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Abstract—Considering the limited power and computational
resources available, designing sufficiently secure systems for
low-power devices is a difficult problem to tackle. With
the ubiquitous adoption of the Internet of Things (IoT) not
appearing to be slowing any time soon, resource-constrained
security is more important than ever. Physical Unclonable
Functions (PUFs) have gained momentum in recent years for
their potential to enable strong security through the gener-
ation of unique identifiers based on entropy derived from
unique manufacturing variations. Strong-PUFs, which are
desirable for authentication protocols, have often been shown
to be insecure to Machine Learning Modelling Attacks (ML-
MA). Recently, some schemes have been proposed to enhance
security against ML-MA through post-processing of the
PUF; however, often, security is not sufficiently upheld, the
scheme requires too large an additional overhead or key data
must be insecurely stored in Non-Volatile Memory. In this
work, we propose a generic framework for securing Strong-
PUFs against ML-MA through obfuscation of challenge and
response data by exploiting a DRAM-PUF to supplement a
One-Way Function (OWF) which can be implemented using
the available resources on an FPGA platform. Our proposed
scheme enables reconfigurability, strong security and one-
wayness. We conduct ML-MA using various classifiers to
thoroughly evaluate the performance of our scheme across
multiple 16-bit and 32-bit Arbiter-PUF (APUF) variants,
showing our scheme reduces model accuracy to around 50%
for each PUF (random guessing) and evaluate the properties
of the final responses, demonstrating that ideal uniformity
and uniqueness are maintained. Even though we demonstrate
our proposal through a DRAM-PUF, our scheme can be
extended to work with memory-based PUFs in general.

Index Terms—Physical Unclonable Functions, Strong PUF,
DRAM-PUF, Machine-Learning Modelling Attack, PUF Ob-
fuscation

1. Introduction

Physical Unclonable Functions (PUFs) are security
primitives which are used to derive secret information
from intrinsic hardware properties without storing any
explicit data [27]. Sub-atomic variation in circuit structure
caused by manufacturing process variation results in nom-
inally identical chips exhibiting unique characteristics,
which can be exploited to provide an identity strongly
tied to the physical system. This is analogous to biometric
authentication for humans, where small physical (genetic)
variation results in unique, measurable characteristics at
the macro level. PUFs can be used for memory-less key
storage in a cryptographic system, direct authentication in
a challenge-response protocol, or as a lightweight unique
device ID.

One of the most significant concepts in PUF research
is the division between so-called “Strong” and “Weak”
PUFs. This is based on the pairs of input challenges to
output responses (Challenge-Response Pairs, or CRPs).
Strong PUFs have a large set of CRPs, which grow
rapidly with increasing circuit size. On the one hand,
this is advantageous, allowing for large amounts of secret
information to be generated from a very small hardware
footprint. The corollary is that due to the relatively small
number of significant physical variables underlying the
PUF behaviour, they can be vulnerable to modeling, as
the discernment of these variables allows for the prediction
of the response to any arbitrary challenge within the total
set, i.e., a mathematical “clone” of the target PUF. As each
physical variable contributes to many responses, derivation
of the variables is often possible with only a small subset
of captured CRPs. Conversely, Weak PUFs have a small
set of responses (often just one), which increase linearly
with circuit size. In most Weak PUF designs, each bit of
the response is determined by a distinct physical variable
such that knowledge of part of the response provides no
information about the variables underlying the remainder
of the response. This leads to a reverse of Strong PUF
properties – no modelling vulnerability but a far less
desirable ratio of circuitry to secret information. Ironically,
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“Strong” PUFs are highly flexible in their uses within a
protocol but weak to trivial attacks. In contrast, “Weak”
PUFs are more limited in their use cases but are much
more difficult to compromise.

The use of Strong PUFs is most commonly associated
with authentication protocols [15], [36], [41], where the
large number of CRPs allows for individual authentication
tokens to used once then discarded without running out of
possible tokens quickly, such that a replay attack cannot
be mounted by an attacker trying to impersonate a device.
Such protocols can, in theory, be far more lightweight than
most cryptography but are entirely reliant on the security
of the underlying PUF. Weak PUFs on the other hand
are most commonly associated with key storage, where
key material for encryption can be generated from a PUF
circuit without the need for explicit key storage in a Non-
Volatile Memory (NVM) [27]. Many Weak PUF designs
use structures similar to those found in memory, or derive
a PUF response from existing volatile memory circuits
(e.g., SRAM, DRAM). This makes them well suited to
the generation of large blocks of secret information at
minimal resource cost.

The first and arguably most well documented type of a
Strong PUFs are Arbiter-PUFs (APUFs), which exploit in-
trinsic delay variation in two nominally identical electrical
pathways, which are influenced by chained multiplexers
and are formalised as an additive linear delay model
(Figure 1) [12]. As with all Strong PUFs proposed to
date, APUFs are vulnerable to Machine Learning (ML)
based Modelling Attacks (ML-MA) [3], [34], [35]. This is
because in a Strong PUF the large set of CRPs arises from
a relatively small number of actual physical variables. i.e.
the PUF function is rooted in complex physical factors, but
is mathematically simple. Even for a large PUF, if some
sufficient subset of CRPs is known it takes relatively little
computation to derive a function which produces the same
outputs as the actual PUF for any given challenge. A range
of variants have been proposed in an attempt to reduce the
linearity and correlation between the initial challenge data
and response data such as the XOR-Arbiter-PUF (XOR-
APUF) [36], Interpose PUF (iPUF) [33], Feed-forward
Arbiter PUF (FF-APUF) [14] and Lightweight-Secure
PUF (LS-PUF) [29]. While each APUF variant showed an
initially enhanced resilience, each was eventually shown
to be vulnerable to ML attacks which determined the more
complex correlative properties between challenges and
responses [34], [37], [39]. How, or if, Strong PUF designs
like the Arbiter-PUF can be reliably secured against ML-
MA without introducing excessive complexity remains an
open question.

Ideally, there are a number of desirable properties (DP)
for a PUF obfuscation scheme to exhibit:

• DP1: Minimal Area Requirement:- PUF obfusca-
tion requires additional logic and/or operations on
top of the PUF circuit itself. Thus, to keep the
obfuscated PUF lightweight and applicable to con-
strained systems the obfuscation mechanism must
use the lowest amount of system resources possible.
Additional circuitry should be minimised for power
and area, computation should be kept to a minimum,
and existing system resources repurposed as much as
possible.

Figure 1: Arbiter-PUF

• DP2: ML-MA Secure:- The scheme must provide
sufficient non-linearity between PUF inputs and out-
puts (CRPs) such that an attacker with knowledge of
part of the CRP set cannot mount a modelling attack
using machine learning that results in a prediction
rate significantly above 50% for CRPs not in the
known set.

• DP3: No NVM Requirement:- A common require-
ment in authentication systems and in previously
proposed PUF obfuscation schemes (such as [42]) is
an NVM to store secrets or helper data on the device.
Having a secret or data which reveals compromising
properties of the system constantly present on the
device during operation is not ideal and creates an
obvious point of attack for adversaries. Further, in a
PUF context it weakens a key property of the PUF,
that the PUF secrets exist only when being used. A
PUF obfuscation scheme, therefore, should try and
avoid an NVM requirement and in general avoid
the need for fixed additional secrets or helper data
which contains information about the PUF properties.
If supplementary data must be used, it should not
give the adversary any information about the PUF
properties or behaviour.

• DP4: Reconfigurable:- Ideally, in addition to pas-
sively preventing ML-MA by raising the difficulty
of modelling an obfuscation system should contain
a mechanism for reconfiguration. i.e. changing the
system behaviour such that using the same challenge
twice between different configurations exhibits differ-
ent final outputs. This provides an element of active
countermeasure. If an attack is suspected the PUF can
be reconfigured, and a model trained to predict the
previous configuration will now need to be retrained.

• DP5: Generic:- The scheme should be designed
separately from any given PUF design, such that
designers can use any arbitrary PUF in the scheme
and produce the same enhanced security. This kind
of modularity ensures that the obfuscation scheme
can be tested on future-developed PUFs and be im-
plemented to secure any strong PUF which a given
manufacturer desires. This enables use of previously
designed PUFs with specific desirable properties,
such as high reliability in the case of shorter length
Arbiter PUFs, but which are vulnerable to ML-MA
without additional obfuscation logic [17]. A truly
general scheme gives the designer the freedom to
tailor the properties to the needs of the application.

93



1.1. Related Work

Several schemes have been proposed that aim to fortify
the security properties of Strong PUFs. The fundamen-
tal core of all ML-MA is the fact that the relationship
between a PUF challenge and the matching response is
the PUF function itself. Given a training set of known
CRPs it is possible to infer a model which predicts the
behaviour of the PUF function for all challenges, including
those not in the training set. Therefore, anti-modelling
countermeasures aim to obfuscate this relationship and,
by extension, the PUF function. Ideally this would render
ML-MA impossible, but in practice, many methods simply
aim to raise the modelling complexity enough to make
attacks impractical in the field. Obfuscation methods can
mainly be categorised in two ways with subtle differences:
structural non-linearisation and CRP obfuscation. Struc-
tural non-linearisation involves designing PUFs where the
actual PUF function and challenge-response relationship
are less linear in structure, thus increasing the modelling
complexity [14], [25]. CRP obfuscation aims to obscure
the challenge and responses via masking, hash functions,
etc., so CRPs cannot be used to infer the PUF function
unless the adversary can also reverse the obfuscation
function [11], [13], [36].

