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Abstract—Privacy labels help developers communicate their
application’s privacy behaviors (i.e., how and why an ap-
plication uses personal information) to users. But, studies
show that developers face several challenges in creating them
and the resultant labels are often inconsistent with their
application’s privacy behaviors. In this paper, we create a
novel methodology called fine-grained localization of privacy
behaviors to locate individual statements in source code
which encode privacy behaviors and predict their privacy
labels. We design and develop an attention-based multi-
head encoder model which creates individual representations
of multiple methods and uses attention to identify relevant
statements that implement privacy behaviors. These state-
ments are then used to predict privacy labels for the appli-
cation’s source code and can help developers write privacy
statements that can be used as notices. Our quantitative
analysis shows that our approach can achieve high accuracy
in identifying privacy labels, with the lowest accuracy of
91.41% and the highest of 98.45%. We also evaluate the
efficacy of our approach with six software professionals from
our university. The results demonstrate that our approach
reduces the time and mental effort required by developers to
create high-quality privacy statements and can finely localize
statements in methods that implement privacy behaviors.

Index Terms—privacy labels, privacy-behavior, Android ap-
plications, machine learning

1. Introduction

Privacy notices describe how an application uses per-
sonal information and why (i.e., its privacy behaviors), and
help users make informed privacy decisions. Application
developers are required by privacy regulations [10], [16]
and application store policies [43] to provide users with
accurate privacy notices. Recently, both application stores
(i.e., App Store [1] and Google Play [11]) introduced their
versions of privacy “nutrition” labels (or simply privacy
labels) [27] to simplify this process. These labels are
standardized notice formats that help developers easily
describe how and why their application uses personal
information and build trust with the users [31].

Existing challenges in creating privacy notices hinder
providing accurate labels, as well. These challenges range
from, difficulty in comprehending privacy behaviors of
their applications [31], [42], to gaps in developers’ knowl-
edge about privacy concepts [17]. Failure to provide accu-
rate labels violates privacy regulations, which can result
in hefty fines for developers [13]. These inaccuracies can

also impact users’ well-being since it inhibits their ability
in making privacy-preserving decisions. Lastly, discrep-
ancies between labels and applications’ privacy behaviors
also diminish trust between developers and users.

Recent works aim to address the challenges of gener-
ating privacy notices, including privacy labels [12], [25],
[30], [59], [60]. Some of these efforts leverage static anal-
ysis approaches to identify APIs called and use templates
[59], questionnaires [60], or developers’ annotations [30]
to generate notices; while others use machine learning
(ML) approaches [24], [25]. For example, Gardner et al.
[12] develop Privacy Label Wiz which uses static analysis
to analyze iOS applications’ source code, provides the
summary of the results to developers, and prompts them
with questions to help create privacy labels for the App
Store. Jain et al. [25] create platform-neutral Privacy
Action labels that describe how and why an application’s
code uses personal information. They use a deep learning
model to predict these labels from the source code.

While these approaches aid developers in creating
privacy labels or notices, they have several drawbacks.
For example, Privacy Label Wiz [12] helps understand the
privacy behaviors of applications with analysis summary
and prompts, but it does not automate the process of
creating labels or identifying the purposes. Label cre-
ation and purpose identification are still the developers’
responsibilities. Moreover, as the application evolves, the
tool will rely on developers to keep track of changes in
privacy behaviors, including purpose, which may increase
the developers’ effort. This practice can be especially
challenging in settings where developers are part of large
teams [31] and the rationale for using personal information
is distributed among members. Jain et al. [25] address
some of these limitations by automating the process of
creating Privacy Action labels. However, their approach
lacks the necessary source code context which makes
it challenging for developers to understand the privacy
behaviors of their source code and create privacy notices
solely based on labels. Consider the code snippet in
Figure 1. If developers are only provided with the Privacy
Action labels Processing and Functionality, they
must read the method to comprehend its behavior and
understand how the personal information is Processed
and for which Functionality it is used. The complex-
ity of this task increases when the length of code snippets
increases and it spans to include multiple methods/classes.

In this paper, we propose fine-grained localization of
privacy behaviors. In fine-grained localization, we locate
individual statements in source code that encode privacy
behaviors and use them to predict their privacy labels.
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Figure 1: Example of how fine-grained localization can help developers create accurate privacy labels and notices.

These localized statements together with predicted privacy
labels can then help developers create short sentences
to be used in privacy notices. The key novelty of our
approach lies in the granularity of locating where privacy
behaviors are implemented in source code. While previous
localization approaches limit localization to only classes
or methods [36], [39], [55] (i.e., coarse-grained localiza-
tion), our approach moves one step further by also iden-
tifying which statements within a method implement pri-
vacy behaviors (i.e., fine-grained localization). Similarly,
static analysis approaches [12], [60] only rely on specific
types of statements in a single method, such as API calls,
to create privacy notices. Our approach identifies not only
API calls but also other statements across multiple meth-
ods that use personal information to create privacy labels.
Apart from the novelty, our approach provides the benefits
of previous efforts such as helping developers understand
high-level privacy behaviors (similar to Privacy Label
Wiz [12]) as well as fine-grained ones and generating
privacy labels (similar to Jain et al. [25]) but with higher
accuracy (at least ∼11% higher). Our approach is also
complementary to existing static and dynamic analysis
approaches and provides an alternative technique to gen-
erate privacy labels. By identifying multiple methods and
employing machine learning, our fine-grained localization
approach identifies individual statements in those methods
providing a much more granular view of privacy behaviors
implemented in the application’s source code.

We explain how our approach can help create accurate
labels and privacy notices with the following example.
Consider the same code snippet in Figure 1: If developers
are provided with the localized statements (i.e., segments
highlighted with red boxes), along with the predicted
labels of Processing and Functionality, they can
better understand how location is processed (i.e., calcu-
lating distance) and for what functionality (i.e., suggest
nearby restaurants) in source code. To provide labels
to users, developers can use these predicted labels (i.e.,
Processing and Functionality) and map them to
their platform-specific labels (App Store or Google Play).
They can also use the labels and localized statements to
create privacy statements such as “We use your location to
calculate the distance and suggest nearby restaurants.” and
use them in their permission rationales or privacy policies.

To implement our approach, we develop a multi-head
encoder model that creates individual representations of
multiple methods and uses ‘attention’ [54] to identify

relevant statements in those methods.1 We demonstrate
the efficacy of our approach by training the model on the
publicly released ADPAc2 dataset [25], which contains
source code samples and their Privacy Action labels. We
choose the components of our model by conducting six
sets of experiments. In each set, we train a classifier with
24 datasets in the ADPAc, evaluate the optimal model
and dataset configurations, and use them for our model.
We also analyze the results and provide key insights into
how to choose the best combination of model and dataset
configurations for identifying privacy behaviors in code.

We evaluate our work both qualitatively and quantita-
tively. For qualitative evaluation, we recruit six software
professionals, with experience in software development
and privacy-related research. We ask them to write simple
sentences that describe privacy behaviors for code samples
with and without fine-grained localization. Our evaluation
shows that while there are negligible differences in the
statements that the professionals write with/out localiza-
tion (since they all have privacy expertise), the time and
mental effort required are significantly less when the code
samples are finely localized. Furthermore, professionals
with less experience benefit the most from localization,
since they save up to ∼74% of time to write statements of
comparable quality and details to those written by the most
experienced ones. Quantitatively, we use accuracy and F-
1 scores to gauge the model’s performance in predicting
Privacy Action labels. Our evaluation shows our model
increases the baseline accuracy [25] by at least 11% with
up to 30% for some labels. Our lowest accuracy is 91.41%
and the highest is 98.45% across labels. We also measure
the accuracy of fine-grained localization by asking three of
the six software professionals who are more experienced
in software development and privacy to manually inspect
the statements in code samples that are highlighted by the
attention module. The results show that at least one an-
notator agrees that 85% of statements implement privacy
behaviors. Our analysis strongly demonstrates that our
approach can identify privacy labels and help in writing
high-quality privacy statements.

