C and OCaml) can be derived from
the source code, and definitions can be exported to various
proof assistants to enable reasoning about properties of
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the ISA. CHERI researchers heavily use Sail to formalize
different architectural implementations, and hence con-
tains an existing formalization of both 32-bit and 64-bit
CHERI-RISC-V [26], on top of which we implemented
extensions for CHERI-TrEE.

The Sail implementation of CHERI-TrEE is complete;
all previously described architectural implementation de-
tails are included. The implementation inherits the char-
acteristics of Sail-CHERI-RISC-V: both RV32 and RV64
implementations are supported in a modular fashion, the
model does not support split register banks (instead, a
single register bank is shared for both capabilities and
integers), and the use of compressed CHERI Concentrate
capabilities is mandatory. For our purposes, we were
most interested in the emulation functionality. Because
generating an assembler from a Sail specification is not yet
supported, we also extended CHERI’s fork of the LLVM
compiler to support the newly added instructions. This
allowed using the LLVM toolchain to compile assembly
files into well-formed ELF-binaries that Sail’s C-emulator
can executed. We developed basic unit tests to check
functional correctness of each new instruction, as well as a
larger scenario test, and ran these on top of the C-emulator.

4.2. Proteus RISC-V CPU framework

To verify and evaluate our design, we implemented
the primitives from Section 3.3 in hardware. We based
our implementation on Proteus, our open-source RISC-V
processor designed with configurability and extensibility
as its main goals.

Proteus is heavily inspired by VexRiscv [27] and
designed in SpinalHDL [28], a Scala-based Hardware
Description Language (HDL). SpinalHDL is essentially
an HDL code generator: Scala is used to generate an
HDL description at runtime (using primitives provided by
the SpinalHDL library), which is then converted to either
Verilog or VHDL. Designs are simulated using an HDL
simulator or synthesized on FPGAs.

Proteus uses a plugin architecture to configure and
extend processors. At its core, Proteus provides pipeline
stages and the ability to pass values from one stage to the
next. The logic contained in stages is not fixed but can be
configured through plugins. This allows for a lot of flex-
ibility in, for example, the number of pipeline stages and
the supported features (e.g., the RISC-V “M” extension is
an optional plugin). Concretely, our implementation uses a
classic 5-stage RISC pipeline consisting of an IF (Instruc-
tion Fetch), ID (Instruction Decode), EX (Execute), MEM
(Memory Access), and WB (register Write Back) stage.
The plugin system also enables the development of custom
extensions without having to alter the core implementation
files. Currently, Proteus provides plugins to implement in-
order pipelines with support for RV32IM and machine
mode. A powerful feature of Proteus is the concept of
services, which allows plugins to provide customization
points to other plugins. For example, the plugin that
implements load and store instructions offers an interface
to intercept the generated addresses. This is used by one of
our CHERI plugins to perform the necessary permission
checks without having to modify the existing plugin.

We extended Proteus with plugins implementing most
of version 8 of the CHERI-RISC-V 32-bit specifica-

tion [12]. It implements a split register file, capability
manipulation, implicit memory access through DDC (the
Default Data Capability register [12]) and PCC (the
Program Counter Capability register [12]), explicit mem-
ory access through capabilities, exception handling, and
storing capabilities in memory. To track capabilities in
memory, an on-chip tag table is maintained that stores
one tag-bit per capability-aligned word.

CHERI Proteus is not compliant with the CHERI
specification in terms of the memory representation of
capabilities: Instead of compressed capabilities (which
are mandatory for RISC-V), Proteus uses a full-precision
representation, which is easier to implement but causes
in-memory capabilities to use 128 bits instead of 64 bits
for CHERI-RISC-V 32 bit. This has the advantage that we
have ample otype space for enclave seals (cf. Section 3.3).
This also means we currently cannot take full advantage
of the CHERI compiler toolchain, but are limited to the
use of the assembler. However, this is sufficient to run
complex software examples (see Section 5.1).

4.3. Implementing CHERI-TrEE on Proteus

To implement our design (Section 3.3), a number of
components have to be added to the CPU core. To store
the TCB state of enclaves, we add a table (EidTable),
in which each entry stores the eid and identity (I) of an
enclave. Entries also keep track of the current state of
the enclave, which can be allocated (EInitCode has
been called but EInitData not yet), ready (enclave
fully initialized), or empty (the entry does not contain
any enclave information). The table provides an inter-
face to allocate a new entry (which increases the eid
counter, see Section 3.3), retrieve an existing entry (used
by EInitData), and to finalize an entry by storing I .
When searching, EidTable iterates through the entries
one by one. Note that the table size is parameterized and
implemented as a plugin, allowing us to easily create an
alternative implementation (e.g., one that stores entries
in memory) without changing the rest of the design. To
calculate enclave identities, we use a SHA256 implemen-
tation from the SpinalCrypto library [29].