In 2004, Gassend et al. introduced the FF-APUF,
whereby the results of early PUF stages are fed-forward
to several challenge inputs further along, reducing the
linearity of the PUF [14]. While in practice, this PUF
showed strong resistance to Linear Regression (LR) based
ML-MA, Alkatheiri et al. demonstrated a successful attack
using a Multi-Layer Perceptron (MLP) to model the FF-
APUF [1]. In 2007, Suh et al. proposed the first PUF
to include CRP obfuscation in the XOR-APUF, where
the output of a number of unique APUFs is XOR’ed
together to obscure the mapping of each individual APUFs
responses against the same challenge [36]. This additional
logic (and added resistance to ML-MA) came at the ex-
pense of reduced PUF reliability and increased hardware
overhead. Ma et al., Miskelly et al., and Cui et al. proposed
the use of lightweight single-cell Weak PUFs as an alter-
native method of CRP obfuscation [28] [31] [6], where
each CRP bit is XOR’ed with the response of a single
bit Weak PUF. The hardware overhead of this approach is
minimal, but in practice only reduces the prediction rate of
advanced attacks with large CRP training sets to around
80%. This gives the adversary a significantly increased
chance of achieving a collision, even if it prevents fully
reliable prediction.

Gassend et al. proposed a Controlled PUF, whereby
hash functions are utilised to restrict access to CRPs
[13]. The combination of multiple hash functions and
error-correction code (ECC) incurs a substantial hardware
requirement, making it difficult to justify the PUF over
traditional cryptographic methods. Ye et al proposed an
RPUF in [40], whereby each challenge is randomized
before being input to the PUF itself. This scheme however
showed insufficient resilience against ML-MA with most
attacks providing above 70% prediction accuracy. Subse-
quent attacks increased this to above 90% [8]. In [11],
Gao et al presented PUF-FSM, where ECC is replaced
with a finite-state machine, however, the hash logic still
required by the scheme ensured the hardware overhead

was not sufficiently low and the selection for reliable
responses in the CRP set provides enough information
leakage to mount a successful attack as in [8]. Dubrova
et al proposed the CRC-PUF, utilising a circuit based on
Cyclic Redundancy Checking to perform a transformation
of the PUF input in order to increase the difficulty of ML-
MA [9]. While compact and generically applicable, the
efficacy of this solution is not clear. Only one ML-MA
method was tested experimentally, LR, and even then a
prediction rate of 75% per-bit was achieved. It is also
not a complete scheme as it relies on the generation of a
polynomial to configure an LFSR each time the PUF is
used, but no specific method for generation or handling at
the protocol level is proposed and this is not considered
in the resource usage.

Recently, Zhang et al proposed an obfuscation scheme
for Strong PUFs which utilises pre-stored stable PUF
responses to use for obfuscation after enrollment [42]. A
TRNG is used to select randomly from a set of keys to
obscure CRPs using XOR operations, and when a number
of CRPs is able to be collected by an adversary, the set
is updated. While this scheme enabled strong resilience
against ML-MA and lower hardware overhead than similar
schemes, it relies on storing key data in NVM, enabling
adversaries with physical access to gain access to the se-
cret data, which would ultimately compromise the security
of the PUF. Zhang et al also proposed a scheme which
uses a structure that can operate as three different kinds
of PUF (arbiter, ring oscillator and bi-stable ring), called
CT-PUF [43]. In order to reduce the linearity between
challenges and responses, the CT-PUF acts as only one
of these PUFs to any given challenge, but the challenge
itself is also obscured by being fed through an arbiter
PUF. The CT-PUF structure is more area efficient than
other proposals as the single circuit provides all three
PUF functionalities. It achieves very good, but not perfect,
ML-MA resistance with prediction rates just over 60%.
However, it is not a generalised scheme that can apply
to any strong PUF. Additionally, while it is impressively
compact, it will be shown in this work that even greater
area reductions can be achieved through re-use of existing
components.

1.2. Comparison

Table 1 shows a comparison of the relevant works
presented against the identified desirable properties. The
key distinguishing factors are DP1 and DP5. The proposed
scheme is generic and enables the use of any type of strong
PUF in a modular way, while other schemes are limited
in this regard. The proposed scheme achieves DP5 by
completely separating the chosen PUF from the rest of
the obfuscation logic, such that any strong PUF output
is fully obfuscated with the lightweight proposed one-
way function (described in detail in Section 2.3). While
some other schemes do achieve this generic quality they
end up using more resources than the design proposed in
this work. The proposed scheme achieves this reduction
(DP1) by utilising existing resources on device in the
form of memory PUFs, which enable entropy generation
in runtime without additional logic of use of permanently
storing data in NVMs.
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TABLE 1: Comparison of the Proposed Scheme Against
Similar Schemes

Scheme DP1 DP2 DP3 DP4 DP5
Controlled PUF [13] X ∼ X �∗ �

PUF-FSM [11] X X � �∗ �
Set-based [42] X � X � X
CRC-PUF [9] ∼ ∼ � � �
CT-PUF [43] X � � � X

Proposed Scheme � � � � �

�: Yes; X: No; ∼: Inconclusive/Not Explicitly Evaluated
∗ If hash function used is reconfigurable
DP1: Minimal Area DP2: ML Secure DP3: No NVM Required
DP4: Reconfigurable DP5 Generic Framework

1.3. Motivation

The major issue with Strong PUF obfuscation schemes
is not in devising the methods of obfuscation - any number
of known hard problems can be applied to increase the
modelling complexity to an infeasible degree. The real
problem is: how do we do this in a way that retains the
lightweight nature of the PUF concept? If the obfuscated
system requires many aspects of traditional cryptography,
most of the benefits of a Strong PUF over purely cryp-
tographic functions are lost. There is still the fact that
it is rooted in hardware, but that benefit is not unique
to Strong PUFs by any means. The key goal, then is to
find the method(s) which add the most complexity for the
lowest cost. For most schemes there are three inescapable
overheads in addition to the PUF itself:

(a) Some kind of non-reversible function or mask to de-
correlate challenges from responses.

(b) A fixed matrix or secret which can be used in that
function and an NVM to keep it in. This can some-
times be avoided depending on the nature of (a),
but for very lightweight functions this is generally
a requirement.

(c) Strict error correction, necessary due to the error
amplifying nature of most applicable functions and
inherent PUF noise.

As error correction is always going to be necessary in
PUF based systems, the two targets for overhead reduction
are the masking function (a) and the fixed secret/NVM (b),
but schemes which avoid these have less than ideal results.
Schemes which rely on more complex PUF structures
alone, avoiding (a) and (b), have thus far largely proven
vulnerable to more sophisticated ML-MA. Schemes which
rely on very lightweight masking instead of a hash or one-
way function, avoiding (b), only partially impede attacks.
Steady progress has been made on reducing the footprint
of masking functions but overall footprint remains higher
than is desirable especially in systems using NVMs (which
are relatively expensive, bit-for-bit). NVMs also present
something of an obvious target for hardware level attacks
as they typically present a single point of failure for the
obfuscation system.

Something less explored in this context is the fact
that PUFs are themselves a type of ‘memoryless’ key
storage mechanism, often used in place of NVM. For
most PUFs this results in no net gain in cost, as the
PUF would need as much hardware as an NVM while
being less stable. However, if we consider a software PUF
based on a volatile memory, this becomes a much more

interesting proposition. It is safe to assume most systems
will have at least one volatile memory. If this memory
may also be exploited as a PUF, a concept which has been
demonstrated on both SRAM [21] and DRAM [22] [23]
[32], then it can be used as a matrix generator to remove
the need for NVM entirely. If such a memory PUF can
be operated during system runtime as is the case for [23]
and [32], it also provides the advantage of the fixed secret
only existing when needed, rather than being constantly
present on the device. Further, the size of a system’s main
memory will naturally be much larger than what could be
justified for NVM in a single sub-system, allowing for
a larger fixed secret than would otherwise be feasible.
In addition to the issue of resource use, there is a prac-
tical consideration around the diversity of PUF designs
proposed to date. An obfuscation scheme based around
a particular Strong PUF is helpful but not as useful as
a generic scheme into which any existing Strong PUF IP
can be inserted. However, a generic scheme requires more
rigorous testing because the modelling complexity of the
PUF function is not fixed. Scheme resistance to one ML
attack for one PUF type does not necessarily extrapolate to
equal resistance to any given ML attack for any given PUF
type. This is less of a concern for rudimentary attacks but
more crucial when considering adversarial learning, deep
neural nets, evolutionary strategies, and similar advanced
ML techniques, which are well suited to finding fits for
highly complex functions. Ideally, a scheme should be
both generic and tested experimentally against a broad
range of ML techniques for various complex PUFs.

1.4. Contributions

To provide a solution to the limitations identified in
the current literature, we propose a generic DRAM-PUF-
based obfuscation scheme. The main contributions of this
paper are as follows:

• A generic PUF-based obfuscation scheme for any
Strong PUF, experimentally verified using multiple
16-stage and 32-stage Arbiter-based PUF variants
simulated in software. To the best of our knowledge
we are the first to consider a modular scheme
with regard to Strong PUF where an adversary is
considered to have full knowledge of the utilised
underlying scheme.

