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Abstract—Federated learning (FL) is a framework for users
to jointly train a machine learning model. FL is promoted
as a privacy-enhancing technology (PET) that provides data
minimization: data never “leaves” personal devices and users
share only model updates with a server (e.g., a company)
coordinating the distributed training. While prior work
showed that in vanilla FL a malicious server can extract
users’ private data from the model updates, in this work
we take it further and demonstrate that a malicious server
can reconstruct user data even in hardened versions of the
protocol. More precisely, we propose an attack against FL
protected with distributed differential privacy (DDP) and
secure aggregation (SA). Our attack method is based on the
introduction of sybil devices that deviate from the protocol
to expose individual users’ data for reconstruction by the
server. The underlying root cause for the vulnerability to
our attack is a power imbalance: the server orchestrates the
whole protocol and users are given little guarantees about the
selection of other users participating in the protocol. Moving
forward, we discuss requirements for privacy guarantees
in FL. We conclude that users should only participate in
the protocol when they trust the server or they apply
local primitives such as local DP, shifting power away from
the server. Yet, the latter approaches come at significant
overhead in terms of performance degradation of the trained
model, making them less likely to be deployed in practice.

1. Introduction

Federated Learning (FL) [33] is a widely deployed
protocol for collaborative machine learning (ML). It al-
lows a server to train an ML model on data of different
users without requiring direct access to that data. For this
reason, FL is often promoted as data minimizing [34]:
instead of sharing their data, users calculate model up-
dates, usually gradients, on a shared model obtained from
the server. These model updates are then aggregated and
applied iteratively to train this shared model.

Prior work has demonstrated that the model updates
leak sensitive information on the users’ local training
data [26], [43]. This is to be expected since nothing in
the design of FL prevents information leakage. Indeed,
the root cause of why FL is inherently vulnerable to data
reconstruction attacks is that it is designed to provide
confidentiality (data does not leave user devices) rather
than privacy (outputs of the computation do not leak sen-
sitive attributes from the users’ input). Without additional
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privacy measures, FL cannot protect users from the server
reconstructing their data.

Fortunately, if the server is trusted to follow the pro-
tocol as prescribed, a relatively cost-effective mitigation
exists: the server can add noise to the model updates and,
thereby, implement differential privacy (DP) [14] during
the aggregation [35]. This degrades the performance of
learned models [56], but adds strong privacy guarantees.
Unfortunately, the server cannot always be trusted. Worse
yet, by observing local users’ model updates, an untrusted
server can mount powerful attacks to reconstruct users’
training data points [8], [16], [18], [55], [60], [62], [63].
Contemporary attacks exploit the fact that neurons com-
pute a weighted sum of their input; thus the corresponding
gradients contain rescaled versions of the input.

We go a step beyond these prior extraction attacks
that operate in vanilla FL protocols and mount an attack
against FL combined with secure aggregation (SA) [10]
and distributed differential privacy (DDP) [52]. In SA,
gradient aggregation is performed via a decentralized mul-
tiparty computation protocol. In DDP, each user adds a
small amount of noise to their gradient updates. Through
the aggregation of user updates, the cumulative noise
of DDP provides sufficiently high privacy guarantees to
protect user data from leaking sensitive information. The
two techniques were designed to decrease the amount
of trust placed by users in the central party in FL [2],
[19], [29]. Yet, our attack (see Figure 1) shows that an
untrusted server that exerts their full capabilities is able
to still reconstruct individual user data points in this setup.

To be clear, we are, of course, not claiming that
the cryptographic primitives behind SA and DDP are
broken. We merely notice that the trust model that they
assume, where in each round enough honest users con-
tribute noised gradient updates, is not necessarily realized
in practice within FL. In reality, the server is entrusted
with provisioning users and sampling them in each round.
A powerful untrusted server can inject an arbitrary number
of malicious sybils under their control into any round,
as demonstrated by industry actors actively deploying
FL [45]. By sampling a target user together with a group
of sybils that act maliciously, the server can acquire direct
access to the target user’s non-aggregated update. This
allows the server to eliminate any effect of SA, and
effectively reduces the protection of DDP to a minimum
because the noise added by a single user is not designed
to offer the claimed privacy guarantees.

