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Abstract—The Transformer is a deep learning architecture
that processes sequence data. The Transformer attains the
state-of-the-art in several tasks of sequence data analysis,
and its variants, such as BERT and GPT-3, are used as
a defacto-standard for solving general tasks in natural lan-
guage processing (NLP). This work presents a 3-party multi-
party computation (MPC) protocol for secure inference of
the Transfomer in the honest majority setting. The attention
layer is the most time-consuming part when implementing
an MPC protocol for the Transformer with existing building
blocks. The attention mechanism is a core component of the
Transformer that captures and exploits complex dependen-
cies among elements in the input sequences. The attention
mechanism invokes the exponentiation function O(S2) times,
which becomes a major bottleneck when implementing the
Transformer with existing MPC primitives. To deal with this,
we employ the Performer [11], a variant of the Transformer
where the sigmoid function that invokes the exponentiation
function is replaced with the ReLU function, a more MPC-
friendly nonlinear function. Also, by introducing a kernel-
based approximation of the attention matrix with random
orthogonal matrices, we show that the attention layer can
be processed with O(S) times calls of the ReLU function.
We investigate the efficiency of the proposed method by an
end-to-end implementation of the Transformer with 3-party
MPC. Experimental evaluation shows that, for translating
a sequence where the output sequence length is 64, the
entire computation time takes about 19 minutes in the LAN
environment.

1. Introduction

The Transformer [49] has been commonly used in
machine learning for natural language processing (NLP)
tasks such as machine translation [51], text summariza-
tion [33], question answering [8]. The Transformer was
initially applied to NLP tasks that require exploiting com-
plex dependencies among elements in the input sequences
(e.g., dependency parsing for determination of grammati-
cal structures). Subsequently, it has been applied to visual
question answering (VQA) [10], image classification [18],
image generation [56], and protein fold prediction (Alpha

fold 2) [24]. More information on the Transformer and its
variants can be found in [48].

The Transformer trained on a large and general dataset
(e.g., general text corpus) is called a pre-trained model
(e.g., BERT, GPT-3) and is known to deal with various
tasks. When applying a pre-trained model to a specific
task, the model is finetuned by transfer learning using
a small amount of training data specifically prepared for
that task. By combining pre-training and transfer learning,
highly accurate recognition performance can be achieved
even with small amounts of training data in a reasonable
computation time.

One difficulty in the use of Transformer-based models
is their huge model size. For example, GPT-3 is a sen-
tence generation language model which contains about
175 billion parameters. Thus, when using Transformer-
based models, the model is often deployed on a cloud
server rather than local computing resources. At the time
of use, the information flow follows the API model; users
send input data to the server, which processes it with the
model and returns only the results to the users.

From the users’ perspective, data privacy is one of
the main issues in cloud-based model deployment. In
the API model, users must submit all data to the cloud
server. For example, consider cloud-based machine trans-
lation of a document. Sending the entire document to a
cloud server would not be acceptable if a document is
highly confidential. Also, simultaneous interpretation of
conversations is becoming possible with state-of-the-art
machine translation technology. However, for the same
reason, a cloud-based API model is not realistic when
confidentiality protection is mandatory.

Privacy concerns can be resolved by distributing
the entire model to users and performing all computa-
tions on the user side. However, recent state-of-the-art
Transformer-based models are extremely large in scale and
require GPUs for processing. Preparing such a large-scale
computing environment on the user side is also unrealistic.
In addition, the model is often finetuned for a specific
task at great effort and cost. Such a model is a valuable
information asset, and the distribution of such models to
users might not be acceptable.

Several architectures to process sequence data have
been developed for the last decade, such as recurrent
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neural networks (RNN), LSTM, and Seq2Seq. Currently,
pre-trained Transformer variants such as BERT (Bidirec-
tional Encoder Representations from the Transformers)
[17], and GPT (Generative Pre-trained Transformers)-3 [6]
are recognized as the state-of-the-art for a large number
of NLP tasks and recognized used as a defacto-standard.
Considering the situations discussed above, this work aims
to develop a 3-party MPC protocol for secure inference
of the Transfomer in the honest majority setting, which
allows utilization of the Transformer deployed in a cloud
server through API, preserving both model and user pri-
vacy.

1.1. Related Work

Privacy protection in deep learning inference and train-
ing has made significant progress in the past five years.
Most of those studies rely on one or a combination of
privacy-preserving computation techniques, such as homo-
morphic encryption [46], [22], secret sharing [32], [44],
[13] and combination of them [45], [23], [35]. Privacy-
preserving inference and training of convolutional neural
networks (CNNs) have been investigated intensively, and
it is being demonstrated that privacy-preserving compu-
tation of CNN with image-net scale data is feasible by
CrypTFlow [26], CrypTFlow 2 [43], CryptGPU [47], [39],
to name a few. The survey paper [43] summarizes recent
advances in privacy-preserving computation techniques
for deep learning.

The application of privacy-preserving computation
techniques to deep learning models for sequence analysis
(e.g., natural language processing, speech recognition,
time series analysis) is still fewer than those for image
recognition. However, several works investigated privacy-
preserving computation of deep neural networks for se-
quence analysis, such as recurrent neural networks (RNN),
LSTM, Seq2Seq, and Transformer-based models.

SIRNN [42] proposed a 2-party protocol for RNN
to process inference with sequence data. They intro-
duced communication-efficient protocols to process non-
linear functions that are costly to process with multi-
party computation (MPC), such as exponential function,
sigmoid function, tanh, and square root inverse, using
lookup tables and mixed-bit width. The protocol com-
prises a hybrid of secret sharing and oblivious transfer
and guarantees semi-honest security. Feng et al. proposed
n-party protocols using both additive and multiplicative
secret sharing to compute sigmoid function and tanh,
which are typical nonlinear functions used in neural net-
works [19]. Using them, Feng et al. proposed PrivLSTM
and PrivSeq2Seq, which securely compute inference with
LSTM and Seq2Seq in the semi-honest adversary model.

Wang et al. proposed a n-party MPC protocol to real-
ize an inference with an approximation of the Transformer
in the semi-honest adversary model using additive and
binary secret sharing [53]. This work focused on the fact
that the evaluation of the softmax function is dominant in
the entire computation of the Transformer; they proposed
to reduce the evaluation time of the softmax function
by using Linformer [52] and Nystromformer [55], which
approximately compute the Transformer. The goal and
methodology of this work are close to ours; however, there
is a significant difference in the following two points.

First, Nystromformer considers the encoder part of the
Transformer only, and the decoder part that involves the
masked attention is not considered. Masked attention is a
necessary component to deal with complex tasks, such as
machine translation and sentence generation. As we will
discuss in Section 5.2 intentively, special consideration is
needed to apply a mask matrix to the attention matrix
with MPC. Second, the framework assumes the semi-
honest adversary model, and security against malicious
adversaries is not supported. Our protocols work in the
honest majority setting.

Chen et al. presented a protocol, THE-X, for secure
inference with the Transformer using homomorphic en-
cryption [9]. Chen et al. introduced an approximation
of the Transformer with polynomial activation functions
by finetuning. Given a pretrained Transformer model,
non-polynomial functions, such as Gaussian error linear
units(GELU), softmax, and layer normalization, are re-
placed with polynomial substitutes, and the entire model
is finetuned so that its inference performance is improved.
Their experimental evaluation assessed the predictive per-
formance while its computation time and communication
bandwidth were not reported. Lee et al. also proposed
privacy-preserving embeddings based on homomorphic
(CKKS) encryption and demonstrated its performance by
text classification on the encryption of embeddings by
BERT [30]. The framework supports efficient GPU im-
plementation of the CKKS encryption scheme; however,
only the downstream classification (logistic regression)
part is secured by homomorphic encryption, and the entire
sequence encoding part is not secured.

Apart from the privacy-preserving computation of the
Transformer, there have been a few studies on model
privacy and input privacy. Lang et al. and Coavoux et
al. investigated the risk of information leak from latent
representations obtained by the Transformer encoder and
presented defense methods using adversarial training [12],
[29]. Lu et al. revealed the risk of inverting gradients of
the Transformer using gradient information collected in
the process of federated learning [34]. Qu et al. investi-
gated the same risk of leakage of private inputs and its
countermeasure using differential privacy [41]. The goal
of these studies is orthogonal to ours, and these studies
employ different security models.

1.2. Our Contribution

The Transformer encoder layer is useful for some
tasks, such as classification. However, when the Trans-
former is required to work as a generative model, such
as machine translation and sentence generation, the de-
coder part containing the masked attention is necessary.
In this study, we develop MPC protocols for end-to-end
computation of inference with the full Transformer model,
including the encoder layer and decoder layer.

The contribution of this work is summarized as fol-
lows. We design a 3-party MPC protocol for secure
inference of Transfomer in the honest majority setting.
MPC protocols in the honest majority setting have been
pioneered by Araki et al. [3] and Furukawa et al. [20], and
then applied to inference and training of machine learning
models in ABY3 [16], SecureNN [50], and FALCON [31].
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MPC protocols introduced by FALCON realize privacy-
preserving computations commonly used for deep neural
networks, such as matrix multiplication, rectified linear
unit (ReLU), derivative of ReLU (DReLU), and batch
normalization. Some of them are designed using a com-
bination of techniques used in ABY3 and SecureNN. Our
protocol also heavily relies on protocols presented in these
works.

Our technical contributions are three-fold:

1) an MPC protocol for attention with O(S) calls
of ReLU function in O(1) rounds,

2) two MPC protocols for masked attention; one re-
quires O(S2) time in O(1) rounds, and the other
achieves O(S) time complexity while running in
O(S) rounds,

3) a novel MPC protocol for square root inverse.

First, we present an efficient MPC protocol, ReLU
attention, to compute the attention matrix, which is a
core component contained in the encoder layer of the
Transformer. Implementation of the attention layer can be
realized by combining existing protocols naively, whereas
such a naive composition results in inefficiency for the
following reasons. With preliminary investigation, we re-
veal that the evaluation of exponentiation in the sigmoid
function of the attention layer is the bottleneck of the
entire computation (Section 4). More precisely, given an
input sequence of length S, the exponentiation function
on MPC is invoked O(S2) times in the attention layer.
To deal with this, we introduce two techniques: (1) we
replace the sigmoid function in the layer with the ReLU
function (ReLU attention, Section 5), and (2) we approx-
imate the Transformer with the Performer [11], which is
a kernel-based generalization of the attention. Since the
ReLU function is more MPC friendly, replacing sigmoid
with ReLU improves computational efficiency. Also, the
approximation of ReLU attention with random orthogonal
matrices by the Performer allows processing the attention
layer with only O(S) calls of the ReLU function.