1. A recent NLP work has raised questions about an attention mod-
ule’s capability to identify relevant parts of input sequences [23]. How-
ever, several studies indicate that attention is important [49], [51] and
can be used for interpreting the results of a classification task. Hence, we
use attention to select relevant statements and localize privacy behaviors.

2. https://github.com/PERC-Lab/PAcT
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In summary, our main contributions are as follows:

1) We address the issue of creating accurate privacy
labels by developing automated fine-grained lo-
calization to identify statements in methods that
implement privacy behaviors and that explain
how and why personal information is used. This
approach extends the granularity of localization
in previous works to individual statements.

2) We implement our approach by developing a
novel attention-based deep learning model, for
which we conducted six sets of experiments
with 24 datasets to meticulously choose the best
model and dataset configurations. We share in-
sights from these experiments to help researchers
use them as a blueprint for classifying privacy
behaviors in source code.

3) Our evaluation demonstrates that our approach
establishes a new state-of-the-art for predicting
Privacy Action labels, its efficacy in finely lo-
calizing privacy behaviors, and helping create
privacy statements by reducing time and effort.

2. Related Work

Figure 2 summarizes the prior work by showcasing
trends in finding discrepancies between privacy notices
and application source code, creating privacy notices,
identifying malicious applications, and classifying and
summarizing code segments.

2.1. Finding Discrepancies

A significant effort has been made to identify dis-
crepancies between an application’s privacy behaviors and
its privacy notices [15], [32], [37], [40], [50], [56], [61].
Most works focus on matching the application’s privacy
behaviors with its privacy policy [37], [61], application
description [15], [41], [44], permission rationales [32], or
privacy labels [56], using static analysis, and counting the
instances of discrepancies. These works have identified
significant inconsistencies between applications’ privacy
behaviors and their notices and highlighted the issue. Our
work aims at resolving these discrepancies by generating
accurate privacy labels and localizing privacy behaviors in
source code to help create consistent and detailed notices.

2.2. Creating Privacy Notices

A number of studies focus on creating privacy no-
tices [12], [24], [25], [30], [46], [47], [59], [60]. These
approaches either create privacy policies using question-
naires [46], [47], [60] (similar to privacy policy gener-
ators), or provide notices in different formats, such as
permission rationales [33], privacy describing statements
[59], or in-application notices [30]. AutoPPG [59], Priva-
cyFlash Pro [60], Privacy Label Wiz [12], Honeysuckle
[30], and PAcT [25] are closely related to our work since
they also aim to aid developers to create privacy notices
using source code. AutoPPG [59] analyzes the APIs called
to identify the personal information used and then uses a
static subject form object [condition] tem-
plate to create privacy statements, but it lacks the rationale

Figure 2: Selection of closely-related, peer-reviewed pub-
lications. Column ‘ML’ = ML based; ‘GN’ = Generate
Notices; ‘Q/A’ Question-Answering based; ‘In’ = Incon-
sistency Analysis; ‘SA’ = Static/Dynamic Analysis; ‘MA’
= Malicious Applications; ‘CC’ = Code Classification and
‘CS’ = Code Summarization.

for using personal information. PrivacyFlash Pro [60],
Honeysuckle [30], and Privacy Label Wiz [12] provide
rationales in their notices, however, they rely on develop-
ers’ efforts to do so. Jain et al. [25] automatically provide
Privacy Action labels that describe how and why personal
information is used. However, as discussed in Section 1,
these labels lack source code context; adding more work
for developers to understand their privacy behaviors. In
this paper, we extend these efforts, by automating the
process of creating accurate privacy labels and providing
developers with source code context to help them under-
stand the privacy behaviors of their applications.

2.3. Identifying Malicious Applications

Studies that identify malicious mobile applications are
tangential to our work; however, there are some sim-
ilarities in our approaches that are worth mentioning.
Several works have provided approaches to identify ma-
licious applications [5], [22], [52] which pose security
risks. Recently, some studies extended these efforts to
localize malicious code in applications [29], [36], [39],
[55]. These approaches use program graphs, such as call
or dependency graphs, to represent an application, extract
features, and classify them using an attention-based deep
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learning model [36], [39], [55]. Using attention weights,
these approaches identify relevant features used for clas-
sification, which they use to localize malicious source
code. Our approach to localizing privacy behaviors in
source code follows a similar logic. However, a significant
difference between our approaches is the granularity of
localization. These approaches limit localization to ma-
licious packages [29] or methods [36], [39], [55] (i.e.,
coarse-grained localization), whereas, in our approach,
we localize statements within a method which provides
a more fine-grained localization of privacy behaviors.

2.4. Classifying and Summarizing Code

Our work also draws inspiration from efforts in soft-
ware engineering to classify and summarize code. Classi-
fication tasks in this field primarily focus on detecting the
programming language of code snippets [3], [14], [53],
whereas summarization tasks focus on transforming code
snippets into natural language text for various tasks. The
format of the generated text differs based on the purpose,
such as transforming code differences into commit mes-
sages for version control [26], [35], or into comments
for documentation [2], [9], [19], [48]. Our work extends
these efforts to comprehend code and modifies it to finely
localize privacy behaviors and predict their privacy labels.

3. Background

3.1. Permissions and Static Analysis

Mobile operating systems, such as Android, employ a
permissions system to allow developers to access users’
personal information while giving control to users to
protect their personal information. In this system, if de-
velopers want to access personal information, they call a
system API 3 and declare necessary permissions, such as
in AndroidManifest.xml file for Android applica-
tions. When the application requires access to sensitive
information, users are asked if they would permit the
application to access this information, thereby giving them
control over their personal information.

Previous work uses static analysis to identify sys-
tem API calls and extract methods that call them [25].
They refer to these extracted code snippets as Permission-
Requiring Code Segments (PRCS) since they call APIs
that require permission (i.e., permission-requiring APIs).
Since a method calling permission-requiring APIs can
share the accessed information with other methods for
further use, a PRCS includes multiple methods linked
via a call graph. Each PRCS segment contains at most
three methods because they found that in ∼80% of cases,
personal information is used within these three methods
[24], [25]. Since personal information can “hop” between
methods in a PRCS, each method is referred to as a
“hop”. The first hop in a PRCS is the method that calls
the permission-requiring API and each PRCS contains at
least this first hop. The subsequent methods are called the
second and third hops, respectively (we interchangeably
use “hop” and “method”). In our approach, we predict
labels and localize privacy behaviors for PRCS that consist

3. https://developer.android.com/reference/

of up to three hops. Applications can also access and use
personal information via user interfaces [4], [21], [38].
However, in this work, we limit the scope of code seg-
ments to the ones that call system APIs, since our goal is
to demonstrate the feasibility of fine-grained localization
and not to show the coverage of extracting all source code.

3.2. Privacy Action Taxonomy and Dataset

Privacy Action Taxonomy (PAcT) is a taxonomy
that defines privacy behaviors implemented in source
code [25]. The goal of this taxonomy is to help con-
sistently detect privacy behaviors in the application’s
source code and create privacy labels for them. In this
taxonomy, there are two categories of labels: Prac-
tice and Purpose. The labels in the Practice category
describe how a code segment uses personal informa-
tion whereas the labels in the Purpose category answer
why. Both categories contain 4 labels each. The Prac-
tice category contains Processing, Collecting,
Sharing, and Other labels. Whereas the Purpose cat-
egory contains Functionality, Advertisement,
Analytics, and Other labels. The definition of each
label is described in Jain et al. [25].

Jain et al. [25] used PAcT to create an annotated
dataset (called ADPAc) of code segments and their Pri-
vacy Action labels. This dataset contains ∼5,200 PRCS
and ∼14,000 labels, which is publicly available (see Sec-
tion 1). Since each code segment can implement multiple
behaviors, some samples are annotated with multiple la-
bels; hence, ADPAc is a multi-class multi-label dataset.
ADPAc also provides binary datasets for these labels.
These binary datasets include both positive and negative
samples; each positive sample corresponds to the presence
of a specific privacy behavior whereas a negative sample
corresponds to its absence. For example, in the binary
dataset of Collecting label, a positive code sample
implements collecting behavior whereas a negative code
sample does not. Each code sample is represented as
an Abstract Syntax Tree (AST) containing paths within,
where a path is a traversal of nodes in an AST. AST and
its paths are explained in more detail in Appendix A.