Next, we observe that the server is also typically en-
trusted with controlling the shared model. Prior work [8],
[16], [57] has shown that this ability enables the server
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Figure 1: Course of our attack against FL protected by SA and DDP. 1 The server introduces a small fraction of
sybil users into the FL application. 2 The server selects M users for participation in training round t: one target user
and M − 1 sybils. 3 The server manipulates the shared model with trap weights [8] and sends it out to the selected
users. 4 The target user locally calculates its gradients on the manipulated model while the sybil users return zero or
constant value gradients that are known by the server. 5 Only the target user locally applies a small amount of noise to
its gradients to implement DDP. 6 The target user’s local noised gradients are aggregated with the sybil users’ values.
7 The resulting aggregate which effectively contains solely the target user’s gradients is sent to the server. 8 The

server extracts the target user’s training data from the received gradients.

to extract large amounts of the users’ individual training
data points from gradients in vanilla FL. By integrating
the trap weight approach from [8] into our attack, we
show that an untrusted server can extract high-fidelity user
data points for common learning tasks despite DDP and
SA. This highlights that even elaborate combinations of
techniques like DDP and SA with FL can be attacked to
perform data reconstruction when the server’s real-world
capabilities are taken into account.

While exploring data reconstruction under DP, we
make another observation that advances our understanding
of which users are more vulnerable to data reconstruc-
tion attacks: the noise addition does not guarantee equal
protection over all model gradients. As we visualize in
Figure 3, some data points can be extracted with higher
fidelity than others. This is despite the fact that all corre-
sponding gradients were protected with the same clipping
and noising operations. We identify the gradient norm as
the reason behind disparate protection. For small-norm
gradients, noise dominates the signal of the extracted data
more than for gradients with a large norm. In principle,
clipping in DP for ML is supposed to bound the gradient
norm to control for this. However, the gradient norm is
calculated globally whereas data is extracted locally from
the components of the gradient that correspond to the
weighted input of a single neuron. When the gradient
corresponding to a neuron is large but all other neurons
in that layer have small gradients, the overall gradient can
still be below the clipping norm. Therefore, no clipping is
performed, the same amount of noise is added to neurons
with large and small gradients, and data from the neurons
with larger gradients can be extracted with higher fidelity.
We also sketch a construction that amplifies this effect
and makes a few individual data points nearly perfectly
extractable, even under noise addition.

We then discuss the centralization and resulting power
imbalance between the server and users as the root cause
of FL’s vulnerability against attacks like the one proposed
in this work. This motivates us to explore the requirements

for building a variant of FL that practically prevents at-
tacks by a malicious server. We consider three approaches
based on (1) decentralization, (2) user verification, and
(3) the support of specialized hardware. We find that one
promising direction is to add adequate amounts of noise
to users’ gradients via a cryptographic protocol such as
secure multiparty computation (SMCP). However as of
yet, due to the gradients’ high dimensionality, known
constructions’ communication costs are prohibitive.

As an alternative direction, users in FL can take re-
sponsibility for implementing their full privacy protection
locally, for example, by adding enough noise to individu-
ally implement strong privacy guarantees. This approach is
commonly referred to as local DP (LDP). As a last resort,
users can decide not to participate in FL protocols if they
do not trust the server. However, the last two options are
only available if users have the required control over their
participation in the protocol, which is not always the case.

In summary, we make the following contributions:

• We design an attack that enables a malicious
server that holds the power of introducing sybil de-
vices to reconstruct individual training data points
from users when FL is protected by SA and DDP.
See Figure 1 for an illustration of our attack flow.

• We experimentally validate the attack’s ability to
reconstruct image and textual data with high fi-
delity in different DDP setups. We propose a proof
of concept construction that allows to increase the
fidelity of the reconstruction of users’ data points
by reducing the effect of additive noise at the level
of individual neurons. We thus observe disparate
leakage over gradients under DDP.

• We discuss centralization in FL and its resulting
power-imbalance between the server and the users
as the root cause of FL’s vulnerability and consider
potential mitigations.
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2. Background

This section provides background on FL, describes
user-data extraction from gradients in the vanilla version
of the protocol and introduces SA and DP—extensions
implementing dedicated defenses against privacy leakage.

2.1. Federated Learning

FL [33] is a communication protocol that allows a
group of N users to jointly train an ML model f , such
that data never leaves the respective users’ devices. FL in-
volves a server, who coordinates the training in an iterative
process, as follows: at round t = 0, the server initializes
the shared model W [0] at random, typically following
common weight-initialization practice [21], [22], [25]. At
every round t, the server chooses a subset of M ≤ N
users to contribute to the learning round. The server then
sends each of these users the model fW[t] . Each user
chooses a subsample of their training data termed a mini-
batch, computes the gradients of an objective function
over fW[t] for each of these samples, and returns these
gradients, which we call a (local) update, to the server. To
conclude the round, the server updates the shared model
by aggregating the received gradients, multiplying them
by a learning-rate parameter and applying the change to
the shared model.1

It follows from the description above that users’ train-
ing data significantly affects the values of local updates.
This enables a variety of privacy attacks that extract indi-
vidual user-data points directly from the model updates,
as highlighted in the following section.