As EInitData needs access to the memory bus, we
decided to implement all new instructions in the MEM
stage of the 5-stage pipeline. All instructions are based
on state machines of varying complexity. EInitCode
simply asks EidTable to allocate a new entry and, if
successful, seals its input capability with o entry (Sec-
tion 3.4). EInitData is by far the most complex in-
struction to implement, as it needs to scan all registers and
memory for overlapping capabilities. After performing
sanity checks on its inputs (e.g., whether the code capa-
bility corresponds to an entry in EidTable), it starts by
requesting exclusive access to the pipeline. This operation
makes sure that the requesting instruction is the only
one executing in the pipeline by flushing or invalidating
stages containing other instructions. This is necessary
to correctly perform the register scanning as otherwise,
copies of registers might be available in pipeline stages.
While having exclusive access, the state machine iterates
over all general purpose and special capability registers
to verify that there are no overlaps with the code or data
capability of the enclave.
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To scan memory, we use a service from the CHERI
plugins. This service accesses the tag storage to produce
addresses of valid capabilities without the need to perform
memory loads. It currently only checks a single tag-bit
per cycle, leaving room for future optimizations. Once we
encounter a capability, we load it and check for overlap.
If there are no overlapping capabilities, the hash of the
code section is calculated by loading its contents word-by-
word and providing it to the SHA256 block. The result is
then stored in EidTable and the corresponding entry is
marked as ready. Finally, the sealing capability is created
and stored at the first address of the data section.

EStoreId checks that the hash fits in its input capa-
bility and iterates over the entries of EidTable to find
the entry corresponding to the given seal. If it finds one
and it is marked as ready, the hash is written to memory.

4.4. Implementation on ARM Morello

We implemented CHERI-TrEE on the first commercial
CHERI-enabled processor, ARM Morello [3], firstly using
ARM’s FVP simulator, and then on the hardware when it
became available. As noted before, the Morello architec-
ture does not necessarily represent the typical embedded
processor we envision for CHERI-TrEE; yet, we still use
it as an implementation platform to show the feasibility
of our design on the only commercial capability machine.

While for Proteus we realized functionality as an ISA
extension, here we show that it is also feasible to imple-
ment CHERI-TrEE in (low-level) software: On Morello,
one can use the Exception Level 3 (EL3) monitor or
the EL2 hypervisor to pause (at least in a single-core
scenario) an OS running at EL1 to perform the CHERI-
TrEE operations, including the memory sweep. We built
a small trusted hypervisor at EL2 to implement CHERI-
TrEE operations, defining hypervisor calls to trigger an
exception to EL2. The inputs are held in the first two reg-
isters on entry to EL2, and then passed on as parameters in
the handler code. For the register sweep, all EL1 register
values are saved on the EL2 stack following a hypervisor
call. A capability pointing to this stack is passed through
to the exception handler function so that the sweep is
performed on the state of EL1 registers. The registers are
restored on return, except for the overwritten return values.

Our implementation closely resembles the Proteus im-
plementation, for ease of testing and comparison. Differ-
ences in hardware however inevitably lead to deviations.
For example, unlike the RISC-V implementations, hyper-
visor calls on Morello are not limited to two inputs and
one output, enabling several improvements. These include
having a single initialization instruction EInit, and ini-
tializing a group of enclaves at the same time. The latter
variant is particularly beneficial due to the size of memory
on the Morello platform: a substantial amount of time is
spent on the memory sweep, checking for the presence of
capabilities. Because the relative amount of time spent on
checking for overlaps is small, the initialization time can
be halved for a two-enclave system using this approach (or
proportionally reduced for a larger number of enclaves).
We implemented this variant on Morello as an optional
feature by defining the number of enclaves to be initialized
in a single block, and passing the required number of
enclave capabilities to the hypervisor.

Figure 3. Benchmark setup showing measurements made for both micro
and macro benchmarks.

Supporting virtual memory in ARM Morello poses
additional challenges: a malicious OS at EL1 could give
up ownership of an enclave capability, but then re-map
another virtual address (and hence different capability)
to again point to that enclave’s physical memory. This
issue can be overcome by either fully blocking changes
to the page tables by EL1 (while the enclave is executing)
and/or through appropriate MMU memory permissions
and register access restrictions set at EL2. This is included
in the prototype by setting bits in the hypervisor control
register to block manipulation of EL1 system registers
that could cause MMU changes. As the hypervisor is in
control of the set up of the page tables for EL1, it is also
possible to make the page table area in memory read only.
However, both solutions preclude integrating the design
with a rich OS using virtual memory. Yet, we note that
the CHERI-TrEE design would be a promising candidate
to use as the basis for a trusted OS inside ARM Trustzone,
similar to the approach taken by Komodo [11], but with
the shown benefits of a capability-based system.