• A novel modified One-Way Function (OWF) to
enable strong resilience to ML-MA and enhanced
one-wayness to our scheme, with no impact on
ideal Uniqueness and Hamming Distance properties.
In this regard, we utilise DRAM-PUFs for OWF
configuration, having the effect of improved security
with reduced hardware footprint.

• An evaluation of our scheme against well-known
Machine Learning Modelling Attacks against strong
PUFs, including a novel set of supervised and
unsupervised classifiers tailored for our scheme,
showing a strong capability to resist ML-MA.

• Synthesis of our OWF on a Zynq-7000 FPGA and
provide a comparison of our proposed scheme for
hardware overhead and power consumption against
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comparable schemes.

• We provide all source code and data used for our
experiments, open access for the research community
(Section 6).

1.5. Paper Organisation

The remainder of the paper is organised as fol-
lows. Section 2 introduces preliminary information re-
garding Memory-PUFs, One-Way Functions and nota-
tion/technical concepts used throughout the paper. Section
3 provides a detailed description of the operation of the
proposed scheme. Section 4 explains the experimental
methodology undertaken to evaluate the proposed scheme.
Section 5 then provides a breakdown and analysis of
our experimental results including a comparison against
similar schemes and finally in Section 6, we provide a
conclusion of this work.

2. Preliminaries

In this section, we outline some preliminary concepts
pertinent to the proposed scheme and evaluation methods.

2.1. Memory-PUFs

PUFs are not limited to being comprised of discrete
PUF-specific circuitry. Software PUFs have been proposed
that utilise software controls to measure entropy present in
hardware which already exists on a device. Memory such
as Static Random Access Memory (SRAM) and Dynamic
Random Access Memory (DRAM) are key targets for
PUFs of this type and have produced some excellent
results [21], [22]. In these designs, each memory cell
produces a single response bit, typically producing one
very large PUF response equal to the storage size of the
memory module itself. As such, they fall firmly into the
category of Weak PUFs. This work makes use of a type of
DRAM-based memory PUF called a DRAM Latency PUF.
A commodity DRAM will begin to experience latency-
induced errors if insufficient time is given for certain
internal operations. This is due to the inherent latencies
of the physical processes involved, e.g., capacitor charge
and discharge, voltage adjustments, amplification, etc.
Through a combination of clock and memory controller
manipulation, it is possible to place a DRAM module in
a state where the deciding factor in whether any given
operation on a specific memory address succeeds or fails is
the process variation in the cells being operated on. PUFs
of this type have been shown in practice to produce secrets
with strong security properties [23], [32]. In addition, they
have several desirable properties: they can be implemented
on existing commodity systems, can generate keys as
needed in a just-in-time manner, have a maximum key
size measured in the 100s of MB to GB, and operate
at high speed - under ideal circumstances with a shorter
delay than reading a fixed key from the same memory
[32].

2.2. Machine Learning Modelling Attacks on
PUFs

ML-MA have been a primary security issue for
Strong PUFs almost since original conception. In such
attacks, the ML algorithm collects and analyses the Chal-
lenge/Response Pairs (CRPs) from a given PUF and uses
them to create a model of the target component which
exhibits identical behaviour. Earlier PUF types have been
shown to be easily broken by [1], [3], [34]. Given a model
which successfully plots the linear (or in some cases non-
linear) feature space of the PUF function, an attacker is
able to eavesdrop on novel, unspent challenges, predict the
corresponding responses and mount a man-in-the-middle
attack in order to impersonate the target device, breaking
the security of the PUF (and thus often the entire scheme).

2.3. Lightweight One-Way Function

In this work, we modify the compression function
given in [10] (it is the improved variant of the function
proposed in [2]) to design our One-Way Function (OWF).
Here, we use our own truly random generated H matrices
by using DRAM-PUF data instead of a random quasi-
cyclic matrix in order to ensure optimal security. Contrary
to what has been reported in [10], our construction is suit-
able for memory-constrained environments. In the original
construction of the compression function, as described in
[2], denoted F , takes s bits of input data, and uses a
random r × n binary matrix to obtain r bits of output
data. F consists of XOR operations and simply computes
the syndrome of the split parts (i.e., s bits of data are split
into blocks of w, and then w columns of H are XORed).
The inverting the F is a Syndrome Decoding problem that
is NP-complete [4]. It proves that when you choose the
appropriate parameters, this compression function can be
used as an OWF.

In [10], the authors improved the previous original
construction [2] by using a quasi-cyclic matrix H instead
of the generic random matrix to increase the overall
efficiency. But still, this improved compression function
does have its limitations, for example, the size of H is
still a limiting factor for the efficiency of the compres-
sion function. Furthermore, the quasi-cyclic codes cannot
guarantee complete randomness [10]. Therefore in this
work we focus on how we can generate a truly random
small binary matrix H of 8,192 bytes (note that here the
parameters r = 64, and n = 1024) with appropriate w
parameters, without any security loss for designing our
OWF.

Entropy Enhancement and Resourcefulness for
H-Matrices. A basic approach to the the H matrix
requirement in hardware would be to generate a
cryptographically significant matrix (through an arbitrary
PRNG/TRNG) during device enrollment and permanently
store it in a form of NVM to be accessed when required.
This, as mentioned previously, creates a significant
weakness for a PUF device, where it is assumed an
adversary has physical access and could read H in this
scenario which would entirely undermine the security of
the PUF scheme, not to mention the significant hardware
overhead incurred for each bit of required NVM. For
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these reasons, we focus on the benefits of exploiting
Memory-PUFs which are already suitable to utilise
available device resources to generate large amounts of
high entropy data (discussed further in Section 4.4).

By modifying the idea given in [10], the steps for the
proposed OWF can be written as follows:

1) Select block number w,
2) Split m bits of input data into w blocks, by the way,

if padding is required pad it with the padding method,
3) Convert each of the blocks from binary to integer

(x1, x2 · · · , xw),
4) Pick the corresponding column in the H matrix at

position x,
5) Return CFinal = Hx1 ⊕Hx2 ⊕ · · · ⊕Hxw

In our OWF, according to the chosen value of w, m needs
to be padded. We check whether m is divisible by w, if it
has no remainder the padding is not necessary, otherwise it
needs. For the padding, it is inspired by PKCS#7 [24], but
we made some changes: the number of required padding
bits is to be calculated with the following formula:

Npadding = ([(q1 + 1)× w]−m) (1)

where q1 is the quotient of m and w. Then, the result
is converted to a 4-bit binary number, and we repeat it
y times. Let q2 be the quotient of Npadding and 4, if
Npadding is divisible by 4 without remainder, y is equal
to q2, otherwise, will be equal to (q2+1). As a final step,
we drop the last (4 ∗ y−Npadding) bits to get the padded
input data. For example, let w be 7, in here we need
6 (= [(9 + 1)× 7]− 64) bits padding, the 4-bit binary
representation of 6 is “0110”, then we repeat “0110”
2(= 1 + 1) times as “01100110”. We only need 6-bit
padding so we remove the last 2(= (4×2)−6) bits, finally,
the pad will be “011001”. When evaluating the hardware
cost of the OWF function, in theory, splitting m has no
cost. Here, for the last step costs only [(w − 1)×m]
binary XORs.

According to Algorithm 1, the concatenation of bit
strings M and pad(M,w) is denoted by M‖pad(M,w)
where M ∈ {0, 1}64 is an 64-bit string and pad() is a
padding function. When x is an integer, we write 〈mi〉b
to represent its corresponding b-bit binary representation.

2.4. Notation

Hamming Distance. It is essential that the OWF does
not tend towards a bias for outputting more than one bit
over another. We evaluate this quality using the hamming
distance (HD). The number of bit positions where the two
bits differ gives the HD and the HD of m-bit X and Y is
defined as:

HD(X,Y ) =

m−1∑

i=0

X[i]⊕ Y [i] (2)

Uniformity. Under the different challenges, the unifor-
mity metric gives the distribution of “0”s and “1”s in
PUF responses. For the n different m-bit PUF responses
(represented by R), the uniformity is defined as:

Uniformity = (
1

n

m∑

i=1

Ri)× 100% (3)

Algorithm 1: One-Way Function (OWF)

Input: M : ROrigin

Data: w: Block number
Output: CFinal

1 M ′ ← M‖pad(M,w)
2 m1‖ · · · ‖mw ← parse (M ′)
/* where |mi| = b-bit for all

1 ≤ i ≤ w and parse() is a
function that splits M ′ into w
blocks */

3 xi ← 〈mi〉b
/* where xi is the integer

representation of b-bit bit
stream mi */

4 for i ← 1 to w do
5 Hxi

← pick(H,xi)
/* where pick() is a function

that picks the corresponding
column in the H matrix at
position xi */

6 CFinal ← (CFinal ⊕Hxi
)

7 return CFinal

2.5. Threat Model

This work is based on a threat model which assumes a
remote adversary with the technical ability and resources
to carry out advanced ML-MA. Specifically, the following
assumptions are made:

1) The adversary is remote, or has limited physical ac-
cess to the target device. While physical level attacks
against PUFs are a factor of consideration they are
not the primary motivator of this work.