Second, we experimentally investigate the efficiency of
two MPC protocols to process the masked attention layer,
another core component contained in the decoder layer
of the Transformer. Different from the MPC protocol for
(non-masked) ReLU attention, MPC for masked attention
requires O(S2) calls of ReLU even with approximation
(ReLU attentionQK in Section 5.2.1). This stems from
the fact that the mask matrix needs to be applied to the
S×S attention matrix irrespective of approximation. One
remedy is to apply the mask to attention vectors sequen-
tially so that MPC does not need to deal with the entire
attention matrix. With this modification, we can reduce
the invocation of MPC for ReLU to O(S) times; instead,
the round complexity increases to O(S) due to sequential
masking (ReLU attentionV K in Section 5.2.2). Consider-
ing this difference in the round and communication com-
plexity, the superiority of the two protocols depends on
the communication environment. Through experimental
evaluation, we reveal the computational efficiency of these
strategies for masked attention.

Third, we introduce a novel MPC protocol for square
root inverse. Square root inverse is contained in the batch
normalization layer or layer normalization layer and com-
monly appears not only for the Transformer, but also

for various neural networks, and has been investigated in
SIRNN and FALCON. To the best of our knowledge, only
FALCON [31] investigated MPC for square-root inverse in
the honest majority setting. One limitation of this protocol
is that it approximately estimates log2 b where b is the
input and shares it among parties in the form of cleartext,
which can leak information (variance of signals) about
private input sequences. We propose an MPC protocol for
square root inverse that does not leak any intermediate
values and is secure in the honest majority setting.

The manuscript is organized as follows. Section 2
introduces the necessary building blocks used for our
proposed method. Section 3 defines our problem and the
threat model. Section 4 discusses problems when realizing
the Transformer by combining existing MPC protocols.
Section 5 proposes an MPC protocol for ReLU attention
and masked ReLU attention. Section 6 introduces an MPC
protocol for square root inverse. In Section 7, we construct
Privformer, an end-to-end MPC protocol to compute the
Transformer using proposed building blocks. Section 8
discusses the security of the proposed protocols. Section
9 demonstrates the efficiency of the protocols experimen-
tally, and Section 10 concludes our work.

2. Preliminaries

2.1. Secure Multiparty Computation

Secret sharing. Let P0, P1, P2 be parties participating
in computation. The party after Pi and the party before
Pi is denoted by Pi+1 and Pi−1, respectively where P−1

stands for P2 and P3 stands for P0. Let x ∈ Zm be a secret
value. We consider 2-out-of-3 replicated secret sharing
(RSS). In what follows, 〈x〉m indicates that P1 holds
(x1, x2), P2 holds (x2, x3), and P3 holds (x3, x1) where
x ≡ x1 + x2 + x3 (mod m) holds. x can be recovered
with information possessed by any two out of the three
parties. When x1, x2, x3 are chosen uniformly at random
on Zm with satisfying x ≡ x1 + x2 + x3 (mod m), a
single corruption does not leak anything about x.

In this study, we use L = 22
�

where � = 5 or 2 for the
modulo L following FALCON [31]. Also, in order to treat
real numbers on ZL, x ∈ R is converted to a fixed-point
representation x̂ = �x · 2FP� mod L where the precision
is set as FP = 13 bits.

We introduce secure multi-party computation (MPC)
for basic algebraic operations and several functions cus-
tomized for deep learning that work with secret sharing.
All protocols work with three parties. The linear opera-
tion, multiplication, reconstruction, matrix multiplication,
and select shares are commonly known building blocks
for secure multi-party computation [31], [36], [50]. For
ReLU (rectified linear unit) and DReLU (the derivative of
ReLU), which are functions customized for deep learning
computation, we employ building blocks introduced by
FALCON [31]. Since previous studies have shown that
these building blocks work for deep learning inference
with practical size models, we use these building blocks
in our method.

In this manuscript, we describe a protocol for MPC as
a mapping from 2-out-of-3 RSSs to 2-out-of-3 RSSs. Let
f be a mapping f : X1 ×X2 × . . . ×XN �→ Y1 × Y2 ×
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. . . × YM . Then, for an input x1 ∈ X1, . . . , xN ∈ XN ,
and output y1 ∈ Y1, . . . , yM ∈ YM where (y1, . . . , yM ) =
f(x1, . . . , xN ), an MPC protocol to compute f is denoted
by Πf (〈x1〉L, . . . , 〈xN 〉L)→ (〈y1〉L, . . . , 〈yM 〉L).

Linear operation. Addition and subtraction can be
computed locally. Suppose three parties hold two shares
〈x〉L and 〈y〉L. Then, computing xi + yi mod L and
xi+1 + yi+1 mod L locally by Pi where i ∈ {0, 1, 2}
yields 〈x ± y〉L. Multiplication by a constant can also
be computed locally. Suppose c is a public constant, and
each party holds 〈x〉L. Then, by computing cxi mod L
and cxi+1 mod L locally by Pi where i = 0, 1, 2, each
party obtains 〈cx〉L.

Multiplication ΠMult(〈x〉L, 〈y〉L)→ 〈xy〉L. ΠMult is
a protocol to compute the multiplication of two distinct
shares. Suppose three parties hold two shares 〈x〉L and
〈y〉L where x and y are represented by the fixed point
representation with precision bit FP. Assuming the result
of multiplication can be represented with the fixed point
representation of FP bits, three parties obtain shares of
〈xy〉L by executing ΠMult with these inputs. After multi-
plication, the truncation protocol [20], [36] needs to be ap-
plied to the result of multiplication to keep the consistency
of the fixed-point precision. MPC for neural networks
involves a large number of matrix multiplications, and the
choice of multiplication scheme has a significant impact
on the overall efficiency. Detailed discussion on this point
is shown in Appendix A.

Reconstruction ΠReconst(〈x〉L) → x. ΠReconst is a
protocol to take all shares as input and reconstruct the
value represented by the share. When three parties hold
shares of 〈x〉L, all parties obtain x by executing ΠReconst.

Matrix Multiplication ΠMatMul(〈X〉L, 〈Y 〉L) →
〈XY 〉L. ΠMatMul is a protocol to compute the multipli-
cation of two distinct shares of matrices. Suppose three
parties hold shares of two matrices 〈X〉L ∈ Z

P×Q
L and

〈Y 〉L ∈ Z
Q×R
L . Then, by execution of ΠMatMul, three

parties obtain shares of 〈XY 〉L ∈ Z
P×R
L . This protocol

also requires keeping the consistency of the scale after
execution. We remark that the communication complexity
of this protocol depends on the size of the output matrix
P ×Q only, not on the size of the input matrices P ×Q
and Q×R.

Select Shares ΠSelect(〈x0〉L, 〈x1〉L, 〈b〉2) → 〈xb〉L.
ΠSelect takes shares of two values, 〈x0〉L, 〈x1〉L and a
share of a bit, 〈b〉2, as input, and returns a share specified
by the bit, 〈xb〉L, to parties.

ReLU ΠReLU(〈x〉L) → 〈ReLU(x)〉L. The Rectified
Linear Unit (ReLU) is an activation function that is com-
monly used for deep neural networks

ReLU(x) =

{
x if x > 0,

0 o.w..
(1)

ΠReLU is a protocol that applies ReLU to an input share.
When three parties hold a share 〈x〉L, three parties obtain
a share 〈ReLU(x)〉L by executing ΠReLU.

DReLU ΠDReLU(〈x〉L) → 〈DReLU(x)〉L. ΠDReLU

is a protocol that computes the derivative of the Rectified

Figure 1. Schematic diagram of the Transformer model.

Linear Unit (ReLU)1,

DReLU(x) =

{
0 if x < 0,

1 if x ≥ 0.
(2)

Given share 〈x〉L, ΠDReLU(〈x〉L) returns a share
〈DReLU(x)〉L.

2.2. Transformer

In the following, we denote the ith row vector of
matrix A by Ai throughout the paper. The Transformer
[49] consists of two different types of neural networks,
the encoder and decoder. Given an input sequence (e.g.,
a sequence of English words), the encoder outputs a se-
quence of latent representations (Fig. 1, left). The decoder
takes two inputs, (1) the sequence of latent representations
provided by the encoder and (2) all previous outputs of
the decoder itself. With these inputs, the decoder outputs a
probability vector over output elements (e.g., a probability
vector over Spanish words) (Fig.1, right). In order to
obtain a full output sequence, the decoder iterates the
above computation until it outputs the termination signal.

Let X be an embedding matrix of an input sequence
and Y be an embedding matrix of the output sequence.
Then, the process of the Transformer is abstractly formu-
lated by Transformer(W,X) = Y where W represents all
the model parameters of the Transformer. We remark that
the input and output sequence dimensions can be different.

A schematic diagram of the Transformer is shown in
Figure 1. The encoder and decoder are composed of N
layers of the encoder and decoder layer, respectively. In
the following, the computation process required for each
sublayer is introduced. An explanation of the embedding
and positional encoding is shown in Appendix B since it
is not considered in our protocol.

Multi-Head Attention. The attention mechanism
takes as input a sequence of latent representation in the

1. DReLU(0) is not defined. In our implementation, 1 is returned
when x = 0 for calculation stability.
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form of matrices Q,K, V ∈ R
S×d, and it outputs the same

form of output matrix MultiHeadAttention(Q,K, V ) ∈
R

S×d2. Given three matrices Q (query), K (key), and
V (value) in the latent representation, the attention is
evaluated by,

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V (3)

where Softmax(·) applies the softmax function to each
row vector of the matrix3. Intuitively, the (i, j) element
of QKT (attention weight matrix) represents the degree
of relevance between the ith row vector in the query and
the jth row vector in the key. The ith attention vector, that
is, the ith row vector of Attention(Q,K, V )i, represents
a latent representation of the ith element weighted by the
corresponding attention weights.

Multi-head attention is a straightforward extension
of the attention mechanism of Eq. 3. We consider
h different attention mechanisms with weight matrices
WQ

i ,WK
i ,WV

i ∈ R
d×dm for i = 1, . . . , h,

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (5)

where headi ∈ R
S×dm . Then, multi-head attention com-

bines these attention matrices with weight matrix W o ∈
R

hd×dm as

MHA(Q,K, V,Ω) = Concat(head1, ..., headh)W
O (6)

where MHA(Q,K, V,Ω) ∈ R
S×dm .