Additionally, as mentioned earlier, each code sam-
ple can include up to three hops. Therefore, for each
label, there are three versions of the binary dataset,
which include the same samples containing different
numbers of hops. For example, Collecting_1_Hop,
Collecting_2_Hop, and Collecting_3_Hop have
the same samples but contain one (the first hop), two (the
first two hops), and three (all the three) hops, respectively.
Since there are eight Privacy Action labels in PAcT and
each has three versions, there are 24 datasets in total. In
this work, we use these 24 binary datasets for our exper-
iments and for training our multi-head encoder model.

3.3. Attention

The concept of attention was introduced by Bahdanau
et al. [6] as a method to jointly align and translate
sequences which significantly improves the translation
tasks. Subsequently, attention-based networks were used
in several other NLP tasks and achieved state-of-the-art
performance [34], [57], [58]. The idea behind attention is
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to quantitatively identify tokens in the input sequence that
are more relevant to the task than other tokens. There are
different variations of attention [54]. In this work, we use
self-attention (or intra-attention); a mechanism in which
the weights of the input tokens are determined based on
the importance of other tokens in the same sequence.

4. Approach

We now explain our approach to localizing privacy
behaviors in application source code and describe the
implementation details of our model. In summary, our
approach works as follows: (i) extract AST paths for each
hop in a code sample, (ii) embed the AST paths, (iii)
encode embedded AST paths, (iv) use attention to identify
relevant paths, (v) use fully connected layers to predict
Privacy Action label, (vi) extract relevant paths identified
by the attention module, and (vii) map these paths to
source code to finely localize privacy behaviors. Figure
3 (a) shows a detailed overview of our approach.

4.1. Towards Fine-Grained Localization

We provide fine-grained localization of privacy behav-
iors by using attention weights to quantify relevant paths
in each hop and then mapping these paths to source code.
Towards this approach, the first step is to extract AST
paths from each hop of a code sample. As described in
Section 3.2, each code segment (PRCS) extracted from
an application consists of three methods linked via a
call graph. In line with other research studies that clas-
sify/summarize source code [2], [9], we represent each
code sample using AST paths. We extract these paths for
each hop using a tool called “astminer” [28].

The second and third steps are to embed and encode
the extracted AST paths. Recall that each AST path con-
sists of terminal and non-terminal nodes (as described in
Appendix A). To embed each path, we first tokenize the
paths into individual (terminal and non-terminal) nodes.
We choose to tokenize non-terminal nodes based on our
experimental results, as explained in Section 6.1.1. Next,
we embed each node using a pre-trained embedding model
that we created using Gensim [45]. The combined em-
bedding of each node in an AST path is then passed to
recurrent layers for encoding. To encode each hop, we
use separate encoder heads to ensure that we preserve the
semantic differences between the three methods. Since
there are three methods in each sample, there are three
heads in the multi-head encoder model. These multiple
encoders are an upgrade from the baseline approach that
used a single encoder head to encode all three hops.

In the fourth step, we need to identify relevant paths
that implement privacy behaviors. This is necessary to
predict Privacy Action labels and finely localize privacy
behaviors in the subsequent steps. To identify these rele-
vant paths, we use attention. In each encoder head, an at-
tention module uses a weighting mechanism that provides
attention weights for each path in each hop to quantify the
relevance of each encoded path. This relevance indicates
if a path implements a privacy behavior or not, i.e., paths
with higher attention weights most likely use personal
information which may help predict a label.

In the fifth step, we predict Privacy Action labels.
We combine the attention weights with their respective
encoded paths and then pass them to the fully-connected
layers. This step creates a weighted representation of each
hop and provides the fully-connected layers to “compre-
hend” the privacy behaviors implemented across three
hops. Using non-linearity, the output of the layers is
converted into a prediction for a label. In the second
last step towards fine-grained localization, we extract the
output of the attention module (i.e., the attention weights)
from each head and match them with their corresponding
paths in each hop. This gives us the quantified relevance
of each AST path in each hop. We then sort these paths
based on their weights and select 20 paths with the highest
weights from each hop. We select this number based on
experimental results that we explain in Section 6.3.

Lastly, we map these 20 paths from each hop to the
source code using an automated script as follows: the
script inspects the terminal nodes of each path, which
contain the name of the identifier, and maps it to the line in
the source code that contains the identifier. For example,
in Appendix A - Figure 8 (c), the first AST path has a
terminal node “getLastKnownLocation”. Since the
corresponding source code (Figure 8 (a)) has the method
name getLastKnownLocation, the first AST path is
mapped to the highlighted statement in Figure 8 (a).

These mapped statements implement privacy behav-
iors and are highlighted in the code, thereby finely localiz-
ing privacy behaviors. These seven steps together provide
an automated fine-grained localization mechanism.

We design our localization approach to identify
privacy-relevant snippets at statement-level granularity
since it provides maximum precision. A larger granularity,
say a block of code comprised of several lines, may work
in some cases where privacy-relevant statements are writ-
ten together. In cases where privacy-relevant statements
are spread out, this block-level granularity will highlight
several non-relevant statements and result in a less precise
localization. A statement-level granularity, thus, is a better
approach since it identifies privacy-relevant code that are
either written together or they are spread out.

4.2. Implementation Details

We now explain the implementation details of our
steps: After we extract the AST paths for a code sample
C, we randomly select num paths paths. We decide how
many paths to select from each hop based on our exper-
iments (see Section 6.1.3). Next, we tokenize the nodes
in AST paths. Each AST path pi can be represented as
pi = [ts; tN ; te], where ts and te are the start and terminal
nodes, and tN = [t1; ...; t8] is a list of non-terminal nodes.
We found that in the ADPAc dataset, each sequence of
non-terminal nodes can be of max length 8. Therefore,
after tokenizing, each path pi can be represented as a list
of 10 terminal and non-terminal nodes, pi = [ts; t1; ...; te].
In case the length of non-terminal nodes is less than 8, we
pad the AST path with zeros. We also pad each path with a
zero to denote the end of the path. Hence, each tokenized
path pi is 11 tokens long (the last token is padding). Since,
each hop hi is represented by num paths AST paths,
hi = [p1, p2, ...pnum paths], where iε[1, 2, 3]. Mathemat-
ically, each hop hi is a num paths × 11 matrix. Each
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(a) An overview of our approach to classify and localize privacy behaviors. (b) Detailed architecture.

Figure 3: Overview of our approach and detailed architecture of multi-head encoder model

code segment C contains three hops, i.e., C = [h1;h2;h3],
which makes it a 3× num paths× 11 tensor.

As shown in Figure 3 (b), each encoder head (H1, H2,
and H3) contains an embedding layer E, two recurrent
layers, and an attention module. After tokenizing each
path, we encode them: each individual hop hi in C is
passed to an encoder head Hi. Inside each head, each hop
is embedded as Ehi = [Ep1 ;Ep2 ...Epnum paths

], where
Ehi

is a num paths× 11× embed size tensor contain-
ing embedded AST paths. Each embedded path Epi

is
represented as Epi

= [Ets ;Et1 ; ...;Ete ], where Epi
is a

11× embed size matrix and Etx is the embedding of an
individual node in an AST path which is an embed size
dimensional vector.

After embedding, we pass Ehi through the recurrent
layers for encoding and use the output Li as the con-
text and hiddeni as the hidden state i.e., Li, hiddeni =
RNN(Ehi). Here Li is num paths×embed size matrix
and the hidden state is a num paths size vector. We
pass the hidden states to the attention module which
returns attention weights of size num paths. We stack
the attention weights from the three heads which give us
a 3 × num paths matrix. We pass this matrix through
fully-connected layers and apply sigmoid non-linearity to
get the classification probability. Lastly, we match the
attention weights from each hop to the AST paths and
use a script to map them to their source code.

5. Experiments

In this section, we describe the rationale for our ex-
periments, their setup, and evaluation techniques.