5. Evaluation

Next, we evaluate the performance and (hardware) im-
plementation costs of CHERI-TrEE on different platforms:
our Proteus (Sections 5.1 and 5.2) and the ARM Morello
simulator and the actual prototype hardware (Section 5.3).

5.1. Performance on Proteus

We conducted a number of micro and macro perfor-
mance benchmarks. The micro benchmarks quantify the
cost of individual instructions, while the macro benchmark
measures the overhead on a full application consisting
of multiple enclaves. Fig. 3 summarizes the setup of the
macro benchmark and indicates the time measurements
made for both micro and macro benchmarks, which we
will reference in the following.

Micro benchmarks. The micro benchmarks respectively
measure t1, t2 and t3 from Fig. 3. The runtime of
EInitCode solely depends on the current occupation of
the EidTable. Executing it with an empty table takes 4
cycles, and one extra cycle is needed for every non-empty
entry at the beginning of the table. For EInitData, there
is a fixed and a variable cost. The fixed part consists of
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getting exclusive access over the pipeline (one cycle) and
scanning registers for overlapping capabilities (one cycle
per register). The variable cost consists of multiple parts:
First, the entry corresponding to the code capability needs
to be looked up in EidTable. Second, memory needs
to be scanned for overlapping capabilities. As mentioned
in Section 4.3, tag-bits are scanned at a rate of one per
cycle, so to get all addresses containing capabilities, the
amount of cycles needed is the memory size divided by the
size of a capability (128 bits). Then, for each capability,
a capability load needs to be performed, which takes 4
cycles. The last variable part is creating the enclave’s
identity by hashing its code section. Table 1 shows the
measured performance of EInitData. The execution
time of EStoreId depends on the size of the hash and
the index of the hash in EidTable, as it has to be
searched for the correct hash. For the initial enclave, we
measured execution time to be 19 cycles. We did not
perform micro benchmarks for enclave calls or secure
communication, as these use the pre-existing CInvoke
and CSeal/CUnseal instructions, and hence incur the
same overhead as unaltered CHERI.

TABLE 1. CYCLE COUNT OF EINITDATA (t2). RAM STATE IS SIZE

(IN KIB) PLUS NUMBER OF VALID CAPABILITIES IN MEMORY.

Code size (B)

RAM state 256 512 1024

128+0 8811 9271 10,191
128+100 9211 9671 10,591
256+0 17,003 17,463 18,383
256+100 17,403 17,863 18,783

Macro benchmark. To measure the performance of a
more realistic application, we built a scenario where two
enclaves communicate with each other (cf. Fig. 3). A “sen-
sor enclave” provides an entry point to read the (encrypted
and signed) value of a sensor, e.g., input from a camera or
microphone. The “processing enclave” attests the sensor
enclave, gets a sensor reading (e.g., an audio sample from
a microphone), and performs some operation on the value
(e.g., some filtering or similar digital processing).

To correctly initialize enclaves, untrusted code first
sets up a bump memory allocator that uniquely owns a
region of memory. The untrusted code then relocates the
code of both enclaves to a uniquely-owned region and
allocates data sections for them. It registers these using
EInitCode and EInitData (t41 and t42 in Fig. 3)
and invokes their initialization routines as described in
Section 3.3. After sanity checks, the stack pointer is ini-
tialized and stored in the data section. As the last step, the
public parts of the sign and encryption seals are derived
from the seal stored by EInitData and returned.

Next, the processing enclave attests the sensor enclave
(t5 in Fig. 3)): it provides an entry point to receive the
entry capabilities and public seals of the sensor from
untrusted code. To support multiple entry points, enclaves
dispatch based on the value in an agreed-upon register.
One specific value is used as a “return” entry point, which
is invoked when returning from a call. The actual identity
of the sensor enclave is fetched through EStoreId and
compared to the precomputed identity stored in the code

Figure 4. Relative overhead (with and without initialization and attes-
tation) of sensor use compared to an unprotected scenario. Plotted in
terms of useful work performed in the sensor enclave.

TABLE 2. TIMINGS FOR OUR MACRO BENCHMARK: “INIT”
INCLUDES EINITCODE/DATA , INVOKING ENCLAVE INITIALIZATION

CODE AND PREPARATION (E.G., CLEARING REGISTERS). “SENSOR

USE” INCLUDES THE PROCESSING TO SENSOR ENCLAVE ROUND-TRIP

.