Masked multi-head attention is a variant of multi-head
attention, which is used in the decoder layer only. In multi-
head attention in the encoding layer, attention is evaluated
using attention weights with any pair of elements in the
input sequence. On the other hand, in the decoding process
at the decoder, the output sequence is not yet complete.
So, attention in the decoding layer needs to be evaluated
only with pairs of elements that the decoder has already
generated. For example, in the translation task, the decoder
takes as input a word sequence after translation. The word
sequence of the translated words must be generated from
the front, and when predicting the i-th translated word,
only information up to the i−1th word should be used. For
this reason, the lower triangle matrix is multiplied by the
attention matrix to hide the information associated with
untranslated words. Softmax attention applies the softmax
function to each element of the attention matrix. So, a
huge negative value is added to the attention weights cor-
responding to elements that have not yet been generated:

MaskedAttention(Qi,Ki, Vi) = Softmax

(
Mi +

QiK
T
i√

dk

)
Vi

(7)

2. Q, K, and V are taken from embedding vectors while its treatment
depends on the application. For unsupervised language models, Q,
K, and V are taken from the embedding of the input sequence. For
machine translation, Q is taken from the embedding of the target (output)
sequence, and K,V are from the embedding of the source (input)
sequence.

3. Given a row vector x, the ith element of the output vector of the
softmax function is

Softmax(x)i =
exi

∑d
k=1 e

xk
. (4)

Model owner

MPC servers

Query User

Figure 2. Protocol overview.

where Mi is the mask matrix, which forms an upper
triangle matrix. Elements with a non-zero value in M are
determined, reflecting the decoding progress.

Add & Layer Normalization. Input to layer normal-
ization is a summation of two matrices, X ′ +X ′′ = X ∈
R

S×dm . Here, X ′ ∈ R
S×dm is the output of the previous

layer (multi-head attention or feed-forward network), and
X ′′ is the input of the previous layer X ′ ∈ R

S×dm

obtained through skip connection. Let Xi,k denotes the
(i, k) element of X and xi ∈ R

dm denotes the ith row
vector of X . First, layer normalization transforms latent
representation vectors given X by

μi =
1

dm

dm∑
k=1

Xi,k, σ
2
i =

1

dm

dm∑
k=1

(Xi,k − μi)
2, (8)

X̂i,k =
Xi,k − μi√

σ2
i + ε

(9)

where ε is a small positive constant to stabilize the calcu-
lation. Then, layer normalization outputs

LNγ,β(x̂i) = γ � x̂i + β (10)

where � denotes the Hadamard product, and γ ∈ R
dm

and β ∈ R
dm are model parameters. Details of layer

normalization can be found in Xiong et al.’s work [54].

Feed-Forward Network. Let X ∈ R
S×dm be an input

and xi denote the ith row vector of X . Then, the fully-
connected layer applies (1) an Affin transformation with
(WF1, bF1) to each row vector of X , xi, (2) activa-
tion with ReLU, (3) another Affing transformation with
(WF2, bF2)

FFN(xi) = ReLU(WF1xi + bF1)WF2 + bF2, (11)

and outputs the resulting matrix, which has the same size
as the input.

Linear & Softmax. Input to this layer is a matrix of
latent representation, X ∈ R

S×dm . For each row vector
xi of X , a linear transformation zi = Wxi is applied
where W ∈ R

dm×V and V is the vocabulary size of
the embedding. Then, the softmax function is applied
as yi = softmax(zi). Here, yi ∈ [0, 1]V denotes the
vector of word occurrence probabilities. The output word
sequence is obtained by choosing the word having the
highest probability for each element in the sequence.

3. Problem Formulation

3.1. Problem Definition

We consider three types of parties, model owner, query
user, and multi-party computation (MPC) servers (Fig.
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2). We suppose a model owner owns a pretrained model
parameter W of the Transformer. W is private and cannot
be revealed to any other parties, while the model owner
allows anyone to evaluate Y = Transformer(W,X) for
any input sequence X . A query user owns an embedding
matrix X associated with an input sequence T . X is pri-
vate and cannot be revealed to any other parties while the
query user wishes to compute Y = Transformer(W,X)
privately and obtain Y with keeping Y private to anyone
else. Also, we suppose three MPC servers jointly help to
compute Y = Transformer(W,X) upon request from the
model owner and the query user. The MPC servers do not
own any private input and behave as servers that provide a
secure multi-party computation service for inference with
the Transformer.

In this work, we suppose the Transformer model W is
pre-trained, and inference with the pretrained Transformer
model is considered. Model training for the Transformer
with MPC is outside the scope of this study. Then, the
model of privacy-preserving Transformer inference we
consider in this study is stated as follows. The model
owner provides the three MPC servers with secret shares
of the model parameter W ; the query user also provides
the three MPC servers with secret shares of input X . Here,
we suppose all computations of MPC servers run on 2-
out- of-3 RSS. The three MPC servers then jointly perform
MPC to compute Y = Transformer(W,X), which will
be presented later. After protocol execution, each MPC
server obtains two elements of secret shares of Y , which
are given to the query user so that it can reconstruct Y .

3.2. Threat Model

We assume honest parties are the majority among the
three parties in the above problem setting. This honest
majority setting has been widely employed in privacy-
preserving machine learning in the MPC setting [31], [36],
[37], [50]. In our three-server setting, honest majority
means that two out of the three MPC servers are honest
adversaries. An honest adversary is a party that follows
the prescribed protocol honestly and does not collude mu-
tually to gather collected information. At most, one MPC
server may act as a semi-honest adversary or malicious
adversary. A semi-honest adversary is a party that does
not deviate from the protocol and collaboratively gathers
information. A malicious adversary is a party that may
use any attack strategy and thus arbitrarily deviates from
the protocol specification.

Suppose a particular institution uses MPC to provide
privacy-preserving services. Then, if we can ensure that
(1) the number of external attackers that intrudes into the
system is kept equal or less than 1, and (2) collusion
among server administrators can be avoided, the honest
majority setting is useful to secure the service. In addition,
in the honest majority setting, any information about X
(resp. W ) is not leaked even with collusion of a single
MPC server and the model owner (resp. query user).

We do not protect our protocol against denial-of-
service (DoS) attacks in which a party refuses to co-
operate. For such adversaries, we simply abort the com-
putation. We assume that the three parties communicate
through a shared point-to-point communication channel.
The three parties are also assumed to have pair-wise

shared seeds, which are private to parties not contained
in the pair. The seeds are utilized for a pseudo-random
number generator (PRNG). AES is used as the PRNG in
our implementation.

4. Computing the Transformer with Known
MPC Building Blocks

This section discusses the difficulties in the imple-
mentation of MPC protocol for Transfomer with existing
building blocks. We remark that analysis on embedding,
the feed-forward network layer, and the linear and softmax
layer are shown in Appendix C because these layers can
be realized with a naive composition of existing protocols.

Multi-Head Attention. Multi-head attention contains
two computations, (1) softmax function and (2) multi-
plication of large matrices. Technically, it is possible to
execute multi-head attention with MPC by approximating
nonlinear functions with polynomial functions. However,
the execution time cannot be practical when using existing
building blocks due to the following reasons.

In the multi-head attention, the S × S sized attention
matrix is first obtained with matrix multiplication. The
communication complexity of matrix product with MPC
depends on its output matrix size, and the communication
complexity of this part is O(S2). Then, the sigmoid
function is applied to each row vector in the matrix, which
invokes the exponentiation function O(S2) times.

When computing the Transformer with MPC using
primitives in Section 2.1, all steps other than this layer
invoke the exponentiation function O(S) times. If we
can avoid matrix multiplication that outputs S × S size
matrix and reduces invocation of exponentiation function
to O(S), the entire computation time of protocol execution
would apparently improve. We consider this problem in
Section 5.

Layer Normalization. Layer normalization requires
the computation of 1√

x
, which cannot be processed by

naive application of building blocks in Section 2.1. To
evaluate the square-root inverse, FALCON [31] introduces
an MPC protocol that obtains an approximation solution
using the iterative Newton method. This protocol requires
linear operations only. One concern of this protocol is
that it reveals some information on the private input in
the middle of the protocol (see Section 6 in detail). We
present a novel MPC protocol for square-root inverse that
does not leak any intermediate values in Section 6.

5. ReLU Attention

5.1. MPC for ReLU Attention

The previous section discussed that the softmax at-
tention requires O(S2) times calls of MPC for exponen-
tiation. We introduce a generalized attention mechanism
to deal with the difficulties that arise in the computation
of softmax attention on MPC. This mechanism has been
introduced as a building block of the Performer [11],
originally proposed as a generalization of the Transformer.
Softmax attention evaluates the similarity matrix (attention
weight matrix) using the softmax function. Choromanski
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et al. proposed to generalize the similarity matrix so that
the attention mechanism can employ an arbitrarily defined
similarity using the kernel theory [11]. By choosing the
kernel appropriately, the Performer can reduce the com-
putation complexity of inference without sacrificing the
predictive performance.

Our idea is to take advantage of the generality of
the similarity matrix to make the computation of this
part more MPC friendly. Particularly, we introduce ReLU
attention. When evaluating nonlinear functions on MPC, it
is usually substituted to polynomial approximation, which
introduces approximation error, and its computation can
be costly when the polynomial dimension is large. To
avoid this, we use the ReLU function as nonlinear activa-
tion because it can be evaluated exactly with multiplica-
tion and logical OR only. Since ReLU attention consists of
these MPC-friendly operations only, it is expected to run
in reasonable computation time. Also, the attention weight
matrix of the ReLU attention asymptotically approaches
the original attention weight matrix of the Transformer in
the limit of the feature map dimension (explained later).
So, the predictive performance is guaranteed to be close
to the Transformer when a sufficiently large feature map
is used [11].

ReLU attention. The softmax attention of Eq. 5 eval-
uates the similarity between the key and query by the
normalized dot product of a key and vector, followed
by the application of the softmax function. Given query
Q ∈ R

S×d, key K ∈ R
S×d, and value V ∈ R

S×d, ReLU
attention of the Performer approximates the similarity
matrix using the Gaussian kernel based on a random
feature map as follows:

ReLUAttention(Q,K, V ) = cQ′(K ′TV )

where Q′ = ReLU(QΩ) and K ′ = ReLU(KΩ).
(12)

Here, Ω ∈ R
d×r is a random projection matrix, and r

denotes the dimension of the space after projection by
random projection matrix Ω. Each row Ωi is sampled from

Ωi ∼ N (0, Id) (13)

and orthogonalized by the Gram-Schmidt method. c is a
public constant for normalization. Originally, c is deter-
mined to be dependent on inputs. However, since treating
c as a constant does not significantly impact the final
predictive performance [11], we treat c as a constant.