2.2. Data Extraction from Vanilla FL

Prior work [8], [16], [57] has shown that an untrusted
server can directly extract user-data from the model gradi-
ents. In these attacks, the server leverages its control over
the shared model.2 In [16], the server exploits this ability
to insert a fully-connected model layer as an extraction
module where individual data points can be directly ex-
tracted. [8] manipulates the model weights with an attack
they call trap weights. This attack increases natural data
leakage from fully-connected model layers. In [57], the
server instead modifies model parameters to extract single
data points by increasing their gradient contribution. The
attack operates in several iterations of the protocol to
collect multiple gradient updates from the same user.

The presence of such data extraction attacks highlights
the vulnerability of vanilla FL to privacy-leakage. To pre-
vent training data from leaking onto updates and straight
to the hands of the server, various extensions have been
proposed, as we now briefly describe.

1. For readers unfamiliar with gradient optimization: such gradient-
based weight updates are intended to prescribe which direction W [t]

needs to move towards, for the objective to be minimized. Typically,
the objective is a value measuring the model’s level of prediction error
across a given mini-batch.

2. There also exist optimization-based data reconstruction attacks
operating on model updates. These attacks can be conducted by a
passive attacker solely observing the gradients. However, computation is
expensive and the reconstructed data is not necessarily of high-fidelity.
We provide a brief overview of this type of attack in Section 7.

2.3. Secure Aggregation

In SA, due to Bonawitz et al. [10], users do not
send their individual updates to the server. Instead, they
perform, along with the server, a multiparty computation
(MPC) protocol that ensures the server only receives the
average of all updates in the round. Various improvements
of the original protocol were suggested, for example, to
allow the server to prove the correctness of the aggregate
computation [58], increase robustness against malicious
users’ manipulated gradients [11], or improve communi-
cation efficiency [6], [24].

2.4. Differential Privacy in FL

Nothing in the design of FL prevents information
leakage: FL is designed to provide confidentiality (data
does not leave user devices) rather than privacy (outputs
of the computation do not leak sensitive attributes from
the users’ input). As discussed in Section 2.2, this leaves
vanilla FL vulnerable to data reconstruction attacks. To
ensure the privacy of users’ sensitive training data, it is
natural to consider DP approaches that work by adding
noise to user updates. DP is a gold standard in privacy
technology because proper application of it comes with
a theoretical bound on the probability of an adversary
being able to distinguish adjacent datasets, i.e. datasets
that differ solely in one data point. This implies a bound
on the probability of data point extraction. In other words,
a DP approach properly applied to FL updates could,
in principle, ensure that individual user data points are
not revealed to whoever observes the noised updates.
See Appendix A for more background on DP and its
integration to ML.

One possible approach to integrate DP into FL is
centralized DP (CDP) [5], [30], [45], where the server
adds noise to the mini-batch gradients received by users.
CDP assumes that the server is trusted to add noise, which
is not true in the threat model of this work, see Section 3.
To address this, local DP (LDP) [53] was proposed, where
each user adds noise to its local update before sending
it out for aggregation, in a way that ensures the user’s
own dataset is protected from extraction. Unfortunately,
LDP generally results in degraded model utility due to
the addition of large amounts of noise to every user’s
update [56]. Distributed DP (DDP) was proposed as a
popular middle ground between CDP and LDP, where
multiple users independently add noise to their update,
that is sufficient to ensure their datasets are protected
from an extraction adversary, but only as long as their
updates are aggregated before the adversary observes
them. Through combination with SA [2], [12], [29] or
similar aggregation methods [7], where the server can
only view aggregated updates, DDP ostensibly ensures
that the server cannot extract individual data points. But,
importantly, this assumes that a large fraction of users
participating in the FL round are honest and add their
share of the noise. We discuss the applicability of this
assumption in the real world in Section 3.2.

3. Threat Model and Assumptions
We characterize our threat model and assumptions in

terms of our adversary and the considered FL setup.
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3.1. Adversary

Our adversary is the server, and their goal is to infer
individual users’ local sensitive data points. Note that the
background in Section 2.1 implies that the server can—
whenever they choose to—(1) control the weights of the
shared model, (2) select which of the N users participate
in each round, and (3) provision new users into the pool
(including sybils controlled by the server).3 We assume
that the total fraction of sybils out of the N users is small.

We, furthermore, assume the server is occasionally
malicious (OM), meaning they behave maliciously in only
a few rounds of the protocol. When this happens, they can
exert the above capabilities (1-3) adversarially. Do note
that the server here does not deviate from the protocol and
restricts themselves to only use valid operations (1-3) in
the FL protocol. An OM server ensures the attack remains
stealthy, and also allows the server to train a model that
has high utility over the non-malicious rounds, which is
an expected product of FL.