Step Runtime (cycles)

Init processing enclave (t41) 9773
Init sensor enclave (t42) 9163
Attestation (t5) 384
Sensor use (t6) 471

section. If the identity is correct, the processing enclave
stores the entry capabilities and seals of the sensor.

The actual application (t6 in Fig. 3)) starts by calling
the “use sensor” entry point of the processing enclave.
The processing enclave stores the nonce and the public
part of its encryption seal in a buffer, leaving space
for the return value, and encrypts the buffer using the
sensor’s encryption seal. It then calls the sensor enclave
with its own entry capabilities as the return pointer. The
sensor decrypts the input capability and stores a sensor
reading in the buffer. In our prototype, we simulate such
a device by storing an arbitrary value as sensor reading.
The sensor then encrypts the capability to the buffer with
the caller’s encryption seal and signs the result using the
methodology from Fig. 2. Upon return, the processing
enclave verifies the signature and nonce and decrypts the
returned capability. Then, it processes (currently simply
doubling) the reading, before returning it to the caller.

We ran this scenario bare-metal on a cycle-accurate
Verilator-based [30] simulation of CHERI-TrEE with
128KiB of RAM. The code size of the processing enclave
is 656 bytes, while that of the sensor enclave is 336 bytes.
The deterministic execution times of the different steps
of our scenario are shown in Table 2. For comparison,
executing an “unprotected” version of our scenario (where
no enclaves are used and arguments are passed without
sealing or signing) took 79 cycles. The one-time cost
of initialization of enclaves makes up the bulk of the
execution time. Overhead compared to the unprotected
case is large, since little computation is performed in this
scenario. Taking inspiration from Sancus, we therefore re-
ran the macro benchmark for different amounts of useful
work performed by the sensor enclave. Fig. 4 shows how
the overhead relative to the unprotected scenario quickly
decreases as the sensor enclave’s useful work increases.
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TABLE 3. IMPLEMENTATION RESULTS FOR THE PROTEUS PROCESSOR AND ITS VARIANTS ON THE ZYNQ ULTRASCALE+
XCZU9EG-2FFVB1156 FPGA BOARD WITH 128 KIB MEMORY. PERCENTAGES INDICATE AREA USAGE RELATIVE TO TOTAL FPGA SIZE.

Processor (128
KiB memory)

Area occupation Operating
freq. (MHz)

Dynamic
power (mW)

LUTs Flip-flops BRAMs DSPs CLBs

Proteus 3054 (1.1%) 1663 (0.3%) 32 (3.5%) - 694 (2.03%) 180 40
CHERI Proteus 8059 (2.94%) 3915 (0.7%) 32 (3.5%) - 1298 (3.79%) 70 23
CHERI-TrEE 12,806 (4.7%) 7514 (1.4%) 32 (3.5%) - 2385 (6.96%) 70 69

5.2. Hardware implementation of Proteus

To quantify the performance and resource require-
ments of the Proteus processor, we implemented and ran it
using the Xilinx Vivado tools [31] on a Zynq UltraScale+
XCZU9EG FPGA [32]. We extended the Verilog file
generated by SpinalHDL with support circuitry (e.g., for
clocking) and set up constraints and pin connections for
our FPGA board. We considered Proteus (without capa-
bilities); CHERI Proteus (with capabilities); and the EES-
enabled variant, CHERI-TrEE. We used common metrics
to analyze the result: area occupation, operating frequency,
and power consumption. Table 3 presents the results. In
Section A, we also compare Proteus and variants to the
CHERI Piccolo processor developed in Cambridge [33].

First, we evaluated the impact of adding CHERI
and CHERI-TrEE functionality. Table 3 confirms that
area occupation increases with processor complexity.
CHERI Proteus uses more hardware primitives than Pro-
teus, occupying ≈ 1.87× more FPGA area in terms of
Configurable Logic Blocks (CLBs). This increase in area
occupation is largely caused by CHERI capabilities and
tag-bits, which are implemented with distributed RAM
and hence realized as LUTs. Similarly, CHERI-TrEE uses
≈ 1.84× more CLBs than CHERI Proteus. The SHA256
block is a big factor in this increase. However, this block’s
cost can potentially be amortized, for example when it is
reused to accelerate cryptographic instructions. All vari-
ants use 32 Block Random Access Memories (BRAMs),
because they have the same 128KiB memory size.