Introducing a kernel with ReLU and random feature
maps can prevent the computation of exponentiation. The
attention weight matrix of ReLU attention can be com-
puted with matrix product and ReLU only. Since both
operations can be immediately computed with existing
building blocks efficiently, employing ReLU attention is
a great advantage in MPC implementation.

Protocol. ReLU attention with MPC can be immedi-
ately obtained following the computation of Eq. 12. Alg.1
is an MPC protocol to compute ReLU Attention with three
parties, P0, P1 and P2. Three parties possess shares of
Q,K, V ∈ Z

S×d
L and Ω ∈ Z

d×r
L . c is possessed by the

three parties in cleartext because c is a non-private data-
independent constant. The query user provides shares of
Q,K, and V with the MPC servers. Also, the model owner
provides shares of random orthogonal matrix Ω with the
MPC servers.

Algorithm 1 ReLU Attention ΠReLUAtt :

Require: Each Pj holds 〈Q〉L, 〈K〉L, 〈V 〉L ∈ Z
S×d
L ,

〈Ω〉L ∈ Z
d×r
L . Public constant c ∈ R for normal-

ization.
Ensure: Each Pj gets 〈ReLUAtt(Q,K, V )〉L ∈ Z

S×d
L

1: 〈QΩ〉L ← ΠMatMul(〈Q〉L, 〈Ω〉L)
2: 〈KΩ〉L ← ΠMatMul(〈K〉L, 〈Ω〉L)
3: 〈Q′〉L ← ΠReLU(〈QΩ〉L)
4: 〈K ′〉L ← ΠReLU(〈KΩ〉L)
5: 〈K ′TV 〉L ← ΠMatMul(〈K ′〉TL, 〈V 〉L)
6: 〈Q′K ′TV 〉L ← ΠMatMul(〈Q′〉L, 〈K ′TV 〉L)
7: 〈ReLUAttention(Q,K, V )〉L = c · 〈Q′K ′TV 〉L

In Eq. 12, matrix product QΩ,KΩ,K ′TV and
Q′(K ′TV ) can be computed using ΠMatMul. ReLU of
K ′ = ReLU(KΩ) and Q′ = ReLU(QKΩ) can be
computed using ΠReLU. After execution of ΠReLUAtt,
each party obtains shares of ReLUAttention(Q,K, V ) ∈
Z
S×d
L . Thus, the computation of Eq. 12 on MPC can be

realized using the existing building blocks.

Complexity analysis. In actual protocol execution, the
execution of MPC for non-polynomial functions heavily
affects the overall efficiency. Thus, we evaluate the num-
ber of execution times of MPC for exponentiation and
ReLU function. Also, we evaluate the communication and
round complexity. In the following complexity analysis,
we regard the dimension of the latent representation d as
a constant. We thus consider the complexity with respect
to the sequence length S and the dimension of the random
feature map r.

We compare the complexity of MPC for ReLU atten-
tion in Eq. 12 with MPC for softmax attention in Eq.
3. Recall that the communication complexity of matrix
products on MPC depends on the output matrix size. In the
evaluation of softmax attention on MPC, QKT ∈ R

S×S

needs to be evaluated, and its communication complex-
ity is O(S2) (Table 1, line 2). In ReLU attention, QΩ
and KΩ are computed first, which results in S × r
matrices, and its communication complexity is O(rS).
Next, ReLU attention computes K ′TV ∈ R

r×d and then
Q(K ′TV ) ∈ R

S×d, whose communication complexity is
O(r) and O(S), respectively (with ignoring d). Thus, the
overall communication complexity is reduced to O(rS)
by introducing ReLU attention (Table 1, line 3).

Softmax attention invokes the exponentiation function
for O(S2) times, while ReLU attention invokes ReLU
function O(S) times in steps 3 and 4. For each input
element, all computations are independent. So, the round
complexity of the entire protocol is O(S).

With the complexity analysis above, MPC for ReLU
attention is expected to be more efficient than MPC for
softmax attention, particularly when the input sequence
S is long. We will show a detailed efficiency analysis of
ReLU attention with experimental results in Section 9.

5.2. MPC for Masked ReLU Attention

In this subsection, we propose two protocols for
masked ReLU attention; one requires O(S2) time in O(1)
rounds, and the other achieves O(S) time complexity
while running in O(S) rounds.
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Algorithm 2 Masked ReLU AttentionQK ΠMReLUAttQK
:

Require: Each Pj holds 〈Q〉L, 〈K〉L, 〈V 〉L ∈ Z
S×d
L ,

〈Ω〉L ∈ Z
d×r
L . Public constant Mtril ∈ Z

S×S
L for mask

and c ∈ R for normalization.
Ensure: Each Pj gets

〈MaskedReLUAttentionQK(Q,K, V )〉L ∈ Z
S×d
L

1: 〈QΩ〉L ← ΠMatMul(〈Q〉L, 〈Ω〉L)
2: 〈KΩ〉L ← ΠMatMul(〈K〉L, 〈Ω〉L)
3: 〈Q′〉L ← ΠReLU(〈QΩ〉L)
4: 〈K ′〉L ← ΠReLU(〈KΩ〉L)
5: 〈Q′K ′T 〉L ← ΠMatMul(〈Q′〉L, 〈K ′〉TL)
6: 〈tril(Q′K ′T )〉L = Mtril � 〈Q′K ′T 〉L
7: 〈tril(Q′K ′T )V 〉L ←

ΠMatMul(〈tril(Q′K ′T )〉L, 〈V 〉L)
8: 〈MaskedReLUAttention(Q,K, V )〉L =

c · 〈tril(Q′K ′T )V 〉L

5.2.1. Masked ReLU Attention in O(1) Rounds. In
softmax attention, a mask matrix M is applied to QKT as
softmax((M +QKT /

√
d)i) in Eq. 7. The ReLU attention

analog for masked attention is defined straightforwardly
by

MReLUAtt(Q,K, V ) = c · tril(Q′(K ′)T )V (14)

= c(Mtril �Q′(K ′)T )V
where Q′ = ReLU(QΩ) and K ′ = ReLU(KΩ).

Here, tril() is the function of extracting the lower triangu-
lar part of the matrix and filling the remaining elements
with zero. Mtril is a mask matrix with 1 in the lower
triangular part and 0 in the remaining elements. � denotes
Hadamard (element-wise) product.

Protocol. We design an MPC for masked ReLU at-
tention using Eq. 14 in Alg. 2. We suppose P0, P1 and
P2 possess shares of Q,K, V ∈ Z

S×d
L ,Ω ∈ Z

d×r
L ,

G ∈ {0}r×d, and constant c. In this protocol, the query
user prepares shares of Q,K, V and provides them with
MPC servers. Also, the model owner (query user) needs
to prepare shares of a random orthogonal matrix Ω and
provide them with the MPC servers. Mask matrix Mtril

is public because it depends only on the index of the
element in the sequence the protocol is processing. After
the execution of the protocol, three parties obtain shares
of masked ReLU attention in Z

S×d
L .

Eq. 14 can be computed by matrix product and ReLU
only, and its realization with MPC is immediately obtained
as Alg. 2. Since Q′TK ′ is computed first in this algorithm,
we call this MaskedReLUAttentionQK.

Complexity analysis. Complexity analysis of masked
softmax attention and masked ReLU attentionQK is sum-
marized in Table 1, line 4 and line 5, respectively. In
both protocols, the matrix product that outputs the greatest
sized matrix is Q′K ′T ∈ R

S×S and its communication
complexity is O(S2). This increase in communication
complexity is due to the change in the order of ma-
trix multiplication. In ReLU attention without the mask,
K ′TV is computed first. By doing so, we can avoid
computation with S×S sized matrix. In contrast, masked
ReLU attention needs to have Q′K ′T first to apply the
mask.

Algorithm 3 Masked ReLU AttentionVK ΠMReLUAttV K
:

Require: Each Pj holds 〈Q〉L, 〈K〉L, 〈V 〉L ∈ Z
S×d
L ,

〈Ω〉L ∈ Z
d×r
L where Ω is random orthogonal, 〈G〉L

where G ∈ {0}d×r, and constant c ∈ R for normal-
ization.

Ensure: Each Pj gets 〈MReLUAttNaive(Q,K, V )〉L ∈
Z
S×d
L

1: 〈QΩ〉L ← ΠMatMul(〈Q〉L, 〈Ω〉L)
2: 〈KΩ〉L ← ΠMatMul(〈K〉L, 〈Ω〉L)
3: 〈Q′〉L ← ΠReLU(〈QΩ〉L)
4: 〈K ′〉L ← ΠReLU(〈KΩ〉L)
5: for i = {1, ..., S} do
6: 〈Gi〉L ← ΠMatMul(〈K ′

i〉TL, 〈Vi〉L)
7: 〈G〉L = 〈G〉L + 〈Gi〉L.
8: c〈tril(Q′K ′T )Vi〉L ← c ·ΠMatMul(〈Q′i〉L, 〈G〉L)
9: end for

10: Each Pj concatenates
c〈tril(Q′K ′T )V1〉L, ..., c〈tril(Q′K ′)TVS〉L and
outputs the resulting matrix of shares as
〈MReLUAtt(Q,K, V )〉L

Masked softmax attention invokes exponentiation
function for O(S2) times while masked ReLU
attentionQK invokes ReLU function O(S) times in
steps 3 and 4. For each input element, all computations
are independent. So, the round complexity of the entire
protocol is O(S).

5.2.2. Masked ReLU Attention in O(S) Time. Masked
ReLU AttentionQK needs to compute QKT , which causes
O(S2) time/communication complexity. To avoid the
quadratic dependence on S, we introduce an iterative
approach to attain the O(S) time/communication protocol
for masked ReLU attention. In Eq. 14, the application of
mask is realized by taking the lower triangular part of
the matrix. This masking can be reformulated by iterative
product of row vectors of K ′ and V ′ by

[tril(Q′(K ′)T )V ]i = Q′iGi

where Gj = K ′
j
T
Vj ∈ R

r×d, Gi =

i∑
j=1

Gj .