3.2. Adversarial Model

By assuming a server’s ability of introducing hundreds
of sybil devices into the pool of active users, this work
relies on a strong adversarial model. Yet, industry actors
that deploy FL protocols in real-world applications have
shown that this scenario is a realistic threat [45]. For the
purpose of a research project, they successfully introduced
hundreds of sybil devices in the real-world FL training of
the Google keyboard and let them train along the real
users for some time to manipulate the model training.
Since obtaining and introducing sybil devices does not
only require configuration but also a non-negligible finan-
cial overhead, we expect this type of manipulation to be
reserved to adversaries that can afford it.

Another setting in which we think our attack is prac-
tical is the one of colluding employees. Since prior re-
search has documented that it generally takes a small
number (e.g., 2-3) of employees to approve changes to
a company’s code base [44], [46], we could imagine that
these employees would collude. Jointly, these employees
could then maliciously exploit the servers’ abilities of user
sampling and controlling the shared model. We account
for this scenario by our OM threat model, and argue that
by preventing this type of attack, a company can protect
itself against actions that might harm their reputation.

3.3. FL Setup

Our departure point are FL protocols deployed in real-
world applications, such as the one described in [9]. These
protocols initially focused on data minimization only. We
extend them with SA and DDP, two defenses dedicated
to additionally providing privacy protection for the FL
protocol. We note that we chose to study an instantiation
of FL with SA and DDP because it is the combination
of published techniques that holds the strongest promise

3. Capabilities (2) and (3) have been demonstrated in the real world
as Google researchers introduced 189 sybils devices into the Gboard
FL system and made them participate in the protocol along with real
users [45].

in the presence of an untrusted server.4 Note, however,
that FL with SA and DDP is not as widely deployed
as vanilla FL is. This is mainly due to some increased
communication costs [6] and the computational overhead
of adapted mechanisms [2], [29].

4. Attacking FL under SA and DDP

In this section, we study FL extended by DDP and
SA—considered as a strongly privacy-protective instanti-
ation of the protocol—and show that the server can still
reconstruct sensitive information about the users’ training
data. We also forge an intuition of what factors contribute
most to the leakage. Based on our findings, in Section 8,
we discuss future research and implementation towards
private FL.

For successful data reconstruction under DDP and
SA, the server has to make use of the following three
capabilities which it naturally holds in FL:

1) Introducing sybil devices: The server needs to be
able to introduce a fraction of manipulated de-
vices in the FL protocol (see Section 3.2). These
devices can return arbitrary gradients, chosen by
the server. In particular, they can contribute zero
gradients to the SA.

2) Controlling the user sampling: To ensure that the
sybil devices are sampled for SA together with a
target user, the server needs to control the user
sampling.

3) Manipulating the model weights: For improved
data reconstruction performance, the server can
manipulate the shared model’s weights, for ex-
ample, relying on one of the methods discussed
in Section 2.2.

While the first two capabilities enable the server to
circumvent SA and to leave the gradients of a target user
with insufficient amount of noise for privacy protection
under DDP, the third capability increases the amount of
individual training data that can be reconstructed and
extends the attack to other model architecture types.

Attack flow. Our attack aims at reconstructing the private
data of one target user per malicious round in the FL
training. To do so, the attack needs to circumvent the SA
(Section 4.1), then exploit the weak privacy guarantees of
DDP from a user’s perspective (Section 4.2), and finally
reconstruct the target user’s individual training data points
(Section 4.3). See Figure 1 for the course of our attack.

4.1. Circumventing SA

In our attack, the server circumvents SA by sampling
the target user together with maliciously controlled sybil
devices for the given training round. Since for each round,
M users are sampled for participation, the server needs to
control at least M− 1 sybil devices. It has been shown in
previous work [45] that inserting an arbitrary number of
sybil devices into real-world FL deployments is practically
feasible as we discuss in Section 3.2.

4. Indeed, the key alternative to FL with SA and DDP would be FL
with LDP (local DP guarantees) but this alternative is not appealing
because it comes at a significant utility cost for the server.
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Since SA-protocols provide their guarantees under the
assumption that a certain fraction of users is honest [6],
[10], it follows naturally that in the presence of the
sybil devices, no guarantees can be provided to the target
user. This is because when the gradients are aggregated
over multiple users, and all but the target user contribute
arbitrary gradients, known to the server, the server can
extract the target user’s gradients perfectly. In the easiest
case, the sybil devices contribute all zero-gradients, such
that the final aggregate directly only contains the target
user’s gradients.