5.1. Research Questions

Our research objective is threefold: first, to find the
optimal model configurations for classifying privacy be-
haviors in code snippets. Second, evaluate our model’s
performance in classifying privacy behaviors in compar-
ison with other models. Third, evaluate the feasibility of
our approach to finely localize privacy behaviors and its
efficacy in helping to write privacy statements. For these
objectives, we ask the following three research questions:

RQ 1: Which configurations provide the optimal per-
formance for classification of Privacy Action labels?

Based on the specific configuration, we ask the fol-
lowing sub-research questions:

RQ 1.1: How does the tokenization of non-terminal
nodes affect the classification performance of the model?

RQ 1.2: Which type of recurrent layers perform
better? LSTM or Bi-LSTM?

RQ 1.3: What is the optimal number of AST paths
to represent each code sample?

RQ 2: Does the multi-head encoder model provide
any quantitative increase in the classification performance
as compared to other models?

RQ 3: Is our fine-grained localization efficacious?
We evaluate the efficacy of our approach to localize

privacy behaviors and help write privacy statements qual-
itatively and quantitatively based on the following sub-
research questions:

RQ 3.1 How does fine-grained localization help devel-
opers write privacy statements?

RQ 3.2 What is the accuracy of fine-grained localiza-
tion in identifying privacy behaviors?

The rationale for RQ 1 is based on the following two
reasons: first, the baseline model [25] did not include
many common model configurations that could improve
the model’s classification performance. Second, there is
no systematic study that compares how the combination of
each of these components affects the model’s performance
for code classification. Therefore, we experiment with tok-
enization, Bi-LSTM layers, and the number of AST paths.
We choose these configuration options for the following
reasons. Tokenization (RQ 1.1): In the baseline approach,
AST paths are tokenized into three tokens where the
terminal nodes are considered as two tokens and the non-
terminal nodes are considered as a single token (see Ap-
pendix A for reference). By not tokenizing non-terminal
nodes, the syntactic structural details of each code sample
are diminished which could potentially hinder the classi-
fication accuracy. Bi-LSTM Layers (RQ 1.2): The primary
difference between LSTM and Bi-LSTM layers is the
additional backward direction encoding of input sequences
in Bi-LSTM layers which provides context surrounding
each token in the sequence. Since an AST path can be
traversed in either direction, including a reversed encoding
may improve the classification accuracy. AST Paths (RQ
1.3): The number of paths used to represent a code sample
is varied from 100 - 300 in code summarization studies
[20], [48]. Therefore, to evaluate the optimal number of
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AST paths, especially for classification, we compare the
performance of 100, 200, and 300 AST paths. It is possible
to experiment with several other configuration choices,
such as source code tokens versus AST paths, to learn
their effects on a classification task; however, these are
tangential to the goal of this paper since we focus on the
feasibility of fine-grained localization.

In RQ 2, we aim to quantitatively evaluate whether
our novel multi-head encoder model improves the perfor-
mance of classifying Privacy Action labels in comparison
to the baseline model and its derivatives with modified
configurations (i.e., models from RQ 1).

In RQ 3, we evaluate fine-grained localization using
qualitative (RQ 3.1) and quantitative (RQ 3.2) approaches.
Qualitatively, we first analyze automated localization and
then evaluate its dis/advantages in helping software pro-
fessionals write privacy statements. Quantitatively, we
evaluate the accuracy of our approach in identifying pri-
vacy behaviors in source code.

5.2. Experimental Setup

We use the 24 binary datasets from ADPAc [25] to
answer RQ 1 (Exp 1-6). Recall that each of the 8 Privacy
Action labels contains 3 versions of the dataset (for exam-
ple, Collecting_1_Hop, Collecting_2_Hop, and
Collecting_3_Hop), with each version containing
paths from one more hop than the previous version (see
Section 3.2). To answer RQs 1.1-1.3, we begin with the
baseline model [25] and add attention (i.e., Exp 1: L 100).
Based on the experiments, we make further configuration
changes to this attention-based model. We intentionally
add attention to the baseline model, since it is key to
our approach and several studies demonstrate the efficacy
of attention in improving the models’ performance across
different NLP tasks [6], [54].

To limit the number of explored configurations that
help us answer our RQs, we make incremental changes to
determine the impact of each configuration and identify
optimal selection rather than trying out all possible con-
figuration combinations. We modify one configuration in
each experiment, and based on the results, we keep this
configuration fixed for subsequent experiments. For exam-
ple, based on the results for RQ 1.1 (i.e., Exp 1: L 100),
we make a decision to include/not-include the tokenization
of non-terminal nodes. Then, when we evaluate RQ 1.2
and RQ 1.3, we use that configuration and only vary the
choice of recurrent layer and the number of AST paths.

To set up the experiments for RQ 1.1, (Exp 1: L 100),
we tokenize each node in an AST path, including non-
terminal nodes. For RQ 1.2, (Exp 4: Bi 100), we replace
LSTM layers with Bi-LSTM in the model. For RQ 1.3
(Exp 1-6), we randomly pool N AST paths from each
code sample for each version of the dataset. For exam-
ple, if N = 100, for Collecting_1_Hop dataset,
which contains AST paths from only the first hop, we
randomly select 100 AST paths from each sample. For
Collecting_2_Hop dataset, we pool 100 AST paths
from the combined paths of the first two hops, and sim-
ilarly, we pool 100 paths from the combined paths of
all three hops in Collecting_3_Hop case. In these
experiments, N varies between 100 - 300 at 100-step
increments. In case a sample contains less than N paths,

TABLE 1: RQ 1 and RQ 2 experiment configurations.
“Tok”: tokenizing non-terminal nodes. “Attn”: using at-
tention.

Tok Attn RNN Type Paths
Baseline False False LSTM 100
Exp 1: L 100 True True LSTM 100
Exp 2: L 200 True True LSTM 200
Exp 3: L 300 True True LSTM 300
Exp 4: Bi 100 True True Bi-LSTM 100
Exp 5: Bi 200 True True Bi-LSTM 200
Exp 6: Bi 300 True True Bi-LSTM 300
Multi-Head Encoder True True LSTM 100/hop

we pad the sample with zeros, which we call null paths.
We summarize these various experiment configurations
explored in RQ 1 (and its sub-questions) in Table 1.

To answer RQ 2 (Multi-Head Encoder), we train our
multi-head encoder model and compare its performance
with the baseline model (i.e., Jain et al. [25]) as well
as the best configurations derived from RQ 1 (Table
1). Note that the RNN type for the multi-head encoder
model in Table 1 applies to each encoder head. To pre-
pare the dataset, we extract the AST paths from 1 Hop,
2 Hop, and 3 Hop datasets for each Privacy Action la-
bel and separate the paths for each hop. For example,
from Collecting_1_Hop, Collecting_2_Hop,
and Collecting_3_Hop datasets, we separate the
paths belonging only to the first hop, second hop, and third
hop, respectively. Since this model is trained using paths
from all three hops, we only compare the results with the
3 Hop versions of the baseline and RQ 1 experiments
(i.e., Exp 3 and Exp 6).

We trained the models for RQ 1 and 2 using the
following hyperparameters: a batch size of 8 and the
Adam optimizer to modify the weights. The learning rate
was fixed at 1e-5 and we used binary cross entropy to
penalize the model. For each dataset, training, validation,
and test sets were split in an 80:10:10 ratio. We chose
these hyperparameters since these were also used in the
baseline model [25]. For RQ 1, each model was trained
for 50 epochs since we did not find improvement in the
results after 50. For RQ 2, we varied the number of epochs
since the model convergence differed for each label. For
both RQs, after each epoch, the models were evaluated on
the validation set. If they achieved better accuracy than
the previous best epoch then the parameters were saved.
We also monitored the training and validation accuracy
to ensure the models did not overfit. After the training,
the parameters from the best epoch were used on the
test set for evaluation. We answer RQ 1 and 2 based on
quantitative metrics, accuracy and F-1 scores. These are
standard metrics used in classification tasks to compare
the performance of different ML models. We balance our
comparison by discussing overall patterns in classification
accuracy for each configuration change while also high-
lighting interesting changes in the results of individual
labels. To develop the model, we use PyTorch 1.8.1 with
Python 3.7 and run all experiments on a workstation with
a Xeon CPU, 54 GB RAM, and a Tesla T4 GPU.