2) The adversary has a goal of being able to predict
the final output, RFinal, for any given challenge,
COrigin.

3) Any initial challenge, COrigin, and corresponding
RFinal used by a device are available to the adver-
sary via eavesdropping. It is assumed the attacker
can always acquire a moderately sized subset of the
possible CRPs for any given device.

4) The internal feedback challenge and response, CFinal

and ROrigin, are not available to the adversary and
cannot be directly measured. The adversary may
attempt to predict them as a step in the ML-MA
process but has no way to verify this except through
changes to the predicted RFinal.

5) The adversary has full knowledge of the scheme
structure.

6) The adversary has full knowledge of the OWF struc-
ture and can execute a copy of it at will.

7) The adversary has full knowledge of which PUF
designs have been used and the mechanisms they
employ.

8) The adversary can send falsified challenges to the
scheme as a whole but cannot bypass the scheme
to query either the internal SPUF or Memory-PUF
individually.

There is an argument to be made for the inclusion of
side channel analysis, hardware tampering, and/or fault
injection as would be possible for a sufficiently advanced
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adversary with physical access. While not to be dismissed,
experimental analysis of these attacks is beyond the scope
of this work which is focused on the ML-MA threat. Some
preliminary discussion of the implication of these other
attacks for the proposed scheme is given in Section 5.2
with further exploration likely to form the basis of future
work.

3. Proposed Scheme

For an adversary to collect a subset of possible CRPs
and accurately model the PUF behaviour, there must exist
a reasonably strong correlative relationship between the
initial challenge and final response data. Based on this
assumption, we aim to complicate the mapping between
initial challenges and final responses collected by an ad-
versary such that resilience against ML-MA is sufficiently
enhanced. Additionally, we consider the requirement to
maintain a small enough hardware footprint to enable a
scheme that can be reasonably deployed on edge devices.

We, therefore, present a generic obfuscation scheme
where the Strong PUF element is considered modular,
such that various Strong PUF implementations may be
used interchangeably to generate hardware-centric tokens
for further processing. To limit the overall footprint of a
PUF obfuscation scheme it is desirable to enhance entropy
using existing resources where possible. We achieve this
in two ways: Firstly, while Strong PUFs on their own are
susceptible to ML-MA, there is still an amount of entropy
which is generated from the manufacturing variation of
the PUF for each CRP. We exploit this by introducing a
self-feedback feature where initial Strong PUF responses
are used to create a new obfuscated challenge for the
same Strong PUF. This contributes a baseline increase in
modeling complexity for a remote adversary, as they will
not have access to the internal feedback challenge. It adds
very little hardware and is a generic solution which can
be applied to any strong PUF. Further, it provides some
flexibility in that depending on the stability of the PUF
and acceptable level of resource consumption the number
of feedback rounds can be increased or decreased.

In itself this increase in complexity is not sufficient
to prevent ML-MA, however. Therefore, we also propose
to use a low-cost OWF (as described in Section 2.3)
in the feedback loop, such that the relationship between
the origin challenge and the internal challenge becomes
non-reversible and extremely difficult to predict without
knowledge of a matrix, H , and the internal PUF response,
ROrigin. In addition, we propose to exploit a second PUF
- a Memory-PUF - as a matrix generator to supply the
OWF with i.i.d matrices.

Generating matrix data in this way has key benefits.
The OWF requires H to be a large random matrix, which
would typically require permanent storage on-device. This
both increases the scheme footprint and provides an ob-
vious target for hardware level attacks. By offloading the
synthesis and storage of H data to a Memory-PUF, both
limitations can be mitigated. In terms of cost, the Memory-
PUF can generate very large matrices with the necessary
properties from its own hardware. In the case of the
exemplary DRAM-PUF used in this work a significant
proportion of the memory tested was usable for matrix
generation, giving a total matrix space in the order of 100s

of MB per GB of total DRAM (see section 4.4 for further
detail). An equivalently sized fixed matrix with NVM
storage would incur a substantial hardware and processing
cost.

In combination these measures provide a very signif-
icant increase to the modeling complexity while using
minimal additional circuitry. The specifics of the scheme
are given in the following section, with tests of attack
resiliency, resource consumption, and security analysis
provided in Sections 4 and 5.

3.1. Generic PUF Obfuscation

We present our proposed generic obfuscation scheme,
the entire process of which is depicted in Figure 2 and is
described with the following numbered steps.
Response format: A binary vector of length i.
Challenge format: The SPUF is assumed to generate 1
bit responses to x bit challenges, where x is typically
the number of SPUF stages. The OWF requires a fixed
64-bit input, meaning 64x challenge bits are required for
one execution of the OWF. This will produce a 64-bit
output, which can be split into 64/x feedback challenges
to produce 64/x bits of the final response. This must
be repeated until the desired response size, i, is reached.
Therefore the expected challenge C will consist of the full
set of required SPUF challenges, COrigin, concatenated
with the Memory-PUF challenge CMem. COrigin will be
of length (64x) ∗ (i/(64/x)) bits.

1 First, the challenge data C is received by the de-
vice and split into the SPUF challenge COrigin and
Memory-PUF challenge CMem. The first 64x bits of
COrigin are taken as Ci

Origin.

2 Ci
Origin is passed to the SPUF to generate the inter-

nal response, Ri
Origin.

3 Error correction is performed on Ri
Origin to remove

noise. PUFs contain an inherent degree of random
noise largely influenced by environmental condition
variation. Therefore, error correction is performed on
the PUF output to remove this noise and generate a
stable output. The scheme does not specify a cor-
rection method as the optimal approach will vary
depending on the particular properties of the chosen
PUF (an example however is provided in Section 5.3
to demonstrate hardware overhead).

4 If i <= 64 (i.e., the scheme is in the internal
feedback stage) Ri

Origin is appended to a secure 64-
bit register where the full ROrigin is assembled.

5 The secure register waits for a full 64 bit ROrigin.
This register must be carefully secured as whole or
partial leakage of ROrigin invalidates the ML-MA
countermeasures.

6 The completed ROrigin is passed to the OWF, which
now requires the configuration matrix, H .

7 The Memory-PUF challenge CMem is passed to the
Memory PUF controller, which prepares the memory
segments indicated in CMem for PUF use.

8 The Memory-PUF generates a preliminary (noisy)
response matrix.

9 Error correction is performed on the Memory-PUF
output to produce the final de-noised matrix, H . Pro-
vided there is sufficient memory space available, this
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Figure 2: Generic PUF Obfuscation Scheme

is carried out also within the memory (to store a copy
for majority voting over repeated measurements).

10 H is used to configure the OWF, which has already
been passed ROrigin. The 64 bit output of the OWF
is the internal challenge, CFinal.

11 CFinal is divided into 64/x vectors of length x,
which are fed sequentially as challenges into the
SPUF.

12 The output bits are again error corrected to remove
noise, then the RFinal bits are appended to the final
response R.

13 Finally, i is re-initialised to 0 and the process is re-

peated, using the next 64x bits of COrigin as Ci+1
Origin.

This continue until the required size of R is reached,
after which R is returned to the verifier.

4. Experimental Methodology and Discussion

In this section, we first provide details of the
setup/methodology used to validate the proposed obfusca-
tion scheme, including details on the PUF datasets, quality
of DRAM-PUF measurements and threat model.

4.1. Strong PUF Datasets

As with most hardware cryptographic primitives, ad-
justing PUF parameters can enable a designer to tailor the
PUF design around the properties most desired for a given
security scheme. With Arbiter-based PUFs, one such pa-
rameter which can be varied is length of the PUF (referred
to as ‘stages’) which is adjusted through variation of the
number of multiplexers used in the delay chain (see Figure
1). Increasing the size of the PUF has an exponential
effect on increasing or decreasing the available CRP space,
in theory enhancing the security of the PUF at the cost
of decreased reliability. As shown in [34], while longer
APUFs require more resources to model with ML-MA,
APUFs of even 128-bits in length can be broken fairly
trivially with sufficient CRP training data. While some
may argue these render such PUFs redundant, we propose
it as a reason to utilise the PUF for its strength in ability
to generate many unique CRPs on-the-fly without any
kind of additional processing, while security against ML

is offloaded to other mechanisms in the overall scheme.
For this reason, we propose the use of smaller APUFs,
and thus verify our proposed scheme on 16-stage and 32-
stage APUF variants, where the 16-stage APUFs supports
216 unique CRPs and the 32-stage APUFs support 232