(15)

Here, we have the ith row of tril(Q′(K ′)T )V as the result.
The entire masked matrix is obtained by computing Eq.
15 for i = 1, . . . , S and concatenating the resulting row
vectors into a matrix.

Protocol. We design an MPC for masked ReLU
attention using Eq. 15 in Alg. 3. Since V TK ′ is
computed first in this algorithm, we call this protocol
MaskedReLUAttentionVK. We suppose P0, P1 and P2

possess shares of Q,K, V ∈ Z
S×d
L ,Ω ∈ Z

d×r
L , G ∈

{0}r×d, and constant c. After the execution of the proto-
col, three parties obtain shares of masked ReLU attention
in Z

S×d
L .
ReLU(QΩ),ReLU(KΩ) are computed in Steps 1-4 in

the same manner as Alg.1. Steps 6-14 use the matrix sum
and matrix product to compute shares of tril(Q′K ′T )V for
each row following Eq. 15. In step 15, the results are con-
catenated into a matrix.We remark that the reconstructed
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TABLE 1. COMPARISON OF THE NUMBER OF NONLINEAR FUNCTION

CALLS, COMMUNICATION COMPLEXITY, AND ROUND COMPLEXITY

OF SOFTMAX ATTENTION AND RELU ATTENTION.

Nonliner Comm. Round

Softmax Attention O(S2) O(S2) O(1)
ReLU Attention O(S) O(rS) O(1)

Masked Softmax Attention O(S2) O(S2) O(1)
Masked ReLU AttentionQK O(S) O(S2) O(1)
Masked ReLU AttentionVK O(S) O(rS) O(S)

outputs of ΠMaskedReLUAttentionV K
are equivalent to those

of ΠMaskedReLUAttentionQK
when given the same inputs.

Complexity analysis. The complexity analysis of this
protocol is summarized in Table 1, line 6. Steps 1-4 are the
same as maskedReLUattentionQK and its communication
complexity is O(rS). The size of matrix Gi computed in
step 6 is r×d and its communication complexity is O(r)
when regarding d as constant. The size of matrix Q′K ′TVi

computed in step 8 is 1 × r, and its communication
complexity is O(r), too. These steps are repeated for
S times, so the communication complexity of the entire
protocol O(rS).

Masked ReLU attentionV K invokes ReLU function
O(S) times in steps 3 and 4. Also, computation in the
for-loop (steps 6-8) is dependent and requires one round
for each execution. So the round complexity is O(S).

MaskedReLUattentionQK has O(S2) communication
complexity with constant rounds. On the other hand,
MaskedReLUattentionV K runs in O(S) communication
complexity while it requires O(S) rounds. Thus, which
protocol is more efficient depends on the computing envi-
ronment. We will give a detailed experimental comparison
of these protocols in Section 9.

6. Square-root Inverse

6.1. Square-root Inverse in FALCON

FALCON [31] proposed an MPC protocol for batch
normalization among three parties. In the protocol, three
parties take shares of b as input and compute shares of
1√
b

in the following way.

1) Given shares of b as input, find α such that 2α ≤
b < 2α+1 in the cleartext and share it among
the three parties by using protocol Πpow (See
Section 3.7 in Li et al.’s work [31])

2) Find the initial value for the Newton iteration as
x0 ← 2−�α/2� in the cleartext. Then, shares of
x0 are distributed among the three parties.

3) Given shares of x0 and b as input, repeat the
following Newton iterations (four times)

xi+1 ←
xi

2
(3− bx2

i ) (16)

4) Output shares of xi+1 as an approximation of 1√
b

In the first step, α is computed in the form of shares
of a �-digit binary number, α[i], i ∈ {� − 1, ..., 0}. Then,
the protocol reconstructs shares of each bit 〈α[i]〉2 and
computes α =

∑
i 2

α[i] in the cleartext to find the initial
value for the Newton iteration. Since α is a good approx-
imation (lower bound) of private input b, it is preferable
to avoid revealing α in the cleartext.

Algorithm 4 Sqrt Inverse ΠSqrtInverse :

Require: Each Pj holds 〈b · 2FP〉L. Public constant 2FP

and 2
FP
2 · 2FP

Ensure: Each Pj gets 〈 1√
b
· 2FP〉L � Input:

1: 〈t〉L ← 〈1〉L.
2: for i = �− 1, ..., 1, 0 do � Calculate
〈α[0]〉2, ..., 〈α[�− 1]〉2 such that 2α ≤ b · 2FP < 2α+1

3: 〈α[i]〉2 ← ΠDReLU(〈b · 2FP〉L − 22
i〈t〉L)

4: 〈t〉L ← ΠSelect(〈t〉L, 22
i〈t〉L, 〈α[i]〉2)

5: end for
6: 〈β〉L ← 2

FP
2 · 2FP〈1〉L

7: for i = 0, 1, ..., �− 1 do � Calculate 1√
2α
· 2FP

2 · 2FP
as β

8: 〈β′〉L ← ΠMult(〈β〉L, 2−2i−1 · 2FP〈1〉L)
9: 〈β〉L ← ΠSelect(〈β〉L, 〈β′〉L, 〈α[i]〉2)

10: end for
11: 〈x0〉L ← 〈β〉L.
12: for i = 0, ..., 3 do � Calculate the approximate value

of 1√
b
· 2FP using Newton’s method

13: 〈x2
i 〉L ← ΠMult(〈xi〉L, 〈xi〉L)

14: 〈bx2
i · 2FP〉L ← ΠMult(〈b · 2FP〉L, 〈x2

i 〉L)
15: 〈xi+1〉L ← ΠMult(

〈xi〉L
2 , 3 · 2FP〈1〉L − 〈bx2

i ·
2FP〉L)

16: end for
17: 〈 1√

b
· 2FP〉L ← 〈x4〉L

6.2. Secure Square-root Inverse on MPC

In this subsection, we introduce Alg. 4, which is
an MPC protocol that computes shares of 1√

b
without

revealing α. P0, P1, P2 takes shares of b · 2FP ∈ ZL as
input and obtains shares of 1√

b
· 2FP ∈ ZL.

Alg. 4 proceeds as follows. 〈1〉L in step 1 is given as
(0, 0, 1) deterministically. Given shares of b, the for-loop
(steps 2-5) finds shares of α such that 2α ≤ b·2FP < 2α+1.
Here, 2FP is multiplied to treat b as an FP -bit fixed-point
number. Using a similar idea used in ΠPow of FALCON,
we can find 〈α[i]〉2, i = 0, . . . � − 1 using ΠDReLU. We
remark that, in this protocol, 〈α[i]〉2 are not reconstructed
and treated as shares in the following computation.

The for-loop (steps 7-10) converts shares of α into
shares of 1/

√
2α, which is used as an initial value for

the Newton iteration. Precicely, we find shares of β =
1√
2α
·2FP

2 ·2FP to treat the value as a fixed point number.
FP
2 is a factor to fill in the gap that arises in the subsequent

calculation. Given α in the binary digit representation,

2−α/2 can be obtained as 2−α/2 =
∏�−1

�=0 α[i] · 2−2i−1

. To

compute this on MPC, we first set 〈β〉L = 〈2FP
2 · 2FP〉L

as the initial value 　 (step 6). Then, for each element
in {〈α[0]〉2, ..., 〈α[� − 1]〉2}, 〈β〉L is unchanged when

α[i] = 0; otherwise multiply 2−2i−1

to 〈β〉L selectively
(step 8-9). Here, protocol Select Shares ΠSelect is used
for selective multiplication by α[i]. After processing all

elements, we have 〈β〉L = 1√
2α
· 2FP

2 · 2FP, which works

as the initial value for the Newton iteration.
In the for-loop (steps 12-16), using 〈β〉L as the initial

value of the Newton iteration, Eq. 16 is iterated on MPC
four times. Finally, shares 〈x4〉L = 〈 1√

b
· 2FP〉L are

obtained.
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7. Privformer

This section presents the overall protocol for the
Transformer using protocols for ReLU Attention and
Layer Normalization proposed in the previous sections.
Protocol for the feed-forward network is described in Ap-
pendix since it can be constructed with existing building
blocks only.

7.1. Multi-Head Attention

P0, P1, P2 takes shares of Q,K, V ∈ Z
S×dm

L ,

model parameters WQ
i ,WK

i ,WV
i ∈ Z

dm×d
L for 1 ≤

i ≤ H , and WO ∈ Z
dm×dm

L as input, and outputs

〈MHA(Q,K, V,Ω) ∈ Z
S×dm

L 〉 after execution of the
protocol.

QWQ
i ,KWK

i , V WV
i ,Concat(head1, ..., headH)WO

can be computed using ΠMatMul. Each headi is computed
using either Alg.1 when used in the encoder or Alg. 2
or Alg. 3 when used in the decoder. The concatenation
of 〈headi〉 in Step 9 can be computed locally. The entire
protocol is described in Appendix D.1.

Masked multi-head attention ΠMMHA can be
processed by replacing ΠReLUAtt(〈QWQ

i 〉L, 〈KWK
i 〉L,

〈VWV
i 〉L) with ΠMReLUAtt(〈QWQ

i 〉L, 〈KWK
i 〉L,

〈VWV
i 〉L).

7.2. Layer Normalization

Alg. 5 is a protocol for computing layer normalization
with three parties. P0, P1, and P2 take shares of X ∈
Z
S×dm

L and β, γ, ε ∈ Z
dm

L as input and outputs shares of
LNγ,β(X) after execution of the protocol.

Computation of 〈μi〉L requires addition and multi-
plication by a constant, which can be computed locally
(step 2). X̃i,k is computed as the difference between
input Xi,k and mean μi first (step 4), and then Πmult

is used to compute its square (step 5). 〈σ2
i 〉 is obtained

by summation over i, followed by division by a constant,
which can be computed locally, too (step 7).

For numerical stability of the square root inverse in
the next step, we add a small positive constant value ε to
σ2
i (step 8), denoted by 〈bi〉. Normalization (step 11) is

attained by multiplying X̃i,k with 〈 1√
bi
〉, which is obtained

by using ΠInverseSqrt introduced in Section 6 with 〈bi〉
(step 9). Eq. 10 is computed immediately by Πmult and
linear operations (steps 13,14).