To answer RQ 3, we first conduct a manual inspection
of mappings of some samples to analyze and draw insights
into our approach to finely localize privacy behaviors.
Next, to answer the two sub-research questions, we select
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20 random samples from the test set of all labels, use our
script to localize privacy behaviors in them, i.e., map the
AST paths with the highest attention weights to the source
code, and highlight them.

To qualitatively evaluate fine-grained localization in
RQ3.1, we asked six software professionals at our univer-
sity to write privacy statements for each sample, explain-
ing how the personal information is being used and why.
To investigate any differences in the statements written
when the samples are localized versus when they are not,
we divided the six annotators (i.e., software professionals
referred to as annotators from here onward), into two
groups based on their experience. Annotators in Group
#1 (i.e., Annotators #1, #2, and #3), have more than
four years of software development experience and two
years of experience in privacy research. Whereas Group #2
annotators have about two years of software development
experience and approximately one year of experience in
privacy research. Each group was given 20 samples, of
which only 10 were finely localized. Moreover, the sam-
ples that were localized for Group #1 were not localized
for Group #2, resulting in privacy statements for the same
sample that were written with and without localization.

Apart from writing privacy statements, we also asked
each annotator if and how the localization helped, and the
time it took them to write each statement. We compare
privacy statements and the time taken between localized
and non-localized samples of similar length for each an-
notator as well as between the two groups for the same
samples. These comparisons help us understand how fine-
grained localization affects annotators individually, as well
as among different populations (i.e., professionals with
little privacy experience vs. those with more experience).

In RQ 3.2, we evaluated the accuracy of fine-grained
localization by using the same 20 samples from RQ 3.1,
all of which were finely localized. We then asked anno-
tators in Group #1 who are privacy experts to evaluate
if the highlighted statements implement privacy behav-
iors by providing a binary response (‘yes’/‘no’) for each
highlighted statement. Since each sample consists of three
methods (see Section 3), we evaluated a total of 60
methods where 230 of their statements were highlighted.
To measure the inter-rater agreement among the annotators
we used Krripendorff’s Alpha4 and Fleiss’s Kappa5.

6. Results

In this section, we report our results and answer our
research questions. Table 2 shows the quantitative results
for RQ 1 and RQ 2, which includes the baseline results
[25] in the first column (Baseline). We show the confusion
matrices for RQ 2 in Appendix B - Figures 9 and 10. For
RQ 3, we first discuss automated fine-grained localization
with one representative code sample shown in Figure 4,
and its weighted AST paths in Figure 5. We, then, discuss
dis/advantages of our approach in helping software pro-
fessionals write privacy statements with a representative
sample in Fig. 6 (additional examples are in Figure 14-
15 in Appendix E). Lastly, we report the accuracy of our

4. https://www.statisticshowto.com/krippendorffs-alpha/

5. https://www.statisticshowto.com/fleiss-kappa/

approach for RQ 3.2 (examples shown in Figures 16 and
17 in Appendix F).

6.1. RQ 1: Optimal Configurations

As stated in Section 5, to answer sub-research ques-
tions, we make incremental changes to the configuration
starting with the baseline model. Overall, we find an
attention-based model with tokenization of non-terminal
nodes helps significantly improve the performance. Be-
tween LSTM and Bi-LSTM layers, the difference is in-
significant when we use fewer paths (say 100), but as
we increase this number (to say, 300), Bi-LSTM provides
better results. 300 paths are an optimal choice to represent
each code sample, and 100 paths to represent each hop.

6.1.1. RQ 1.1: Tokenization of Non-Terminal Nodes.
The results for RQ 1.1 (Exp 1:L 100 column in Table
2) indicate that by tokenizing non-terminal nodes (and
using attention), we noticeably increase the accuracy for
most labels. We observe that accuracy increases by ∼5%
on average for Practice and Purpose labels with the F-1
score also increasing for most labels. For some labels, the
increase in accuracy is more significant; for example with
Processing_1_Hop and Advertisement_1_Hop,
the accuracy increases by 12% and 15%, respectively.
These improvements in the scores can be attributed to the
increase in the syntactic structural information of a code
sample, which is what non-terminal nodes represent.

For example, a code sample ‘Processing’ personal
information, say location, executes several operations
ranging from comparing accuracy of location providers
to calculating distance to the user’s address. The syntactic
structural information of these operations is captured by
the tokenized non-terminal nodes, and when provided
to the model, it can help predict Processing with
better accuracy. Additionally, attention helps the model
learn which structures contribute to Processing and
which ones do not. To test the efficacy of attention, we
ran an experiment in which we tokenized non-terminal
nodes and trained using the baseline model (i.e., without
attention) [25]). In this experiment, we noticed an average
accuracy of 59.85% and 54.40% for Practice and Purpose
labels, which are 7% and 20% lower than the baseline
models (i.e., Baseline column in Table 2). This noticeable
decrease in the performance indicates the significance of
attention, especially, with tokenized non-terminal nodes.

Interestingly, we found a noticeable decrease in F-
1 scores for Sharing in Exp 1:L 100. This decrease
is most likely due to an information overload of syn-
tactic structures. Since ‘Sharing’ often occurs with
calls to third-party libraries or third-party libraries calling
permission-requiring APIs [25], such information is em-
bedded in the identifiers of source code, i.e., the terminal
nodes of AST paths. By increasing syntactic structural
information (via tokenizing non-terminal nodes), the iden-
tifier information present in nodes decreases dispropor-
tionately, making it difficult for the model to predict this
label. This is also evident by the inverse classification per-
formance between Processing and Sharing labels,
i.e., when Processing is better predicted (Exp 1:L 100)
with tokenized non-terminal nodes, Sharing is not and
vice versa (Baseline). As noted in the baseline, Sharing
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is often implemented in the second and third hops [25].
Since we use 100 paths to represent 2 or 3 hops, it
can result in an incomplete representation which may not
capture relevant paths to identify Sharing.

Overall, we found an increase in the performance
for most cases; thus, for all subsequent experiments, we
tokenize non-terminal nodes (and include attention).

6.1.2. RQ 1.2: LSTM vs. Bi-LSTM Layers. In com-
parison to Exp 1:L 100, in Exp 4:Bi 100, we did not
observe an increase in the scores when we used Bi-LSTM
layers (see Table 2). The average accuracy for Practice
and Purpose labels are 71.34% and 79.21% which are
similar to those for LSTM layers (71.75% and 79.54%,
Exp 1:L 100). In both experiments 1 and 4, we used
100 AST paths. These results suggest that an additional
backward encoding of AST paths is not very significant,
especially when the number of paths is small (i.e., 100).

However, with a larger number of AST paths, say 200
or 300, Bi-LTSM could potentially improve the scores. We
inspect this assumption in RQ 1.3 when we experiment
with both LSTM and Bi-LSTM models.

6.1.3. RQ 1.3: Number of AST Paths. Overall, we
find that with a smaller number of paths (100), LSTM
predicts labels with higher accuracy while with a larger
number of paths (300), Bi-LSTM performs better. When
we use the LSTM layer (i.e., Exp 1:L 100, Exp 2:L 200,
and Exp 3:L 300), we notice minimal changes in perfor-
mance between 100, 200, and 300 AST paths as shown
in Table 2. The average accuracy for Practice labels
are 71.75%, 71.39%, and 72.27% and for Purpose are
79.54%, 79.59%, and 80.51% across these experiments.
These scores differ within the range of ∼1% which can be
attributed to the number of actual paths in a code sample.

We computed the average number of AST paths in
each individual hop and found that the first hop consists
of 80 paths, and the second and third hops consist of ∼100
paths each. Thus, when we extract, say, 300 paths from a
1 Hop code sample, more than half of the paths are null
paths (i.e., only padding). However, when we extract the
same number of paths from a 3 Hop code sample, where
most paths are not null, we observe a slight increase in the
scores. For example, in Exp 3:L 300, where we extract
300 paths, Collecting_3_Hop has an accuracy of
75.66% whereas Collecting_1_Hop has an accuracy
of 72.37% which matches with our assumption regarding
the percentage of null paths in each dataset.