CRPs. This design choice intrinsically reduces hardware
overhead simply due to the smaller PUF size, but also
inevitably reduces further error correction overheads as
PUF reliability is not worsened with a larger PUF. For
a 16-stage PUF, while it may seem only to support a
relatively low number of possible unique CRPs (65,536),
our scheme resolves this issue through intrinsic support for
reconfigurability. As the challenge/response behaviour of
the entire scheme is dependent on both the Strong-PUF
challenge and the unique matrix, H from the Memory-
PUF, the number of possible Strong-PUF CRPs scales
directly with the number of unique responses supported by
the Memory-PUF. In this way, just 10 unique Memory-
PUF responses brings the total supported CRPs of the
proposed scheme to 655,360 CRPs, providing an enhance-
ment for scalability. Additionally, this has the effect of
improved resistance to ML-MA as when the scheme is
reconfigured, an adversary must attempt to train a new ML
model to capture the new CRP behaviour of the scheme
(discussed further in Section 5.5).
We utilised the PyPuf Python framework to generate a
set of Strong PUF datasets, through simulating the linear
delay models of each PUF tested [38]. To cover a variety
of APUF variants, we tested both 16-stage and 32-stage
APUF, XOR-APUF and FF-APUF. These PUFs have
well defined mathematical models which describe their
behaviour and can therefore be accurately simulated in
this context. These simulations may not precisely emulate
the behaviour of specific hardware implementations of
these PUFs, but they do accurately represent the general
behaviour and, crucially, their modelling complexity. As
this work aims to evaluate a counter-modelling scheme
and the simulated PUFs are an accurate representation of
the work needed to perform a modelling attack they are
entirely suitable for use here.
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4.2. Memory PUF Dataset

To generate the H-matrices for our OWF, we opted to
use a Latency DRAM-PUF due to the size of available
responses, ideal PUF properties, high measurement speed
and the ubiquity of DRAM in commodity devices. It
should be noted that this is only a test case using a partic-
ularly well suited PUF design. In theory, any weak PUF
which can quickly generate large responses could perform
the same function. Unlike the strong PUF designs used,
DRAM based PUF behaviour has only been observed
experimentally. There is no defined mathematical model
by which the physical level behaviour can be simulated.
It would be possible to simply assign each simulated cell
a probability of failure, but this misses many nuances
such as the influence of surrounding cell contents, line
variation, sense amplifier variation, etc. Developing and
verifying the accuracy of such a model is beyond the scope
of this work, therefore we chose to source DRAM PUF
data generated experimentally from hardware. The exper-
imental setup for this used the same setup described in
[30], targeting Commodity Off-The-Shelf (COTS) DIMM
form factor desktop DRAM modules. In each experiment
a data pattern was written to memory, then the timing
parameter tRCD was lowered to 0 clock cycles. Sequen-
tial attempts were made to read the data pattern with
the results of these attempted read operations forming
the PUF response. No error correction or filtering was
applied. Data was generated for test patterns 0x00 (all
‘0’), 0xFF (all ‘1’) and 0x55 (checkerboard pattern). For
use in the proposed scheme each DRAM PUF response
was transposed to match the required size of our H-
matrices. Error correction was not necessary as only a
single execution of the obfuscation scheme was required
for each given DRAM-PUF measurement, meaning we
can assume the DRAM-PUF measurement used is the final
‘golden response’.

4.3. Equipment Used

Finally, we performed each of our ML attacks using
Python 3.8.12, PyPuf and ScikitLearn on an Intel i9-
11980Hk CPU @ 2.60GHz and DDR4 3200MHz 64GB
memory. Also, in order to observe the total hardware
overhead, we implemented our proposed scheme on a
Xilinx Zynq-7000 FPGA device.

4.4. DRAM-PUF Characterisation

As discussed in Section 2.3, it is imperative for the
security of the OWF that the supplied H-matrices are
cryptographically significant, such that they exhibit ideal
uniformity and hamming distance properties (per bit) on
the final output. The strong security properties of DRAM
based PUFs have been demonstrated experimentally in
previous works [23], [32]. In order to verify that the
properties seen in previous works held true for the data
generated for use in this work, we performed charac-
terisation tests across each unique DRAM-PUF response
to determine the suitability for use as an H-matrix. The
challenge for the DRAM-PUF can be configured by two
means: memory location and input pattern, each com-
bination of which (ideally) produces a unique response

output pattern. Further, the OWF output may be config-
ured through incrementing or decrementing the OWF w
value, therefore we include this parameter to enable an
increased challenge space, which enables unique OWF
configurations totalling: unique memory locations * input
patterns (3) * w. We refer to a combination of H-matrix
and w value from now on as the COWF . We configured
the OWF with each unique COWF and tested the out-
puts over 10,000, 20,000 and 30,000 (separately) unique
samples for uniformity and hamming distance. Practically,
this process would occur during the enrollment phase
of the scheme, where specific combinations of memory
location, input pattern and OWF w value are tested for
knowledge in advance of which unique challenged should
be used during authentication. We found that the DRAM-
Latency PUF exhibits a very strong ability to generate
cryptographically significant H-matrices. Across our tests,
we found that uniformity was ideal (50 +/- 0.5) in more
than 80% of cases, with 81.3% of available unique chal-
lenge space (memory locations * w) demonstrating ideal
uniformity for challenge pattern 0x00, 88.4% for pattern
0xFF and 100% for pattern 0x55. Furthermore, our results
demonstrated that ideal hamming distance is adhered to
extremely well, with all COWF s consisting of an ideal
hamming distance of 32 +- 0.5 (for 64 bits). The observed
trend of solid pattern (0x00, 0xFF) inputs resulting in
reduced uniformity in some memory regions while mixed
pattern inputs produce near ideal uniformity is consistent
with the results reported in [23] [32].

5. Results and Analysis

In this section, we present the obtained results and
discuss our observations.

5.1. Resilience to ML-MA

Here, we first report the findings of classic PUF ML-
MA methods on the Strong-PUFs both with and without
the proposed scheme. After, we report the findings of our
custom ML attack on the scheme. In order to test a variety
of PUF types, we performed all tests on both 16-stage and
32-stage variants of an APUF, XOR-APUF and FF-APUF
(described in Section 1).

5.1.1. Classical ML-MA. In order to benchmark our
proposed scheme against the classic ML-MA methods on
PUFs, we first performed both the LR attack proposed
in [34] and the MLP attack proposed in [1] on both the
PUFs with and without the proposed scheme. For fair
comparison, we conducted two experiments. In this first
experiment, we perform both the LR and MLP attacks on
the Strong-PUFs without the obfuscation scheme, such
that we assume an adversary has access to the Strong-
PUF challenges and responses, COrigin and ROrigin, and
aims to predict direct new ROrigin responses from the
same PUF. In the second experiment, we consider the
threat model described in 2.5, where an attacker gains
access to the initial challenges and final responses of the
obfuscation scheme, COrigin and RFinal, and aims to
predict new final response bits. We trained each model
for the 16-stage APUF on 5000 CRPs and 10,000 CRPs
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TABLE 2: ML-MA using Classic Methods

PUF Type Attack Training/Testing CRPs Accuracy 

APUF 
16

LR 720000 0.53 

MLP 720000 0.531 

32

LR 360000 0.496 

MLP 360000 0.477 

XOR-APUF 
16

LR 720000 0.525 

MLP 720000 0.529 

32

LR 360000 0.509 

MLP 360000 0.517 

FF-APUF 
16

LR 720000 0.484 

MLP 720000 0.521 

32

LR 360000 0.498 

MLP 360000 0.478 

PUF Type Attack Training/Testing CRPs Accuracy 

APUF 
16

LR 5000 0.944 

MLP 5000 0.988 

32

LR 10000 0.977 

MLP 10000 0.987 

XOR-APUF 
16

LR 50000 0.974 

MLP 50000 0.989 

32

LR 100000 0.944 

MLP 100000 0.984 

FF-APUF 
16

LR 50000 0.603 

MLP 50000 0.97 

32

LR 100000 0.645 

MLP 100000 0.981 

for the 32-stage APUF. Due to the increased complex-
ity of the XOR-APUF and FF-APUF, for consistency
we trained each model on 10x the number of CRPs as
the APUF variants, though it is possible to successfully
model these PUFs with fewer CRPs as demonstrated in
[34] and [1], especially considering they have few stages.
Finally, the training CRPs were split into sets of 99%
for training and 1% for validation. Table 2(a) provides
the details and prediction accuracies of the classical ML-
MA attacks. Our benchmark showed expected results,
where prediction accuracies for each PUF remained above
94% for each attack, with the exception of the FF-APUF
for the LR attack with around 60% accuracy due to the
enhanced resilience against linear classifiers. When faced
with the MLP attack, the prediction accuracy matched
that of the other PUFs at above 97%. However, when
the obfuscation scheme is implemented, the modelling
results show a significantly reduced performance. Each
PUF was attacked using the maximum available CRPs,
with 720000 for the 16-stage PUFs and 360000 for the
32-stage PUFs. As larger challenges are required per final
response bit, more possible CRPs are available for an
attacker to train the model. Table 2(b) shows the results
of the classical ML attacks when integrating the proposed
scheme. Each attack performed for each PUF showed an
average prediction average of 50%. Even when using the
most vulnerable 16-bit APUF, the maximum prediction
accuracy was extremely low at 53.1%, which is almost the
equivalent of a random coin flip. This result demonstrates
the potent ability for the scheme to obscure any linearity
between original challenge and final response, such that
an attacker is provided no advantage when attempting an
ML attack.

5.1.2. Custom ML-MA. As the proposed scheme de-
viates from the simple additive linear delay model of
the Strong-PUFs on their own and the number of final
output bits available to an attacker, it is also necessary
to test a wider variety of classifiers against our proposed
scheme. We first benchmark the performance of a set of
supervised classification algorithms consisting of Decision
Tree, Random Forest, Extra Trees, Logistic Regression,
Quadratic Discriminant Analysis, Naive Bayes, Ridge,
Light Gradient Boosting Machine, and Linear Discrim-
inant Analysis, the results of which are depicted in Table
3a. We optimise the performance of each ML classifier

by performing a random grid search using a predefined
internal grid. Each model is evaluated using raw accuracy,
AUC, recall, precision, F1, Kappa and MCC [5], [16]. For
brevity, the details of each metric have been provided in
Appendix 1 for the interested reader.