Regarding performance, the CHERI Proteus proces-
sor and its CHERI-TrEE variant decrease the maximum
clock frequency by ≈ 2.57× compared to Proteus. As
expected, adding capabilities substantially increased the
processor’s complexity. This is due to the CHERI trap
and exception handling circuits deployed with logical
primitives on the critical path. We note that we did not
specifically optimize the hardware design for maximum
clock frequency; thus, substantial improvements are likely
possible, e.g., by adding register stages in the critical path.
Finally, CHERI Proteus has a 74% lower dynamic power
consumption than Proteus as it runs at a lower clock
frequency. Conversely, due to its higher resource usage,
CHERI-TrEE consumes 69mW, i.e., 72.5% more.

In summary, our Proteus core and its capability/EES
variants scale well and largely independently of the mem-
ory size, requiring ≤ 7% of the total area on our FPGA.
We also deployed the CHERI Proteus and CHERI-TrEE
variants on the low-end Arty A7-35T XC7A35TICSG324-
1L FPGA. CHERI Proteus used 28.23% of the available
area, while CHERI-TrEE occupied 51.57%, which shows
that our design can also be implemented on small FPGAs.

Figure 5. Measured number of clock cycles to run EInitcode and
EInitData for the Sensor Enclave on Morello FVP / hardware (SOC).

5.3. Performance on ARM Morello

Micro benchmarks. The number of clock cycles for
EInitCode, EInitData, and EStoreID at EL2 (t1,
t2 and t3 in Fig. 3) was measured on both the Morello FVP
and the hardware (SOC) using Arm’s Performance Moni-
tor cycle counter. The full HVC calls take longer because
firstly an exception is called to change EL and then the
exception handler needs to determine which HVC function
to run. Measurements on the hardware were averaged over
100 runs, because we observed some variation in results
between runs of the same binary, likely due to factors such
as the data and instruction caches. Fig. 5 shows a graph
of EInitCode and EInitData for the sensor enclave
over an increasing number of enclaves. The runtime is
affected by the number of table entries searched.

For EInitData however, the predominant cost is the
memory sweep and therefore the increase in the number of
clock cycles over a larger number of enclaves is relatively
small. On the Morello FVP, an EL1 memory sweep by
the EL2 hypervisor took about 2.16M clock cycles per
MB of DRAM, corresponding to 1.1 ms/MB on a single
core running at 2 GHz. This includes overlap checks of
the 233 capabilities that were detected in our example. A
“clean” memory sweep (no capabilities) is only marginally
faster because if the tag-bit is not set there is no need
for an overlap check. Given the sweep is performed on
16 bytes at a time (capabilities are aligned to 16-byte
boundaries), this corresponds to approx. 33 cycles to
check each capability memory location. Performance on
the hardware returned similar results: 2.15M clock cycles
per MB (without outputting number of overlap checks).

Macro benchmark. We ran the same macro benchmark
as for Proteus. Since the initialization time of the enclaves
is dominated by the memory sweep we do not repeat the
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TABLE 4. EXECUTION TIMES ON MORELLO MACRO BENCHMARK.

Step FVP (cycles) SOC (av. cycles)

Attestation (t5) 2026 1938
Sensor use (t6) 255 206
Enclave function entry (t7) 69 114
Enclave function return (t8) 31 53

Figure 6. Percentage of time spent on non-useful work to process and
return sensor data from the enclaves on Morello FVP / hardware (SOC).

figures here. Instead, Table 4 additionally measures the
boundary timings for going into and out of the enclave
(t7 and t8 in Fig. 3). t7 is the number of clock cycles to
go from the calling function to the entry point of the de-
sired function within the enclave and includes the invoke
instruction, setting up registers and stack, and jumping
to the function within the enclave. t8 is the number of
clock cycles it takes to return and includes some stack
and register manipulation as well as the actual return
instruction. We re-ran the macro benchmark for different
amounts of useful work performed by the sensor enclave,
measuring the time to process and return the results (t6).
Fig. 6 shows the percentage of time spent on non-useful
work for increasing amounts of useful work.

While we demonstrated that CHERI-TrEE can run on
a processor like Morello, the potentially larger memory
size means a greater time cost of the sweep operation–
especially if the large DRAM of several GB is to be fully
used. However, this can be mitigated to some extent by the
aforementioned grouping of enclaves during the initialisa-
tion process (cf. Section 4.4). Section 6 discusses further
improvements and alternatives to the memory sweep.

6. Further extensions and future work

Being a research prototype, CHERI-TrEE allows for
various extensions and follow-up work.

Going from local to remote. CHERI-TrEE currently only
supports local attestation. To support remote attestation
and secure remote communication, appropriate crypto-
graphic functionality is required. For example, we could
allow each enclave to govern its own keys for remote
attestation, possibly in the form of a special token capa-
bility representing the key, and add a primitive to perform
encryption and decryption given a capability and a key.
We expect to be able to reuse a lot of the key distribution
infrastructure of e.g. Sancus.