On the other hand, for Bi-LSTM layers, we notice
that with a higher number of paths, there is an overall
increase in scores. The average accuracy scores for Prac-
tice are 71.34%, 72.45%, and 75.36% and for Purpose
are 79.21%, 80.77%, and 85.26%, as shown in Table 2
(i.e., Exp 4:Bi 100, Exp 5:Bi 200, and Exp 6:Bi 300).
As noted in Section 6.1.2, with only 100 AST paths, the
backward encoding of AST paths provides an insignif-
icant increase to the classification scores. However, as
we increase the number of paths from 100 to 200 and
300, we observe that this additional encoding noticeably
improves the scores. This is also evident based on the
increasing differences in accuracy between LSTM and Bi-
LSTM layers. For example, the difference between LSTM
and Bi-LSTM layers when using 100 AST paths (i.e., Exp

1:L 100 vs. Exp 4:Bi 100) for Practice labels is less than
1%. However, when we increase the number of paths to
300, this difference is 3% with a much larger F-1 score
increase of 12% (i.e., Exp 3:L 300 vs. Exp 6:Bi 300).
We observe a similar but more conspicuous trend with
Purpose labels, where the accuracy and F-1 score differ-
ences between LSTM and Bi-LSTM layers with 300 paths
are ∼5% and ∼10%, respectively. Similar to the LSTM
layer’s case, using 300 paths for 3 Hop datasets provides
better accuracy. These findings suggest that to represent
each code sample, 300 paths is the optimal choice, where
each hop contributes to 100 paths. Since each hop on
average consists of 100 paths, this number makes sense.

To summarize the results from RQ 1.1-1.3, we find that
the optimal configurations are to: tokenize non-terminal
nodes in AST paths when using an attention-based model;
use LSTM layers for fewer paths (100) and Bi-LSTM
layers when having a greater number of paths (300); and
to represent a sample with 100 paths for each method in
the sample. We leverage these findings for our multi-head
encoder model with attention, where we tokenize each
non-terminal node in an AST path. In each encoder head,
we use LSTM layers, because each head is provided with
100 paths for a single hop.

6.2. RQ 2: Classification Accuracy

The Multi-Head Encoder column of Table 2 shows
that our model classifies labels with significantly better
accuracy than other models. The confusion matrices in
Appendix B - Figures 9 and 10 also demonstrate the
unbiased performance of our model for each label.

We first compare the quantitative scores of our multi-
head encoder model with the closest model configuration
(Exp 3:L 300). Both models use LSTM layers and an at-
tention module. In Experiment 3, we used 300 AST paths
to represent each code sample which is the same number
of paths used for the multi-head encoder model (100 AST
paths from each hop). The key difference between the two
models is their architecture. The average accuracy scores
for Practice and Purpose categories in Exp 3:L 300 are
72.27% and 80.51%, which are ∼22% and ∼17% lower
than that of Multi-Head Encoder. This improvement in
accuracy is also evident when we compare scores with the
Baseline, where the increase in average scores for Practice
and Purpose are ∼27% and ∼22%, respectively.

These significant improvements in the scores can be
attributed to the architectural aspects of the model and the
optimal configurations. The three encoder heads encode
each hop separately, creating better representations and
semantically separating them. This is evident from the
results for Sharing, for which our model provides a
∼20% increase in accuracy than the closest comparison
model (Exp 3:L 300). This is because we use 100 AST
paths each to represent second and third hops, which en-
sures that we capture paths that implement ‘Sharing’,
such as calls to third-party libraries. This was not possible
in the baseline approach as noted in RQ 1.1. Furthermore,
in each head, the attention module needs to attend over
only 100 AST paths which makes it easier for the module
to focus on identifiers (which embed the calls to third-
party libraries). This is despite the tokenization of non-
terminal nodes, which we noted was the probable cause of
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a decrease in the accuracy for predicting Sharing label
in RQ 1.1. Lastly, each head in the multi-head encoder
model uses LSTM layers which effectively encode 100
AST paths. Contrarily, in the closest comparison model,
the LSTM layers are required to encode 300 paths which
is not an optimal configuration. Even if we switch layers
in the comparison model to Bi-LSTM, which encodes 300
paths (Exp 6:Bi 300), the results are not nearly as good
as the multi-head encoder model.

We also observe that our multi-head encoder model
accurately predicts the negative label, as demonstrated
by the near diagonal matrices shown in Appendix B,
indicating that it predicts without bias towards the positive
class. Similarly, our model provides ∼30% improvement
with Analytics label which achieves low classification
scores for every other configuration from Exp 1:L 100 -
Exp 6:Bi 300. Similar to Sharing, Analytics sam-
ples also have third-party libraries calling permission-
requiring APIs to access personal information, often in
the second and third hops. To identify this label, iden-
tifier information is necessary. We find that these code
samples are often obfuscated, primarily to preserve their
methodology for analytics. This obfuscation makes it es-
pecially challenging for other models to predict this label.
However, with individual attention for each hop, attending
over 100 paths, it becomes easier to identify third-party
library calls to permission-requiring APIs.

To summarize, representing each hop as an individ-
ual method, preserves semantic differences between three
hops and results in significant improvements in the accu-
racy of the multi-head encoder model. The classification
scores of this model are higher than any other model
configuration (i.e. Exp 1:L 100 - Exp 6:Bi 300).

6.3. RQ 3: Localization Efficacy

Our results show that while there is room for im-
provement, fine-grained localization is efficacious; that is,
it helps in writing privacy statements and can accurately
identify statements that implement privacy behaviors.

6.3.1. Initial Analysis. We first examine if our automated
approach identifies statements that implement privacy be-
haviors. Our manual evaluation indicates that our approach
succeeds in identifying privacy statements. For instance,
consider Figures 4 and 5 which show an enumerated
and highlighted code sample and its AST paths with the
highest attention. The code sample gets the location of
the user in the first hop (Figure 4 (a)), calculates its
distance to another point (in the second hop (Figure 4
(b)), and then shows this distance, which is to a real-
estate property, in the third hop (Figure 4 (c)). When
we look at the localized statements in the first hop, we
observe that most attention is given to statements that
get the user’s location (i.e., statements 1, 4, and 5 in
Figure 4 (a)), which is the core logic of the first hop and
it is implemented in those highlighted statements. These
statements are localized based on the terminal nodes of
AST paths 1, 4, and 5 shown in Figure 5 (a). Our script
does not map AST path 6 shown in the same Figure,
since it is obfuscated. Based on the non-terminal nodes
‘IfStatement’ and ‘ReturnStatement’, we can
approximate the location to lines 8 or 15. However, it

cannot be localized with reasonable certainty; hence, we
do not map this path.

For the second hop, focus is given to statements that
get the location and calculate its distance to the user’s
location (i.e., statements 4 and 5 in Figure 4 (b)). Similar
to the first hop, the terminal nodes in AST paths 4 and
5 (Figure 5 (b)) are used to map them. For path 4,
the two ‘MethodInvocation’ non-terminal nodes are
also used to verify the mapping. This example shows the
efficacy of tokenizing non-terminal nodes. Note that in
statement 4, the first hop ‘getCurrentLocation’ is
highlighted which links the first and second hops together.

Lastly, in the third hop, most statements focus on
developing a view to show details of the property (i.e.,
statements 1, 2, and 4). In statement 4, the second hop
‘getDistancetoPlace’ is also called, which links the
second and third hops together. Method names summarize
a method’s behavior [2], [25] and can be helpful in the
comprehension of privacy behaviors. However, this may
not always be the case. Consider the method names of
the first, second, and third hop in Figure 4. The method
names in the first two hops are relevant and provide
context about how location is being used, i.e., getting the
current location and the distance to the current location
which are both highlighted in the source code. But, the
method name for the third hop does not provide any
insight regarding its privacy behavior, which is, thus, not
localized in this sample. This suggests that our approach
can detect when method names can be helpful and when
they cannot (i.e., not localize them). Statements 1, 2, and
4 are spread out, but our approach precisely identifies
them without selecting other statements in the same block
that are irrelevant. This supports our design decision of
statement-level localization.