We also benchmark the performance of our proposed
scheme against a set of unsupervised algorithms, namely
Deep Q-Network, HDBSCAN, DBSCAN, BIRCH, K-
Means++, K-Means, K-Medoids, Gaussian. Unsupervised
classifiers, where obscure connections in an unlabeled
dataset are discovered by grouping data into clusters or
by association. Most importantly, we evaluate our pro-
posed scheme against a reinforcement learning (RL) based
attacker using Deep Q-Networks (DQN). DQN is an
approximation-based RL where an agent interacts with the
environment by sensing its state and learns to take action
to maximise long-term reward. As the agent takes action,
it needs to maintain a balance between exploration and
exploitation by performing a variety of actions using trial
and error in an uncertain environment to favour the actions
that yield the maximum reward in the future. This type of
exploratory attack is well suited for learning highly non-
linear relationships/correlations within a complex feature
space, such as is required for modelling PUF obfuscation
schemes, similar to the CMA-ES attack performed in [3].
The results of the unsupervised classifiers is shown in
Table 3b

In order to ensure the generalisation and verify results,
we perform 10-fold-cross validations on each experiment
experiment. The challenges (training features) consisted
of 1024 and 2048 features (for each bit) for the 16-stage
and 32-stage PUF respectively. As the scheme outputs 4
bits for the 16-stage Strong PUFs and 2 bits for the 32-
stage Strong PUFs, the classification labels were 4 and 2
bits respectively (15 and 4 labels).

Our results showed each classifier faced extreme diffi-
culty in detecting a relationship between the challenge and
response data for both the supervised and unsupervised
classifiers, with the accuracy of each classifier for each
PUF type not exceeding 6.3% for the 16-bit PUFs and
20% for the 32-bit PUFs. Overall, the unsupervised clas-
sifiers performed slightly better overall than the supervised
methods, which is intuitive given the suitability of many
unsupervised classification methods to non-linear predic-
tive tasks such as required for PUF obfuscation modelling.
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TABLE 3: Custom ML-MA Results

Model PUF Num. 
Stages 

Accuracy AUC Recall Prec. F1 Kappa MCC 

Logistic 
Regression 

APUF 16 0.0630 0.5021 0.0629 0.0630 0.0629 0.0005 0.0005 
32 0.2485 0.4979 0.2483 0.2483 0.2482 -0.0023 -0.0023 

XOR-
APUF 

16 0.0640 0.4991 0.0638 0.0638 0.0638 0.0014 0.0014 
32 0.2485 0.4979 0.2483 0.2483 0.2482 -0.0023 -0.0023 

FF-
APUF 

16 0.0621 0.5002 0.0621 0.0621 0.0620 -0.0005 -0.0005 
32 0.2524 0.5014 0.2524 0.2524 0.2524 0.0031 0.0031 

Linear 
Discriminant 

Analysis 

APUF 16 0.0629 0.5021 0.0628 0.0629 0.0628 0.0003 0.0003 
32 0.2484 0.4979 0.2481 0.2481 0.2480 -0.0025 -0.0025 

XOR-
APUF 

16 0.0638 0.4992 0.0636 0.0636 0.0635 0.0012 0.0012 
32 0.2484 0.4979 0.2481 0.2481 0.2480 -0.0025 -0.0025 

FF-
APUF 

16 0.0556 0.4505 0.0556 0.0555 0.0555 -0.0007 -0.0007 
32 0.2522 0.5014 0.2522 0.2522 0.2522 0.0029 0.0029 

Quadratic 
Discriminant 

Analysis 

APUF 16 0.0627 0.5000 0.0626 0.0624 0.0513 0.0000 0.0001 
32 0.2480 0.4970 0.2477 0.2478 0.2476 -0.0030 -0.0030 

XOR-
APUF 

16 0.0622 0.4987 0.0617 0.0617 0.0612 -0.0008 -0.0008 
32 0.2480 0.4970 0.2477 0.2478 0.2476 -0.0030 -0.0030 

FF-
APUF 

16 0.0620 0.4997 0.0620 0.0615 0.0452 -0.0006 -0.0005 
32 0.2506 0.5005 0.2506 0.2506 0.2506 0.0008 0.0008 

Ridge 
Classifier 

APUF 16 0.0627 0.0000 0.0627 0.0627 0.0625 0.0002 0.0002 
32 0.2484 0.0000 0.2481 0.2481 0.2480 -0.0025 -0.0025 

XOR-
APUF 

16 0.0637 0.0000 0.0635 0.0635 0.0633 0.0011 0.0011 
32 0.2484 0.0000 0.2481 0.2481 0.2480 -0.0025 -0.0025 

FF-
APUF 

16 0.0619 0.0000 0.0618 0.0618 0.0617 -0.0007 -0.0007 
32 0.2522 0.0000 0.2522 0.2522 0.2522 0.0029 0.0029 

Naïve Bayes 

APUF 16 0.0629 0.5023 0.0628 0.0629 0.0628 0.0004 0.0004 
32 0.2494 0.4982 0.2492 0.2492 0.2491 -0.0011 -0.0011 

XOR-
APUF 

16 0.0634 0.4994 0.0632 0.0633 0.0632 0.0008 0.0008 
32 0.2494 0.4982 0.2492 0.2492 0.2491 -0.0011 -0.0011 

FF-
APUF 

16 0.0619 0.5004 0.0619 0.0619 0.0618 -0.0006 -0.0006 
32 0.2527 0.5013 0.2527 0.2528 0.2527 0.0037 0.0037 

Decision 
Tree 

APUF 16 0.0626 0.5001 0.0626 0.0626 0.0626 0.0001 0.0001 
32 0.2482 0.4988 0.2482 0.2482 0.2482 -0.0024 -0.0024 

XOR-
APUF 

16 0.0632 0.5003 0.0631 0.0631 0.0631 0.0007 0.0007 
32 0.2482 0.4988 0.2482 0.2482 0.2482 -0.0024 -0.0024 

FF-
APUF 

16 0.0639 0.5007 0.0638 0.0639 0.0639 0.0014 0.0014 
32 0.2495 0.4997 0.2495 0.2495 0.2495 -0.0007 -0.0007 

Random 
Forrest 

APUF 16 0.0623 0.4997 0.0622 0.0622 0.0617 -0.0003 -0.0003 
32 0.2509 0.4983 0.2509 0.2510 0.2509 0.0012 0.0012 

XOR-
APUF 

16 0.0626 0.4998 0.0627 0.0626 0.0624 0.0002 0.0002 
32 0.2509 0.4983 0.2509 0.2510 0.2509 0.0012 0.0012 

FF-
APUF 

16 0.0630 0.5013 0.0630 0.0629 0.0624 0.0005 0.0005 
32 0.2500 0.5002 0.2500 0.2499 0.2495 -0.0001 -0.0001 

Extra Trees 
Classifier 

APUF 16 0.0615 0.4988 0.0614 0.0614 0.0609 -0.0011 -0.0011 
32 0.2499 0.4990 0.2499 0.2499 0.2499 -0.0002 -0.0002 

XOR-
APUF 

16 0.0624 0.4998 0.0625 0.0625 0.0623 0.0000 0.0000 
32 0.2499 0.4990 0.2499 0.2499 0.2499 -0.0002 -0.0002 

FF-
APUF 

16 0.0625 0.4988 0.0624 0.0623 0.0617 -0.0001 -0.0001 
32 0.2510 0.5021 0.2509 0.2510 0.2505 0.0012 0.0012 

(a) Custom supervised ML-MA results

Model PUF Num. 
Stages 

Accuracy AUC Recall Prec. F1 Kappa MCC 

DQN 

APUF 16 0.0637 0.0000 0.0636 0.0635 0.0634 0.0012 0.0012 
32 0.2523 0.5000 0.2522 0.2523 0.2523 0.0030 0.0030 

XOR-
APUF 

16 0.0639 0.0000 0.0635 0.0634 0.0633 0.0012 0.0012 
32 0.2532 0.5021 0.2532 0.2533 0.2532 0.0042 0.0042 

FF-
APUF 

16 0.0636 0.5012 0.0635 0.0634 0.0632 0.0011 0.0011 
32 0.2540 0.5026 0.2539 0.2539 0.2538 0.0052 0.0052 

HDBSCAN 

APUF 16 0.0635 0.4995 0.0635 0.0634 0.0634 0.0010 0.0010 
32 0.2517 0.5002 0.2511 0.2511 0.2505 0.0015 0.0015 

XOR-
APUF 

16 0.0639 0.5012 0.0637 0.0637 0.0637 0.0014 0.0014 
32 0.2511 0.5006 0.2509 0.2510 0.2509 0.0012 0.0012 

FF-
APUF 

16 0.0628 0.5006 0.0627 0.0629 0.0622 0.0003 0.0003 
32 0.2531 0.0000 0.2531 0.2531 0.2531 0.0041 0.0041 