Note that we do not claim that the SA or any of
the underlying cryptographic primitives are broken. We
solely observe that SA relies on the assumption that the
clients participating in the execution are real clients and
not maliciously controlled by the server [6]. However,
in FL with an untrusted server, the users cannot verify
this assumption. We show through our attack that this has
severe implications on their privacy guarantees.

Pasquini et al. [41] describe a different way to cir-
cumvent SA based on the server sending out different
models to different users. While the models for non-
target users produce zero-gradients, the target user’s model
produces non-zero gradients which can be exploited for
data reconstruction. An advantage of this method is that
it does not require the server to control the user sampling,
or to manipulate a fraction of users. Note however that
in their scenario, DDP can still be efficiently applied if
every user adds some noise to their (potentially zero)
gradients. As a consequence, the total amount of noise
can be sufficient to protect the gradients of the target user.
Therefore, in our attack, we rely on the controlled sybil
devices to circumvent the SA.

Note that also alternative mechanisms to implement
DDP, such as shuffling [7], [15] which can be put into
place instead of SA, can be circumvented by our approach
of inserting sybil devices with server-controlled gradients
into the protocol.

4.2. Exploiting DDP Guarantees

If DDP is in place, the gradients of the target user will
be slightly noisy—even with successful circumvention of
SA. However, by design of DDP, the amount of noise
added by each user is typically insufficient to provide
a meaningful privacy guarantee from the user’s perspec-
tive [29]. By meaningful privacy guarantees we mean,
guarantees equivalent to what one would obtain in the
LDP definition. This is in fact how DDP obtains a utility
gain over LDP, which would have inserted sufficient noise
to obtain per-user privacy guarantees that are independent
of other users: DDP assumes all users will add enough
noise so that the aggregate is sufficiently noised whereas
LDP assumes each user adds enough noise to obtain
privacy in isolation. As a consequence, in DDP, each user
can add less noise locally than required for the desired
total privacy level, resulting in more utility. In contrast,
the guarantee provided by LDP allows the user to not
trust the server or other users.

Concretely, in an LDP version of FL, the noise added
by each user depends solely on the noise scale σ and the
clipping parameter c of the application. As a consequence,

the local noise is sampled from a Gaussian distribution
according to

N (0, σ2c2). (1)

In contrast, in DDP, the amount of noise added by each
individual user additionally takes the number of users who
participate in the round into account [52]. Assuming that
M users are sampled for participation, this results in a
local addition of Gaussian noise sampled from

N
(
0,

σ2

M− 1
c2
)

[52]. (2)

In Figure 2, we present the privacy-utility trade-offs re-
sulting from training models on the CIFAR10 [31] dataset
as a function of the total noise scale σ and the resulting
models’ accuracy on a test set. We train the private
models with a state-of-the-art framework for DP-training5

in which all hyperparameters and model architecture are
tuned for the task.

Figure 2 provides two main insights. First, unsurpris-
ingly, given the privacy-utility trade-offs mentioned above,
the model utility decreases when the total noise scale σ
increases. Second, the figure shows that the more users
participate in a given training round, the less noise each
user needs to add locally. This results from Equation (2)
which relies on the total noise being aggregated over all
participating users before sharing the aggregated gradients
with the server.

DDP assumes that each user is honest and adds the
required noise to their gradients. However, if even one of
the users adds less than the amount of noise it should add,
the desired total privacy guarantees cannot be reached.
Even worse, if, as described in Section 4, a target user in
FL is sampled for participation solely with controlled sybil
devices that do not provide any noise for aggregation, the
local noise added by the target user represents the only
protection for its gradients.

These results mean that there is a tension between (1)
the guarantee claimed by the server (and other users) in
DDP and (2) the guarantee that a user who does not trust
this server can rely on. This will lead the server optimizing
for model utility to request that users add less noise to
their gradients than what is needed for individual users to
protect their data from leaking to an untrusted server.

4.3. Reconstructing Data

In Section 2.2, we presented different attacks that rely
on manipulations of the shared model to extract individual
users’ training data points. In principle, each of these
attacks can be included to perform data reconstruction
in our FL+SA+DDP setup. However, the attack by [57]
extracts individual data points over several rounds of
the FL protocol. In our setup, due to the server’s OM
nature, single-round attacks are preferable. These allow
the adversary to stay more inconspicuous and to train
a more meaningful shared model throughout the benign