Overall, these results indicate that using attention, we
can localize statements that implement privacy behaviors
across three hops as well as the calls to previous hops
which is helpful for tracing the flow of information, espe-
cially in larger code segments. These results suggest that
by mapping highly weighted AST paths, we can provide
fine-grained localization of privacy behaviors. Figures 12
and 13 in Appendix D show another example of AST
paths to source code mappings.

6.3.2. RQ 3.1: Analyzing Privacy Statements. We qual-
itatively evaluate the dis/advantages of fine-grained lo-
calization in helping software professionals write privacy
statements. As stated in Section 5.2, we ask six software
professionals (i.e., annotators) that are divided into two
groups to write simple privacy statements for 20 code
samples. These two groups are given the same samples,
however, the samples that are localized for one group
are not localized for the other group and vice-versa. The
results of this study indicate that fine-grained localization
helps annotators easily identify relevant code statements
that are necessary for writing privacy statements and saves
them the effort and time required to read every line of
code to understand the privacy behaviors of the code. The
localized statements help annotators with comparatively
less experience in software development or privacy to
create privacy statements and save up to 74% of time.

For each annotator, we discovered negligible differ-
ences between the quality of privacy statements for lo-
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(a) First hop

(b) Second hop

(c) Third hop

Figure 4: Code snippets and localized statements.

(a) First hop

(b) Second hop

(c) Third hop

Figure 5: Most attended AST paths in each hop.

calized and non-localized samples of similar lengths. For
example, Annotator #1 wrote “We collect device infor-
mation such as MAC address, Model, OS version, and
Serial number.” for a localized sample and “We check
if your device is connected to a network before loading
events.” for a non-localized one. Both of these statements
are written with equal accuracy and detail about the
privacy behavior of the code, regardless of fine-grained
localization. This level of similarity between statements
can be attributed to the annotators’ knowledge of privacy,
which helps them identify privacy behaviors of the code
samples even without localization highlights.

We also compared the time taken by annotators to
write privacy statements and discovered that while lo-
calization highlights saved time for both groups, Group
#2 annotators benefited the most by saving up to 74% of
their time. Annotator # 4’s average time to write a privacy
statement, for instance, dropped from 9.7 minutes to 5.5
minutes with localized samples because the highlighted
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lines helped them by “drawing [their] attention to privacy-
related lines.” For Group #1 annotators, we found that lo-
calization highlights were more helpful in some scenarios
than others. Consider the localization highlights in Figure
6. Annotator #2 noted that localization highlights were
most helpful since they accurately highlighted “incidental
variable assignments and logic syntax” in a larger code
snippet. These highlights reduced the time and effort re-
quired for reading and comprehending privacy behaviors.
On the other hand, fine-grained localization was less help-
ful when there were too many or too few highlights. For
example, in Appendix E - Figure 14 almost all statements
of a small method are highlighted, rendering localization
ineffective. Similarly, a single highlight of a larger method
in Appendix E - Figure 15 did not reduce the number of
lines required to read and understand privacy behaviors.

Lastly, we compared the privacy statements between
groups for the same samples and discovered Group #1’s
statements were either equally good or of better qual-
ity compared to those of Group #2, regardless of lo-
calization highlights. For example, Annotator #3 wrote
“Opens google maps to the devices current location and
returns lat/lon when the user clicks” without localization
whereas Annotator #5 wrote “We use your location to
show your position graphically on Google Maps.” with
localization for the same sample. While the two statements
are comparable, the one written by Annotator #3 has more
detail which currently lacks in the statement written by
Annotator #5. These differences in quality and detail can
be attributed to the differences in annotators’ experiences
with privacy and software development. These findings
also suggest that developers with limited or no knowl-
edge about privacy could write privacy statements that
are comparable to those written by privacy experts when
they are provided with localized code samples. However,
a more rigorous evaluation will be required to confirm this
conclusion, which we plan to do in the future.

Figure 6: Appropriate highlights for larger code sample
was most helpful for all annotators.

6.3.3. RQ 3.2: Localization Accuracy. For quantitative
evaluation of localization, as mentioned in Section 5.2,
we asked the annotators in Group #1 to label 230 fine-
grained localized (highlighted) statements across 20 code
samples. These annotators gave a binary label to each lo-
calized statement based on whether it implements privacy
behavior or not.

Annotator #1 found 121 highlights out of 230 (∼52%)
as statements that implement privacy behaviors, while
Annotator #2 found 148 highlights (∼65%) and Anno-
tator #3 found 174 statements (∼75%) as relevant. The
inter-annotator agreement scores, i.e., Fleiss’s Kappa and
Krippendorff’s Alpha, among all three annotators were
0.362 for both scores, which for Kappa is considered as
“Fair Agreement”. Although our Kappa value is slightly
low, other works [7], [18], [31] have also achieved low
agreement scores since even experts often disagree [8],
[31]. We computed the percentages of agreements among
annotators for a more thorough analysis. We found that
in the best case (where at least one annotator responded
‘yes’), 85% of highlighted statements were relevant, and
in the average case (where the majority of annotators
responded ‘yes’), 65% of highlighted statements were
relevant. This distribution of agreements indicates that all
annotators found that the majority of highlighted state-
ments implemented privacy behaviors, where these state-
ments are spread across multiple hops. Their annotations
also indicate that our approach has some noise and there
are highlighted statements that do not implement privacy
behaviors. Thus, there is some scope for improvement in
the process of localizing privacy code statements.

We further analyzed the annotation results by inspect-
ing individual cases where annotators disagreed/agreed.
We found that, in many cases, annotators agreed when
code snippets explicitly used personal information, such
as location or email, but disagreed on their subjective view
of which statements actually constituted as ‘implementing
privacy behaviors’. Consider the code snippet in Figure
16, which initializes a SensorManager to access the
devices’ accelerometer. While Annotators #2 and #3 an-
notated with ‘yes’ for statements 2,3, and 4, Annotator #1
disagreed. For statement 1, Annotator #3 responded with a
‘yes’ but Annotators #1 and #2 disagreed since these state-
ments provide implicit access to a personal accelerometer
(which may not be considered as personal information by
some). These demonstrate the subjectivity of privacy that
exists even between experts which is reported in literature
[8], [31]. Although the code snippet in Figure 16 does
not explicitly consume the sensor information, the method
name and the parameters used can help understand how
and why the information is used.

Figure 7: Statements explicitly using personal information
(e.g., 2-5), implement privacy behaviors.

Consider another example in Appendix F - Figure
17, which shows a code snippet from an advertisement
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library using personal information. Here, all three anno-
tators found the use of ‘traditional‘ personal information
as implementing privacy behaviors and completely agreed
on the highlights. Specifically, they agreed that highlights
4-6 and 8-11 localize privacy behaviors. This example
demonstrates that our approach identifies the use of sen-
sitive personal information that is not captured by API
calls. For example, date of birth, gender, income, and
ethnicity are highly sensitive personal information that
are not provided via API calls. It is to be noted that
the code samples in the dataset are not annotated with
any localization information and therefore, all predictions
about privacy-relevant statements are learned by the model
on its own. Hence, our approach is able to identify such
privacy behaviors and can help developers provide much
granular insight into their implementations.

7. Limitations

We plan to address the following limitations in future.

Automated mapping: One challenge of our automated
approach is to provide an exact match of every path
with a statement in the source code. Since a path is the
traversal of a sub-tree, it may contain terminal and non-
terminal nodes of different statements, making it difficult
to provide a one-to-one mapping. In some cases, code
samples and thus, the terminal nodes are obfuscated which
makes mapping challenging. Thus, our script sometimes
maps one path to several statements (i.e., one-to-many),
since it only matches terminal nodes. To mitigate this
challenge, we manually verify and correct the automated
mappings based on non-terminal nodes (such as using
IfExpression tokens). If we cannot map the paths
with reasonable certainty, we do not map them at all.
In the future, we will revise our model architecture to
provide source code tokens along with the Abstract Syntax
Tree (not paths of AST) which will allow the model
to map terminal and non-terminal nodes to source code
tokens thereby eliminating the need for separate scripts
for mapping. While our approach does not always map
obfuscated nodes, developers who will use our work will
have access to unobfuscated code.