7.3. Putting Everything Together

Protocols for the encoder and decoder are realized
by combining protocols for multi-head attention, feed-
forward network, and layer normalization as building
blocks. The encoder is composed of N layers of encoder
Layers. In a single encoder Layer, sub-layers are processed
in the order of MHA, LN, FFN, and LN. Each sub-layer
can be calculated by using ΠMHA,ΠFFN, and ΠLN, re-
spectively. The entire protocol of the encoder is described
in Appendix D.3. The decoder is also composed of N
layers of decoder layers. In a single decoder Layer, sub-
layers are processed in the order of MaskedMHA, LN,
MHA, LN, FFN, and LN. Each sub-layer can be calculated

Algorithm 5 Layer Normalization ΠLN

Require: Each Pj holds 〈X〉L ∈ Z
S×dm

L , 〈β〉L, 〈γ〉L ∈
Z
dm

L . Public constant ε.
Ensure: Each Pj gets 〈LNγ,β(X)〉L

1: for i = {1, ..., S} do
2: 〈μi〉L = 1

dm

∑dm

k=1〈Xi,k〉L
3: for k = {1, ..., dm} do
4: 〈X̃i,k〉 = 〈Xi,k〉L − 〈μi〉L
5: 〈X̃2

i,k〉 ← ΠMult(〈X̃i,k〉L, 〈X̃i,k〉)
6: end for
7: 〈σ2

i 〉L = 1
dm

∑dm

k=1〈X̃2
i,k〉L

8: 〈bi〉L = 〈σ2
i 〉L + 〈ε〉L.

9: 〈 1√
bi
〉L ← ΠSqrtInverse(〈bi〉L)

10: for k = {1, ..., dm} do
11: 〈X̂i,k〉 ← ΠMult(〈X̃i,k〉L, 〈 1√

bi
〉)

12: end for
13: 〈γX̂i〉 ← ΠMult(〈γ〉L, 〈X̂i〉)
14: 〈LNγ,β(Xi)〉L ← 〈γX̂i〉L + 〈β〉L
15: end for

by using ΠMHA,ΠFFN, and ΠLN. The entire protocol of
the encoder is described in Appendix D.4.

Recall that embedding of input sequences and extrac-
tion of output sequences from embedding matrices are
outside the scope of this study and performed locally
at the query user’s side in our construction. The entire
computation of Privformer is summarized in the list in
Appendix D.5.

8. Security Analysis

The security analysis of the protocol in the presence
of malicious adversaries commonly follows ideal/real sim-
ulation paradigm [7] [21]. The security of a protocol
is proved by comparing what an adversary can do in a
real execution to what the adversary can do in the ideal
execution. Protocol execution in the ideal world involves
a trusted third party, which obtains the input from each
party, computes the prescribed functionality honestly, and
returns the output to each party. Informally, we say that
the protocol is secure if, for every adversary in the real
world, there exists a simulator in the ideal world that can
produce communication transcripts, including inputs and
outputs that are indistinguishable from those in the real
execution.

Theorem 1.2 in Kushilevitz et al.’s work [27] states
that every protocol that is perfectly secure in the stand-
alone model and has a straight-line black-box simulator is
secure under concurrent general composition. Informally
speaking, perfect security requires that the distribution
of inputs and outputs of the adversary and participating
parties in the real and ideal executions are exactly the
same. In the stand-alone model, only a single protocol
execution takes place. A black box simulator is a universal
ideal world adversary that interacts with a real adversary
only through oracle access. Furthermore, we say a black-
box simulator is straight-line if it does not rewind.

Theorem 1. [Theorem 1.2 in Kushilevitz et al., 2009]
Every protocol that is perfectly secure in the stand-alone

401



model, and has a straight-line black-box simulator, is
secure under concurrent general composition.

The methodology for security analysis of our protocols
basically follows that of FALCON [31], which relies on
this theorem.

The methodology for security analysis of our proto-
cols basically follows that of FALCON [31], which re-
lies on this theorem. Protocols ΠReLUAtt, ΠMReLUAttQK

,
ΠMReLUAttV K

,ΠSqrtInv, ΠMHA,ΠLN, ΠFFN, ΠEncoder,
and ΠDecoder are designed with sequential/concurrent exe-
cution of local computation (e.g., data oblivious concate-
nation), linear operations, and security protocols which
are perfectly secure in the stand-alone model, and has
a straight-line black-box simulator (see Table 4 for the
detailed description for inputs and outputs of every entity
and invoked subprotocols). Thus, when information theo-
retically correlated randomness (e.g., Section 2.2 in Araki
et al.’s work [3]) is used in these protocols, the application
of concurrent general composition by Theorem 1 proves
the perfect security of the protocols presented in this study.

One limitation of using information theoretically cor-
related randomness is that it doubles the communication
per AND gate. Since the Privformer requires a large
number of multiplication, communication is a major bot-
tleneck. For practicality, we introduced computational
correlated randomness using a pseudo-random number
generator (PRNG) for our implementation. We remark
that experimental evaluations of other major MPC neural
networks (ABY3, SecureNN, FALCON, etc.) also used
PRNGs for correlated randomness.

Since multiplication and matrix multiplication is con-
sidered to consume a large portion of communication
bandwidth in our protocol construction, we can expect
constant times reduction of communication bandwidth by
introducing PRNG. Unfortunately, the concurrent general
composition may not be applicable when using PRNGs
because of a pathological counterexample shown in Sec-
tion 4 in Kushilevitz et al.’s work [28]; however, except
for such an artificial case, composition with PRNG can
be regarded as secure practically. Such “hypothetical”
security is accepted in practice, including security proofs
in the random oracle model.

We conjecture that the security of composition when
using PRNG can be proved by the hybrid argument,
where each pseudo-random number generation is replaced
with ideal calls to the corresponding ideal functionality,
where rewindings are necessary for the simulation of
the composed protocols. Whether this can be proved or
whether such proof is necessary for practical use is left to
future consideration. In this study, we did not pursue this
point because it is far from the main subject. If provable
security is required, we can use information theoretically
correlated randomness with accepting a doubling of the
communication volume. With this consideration, the per-
formance of the proposed protocols is evaluated using
PRNG.

9. Experiments

9.1. Experimental setup

This section evaluates the proposed protocols’ com-
putation time and communication bandwidth. We imple-

mented each of the proposed protocols on top of the FAL-
CON framework [1]. The experiments were conducted
on Amazon EC2 c4.8x large instances using two exper-
imental settings, LAN and WAN. Each instance has OS
Ubuntu 18.04 LTS, CPU 2.9 GHz Intel Xeon E5-2666 v3
processor, and RAM 64GB.

LAN Three c4.8x large instances in the same
region. The average bandwidth was 4.93
Gbits/s, and the average ping response time
was 1.17 ms.

WAN Deploy the same instances as in the LAN
configuration in different Ohio, Tokyo, and
London regions. The average bandwidth was
97.4 Mbits/s, and the average ping response
time was 141.67 ms.

Parameters were set as L = 22
�

, � = 5, p = 67, fixed-
point representation with 13-bit precision. The computa-
tion time and the communication bandwidth required for
protocol execution were measured, assuming all parties
behave as semi-honest adversaries. The average of 10 runs
is used as the execution time.

Input to the Privformer is an S×dm embedding matrix
where each element is drawn from the uniform distribution
within [−10.0, 10.0], multiplied by 2FP (FP: precision of
fixed-point numbers = 13), and rounded to the nearest
integer. We set dm = 512 for all experiments, which is a
commonly used hyperparameter for embedding. Also, we
set S = 32, 64, . . . , 1028 for experiments in Sec. 9.2 and
Sec. 9.3 where S corresponds to the length of the input
sequence. A sequence with length 1024 is sufficiently long
to handle the typical use cases of the Transformer, such
as sentiment analysis from sentences in natural language,
machine translation, text summarization, and so on. The
input embedding matrix we used for experiments corre-
sponds to random sequences, not real sentences. Consid-
ering that the computation time and communication do
not vary depending on the content of the input sequence,
it is sufficient for performance evaluation of MPC as long
as the scale of the data is comparable with data for real
applications.

9.2. Unmasked Softmax/ReLU Attention

In Section 5.1, we proposed a protocol for (unmasked)
ReLU attention that has O(rS) communication complex-
ity. Compared to original (unmasked) softmax attention,
whose computation and communication complexities are
O(S2), the proposed protocol’s computation time and
communication bandwidth are expected to be reduced,
particularly when S is large. In addition, unlike softmax
attention, ReLU Attention employs the ReLU function
for activation, which is more MPC-friendly. This section
compares the computation time and the communication
bandwidth of protocols of the two unmasked attention
mechanisms.

For ReLU attention, the dimensionality of latent rep-
resentation was set as dm = 64, and the dimensionality of
the output space of the random projection matrix Ω was
set as r = dm ln dm following the recommendation [11].

For softmax attention, we approximate the exponenti-
ation function to the polynomial obtained by Chebyshev
polynomial Exp(x) = 1+x+0.5x2+0.1665x3+0.0438x4,

402



which was employed in Li et al.’s work [31]. For both
unmasked attention mechanisms, the inverse was approx-
imately computed by the Newton iteration [31]. Figure 3
shows MPC’s computation time and communication band-
width for the unmasked softmax/ReLU attention mecha-
nisms in LAN and WAN environments when the length
of input sequence S was varied as 32, 64, . . . , 1024.

First, the computation time of softmax attention shows
a quadratic increase while that of ReLU Attention in-
creases linearly in both LAN and WAN environments
(Figure 3 (a), (b)). According to the results, when S
is less than 128, the computation time of the ReLU
attention is almost the same as or less than the softmax
attention. This is because the evaluation of ReLU on MPC
is more efficient than exponentiation in softmax. When S
becomes greater than 128, the computation time of ReLU
attention is significantly shorter than softmax attention in
both LAN and WAN environments. This gap arises from
the difference in the communication complexity and the
number of nonlinear function calls.

The same results were obtained for the communica-
tion bandwidth. The communication bandwidth increases
quadratically for softmax attention and linearly for ReLU
attention (Figure 3 (c)). The communication bandwidth
for ReLU attention is smaller than softmax attention for
S = 128, . . . , 1024. The number of rounds is constant for
both softmax Attention and ReLU Attention, but the num-
ber of rounds required for ReLU attention is about half
of the rounds for softmax attention (Figure 3 (d)). This
is because the circuit depth required to evaluate ReLU is
shallower than exponentiation. When the sequence length
is 1024, the execution time of ReLU attention is about
9.41 times faster in the LAN environment and about 8.25
times faster in the WAN environment than softmax atten-
tion. The communication bandwidth is reduced by a factor
of 11.67. These results confirm the significant reduction
of computation time and communication bandwidth of the
proposed ReLU Attention.