DBSCAN 

APUF 16 0.0632 0.4996 0.0632 0.0631 0.0631 0.0007 0.0007 
32 0.2510 0.5001 0.2509 0.2510 0.2509 0.0012 0.0012 

XOR-
APUF 

16 0.0637 0.4993 0.0630 0.0629 0.0616 0.0005 0.0005 
32 0.2494 0.4982 0.2486 0.2484 0.2476 -0.0019 -0.0019 

FF-
APUF 

16 0.0621 0.5003 0.0621 0.0621 0.0620 -0.0004 -0.0004 
32 0.2531 0.5026 0.2530 0.2531 0.2530 0.0041 0.0041 

BIRCH 

APUF 16 0.0632 0.4993 0.0632 0.0631 0.0631 0.0007 0.0007 
32 0.2491 0.4990 0.2488 0.2489 0.2488 -0.0016 -0.0016 

XOR-
APUF 

16 0.0636 0.5011 0.0634 0.0633 0.0633 0.0010 0.0010 
32 0.2490 0.5012 0.2488 0.2489 0.2489 -0.0016 -0.0016 

FF-
APUF 

16 0.0620 0.0000 0.0619 0.0619 0.0618 -0.0006 -0.0006 
32 0.2530 0.5025 0.2530 0.2530 0.2529 0.0040 0.0040 

K-
Means++ 

APUF 16 0.0631 0.5008 0.0630 0.0633 0.0627 0.0006 0.0006 
32 0.2491 0.0000 0.2488 0.2489 0.2488 -0.0016 -0.0016 

XOR-
APUF 

16 0.0636 0.5013 0.0634 0.0634 0.0634 0.0010 0.0010 
32 0.2483 0.4985 0.2479 0.2480 0.2478 -0.0029 -0.0029 

FF-
APUF 

16 0.0618 0.4996 0.0618 0.0619 0.0618 -0.0008 -0.0008 
32 0.2524 0.5023 0.2524 0.2524 0.2524 0.0032 0.0032 

K-Means 

APUF 16 0.0625 0.5015 0.0622 0.0622 0.0617 -0.0003 -0.0003 
32 0.2490 0.4987 0.2487 0.2488 0.2487 -0.0017 -0.0017 

XOR-
APUF 

16 0.0635 0.5005 0.0635 0.0635 0.0635 0.0010 0.0010 
32 0.2474 0.0000 0.2470 0.2471 0.2469 -0.0040 -0.0040 

FF-
APUF 

16 0.0617 0.5000 0.0617 0.0617 0.0616 -0.0009 -0.0009 
32 0.2504 0.5016 0.2503 0.2506 0.2499 0.0004 0.0005 

K-
Medoids 

APUF 16 0.0614 0.4986 0.0613 0.0611 0.0607 -0.0012 -0.0012 
32 0.2486 0.4987 0.2484 0.2485 0.2484 -0.0022 -0.0022 

XOR-
APUF 

16 0.0630 0.5008 0.0630 0.0630 0.0627 0.0005 0.0005 
32 0.2474 0.4978 0.2470 0.2471 0.2470 -0.0040 -0.0040 

FF-
APUF 

16 0.0617 0.4996 0.0617 0.0617 0.0611 -0.0009 -0.0009 
32 0.2502 0.5009 0.2502 0.2502 0.2497 0.0002 0.0002 

Gaussian 

APUF 16 0.0612 0.4993 0.0612 0.0612 0.0611 -0.0014 -0.0014 
32 0.2479 0.4985 0.2478 0.2479 0.2478 -0.0029 -0.0029 

XOR-
APUF 

16 0.0625 0.4997 0.0625 0.0626 0.0623 0.0000 0.0000 
32 0.2473 0.4976 0.2469 0.2470 0.2469 -0.0041 -0.0041 

FF-
APUF 

16 0.0617 0.5002 0.0617 0.0616 0.0616 -0.0009 -0.0009 
32 0.2488 0.4992 0.2488 0.2488 0.2487 -0.0017 -0.0017 

(b) Custom unsupervised ML-MA results

5.2. Security Analysis

In this section, we will briefly discuss various potential
threats to the proposed system and the implications of
those threats. It should be noted that the claims being
made in this paper relate to security against remote ML-
MA only, as defined in the threat model in Section 2.5.
Resistance to attacks requiring physical access is left
for future work. Nonetheless, we will discuss some such
attacks in order to provide the reader with a clear picture
of where this countermeasure fits into the overall threat
landscape.

5.2.1. ML-MA Remote Attacks. As shown in Section
5.1, the countermeasures in the scheme render modeling
the system as a whole infeasible if only the overall inputs
and outputs are known and not the internal states. These
inputs and outputs are the only items of information
transmitted over open channels; therefore, this strongly
impedes remote modeling attacks.

5.2.2. Replay Attacks. As the challenges and responses
are being transmitted openly, and it is explicitly assumed
the adversary can listen in on this channel, there is a
requirement at the protocol level to invalidate CRPs once
they have been used. Otherwise, there is a risk that if a pre-
viously used challenge is issued for which the adversary

recorded the response, they would be able to provide the
correct response despite no knowledge of the PUF. There
is a similar need to prevent an adversary from issuing
rapid false challenges to gather the full CRP set through
rate-limiting challenges at the device side, removing CRPs
if a response is received unexpectedly or both.

5.2.3. Cold Boot Attacks. As the scheme uses a memory
PUF to generate matrices for the OWF, attacks which aim
to capture data from volatile memories such as cold boot
attacks have the potential to compromise the matrices.
How dangerous is this in practice? Consider a scenario
where the adversary knows the n column matrix, H , the
OWF padding method, the OWF block number, w, and the
output of the OWF, RFinal. They want to learn the OWF
input (i.e. the raw PUF output). To reverse the OWF with
this information requires them to guess which columns are
XORed, which will require nw trials. e.g. using the value
of n = 1024 in our example scheme and w = 16 would
require in the order of 2160 trials. Thus, H being known
to the adversary does reduce the complexity of OWF
reversal, but not enough to meaningfully compromise the
system.

5.2.4. Memory Snooping Attacks. Attacks which allow
snooping of system memory or manipulation of the mem-
ory controller (e.g. malicious software) could conceivably
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leak the matrix set, which is generated from memory
and resides temporarily in it. The same analysis as the
previous point applies here, where knowing the matrices
isn’t enough in itself to compromise the system. The
only other aspects which ever reside in system memory
are the challenges and final responses which we assume
the adversary can acquire over the transmission channel
anyway.

5.2.5. Timing Side-Channel Attacks. While the OWF
itself is time-invariant, this is not necessarily true for the
PUF, or for the PUF error correction. In fact, because
the OWF is fixed time the timing of the whole scheme
reveals information about the timing of the PUF+ECC
block. This information could conceivably be used to
assist model construction and make the scheme easier
to compromise, although the exact efficacy of such an
attack is uncertain. Ideally, the PUF block and ECC should
be made time-invariant, which removes this channel of
information leakage. This is especially relevant to this
work as timing can be analysed remotely to a degree,
unlike other side channels, which require physical access.

5.2.6. EM Side Channel Attacks. If the adversary has
physical access to the target device there may be attacks
which could be employed using EM side-channel analysis.
As with the other side-channel attacks, there are two
separate risks. First, direct measurement of the PUF as it
operates. Second, the measurement of OWF internal states
breaks the security properties of the function. The actual
degree of leakage through EM emission and how to mask
it if necessary are outside the scope of this work, but it
should be noted as a factor for consideration in future
work.

5.2.7. Voltage Side Channel Attacks. As with the EM
emissions, there may be some information which can be
derived about the internal states through monitoring of
power consumption during operation. Again, exploration
of this, and how to level out power use in the scheme
if necessary, is outside scope of this work but may be
explored in future works.

5.2.8. Fault Injection Attacks. The points above assume
correct operation but there may be additional risks if the
adversary can intentionally cause faults in parts of the
system. For example, it may be possible to partially bypass
the complexity of the attack mentioned in Section 5.2.3
by selectively faulting one column of H at a time while
repeatedly issuing the same challenge. Or issuing falsified
challenges and selectively faulting the responses such that
the protocol does not invalidate the collected CRP. Such
attacks unequivocally require prolonged physical access
and are outside the scope of this work, but they provide
interesting possibilities for future work and are worth
noting.

5.3. Hardware Overhead

Strengths and weaknesses based on certain included
features tend to map linearly to required hardware over-
head, as demonstrated by similar obfuscation schemes.