5. https://github.com/ftramer/Handcrafted-DP. Note, however, that our
reported accuracy and achieved privacy levels ε cannot directly be
compared with the values reported in the repository. This is because
we use different noise scales than they do and train the model for 100
epochs while they only train for 30 epochs.
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Figure 2: Privacy vs. utility trade-offs under DDP/LDP. Each point on the blue line corresponds to a model trained on
CIFAR10 with a clipping parameter c = 1, and the total noise scale σ indicated on the x-axis. Training was conducted
over 100 epochs, the resulting privacy guarantees ε are reported. For the non-private baseline ε = ∞ (red line). We
report accuracy loss with respect to this non-private baseline. The images depicted below the line plot display the
rescaled noisy gradients of one data point of an individual user with noise calculated according to Equation (2) as a
function of σ, c, and M in the training round. The more users participate, the less noise every user needs to add because,
during aggregation, the total noise is determined by the sum of the individual noises. If, however, other users do not
add noise, the locally added noise is the only privacy protection every individual user has (DDP reduces to LDP with
weak privacy guarantees). As a consequence, there is a discrepancy between the privacy the user believes to get and
the privacy they actually get: The images above the black line visualize the user’s belief on what the server can extract
from their gradient, the images below the black line visualize what the server can actually extract under our attack.

rounds. The attack by [16] relies on manipulations of the
model architecture, which are more detectable than manip-
ulations of model parameters, such as in [8]. Finally, our
experimental evaluation highlighted a significant advan-
tage of [8] in comparison to [16] for data reconstruction
under noise. [8]’s trap weights yield redundancy in the
extracted data, i.e. the same data point can be extracted
multiple times from gradients of different weight rows.
We thoroughly investigate this effect in Section 5.3. The
redundancy of extracted noisy data can be exploited to
average out the effect of the noise and yield higher-fidelity
data reconstruction, as we will show in Section 5.4. In
contrast, due to the nature of their attack, in [16], each
data point is only extractable once.

5. Evaluation of the Attack against SA+DDP

In this section, we present a practical evaluation of
our attack against FL protected with SA and DDP. We
first present our experimental setup. Then, we evaluate
direct extraction of noisy gradients under DDP. We move
on to experimentally evaluate the redundancy of extracted
data with [8]’s trap weight approach, and discover how
this redundancy can be exploited for higher-fidelity data
reconstruction under noise. We illustrate this with empir-
ical results reconstructing image and text data.

5.1. Experimental Setup

We operate in a cross-device FL setup and perform
training on the CIFAR10 [31] dataset. We evaluate extrac-
tion on different mini-batch sizes B ∈ {10, 20, 100}. We
split the CIFAR10 training data at random and iid between

the users. [8] shows that their trap weights’ extraction
success is equal for iid and non-iid distribution, even for
the most extreme scenario where every data point in a
given mini-batch stems from same class. Following [8],
we also experiment with the IMDB dataset for sentiment
analysis and the and distribute data the same way. An
extended experimental evaluation on two additional image
datasets (MNIST and ImageNet), and two textual spam
classification datasets (Spam Mails and SMS Spam Col-
lection) can be found in Appendix B.

To evaluate different setups for DDP, we select
{10, 100, 1000} users for participation in a given round
of the FL protocol. To circumvent the SA, as described in
the previous section, we sample one target user together
with sybil devices which all return zero gradients. Other
than that, we follow [8]’s experimental setup, use their
six-layer fully-connected neural network and embedding
architecture (their Table 7 and 8), initialize the first fully-
connected layer with their trap weights for individual data
point extractability. To project received gradients of the
first fully-connected layer’s weight matrix back to their
input domain, we rely on [8]’s Equation (5) which shows
that it is sufficient to rescale the gradient of the weights
with the inverse of the gradient of the bias for perfect
data extraction. Note that in our case, due to DDP, noise
is added not only to the gradient of the weights but also to
the gradient of the bias. Therefore, not only the extracted
gradients but also our scaling factor are noisy, resulting in
the rescaled gradients not being a perfect reconstruction
of the original input data.

We report the DDP-setup per-round through three
parameters required to determine the noise magnitude
according to Equation (2), namely the DP clip norm c, the

246



Figure 3: Directly Extracted Data under DDP. Rescaled
clipped and noised gradients from a mini-batch with 20
data points from CIFAR10 dataset. DDP setup: c = 1,
σ = 0.1, and M = 100.

Number of % Individually Reconstruction
Benign Users Reconstructable Data SNRs

1 0.867 0.015
2 0.800 0.012
3 0.733 0.011
4 0.717 0.010
5 0.633 0.010

10 0.400 0.008
15 0.317 0.008
20 0.250 0.008
30 0.133 0.007
40 0.000 0.007
50 0.000 0.007

TABLE 1: Influence of Fraction of Sybil Devices. Re-
sults for FL hardened by SSA and DDP with 50 partic-
ipants, each holding B = 20 data points. We replaced a
varying fraction of users by sybil devices and measured
number of individually extractable data points from the
target user and average SNRs over all their reconstruc-
tions. The more benign users participate in the round, the
less effective data reconstruction becomes.