9.3. Masked Softmax/ReLU Attention

In Section 5.2, we proposed protocols for two different
types of masked ReLU attention. One is masked ReLU
attention in O(1) rounds (masked ReLU AttentionQK),
and the other is masked ReLU attention in O(S) round
(masked ReLU AttentionV K).

Masked ReLU AttentionQK is a protocol that applies
a mask matrix to the unmasked version of ReLU attention
proposed in Section 5.1. Because of the multiplication by
the mask matrix, it cannot achieve linear communication
complexity unfortunately, but it runs in constant rounds as
well as the unmasked version. Masked ReLU attentionQK

has the same communication and round complexity as
the masked softmax attention. However, it employs ReLU
as the activation function, which is more MPC-friendly.
Also, the number of evaluations of nonlinear functions
by masked ReLU attention is less than that by masked
softmax attention. So the computation time is expected to
be reduced. Masked ReLU attentionV K is a protocol that
achieves linear time and linear communication bandwidth
by allowing O(S) rounds. This protocol has improved
communication complexities. So it is expected to reduce

TABLE 2. COMPUTATION TIME (S) AND COMMUNICATION TRAFFIC

(MB) OF EACH LAYER IN THE TRANSFORMER.

Time [sec] Comm
[MB]

Rounds
LAN WAN

Multi-Head Att. 0.611 10.944 48.361 160
Masked Multi-Head Att. 0.613 12.424 47.231 192
Feed-Forward Network 1.671 6.669 19.136 38

Layer Normalization 0.077 10.753 1.64 278

Encoder 14.141 253.164 424.668 4524
Decoder 17.768 402.85 717.894 7344

the computation time and communication bandwidth com-
pared to the masked softmax attention. On the other hand,
computation in O(S) rounds can be inefficient when the
input sequence length S is large.

Whether Masked ReLU attentionQK or Masked ReLU
attentionV K is more useful depends on the input se-
quence length, communication environment, and commu-
nication overhead. This section compares the computation
time, communication bandwidth, and rounds of the three
masked attention mechanisms.

The results are shown in Figure4. First, we com-
pared the masked softmax attention and masked ReLU
attentionV K . The computation time of masked softmax
attention increased quadratically in both LAN and WAN
environments. On the other hand, the computation time
of masked ReLU attentionVK increased linearly (Figure
4(a), (b)). This is consistent with the results of Table 1.
Unfortunately, unlike unmasked attention, the actual com-
putation time of masked ReLU attentionVK was greater
than masked softmax attention when S = 32, . . . , 512
in the LAN environment and S = 32, . . . , 1024 in the
WAN environment. This can be partially attributed to the
fact that masked ReLU attentionVK requires O(S) rounds
(Figure 4(d)).

Next, we compared masked softmax attention and
masked ReLU attentionQK. The computation time for
masked softmax attention and masked ReLU attentionQK

increased quadratically in both LAN/WAN environments
(Figure 4(a), (b)). This is consistent with the results
of Table 1. The computation time for masked ReLU
attentionQK was shorter than masked softmax attention
for S = 128, . . . , 1024 in the LAN environment and
S = 32, . . . , 1024 in the WAN environment. Also, at
S = 128, . . . , 1024, the communication bandwidth for
masked ReLU attentionQK was smaller than that for
masked softmax attention. This improvement is consid-
ered to be due to the fact that the nonlinear operation used
for softmax attention is replaced by ReLU, whose compu-
tation time and communication bandwidth are shorter than
those of exponential and inverse operations. For sequence
length S = 1024, masked ReLU attentionQK was about
four times faster than masked softmax attention in the
LAN environment and about 4.5 times faster in the WAN
environment; the communication bandwidth was reduced
to about one-ninth.

From the above results, masked softmax attention is
the fastest when the sequence length S is short (e.g.,
S ≤ 64) in the LAN environment, while Masked ReLU
AttentionQK achieves the best performance in other cases.
It should be noted that masked ReLU attentionVK was the
slowest in the range of sequence lengths tested in these
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(a) Comp. time (sec., LAN) (d) # Rounds(c) Comm. bandwidth (MB)(a) Comp. time (sec., WAN)           

Figure 3. (a) Computation time (s) in LAN, (b) Computation time (s) in WAN, (c) communication bandwidth (MB), and (d) the number of rounds
required to complete the protocol of the unmasked Softmax and ReLU attention mechanism when the length of input sequence S was varied as
32, 64, . . . , 1024. The horizontal axis represents the length of the input sequence.

(a) Comp. time (sec., LAN) (d) # Rounds(c) Comm. bandwidth (MB)(a) Comp. time (sec., WAN)           

(VKfirst) (VKfirst) (VKfirst) (VKfirst)

Figure 4. (a) Computation time in LAN (s), (b) computation time in WAN (s), (c) communication bandwidth (MB), and (d) the number of rounds
required to complete the protocol of the masked Softmax and ReLU attention (with V K first and QK first) mechanism in LAN and WAN environments
when the length of input sequence S was varied as 32, 64, . . . , 1024. The horizontal axis represents the length of the input sequence.

experiments, but we remark that it would achieve the best
performance when the sequence lengths are longer.

9.4. Computation Time and Communication
Bandwidth of Layers

The layers that configure the Transformer are multi-
head attention, masked multi-head attention 4, feed-
forward network, and layer normalization. We imple-
mented an encoder and decoder with these layers and
measured the computation time (s) and the communication
bandwidth (MB) in the LAN and WAN environments.
As model hyperparameters, we used dm = 512 for
the number of dimensions of the latent representation,
dff = 2048 for the dimension of the middle layer in the
feed-forward network, h = 8 for the number of heads,
and r = 256 as the space dimensionality after projection
by the random matrix Ω. These parameter settings follow
the performance evaluation of the Performer [11]. Results
are evaluated for input sequences of length S = 64 with
batch size B = 1.

The results are summarized in Table 2. The feed-
forward network spent the largest computation time
among the layers configuring the Transformer in the LAN
environment. The process of the feed-forward network
layer consists of two matrix multiplications and one
ReLU. The design of this layer is simple, whereas the
size of the matrix used in the computation is large as
dff × dm = 2048× 512, which causes a large amount of

4. Considering the experimental results in Section 9.3, we employed
masked ReLU attentionQK for masked multi-head attention for this
experiment

computation time. On the other hand, in the WAN environ-
ment, the computation time of the feed-forward network is
the shortest among the layers. Instead, the masked multi-
head attention took the longest computation time. This
is because the overhead caused by the communication
traffic and many rounds is more significant in the WAN
environment.

The encoder consists of four layers: multi-head at-
tention, layer normalization, feed-forward network, and
layer normalization. In the LAN environment, the encoder
required 14 seconds of computation time and 425 MB of
communication bandwidth for an input sequence of 64
lengths. In comparison, the decoder required 18 seconds
of computation time and 717 MB of communication band-
width. This indicates that it takes 14 seconds in the LAN
environment to process tasks that require the encoder only,
such as topic classification and sentiment analysis from
natural language sentences, when the length of the input
sequence contains 64 words.

Inference with the full Transformer model requires the
execution of the encoder once and the decoder So times
where So corresponds to the length of the output sequence.
In the LAN environment, when the output sequence length
is 64, the encoder required 14 seconds, and the decoder
required 18 × 64 = 1152 (s) of computation time with
4.64 GB of communication bandwidth. We remark that
computation at the query user side (e.g., word embedding)
is ignorable. This indicates that it takes about 19 minutes
in a LAN environment to process tasks that require both
the encoder and decoder, such as automatic translation
and text summarization, when the length of the output
sentence contains 64 words. In the WAN environment,
for an input/output sequence with a length of 64, the
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computation time required for processing the encoder was
253 (s), and that by the decoder was 403×64 = 25792 (s).
This indicates that it takes about 7.3 hours to process the
same task. Improvement of the computation and commu-
nication complexity and computation time for long output
sequences is an interesting direction for future work.

10. Conclusion

In this study, we developed a 3-party MPC that can
evaluate the inference of the Transformer. Our implemen-
tation takes about 20 minutes to infer a 64-word sentence
in a LAN environment. Further performance improve-
ments are needed for applications that require real-time
operations, such as machine translation. However, it is
considered useful for tasks that do not require real-time
processing, such as genome data analysis and program
code translation. Further speed-up by using parallel pro-
cessing with GPUs is a promising future direction.
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A. Choice of Multiplication Scheme

MPC for neural networks involves many matrix mul-
tiplications, and the choice of multiplication scheme in
MPC significantly impacts the overall efficiency. In MPC
implementations for neural networks based on secret shar-
ing, Araki et al.’s method [3] or Beaver triples [5] of
mainly used.

The method of Araki et al. uses replicated secret
sharing among three parties. This method requires 2 bits
of communication per multiplication at N = 2 when
information-theoretic security is necessary. When com-
putational security is sufficient, it requires only 1 bit of
communication per multiplication, which is extremely ef-
ficient, while it requires sharing a seed for pseudo random
number generation between the two participants at the
time of initialization. ABY3 [36], FALCON [31], and
others are MPC implementations for the neural network
that follows this scheme. Privformer also relies on this
scheme.

Beaver triples (or multiplication triples) are triples
(a, b, c) such that a · b = c holds. For MPCs employing
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linear secret sharing, a single multiplication can be real-
ized at the cost of two openings and a local computation
by consuming a single Beaver triple. Beaver triples can
be generated independently of the input. For this charac-
teristic, the protocol execution can be evaluated with two
phases: the offline phase for generating Beaver triples and
the online phase for protocol execution. In other words,
Beaver triples can keep the online phase low-cost in
exchange for the high-cost offline phase. SPDZ [14], [15],
[25] is an MPC framework that employs Beaver triples for
multiplication; SecureML [37] is an MPC implementation
for machine learning, including neural networks, that em-
ploys Beaver triples.

Although it is difficult to compare the two schemes
in a strict sense because of differences in the security
model and applicable situations, for example, [2] shows
that the method using Beaver triples is more efficient
in terms of online performance, while the method using
replicated secret sharing is more efficient in terms of
the entire (online and offline) processing cost including
pre-computation. Since the Transformer requires a lot of
multiplications, the multiplication needs to be as fast as
possible. For this reason, our design choice was replicated
secret sharing.