The hardware overhead of our scheme includes the Strong-
PUF utilised, PUF error correction, 64-bit buffer and
the OWF. Different types and/or sizes of Strong PUFs
will incur varying hardware overhead; however, in our
scheme, some overhead is mitigated through the use of
smaller-length PUFs. Comparable schemes such as [42]
employ 64 to 128-bit Arbiter PUFs, whereas our scheme
demonstrated protection for even 32-stage PUFs. Due to
the suitability of our scheme with APUFs, we benchmark
our scheme using the hardware overhead of 16-bit and 32-
bit APUFs. As we propose a generic obfuscation scheme,
the required ECC will vary as different Strong-PUFs
are used for a token generation as different PUF types
incur different reliability properties [19] which can have
varying effects on the overall hardware overhead of the
scheme. PUFs tend to exhibit a higher error rate as the
size and complexity of the circuitry grow, for example,
the more individual APUFs used to construct an XOR-
APUF, the higher the error rate tends to be. The APUF
implementation in [18] can achieve a Bit Error Rate (BER)
of as low as 10−9, meaning lower cost ECC schemes
that rely on high PUF reliability such as provided by
Hiller et al. in [20] may be implemented. Therefore,
given our proposed benchmark, it is possible to utilise a
highly reliable APUF and thus employ far less resource-
consuming ECC methods. For a more comprehensive
ECC implementation, we separately performed majority
voting [7] and the Golay (23,12,7) code [26] for both 16-
stage and 32-stage variants of an APUF. We performed
a synthesis on the programmable logic of a Xilinx Zynq-
7000 FPGA to determine the hardware overhead. Figure
3 shows the chip layout for the synthesised generic PUF
obfuscation scheme. The total resource requirements of
our scheme are listed in Table 4.

TABLE 4: Comparison of the Hardware and Power Over-
head of the Proposed Scheme Against the State-of-the-art

Scheme LUTs DFFs Power (W)
Controlled PUF [13] 1830 3020 ∼

PUF-FSM [11] 960 1500 ∼
Set-based [42] 395 1400 ∼
CT-PUF [43] 741 486 0.107

Proposed Scheme
APUF: † ECC: ‡‡ 306 298 0.177
APUF: † ECC: †† 291 330 0.178
APUF: ‡ ECC: ‡‡ 341 312 0.180
APUF: ‡ ECC: †† 327 345 0.179

† 16-Bit ‡ 32-Bit †† Golay Code ‡‡ Majority Voting
∼ Data not available

5.4. Power Consumption

As the memory PUF operates on existing components,
namely the ARM Cortex A9 processor cores of the Zynq
and an external DDR3 DRAM chip, power consumption
for it is a function of how much additional load the re-
quired instructions add to the Processor System (PS). Each
matrix generation requires a number of memory accesses
that scales proportionally with the number of rounds of
majority vote ECC. For matrices of the size used in our
experiments this requires 2048 writes and 2048m reads
to the DDR memory, where m is the number of rounds.
This uses negligible power even for fairly large m (e.g.
at m = 100 memory access load is increased by 0.034%,
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Figure 3: Layout of the Proposed Generic PUF Obfusca-
tion Scheme (16-bit APUF and Majority Vote ECC) on a
Xilinx Zynq-7000 FPGA Device

with power consumption of < 1mW ). Error correction
also requires (258n)×m processor instructions, where n is
the bit length of the matrix. For the example matrices and
10 round ECC this equates to 26% of maximum processor
load for one core, which consumes 0.065W . For the
FPGA implementation, we utilised Xilinx power estimator
to determine the power consumption of the part of the
scheme which operates on the programmable logic. We
found the total power consumption to be very low, using
only 0.112W at minimum (16-bit APUF and Majority
Vote ECC) and 0.115W at maximum (32-bit APUF and
Majority Vote ECC). From this, we can simply calculate
the total power consumption of one full cycle of the
scheme by adding the DRAM-PUF power consumption
(0.065W) to the FPGA power consumption, which gives a
total (maximum) of 0.180W. Table 4 shows the combined
total power cost for different configurations of the overall
proposed scheme (FPGA logic and DRAM-PUF).

5.5. Implications of Varying Hardware

It should be noted that in addition to the costs listed
there is a variable degree of RAM usage. The footprint
of this depends on the memory configuration of the
system. When using the Latency DRAM-PUF as in our
experiments, an amount of memory is used during matrix
generation at least ten times the size of the desired
matrix. This is due to the fact that when using the
Latency DRAM-PUF, the actual stored data is unaffected
by the PUF process, rather, when the memory is read,
the controller misreads what is actually stored and that
error pattern is the PUF response. Therefore, when using
majority vote error correction you need an area the size
of H to perform the PUF operation on, another equally
sized area to store the temporary result, and at least one
byte per bit of that for per-bit majority vote counting.
This is fine so long as there is sufficient DRAM free to

allow a region of that size to be available whenever the
PUF needs to be queried. If, however, there is no DRAM
available or this overhead is not practical, BRAMs on
the FPGA logic can be utilised to store matrices instead,
at the cost of increasing the overall FPGA hardware
footprint of the scheme. Other Memory-PUFs that cause
changes directly in the stored data, such as Start-up
SRAM-PUF and Retention DRAM-PUF, can also be
used and would have a smaller footprint as the matrix is
generated directly in the region of memory being used as
the PUF, though there may be some overhead required
for error correction. However, these PUFs are not as
easy to use in-runtime due to their query processes being
destructive to data held in the same memory. Given
these factors, a trade-off is available to system designers
based on which features are most desirable for the given
application:

Latency DRAM-PUF:

+ Very fast measurement speed
+ Large space available for many supported unique

responses
+ Non-destructive to memory contents
– Additional memory space required to store response

Retention DRAM-PUF:

+ No additional memory required to store response
+ Large space available for many supported unique

responses
– Very slow measurement speed
– Destructive to memory contents

Start-up SRAM-PUF:

+ Fast measurement speed
+ No additional memory space required to store re-

sponse
– Lower density therefore fewer unique responses sup-

ported
– Requires power cycle to query
– Destructive to memory contents

6. Conclusion
Physical Unclonable Functions (PUFs) offer a promis-

ing solution for the lightweight authentication of IoT
devices as they provide unique fingerprints for the un-
derlying devices through their challenge-response pairs.
However, PUFs have been shown to be vulnerable to
Machine-Learning Modelling-Attacks (ML-MA). In this
article, we propose a novel obfuscation scheme for pre-
venting ML-MA on Strong PUFs by exploiting readily-
available device resources in the form of a Memory-PUF
and a One-Way Function to obfuscate PUF challenges and
responses. We demonstrate our scheme has a significant
effect on reducing the accuracy of ML-MA to almost the
same probability as a random coin flip when tested against
various established attacks from the literature and against
our own additionally tested classifiers. Our experimental
results also show our scheme has the potential to be
very cost-effective with regards to hardware overhead on
FPGA-enabled devices. While this work focused on secu-
rity against ML-MA, side-channel/fault injection attacks
are also potential attack vectors for PUF schemes where
attackers can gain physical access to devices, which may
form the basis of future work.
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Data Availability

For reproducibility of our work and engagement with
the wider research community, all source code and data
for our experiments have been made publicly available at
the following link: https://drive.google.com/drive/folders/
1ZWgkjkicVNUYB3cRUnfV0mOxvZhOyLHz
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Liu, and Máire O’Neill. Modelling attack analysis of configurable
ring oscillator (cro) puf designs. In 2018 IEEE 23rd international
conference on digital signal processing (DSP), pages 1–5. IEEE,
2018.

[32] Jack Miskelly and Maire O’Neill. Fast dram pufs on commodity
devices. IEEE Transactions on Computer-aided Design of Inte-
grated Circuits and Systems, 39(11):3566–3576, 2020.

[33] Phuong Ha Nguyen, Durga Prasad Sahoo, Chenglu Jin, Kaleel
Mahmood, Ulrich Rührmair, and Marten van Dijk. The interpose
puf: Secure puf design against state-of-the-art machine learning
attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(4):243–290, Aug. 2019.
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Appendix

1. Evaluation Metrics

Accuracy, shown in Equation 4, is the raw percentage
of all labels which are correctly classified, without further

inference (TP: True Positive, TN: True Negative, FP:
False Positive, FN: False Negative). Precision, shown in
Equation 5, denotes the amount of all positive classifi-
cations which were correctly predicted. Precision is fo-
cused on positive classifications, whilst accuracy considers
both positive and negative classifications. The F1-measure,
shown in Equation 6, combines both precision and recall
into a single measure which captures both properties and
provides an overall classifier performance.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

F1-measure (β = 1) =
2× Precision×Recall

Precision+Recall
(6)

The Kappa metric is a measure for evaluating the pre-
diction performance of incremental classifiers. The kappa
is computed as Equation 7, where Θ is the accuracy
rate of an intelligent classifier and Θr is the accuracy
rate of a random classifier, which randomly permutes the
predictions of the intelligent classifier. The kappa-statistic
takes values between 0 and 1, where 0 indicates that the
achieved accuracy is random.

Kappa =
Θ−Θr

1−Θr
(7)

Recall or True Positive Rate (TPR) is another widely used
metric, shown in Equation 8, denoting the percentage
of data samples that the model correctly identifies as
belonging to a the positive class.

Recall = TPR =
TP

TP + FN
(8)

The Matthews correlation coefficient (MCC), shown
in Equation 9 is a reliable statistical rate which produces
a high score only if the prediction obtained good results
in all of the four confusion matrix categories (true posi-
tives, false negatives, true negatives, and false positives),
proportionally both to the size of positive elements and
the size of negative elements in the dataset.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TP + FP )(TN + FN)
(9)

The AUC metric provides a way to quantify the overall
performance of classification models, taking into account
the trade-off between sensitivity (true positive rate) and
specificity (true negative rate) at different classification
thresholds. The AUC metric ranges from 0 to 1, with
higher values indicating better model performance. A
perfect classifier would have an AUC score of 1, while
a completely random classifier would have an AUC score
of 0.5
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