DP noise multiplier σ, and the number of selected users in
this round M. This enables us to understand how sensitive
the attack is to choices for these hyperparameters without
making any assumptions about other hyperparameters of
the training run (e.g., the number of training steps).

5.2. Noisy Data Extraction

We first perform direct extraction from noisy gra-
dients. The extraction of data points works exactly the
same way as for vanilla FL [8], by initializing the model
with trap weights before sending it to the target user, and
then projecting their received gradients back to the input
domain. Figure 3 shows the full resulting extracted data
in a setup with a mini-batch of 20 data points, c = 1,
σ = 0.1, and M = 100. While some noisy reconstructed
data points resemble the original training data, other are
less recognizable because they are an overlay of multiple
data points, or are dominated by the added noise. DDP
setup: c = 1, σ = 0.1. We report further results for
MNIST and ImageNet in Appendix B.2.

Effect of Fraction of Sybils. We, furthermore, conducted
experiments to quantify the effect of not replacing all other
M − 1 users by sybil devices, but only a fraction of the
other users. Therefore, we conducted experiments with
extracting data from one round of the FL protocol with 50
participants, each holding a mini-batch of 20 data points.
Our goal was to study what privacy gain the presence of
other benign users incurs on the target user. We visualize
our results in Table 1 and Figure 4. They suggest that when

Figure 4: Influence of Fraction of Sybil Devices. Visual
depiction of the results presented in Table 1 for FL hard-
ened by SSA and DDP with 50 participants, each holding
B = 20 data points.

the target user is sampled solely with sybil devices (row
1), the server is able to extract 95% of their individual
training data points individually, protected solely by the
noise added locally according to DDP. The more benign
users participate in the protocol round, the lower SNRs
of the reconstructed data from the target user, and the
fewer of the target user’s individual data points can be
individually extracted. This effect stems from the aggre-
gation within the SA, which overlays gradients from all
users before sharing them with the server. Our results are
aligned with findings by [8] who showed that averaging
over several mini-batches (which is precisely the effect of
the SA) degrades extraction success.

Sufficiently Protective Noise. Deciding at which point,
i.e., under the influence of how much noise, the recon-
struction of a data point is sufficiently close to the original
data point is orthogonal to this work. In particular, it will
depend on the specific domain, task, and user-preference.
However, users in FL should assume that the server can
extract individual data points such as the ones depicted in
Figure 3 from their gradients.

In the following, we will show how the server can
improve the fidelity of extraction by leveraging the re-
dundancy of extractable data due to the trap weights.

5.3. Redundancy in Extracted Data

This section studies redundancy in extracted data of
the trap weights method and their effect on the fidelity of
reconstructed data.

Redundancy in Extractable Data Points. We first study
direct redundancy by analyzing how often each data point
in a mini-batch with B = 100 is individually extractable
from the rescaled gradients. The results depicted in Fig-
ure 5 suggest that the trap weights, first of all, make more
data points individually extractable in contrast to random
model initializations, but also cause the same data points
to be individually extractable from many more different
weight rows’ gradients (up to 70 times over the 1000
neurons and their respective weight rows).

Sparsity in Extractability. We, furthermore, evaluate by
how many data points each neuron gets activated. This
is equivalent to the question how many data points cause
a positive input to each neuron. Figure 6 highlights that
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(a) Random weights. (b) Trap weights.

Figure 5: Number of Activations per Data Point. The
number of times each of the 100 data points is individu-
ally extractable from the model gradients. The same data
points are individually extractable from many more dif-
ferent gradients when using trap weights which enable us
to use redundancy for better data reconstruction. Results
are averaged over five different random and trap weight
model initializations.

(a) Random weights. (b) Trap weights.

Figure 6: Number of Activations per Neuron. Number
of data points that activate each one of the 1000 neurons.
Individual neurons are activated by fewer data points (less
overlay) when using trap weights which enable better data
reconstruction. Results are averaged over five different
random and trap weight model initializations.

with randomly initialized weights, neurons are activated
by many more data points than with the trap weights,
which causes that many data points overlay in a single
gradient and we cannot extract them individually.

To improve fidelity of reconstruction, we can leverage
both the redundancy of extractable data and the sparsity
in the extracted data. By averaging redundant noisy data
points, the signal-to-noise ratio (SNR) of reconstructed
data increases as noise averages out. We visualize this
effect in Figure 7. Also sparsity can be exploited. The
fewer data points activate a neuron, the fewer data points
contained in the overlay of the rescaled gradient. Hence,
each individual data point’s signal is more clearly present
and identifiable in the rescaled gradients. In the following
section, we will show how this can be used to yield
higher-fidelity reconstruction in the image domain through
clustering.