Optimizing or replacing the memory sweep. The current
memory sweep is a simple approach to asserting unique
ownership over memory regions, that might be acceptable
for embedded systems with small memory sizes. That
being said, optimizations and alternatives are possible.

The sweep can be optimized by integrating it with
CHERI’s hierarchical, compressed management of mem-
ory tags [34], by checking multiple adjacent tags at
once rather than one tag at a time (this should improve
efficiency by an order of magnitude) or by initializing
multiple enclaves at the same time (as our software-
based implementation on top of ARM Morello illustrates).
Lastly, Esswood [35] (cf. Section 7) illustrates how a
similar memory sweep can be implemented in a non-
blocking way on a multi-core system by adding additional
architectural registers, reducing the impact on latency.

We could alternatively have used linear capabilities
[36], [37], [12], capabilities that cannot be duplicated,
to provide exclusive access without a sweep. This would
require overcoming technical concerns related to concur-
rency and their implementation in hardware (see [36] for a
discussion). Providing the TCB with exclusive ownership
over a region of memory provides similar guarantees,
although this approach is less flexible, since it does not
allow delegating ownership. Both approaches avoid a
memory sweep when memory is first used, but would still
require sweeping to reclaim said memory, and are hence
most effective if new enclaves are infrequently initialized
and the average size of the enclaves is small. In higher-
end systems with a lot of memory (e.g., our Morello im-
plementation), especially if virtual memory is supported,
these alternative approaches become more attractive. The
trade-offs involved in these alternative approaches require
further study, and were hence left for future work.

Added flexibility motivates verification. A disadvantage
of the flexibility highlighted in Section 3.6 is that it
becomes more difficult to gain assurance over the security
of the system. To clarify, the size of the TCB in our
proposal is not fundamentally larger than in other systems
like SGX or Sancus. However, the flexible nature of our
system simply creates more potential pitfalls for enclave
developers (although, as we discussed, capabilities help
avoid some API-based vulnerabilities). We believe that
verifying the security of such implementations will be an
interesting challenge to address using formal methods.

Enclaves are in general rewarding targets for veri-
fication, since they rely on a small TCB (no language
runtime or operating system is trusted). For relatively
small enclaved applications on RISC processors, obtaining
full-system security properties for enclaved code should
already be an achievable goal, and scaling these results is
interesting future work.

Supporting virtual memory. Related to the issues dis-
cussed in Section 4.4, integration of CHERI-TrEE with
virtual memory in a more principled way is interesting,
as it would allow CHERI-TrEE to function with a rich
OS using virtual memory. One idea is to have physically-
addressed capabilities, which bypass the MMU and carry
permission over physical memory directly. If the operating
system cannot map virtual memory to ranges covered by
physically-addressed capabilities, enclaves can be secured

1155



in the presence of virtual memory. Another idea is to
restrict page table manipulation by e.g., using capabilities
rather than integer addresses as page table entries.

7. Related Work

Trusted computing and capability systems have a rich
history that spans decades. For trusted computing, an
excellent survey is given by Parno et al. [38], while Maene
et al. [39] provide a more up-to-date survey of hardware-
supported systems. For capability systems, Levy [1] cov-
ers early systems, while Watson et al.’s paper on compart-
mentalization in CHERI [2] discusses more recent ones.

Our work is most related to the class of systems we
called enclaved execution systems. Flicker [4] was the
first system to propose the idea of fine-grained attestation
and secure execution of small pieces of code, isolated
even from malicious system software. Flicker and other
early systems [40], [41] were implemented as a small
hypervisor that used the late launch feature of Intel/AMD
processors to start an isolated VM containing the enclave.
Later systems relied on hardware extensions to avoid the
use of a hypervisor, further reduce the TCB, and increase
security [8], [5]. Intel SGX [16] is a commercial im-
plementation with full support for enclaves. ARM Trust-
zone [42] initially only supports a single secure world,
which then runs a separate operating system to support
multiple trusted applications in parallel. The third major
commercial system, AMD SEV, isolates complete virtual
machines (rather than small enclaves) from the untrusted
OS [43]. ARM’s CCA [44], [45] and Intel TDX [46]
now offer similar protection for entire virtual machines,
respectively called Realms and Trust Domains.

The mechanisms of enclaved execution are complex,
and both research prototypes for enclaved execution and
commercial systems have undergone revisions: For in-
stance, Intel SGX2 adds support for larger enclave sizes
and dynamic enclave memory management. Sancus 2.0
[9] adds support for confidential loading. TrustLite [6]
introduces an execution-aware memory protection unit to
support more flexible allocation of memory to embedded
enclaves. Tytan [7] adds support for real-time guarantees.
TIMBER-V [47] enables memory sharing for fine-grained
enclaves by using a tagged memory architecture.