Detecting privacy statements: Our approach accurately
identifies privacy-relevant statements in source code in a
majority of cases; however, there are instances, when less
relevant paths were attended. For example, in the second
hop of Figure 4 (b), the model focuses on statements that
check whether input parameters are empty (i.e., statements
3 in the figure). The model also attends null paths (i.e.,
padding), such as statement 7 in Figure 5 (a)). As with
any machine learning approach, there are false positive
predictions. In the future, we plan to minimize false
positive localization by using our revised model which
will utilize the contextual information from source code
tokens and syntactic information from the AST for local-
ization. We will also use attention masks to allow model
to differentiate between padding and true AST paths.

Evaluation: We evaluated our work with 20 samples
which may seem trivial, but the ADPAc dataset is prepared
from 15,000 real Android applications [25]. Moreover,
we extracted the 20 samples from the test sets of ADPAc
dataset which guaranteed that they were not seen during

the training phase, thereby evaluating our work on real-
world application code. Furthermore, in our qualitative
evaluation, we selected annotators with some experience
in software development and privacy. However, they are
not the authors of the source code they evaluated, nor had
access to the entire app’s source code which may have
impacted accuracy for some samples.

8. Conclusions and Future Work

In this paper, we described a novel approach to pro-
vide fine-grained localization of privacy behaviors in an
application’s source code for generating privacy labels
and helping developers write privacy statements. We de-
veloped a novel multi-head encoder model that creates
individual representations of multiple methods and then
uses attention to identify relevant statements in those
representations. To identify optimal model configurations,
we first conducted six sets of experiments and then trained
our model using the optimal configurations. Next, we
used our model to predict Privacy Action labels. Our
quantitative results indicate that our unique architecture
significantly outperforms the baseline, and achieves high
classification accuracy scores of 91.41% - 98.45% in
predicting Privacy Action labels. We also evaluated our
fine-grained localization approach manually as well as
with six software professionals. Manual evaluation results
indicate that our automated approach correctly highlights
privacy-relevant statements in most cases, but may need
manual curation to remove the false positives mappings.
We plan to address this challenge in the future as discussed
in Section 7.

Our qualitative evaluation demonstrates that our ap-
proach helps professionals easily identify relevant code
statements that are necessary for writing privacy state-
ments and saves them the effort and time required to read
every line of code to understand their privacy behaviors.
The time required is reduced up to 74% for professionals
with lower expertise. We also evaluated the accuracy of
our approach with three of the six professionals with
more expertise and found that our model identifies rel-
evant statements that implement privacy behaviors in the
majority of the cases. Based on these results, our approach
provides a mechanism for fine-grained localization of
privacy behaviors. In this work, we only demonstrated the
feasibility of fine-grained localization with six software
professionals at our university. In the future, we will
conduct a user study with several Android application
developers to evaluate our localization approach’s efficacy,
and also perform a comparative analysis on the quality and
timing of the privacy statements creation.

Data Availability

Our datasets, models, and training scripts are available
on the GitHub page of our project at https://github.com/
PERC-Lab/Fine Grained Localization
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Haipeng Cai, David Lo, and Yves Le Traon. On locating malicious
code in piggybacked android apps. Journal of Computer Science
and Technology, 32(6):1108–1124, 2017.

[30] Tianshi Li, Elijah B Neundorfer, Yuvraj Agarwal, and Jason I
Hong. Honeysuckle: Annotation-guided code generation of in-app
privacy notices. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 5(3):1–27, 2021.

[31] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor,
and Jason I. Hong. Understanding challenges for developers to
create accurate privacy nutrition labels. In CHI Conference on
Human Factors in Computing Systems, page 1–24, New Orleans
LA USA, Apr 2022. ACM.

[32] Xueqing Liu, Yue Leng, Wei Yang, Wenyu Wang, Chengxiang
Zhai, and Tao Xie. A large-scale empirical study on android
runtime-permission rationale messages. In 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC),
pages 137–146. IEEE, 2018.

[33] Xueqing Liu, Yue Leng, Wei Yang, Chengxiang Zhai, and Tao
Xie. Mining android app descriptions for permission requirements
recommendation. In 2018 IEEE 26th International Requirements
Engineering Conference (RE), pages 147–158. IEEE, 2018.

[34] Yang Liu. Fine-tune bert for extractive summarization. arXiv
preprint arXiv:1903.10318, 2019.

[35] Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. A
neural architecture for generating natural language descriptions
from source code changes. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 287–292, 2017.

[36] Zhuo Ma, Haoran Ge, Zhuzhu Wang, Yang Liu, and Ximeng Liu.
Droidetec: Android malware detection and malicious code local-
ization through deep learning. arXiv preprint arXiv:2002.03594,
2020.

[37] Sayan Maitra, Bohyun Suh, and Sepideh Ghanavati. Privacy
consistency analyzer for android applications. In 2018 IEEE 5th
International Workshop on Evolving Security & Privacy Require-
ments Engineering (ESPRE), pages 28–33. IEEE, 2018.

272



[38] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu,
and XiaoFeng Wang. Uipicker: User-input privacy identification
in mobile applications. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 993–1008, 2015.

[39] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen,
and Yang Liu. A multi-view context-aware approach to android
malware detection and malicious code localization. Empirical
Software Engineering, 23(3):1222–1274, 2018.

[40] Ehimare Okoyomon, Nikita Samarin, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, Irwin Reyes, Álvaro
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A. Abstract Syntax Tree and AST Paths

Source code can be represented as abstract syntax trees
(AST) to show their syntactic structure. Figures 8 (a)
and (b) show a code segment and its partial AST. The
leaves of an AST, which are identifiers such as variables
and names, are called terminal nodes (rectangular nodes
in Figure 8 (b)). The non-leaves, which represent the
syntactic structures such as if-statements and loops, are
called non-terminal nodes [2] (oval nodes in Figure 8 (b)).
Traversing from one terminal node to another is referred
to as an AST path. Figure 8 (c) shows a list of AST paths
traversed from the partial AST in Figure 8 (b). Since an
AST contains useful syntactic information about a code
snippet, recent work in code summarization [2], [19], [48]
use AST paths to represent code. ADPAc contains the
AST paths of code samples and their labels which we use
in this work.

(a) Code Sample

(b) Abstract Syntax Tree (AST)

(c) AST Paths

Figure 8: (a) A Code Snippet, (b) Its Partial AST, and
(c) Corresponding AST Paths. The Partial AST in (b)
Represents the Syntactic Information of the Code Segment
Highlighted in Green in (a)

B. RQ 1.2: Confusion Matrices

(a) Collecting (b) Sharing

(c) Processing (d) Others

Figure 9: Confusion Matrices for Purpose labels. 0 is
positive label and 1 is negative label in each dataset. The
x-axis shows the predicted label and the y-axis shows the
true label.

(a) Functionality (b) Advertisement

(c) Analytics (d) Others

Figure 10: Confusion Matrices for Purpose labels. 0 is
positive label and 1 is negative label in each dataset. The
x-axis shows the predicted label and the y-axis shows the
true label.
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C. RQ 1.3: Attention Maps

(a) First Hop

(b) Second Hop

(c) Third Hop

Figure 11: Attention Maps of Individual Hops for Selected
Code Sample.

D. RQ 3: Localization Feasibility – Additional
Examples

(a) First Hop

(b) Second Hop

(c) Third Hop

Figure 12: Code Snippets and Localized Statements of
Selected Code Sample.
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(a) First Hop

(b) Second Hop

(c) Third Hop

Figure 13: Most Attended AST Paths in Each Hop for
Selected Code Sample.
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E. RQ 3.1: Analyzing Privacy Statements –
Examples

Figure 14: Too many highlights for small code samples
rendered localization ineffective.

Figure 15: Too few highlights for large code samples do
not help.

F. RQ 3.2: Accuracy of Localization – Exam-
ples

Figure 16: Disagreement analysis: code snippet 1

Figure 17: Agreement analysis: code snippet 2
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