B. Embedding and Positional Encoding

The Transformer takes as input a sequence of words
(e.g., a sentence of a natural language, source code,
DNA sequence). Let T = {t1, ..., tS} be an input word
sequence with sequence length S where ti ∈ T is
a symbol (e.g., a word in natural language, function
name in a programming language, genetic code, etc.).
Each word ti is converted into a word embedding vector
xi ∈ R

dm with embedding dimension dm by a process
called embedding, resulting in a word vector sequence
{x1, ...,xS} ∈ R

S×dm . Next, a positional encoding vector
vi ∈ R

dm representing the position of each word in the
sequence is appended to each word embedding vector
in order to reflect its position in the embedding vector
as x′i = xi + vi. Finally, the embedding vectors are
trasformed into matrix X ′ = (x′1, ...,x

′
S) ∈ R

S×dm ,
which is given to the Transformer as input.

C. Computing the Transformer with Known
MPC Building Blocks

This section discusses the implementation of MPC
protocols for the Transfomer with existing building blocks.

Embedding & Positional Encoding. The embedding
is often processed by publicly shared pre-trained embed-
ding function [4], [38], [40], [49]. Also, positional encod-
ing vectors depend only on the word position and can be
computed analytically without using private inputs (see,
[49], Sec 3.5). Thus, the model owner has no incentive to
keep the parameters private. Considering this, we suppose
that query users transform input sequence T into word
embedding matrix X ′ locally at the query user side, and
MPC takes shares of the word embedding matrix as input
in our construction. For this reason, MPC of embedding
& positional encoding is not discussed in this study.

Feed-Forward Network. The feed-forward network
contains linear computation for fully-connected (FC) lay-
ers and element-wise ReLU to the output of the FC layer.
These can be computed immediately by using MPC for
matrix multiplication and ReLU, and its communication
complexity is in O(S) with ignoring factor dm.

Linear & Softmax. Similar to Embedding & Posi-
tional Encoding, computation in this layer is processed
by a commonly known pre-trained embedding function.
For this reason, we suppose that query users transform
the embedding matrix into the output sequence locally,
and computation in this layer is not subject to processing
by MPC.

D. Subprotocols for Privformer

D.1. Multi-Head Attention

Alg. 6 is a protocol for computing multi-head ReLU
attention with three parties, where attention in Eq. 5 is
replaced by ReLU attention.

Algorithm 6 Multi-Head ReLU Attention ΠMHA :

Require: Each Pj holds 〈Q〉L, 〈K〉L, 〈V 〉L ∈ Z
S×dm

L ,

〈Ω〉L ∈ Z
d×r
L , 〈WQ

i 〉L, 〈WK
i 〉L, 〈WV

i 〉L ∈
Z
dm×d
L , 〈WO〉L ∈ Z

dm×dm

L for i ∈ {1, ..., H}.
Ensure: Each Pj gets 〈MHA(Q,K, V,Ω)〉L ∈ Z

S×dm

L
1: for i = {1, ..., H} do
2: 〈QWQ

i 〉L ← ΠMatMul(〈Q〉L, 〈WQ
i 〉L)

3: 〈KWK
i 〉L ← ΠMatMul(〈K〉L, 〈WK

i 〉L)
4: 〈VWV

i 〉L ← ΠMatMul(〈V 〉L, 〈WV
i 〉L)

5: 〈headi〉L ← ΠReLUAtt(〈QWQ
i 〉L, 〈KWK

i 〉L,
〈VWV

i 〉L)
6: end for
7: Each Pj concatenates 〈head1〉L, ..., 〈headH〉L to

make 〈QKTV 〉L ∈ Z
S×dm

L
8: 〈MHA(Q,K, V,Ω)〉L ←

ΠMatMul(〈QKTV 〉L, 〈WO〉L)

D.2. Feed-Forward Network

The feed-forward network can be processed by com-
puting Eq. 11 using Πmutmal and ΠReLU. Alg. 7 is a
three-party protocol to compute the feed-forward network
of Eq. 11. P0, P1, P2 take a share of X ∈ Z

S×dm

L as

input and output 〈FFN(X)〉L ∈ Z
S×dm

L . Let BF1 =
(bF1

1 , . . . , bF1
S )T and BF2 = (bF2

1 , . . . , bF2
S )T . Then, the

application of the feed-forward network to each row in X
is realized by

FFN(X) = (ReLU(XWF1 +BF1))WF1 +BF1. (17)

Since the computation of the feed-forward network con-
sists of linear operations and ReLU only, its realization
on MPC is straightforward.

D.3. Encoder

Alg. 8 is a three-party protocol for the encoder with
self-attention (i.e., Q = X,K = X,V = X). P0, P1, and
P2 take a share of X ∈ Z

Sin×dm

L as input and output

〈encoder(X)〉L ∈ Z
Sin×dm

L .
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TABLE 3. COMPUTATION TIME (S) AND COMMUNICATION BANDWIDTH (MB) OF THE ENCODER AND DECODER WHEN CHANGING THE BATCH

SIZE.

Encoder Decoder
Batch Size Time (s) Comm

(MB)
Time (s) Comm

(MB)Runtime Amortized Runtime Amortized
1 14.141 14.141 424.668 17.768 17.768 717.894
2 27.082 13.541 849.336 33.6901 16.845 1435.79
4 53.801 13.452 1698.67 59.682 14.921 2871.57
8 107.758 13.469 3397.34 134.69 16.836 5743.12

Algorithm 7 Feed Forward Network ΠFFN

Require: Each Pj holds 〈X〉L ∈ Z
S×dm

L ,

〈WF1〉L ∈ Z
dm×dff

L , 〈BF1〉L ∈ Z
S×dff

L , 〈WF2〉L ∈
Z
dff×dm

L , 〈BF2〉L ∈ Z
S×dm

L .
Ensure: Each Pj gets 〈FFN(X)〉L

1: 〈XWF1〉L ← ΠMatMul(〈X〉L, 〈WF1〉L)
2: 〈X ′〉L ← ΠReLU(〈XWF1〉L + 〈BF1〉L)
3: 〈X ′WF2〉L ← ΠMatMul(〈X ′〉L, 〈WF2〉L)
4: 〈FFN(X)〉L ← 〈X ′WF2〉L + 〈BF2〉L.

Algorithm 8 Encoder ΠEncoder

Require: See Table 4, line 9, columns 2 and 6 .
Ensure: Each Pj gets 〈Encoder(Q,K, V )〉L ∈ Z

Sin×dm

L
1: for i = 1, ... , N do
2: 〈MHAi〉L ← ΠMHA(〈Q〉L, 〈K〉L, 〈V 〉L)
3: 〈LN1i〉L ← ΠLN(〈MHAi〉L)
4: 〈FFNi〉L ← ΠFFN(〈LN1i〉L)
5: 〈LN2i〉L ← ΠLN(〈FFNi〉L)
6: 〈Q〉L, 〈K〉L, 〈V 〉L ← 〈LN2i〉L
7: end for
8: 〈Encoder(Q,K, V )〉L ← 〈LN2N 〉

D.4. Decoder

Alg.9 is a three-party protocol for the decoder with
self-attention. P0, P1, and P2 take shares of X ∈
Z
Sout×dm

L and shares of encoder output E ∈ Z
Sin×dm

L

as input, and output 〈Decoder(X)〉L ∈ Z
Sout×dm

L .

Algorithm 9 Decoder ΠDecoder(P0, P1, P2) :

Require: See Table 4, line 10, column 2,5 and 6.
Ensure: Each Pj gets 〈Decoder(Q,K, V )〉L ∈

Z
Sout×dm

L
1: for i = 1, ... , N do
2: 〈MMHAi〉L ← ΠMHA(〈Q〉L, 〈K〉L, 〈V 〉L)
3: 〈LN1i〉L ← ΠLN(〈MaskedMHAi〉L)
4: 〈MHAi〉L ← ΠMHA(〈LN1i〉L, 〈KE〉L, 〈VE〉L)
5: 〈LN2i〉L ← ΠLN(〈MHAi〉L)
6: 〈FFNi〉L ← ΠFFN(〈LN2i〉L)
7: 〈LN3i〉L ← ΠLN(〈FFNi〉L)
8: 〈Q〉L, 〈K〉L, 〈V 〉L ← 〈LN3i〉L (ToDO: correct?)
9: end for

10: 〈Decoder(Q,K, V )〉L ← 〈LN3N 〉

D.5. Entire computation of Privformer

.
The entire computation of Privformer is summarized

in the following list.

1) The model owner sends shares of the model
parameters to the computation servers

2) The query user transforms his/her input token
sentence into a word vector sequence XE ∈
R

Sin×dm by Embedding + Positional Encoding
3) The query user transforms XE into shares 〈XE〉L

and distributes them to the computation servers
P0, P1, P2

4) The computation servers run Πencoder with taking
〈XE〉L and shares of model parameters as input,
and outputs shares of the embedding matrix 〈E〉L
by the encoder.

5) The query user transforms the output token se-
quence provided by the decoder so far into word
vector sequence XD ∈ R

Sout×dm by Embedding
+ Positional Encoding

6) The query user transforms XD into shares 〈XD〉L
and distributes them to the computation servers
P0, P1, P2

7) The computation servers run Πdecoder with taking
〈XD〉L, 〈E〉L, and shares of model parameters as
input, and obtains the output 〈D〉L of the decoder.

8) The computation servers send 〈D〉L to the query
user.

9) The query user reconstructs 〈D〉L, obtains an
output token by Linear+Softmax, and adds the
token to the end of the output sequence obtained
so far.

10) If the termination signal is output by the decoder,
output tokens have been decoded so far, and
decoding is terminated. Otherwise, jump to step
5

E. Effect of Batch Processing

We varied the batch size and evaluated the change
in the computation time of Transfer per input sequence.
The execution time of the encoder and decoder were
measured in the LAN environment by changing the batch
size as 1, 2, 4, and 8. The parameter setting is the same as
Section 9.4. The results are shown in Table 3. As the batch
size increases, the computation time and communication
bandwidth of the encoder and decoder increase linearly,
and the execution time per input shows little change.
Since this experiment was performed on CPUs and no
parallelization was not introduced, no improvement in
the per-sample execution time is observed. However, the
amortized computation time per sample can be improved
by using a parallel implementation using GPUs or other
devices. Improvement of computation time by paralleliza-
tion is also a promising direction for future research.
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F. Summary of Protocols

Table 4 is a summary of the inputs and outputs of
every entity and invoked subprotocols for each protocol.
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