We are not the first to observe the complexity of
enclaved execution or the usefulness of making it more
extensible and configurable. Keystone [10] avoids the
fixed set of trade-offs in existing systems and improves
customization with a framework for building enclaved
execution systems. Elasticlave [48] proposed a signifi-
cantly more flexible memory model for enclaves on top of
Keystone and is designed to make common data sharing
patterns efficient. An important difference with our ap-
proach is that, rather than designing a new access control
model, we reuse the capability memory access control
model. Similarly, Park et al. extend the access control
model of Intel SGX with support for nested enclaves [49].
CURE [50] increases flexibility by offering different types
of enclaves for various application needs. SERVAS [51]
employs authenticated encryption to allow secure enclave
memory sharing. Sanctum [8] shares our goal of identi-
fying minimal hardware extensions or modifications and
then combining these in software but it builds on page

table-based isolation rather than capabilities as the base
platform. Komodo [11] also identifies minimal hardware
requirements and then implements enclave management
instructions in a small trusted software monitor that is
formally verified. The prototype is implemented on top
of ARM Trustzone. SANCTUARY [52] uses ARM Trust-
zone together with the address-space controller present in
some modern ARM processors to dynamically construct
user-space enclaves.

Two closely related capability systems exist. First, the
unpublished CAPSTONE system introduces linear capabil-
ities along with a highly general (but potentially costly)
architectural capability revocation primitive, in order to
securely support various memory access models [53]. As
in our work, nested enclaves and memory sharing between
enclaves are supported. However, attestation is unsup-
ported, and the implementation is limited to a sketch.

Second, Esswood’s PhD thesis discusses concurrent
research on the CheriOS capability operating system [35].
The goal of CheriOS is to achieve high performance in the
presence of a strong adversary that includes the OS. The
CheriOS microkernel is built on a trusted firmware nanok-
ernel, which provides the security properties required to
implement an EES. As in our work, remote attestation is
out of scope. The nanokernel supports interrupt handling
and a limited form of single-address-space virtual mem-
ory, where the OS cannot alter page tables.

To obtain unique ownership of memory, the nanoker-
nel offers reservations; sealed capabilities that represent
a right to uniquely allocate a region of memory. Non-
allocated Reservations can be used to create a type of
enclaves, called foundations, similar to our design. The
foundation owns an authority token, an object capability
analogue to our sealing capabilities, which is tied to the
foundation’s identity. It can be used to perform both sym-
metric and asymmetric signing and encryption through
the nanokernel, as opposed to our sealed capabilities. In
conclusion, both approaches are sufficiently flexible to
allow for growing/nested enclaves and memory sharing
between enclaves. The work of Esswood et al. involves a
larger TCB and more software-level abstractions, leading
to overhead, but allows for greater flexibility with respect
to revocation and a larger sealing space. The exact impli-
cations of these trade-offs need to be investigated further.

8. Conclusion

In this paper, we investigated how enclaves can be
built on a capability machine like CHERI. Implementing
enclaves without duplicating existing functionality was
only possible by decomposing the concept of an EES into
a set of orthogonal features. This decomposition made it
clear that we can reuse CHERI’s existing features and
only need to add a limited amount of new features to
obtain an expressive EES that performs well in many
respects (see Section 5). Even better, the resulting design
is more flexible in important ways (growing/nested/non-
contiguous enclaves, sharing memory, two-way sandbox-
ing, dynamic entry points, etc.). In addition to the design
itself, we believe our decomposition of EESs is useful to
analyse the design space and inform future designs.
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Data Availability

As mentioned in the introduction, all three of our
implementations and their benchmarks have been made
open source. Snapshots of these implementations along
with instructions on how to install them can be found
under https://github.com/proteus-core/cheritree.
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Appendix A.
Comparison to Piccolo

To compare our design to other RISC-V cores, we
resort to the Bluespec Piccolo core; to our knowledge,
the only other 32-bit processor implementation providing
CHERI capabilities. Table 5 details the main modules of
each core.

The non-capability Piccolo is developed by Blue-
spec [54], while the CHERI Piccolo variant is developed
by Cambridge University [33], both designed in a high-
level hardware description language, Bluespec HDL [55].
Note that neither Piccolo variant implements extensions
for trusted execution. Therefore, we can mainly compare
the different CHERI implementations. Secondly, Piccolo
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TABLE 5. IMPLEMENTATION RESULTS FOR THE PROTEUS AND PICCOLO PROCESSORS AND THEIR VARIANTS ON THE ZYNQ ULTRASCALE+
XCZU9EG-2FFVB1156 FPGA, DEPICTING THE MAIN MODULES WITHIN EACH CORE.

Processor (128KiB memory)
Area Occupation Operating

freq. (MHz)
Dynamic

power (mW)
LUTs Flip-flops BRAMs DSPs CLBs

P
ro

te
u
s Machine Timers 32 128 -

-

48

180 40
Pipeline module 2867 1410 - 641

Memory - - 32 -
Total 3054 (1.1%) 1663 (0.3%) 32 (3.5%) 694 (2.03%)

C
H

E
R

I
P

ro
te

u
s

Machine Timers 80 128 -

-

37

70 23
Pipeline module 7797 3662 - 1260

Capability Register File 161 - - 21
Memory - - 32 -

Total 8059 (2.94%) 3915 (0.7%) 32 (3.5%) 1298 (3.79%)

C
H

E
R

I-
T

rE
E

Machine Timers 80 128 -

-

40

70 69

Pipeline module 12,510 7261 - 2353
Capability Register File 160 - - 20

SHA module 3422 3193 - 839
Memory - - 32 -

Total 12,806 (4.7%) 7514 (1.4%) 32 (3.5%) 2385 (6.96%)

B
lu

es
p
ec

P
ic

co
lo

CPU module 4807 2583 3 15 835

140 68

Debug module 292 405 - - 183
PLIC+CLINT 1810 1194 - - 504

Memory - - 33 - -
Total 10,152 (3.7%) 7986 (1.4%) 36 (3.9%) 15 (0.6%) 1942 (5.67%)

C
H

E
R

I
P

ic
co

lo

CPU module 18,347 6464 5 15 3471

120 194

Debug module 471 402 - - 176
PLIC+CLINT 1840 1146 - - 467
Tag Controller 4349 2124 36 - 966

Memory - - 33 - -
Total 26,685 (9.7%) 11,533 (2.1%) 74 (8.1%) 15 (0.6%) 4865 (14.2%)

is a commercial-grade processor with additional func-
tionality, while Proteus is currently a research design.
Nonetheless, we implemented both Piccolo and CHERI
Piccolo on the same FPGA as Proteus and used 128KiB
memory in all tests. As Proteus is an RV32IM, we con-
figured the Piccolo variants to the same architecture (by
default, Piccolo is an RV32ACIMU).

Comparing CHERI Proteus and CHERI Piccolo, our
processor uses ≈ 3.31×, ≈ 2.95×, and ≈ 2.31× fewer
LUTs, flip-flops, and BRAMs, respectively, while not
requiring dedicated DSP blocks. Different from CHERI
Piccolo, CHERI Proteus does not implement CHERI com-
pressed capabilities and uses BRAMs for the instruction
and data memory, using considerably fewer resources.
The dynamic power consumption is ≈ 8.43× less than
CHERI Piccolo. Similarly, for the non-capability versions,
Proteus occupies ≈ 3.32×, ≈ 4.80×, and ≈ 1.12× fewer
LUTs, flip-flops, and BRAMs than Bluespec Piccolo. The
dynamic power consumption is 1.7× less.

The higher resource usage of both Piccolo variants
compared to Proteus can be partially attributed to higher
circuit complexity due to additional components, e.g.,
debug circuitry and interrupt controllers. Besides, CHERI
Piccolo uses BRAMs to implement its (relatively large)
Tag Controller module. Finally, as mentioned, CHERI
Proteus does not currently implement compressed capa-
bilities.

Regarding clock frequency, Proteus reaches 180MHz,
≈ 1.29× faster than Bluespec Piccolo. However,
CHERI Proteus is ≈ 1.71× slower than CHERI Piccolo,
which could be due to the fact that Piccolo is already
optimized for real-world deployment.

Besides, considering only the actual CPU module of
Piccolo cores detailed in Table 5, our Proteus processors
use significantly fewer resources than Piccolo: the non-

capability Proteus uses ≈ 1.2× fewer CLBs than Bluespec
Piccolo, while CHERI Proteus uses ≈ 2.67× fewer CLBs
than its CHERI variant. Despite the additional EES fea-
tures, we note that CHERI-TrEE also uses fewer resources
than CHERI Piccolo. In summary, this comparison shows
that even though Proteus is currently a research prototype
and has not gone through extensive optimization cycles,
it offers a smaller size and adequate performance com-
pared to the commercially maintained Piccolo. In addi-
tion, our modular design lends itself to the easy addition
of functionality at an acceptable cost, as evidenced by
the CHERI-TrEE implementation on Proteus.
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