5.4. Improving Noisy Data Reconstruction

The previous sections highlight that DDP reduces to
LDP with weak privacy guarantees from an individual
user’s perspective when other users are untrusted with
their noise addition. In this section, we show how we
can even improve data reconstruction in this setup, further
amplifying the small signal in the extracted gradients. We
evaluate improvements for data reconstruction from noisy
gradients computed under DDP on image and textual data.

Figure 7: Averaging out Noise. Mean value over #-many
noisy reconstructions of the same data point (bottom); cor-
responding mean image’s SNR (top). DDP setup: c = 1,
σ = 0.1, and M = 100. Over an increasing number
of reconstructions, the local noise averages out, yielding
higher-fidelity images and increased SNR.

All improvements solely rely on post-processing steps to
reduce the effect of the noise.

Image Data. Due to the local clipping and noise addition
by the users, the data points extracted from the gradients
are not perfect reconstructions of the original data points.
We can still improve reconstruction quality by leveraging
redundancy and sparsity in the gradients to average out the
added noise, as highlighted in the previous section. How-
ever, without knowledge of the users data, the server has
no means of determining which data points activate which
neurons a priori. Therefore, it is unclear which rescaled
gradients need to be averaged to improve reconstruction
fidelity.

To overcome this limitation, we employ similarity
clustering. In this approach, the server first filters out ex-
tracted data points with a SNR below 1. This prevents too
noisy instances from degrading performance. In the fol-
lowing Section 6, we will discuss why different extracted
data points have different SNRs. Then, the server runs
a simple k-means clustering on the extracted data, and
finally averages all per-cluster data points. Thereby, we
do not only leverage redundancy in individually extracted
data points, but also the sparsity. The signal from gradients
that represent an overlay of very few data points can mean-
ingfully contribute to the improved signal. We evaluate
this approach with different noise scales and mini-batch
sizes B. Note that the number k of clusters has to be
chosen in accordance with the mini-batch size if we want
to be able to reconstruct every data point. Our evaluation
suggests that clustering works best when k ≥ 2B.

In Figure 8, we depict the results of our clustering on
data points from the CIFAR10 dataset with a DDP setup
with c = 1, σ = 0.1 and M = 100. The top row depicts
10 original data points, the mid and bottom rows show
the closest averaged clusters for mini-batches of size 10,
and 20 respectively. The more instances are available for
averaging, the better the resulting per-cluster averages.

Textual Data. For the text classifier on IMDB, we
initialize the weights of the embedding layer with a ran-
dom uniform distribution (minimum=0.0,maximum=1.0)
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Figure 8: Similarity Clustering to improve noisy data extraction. Original data points and average clusters obtained
from the rescaled gradients depicted in Figure 3. First 10 original training data points from the CIFAR10 dataset (top
row). Averaged clusters of 10 data points reconstructed from the gradients for mini-batch size B = 10 (mid row), and
B = 20 with the first 10 examples depicted (bottom row). The numbers above the images indicate how many noisy
reconstructions were averaged to obtain that image.

Figure 9: Textual Data Extraction under Noise. Ex-
traction performance under noise for DDP from language
model on the IMDB dataset. Extraction remains success-
ful, even in presence of noise. Occasional drops in perfor-
mance occur because of near-zero gradients resulted from
correct data classification, i.e. data points with very low
original loss. Error bars correspond to a single standard
deviation.

to create the inputs for the fully-connected layer,
following [8]. We then adversarially initialize this
fully-connected-layer’s weights with the trap weights
to perform extraction of the embeddings and invert the
embeddings back to tokens using a lookup dictionary. In
the presence of noise introduced for DDP, the extracted
embeddings are slightly noisy. To overcome this, in
presence of noise we perform the lookup by searching for
the token with the closest embedding measured through
the �2 distance. Figure 9 shows performance of a single
mini-batch language extraction in presence of DP. Just as
with image data, here an attacker is capable of extracting
the original sentence of the users, despite the applied
noise. We do observe however that there is stochasticity
involved—when parametrization does well on the data
point by default, extraction gets low performance since
the received gradient has an extremely low magnitude

and the corresponding signal gets dominated by the
noise. We turn to this phenomenon in the next section.
Supplementary results for the two additional text datasets
can be found in Appendix B.3.

To summarize the results on image and textual data, we
find that:

• The trap weights [8] cause input data-diversity and
redundancy in resulting gradients, which can be
used to cancel out some of the applied noise.

• NLP is not safe from attacks described in
this paper, despite a more sophisticated input-
embeddings mapping.

• Despite using DDP, an attacker often can recon-
struct semantic information on the individual user
data points. This is because in the presence of
untrusted other users, DDP reduces to LDP with
weak privacy guarantees from the perspective of
an individual user.

• As shown in Figure 2, having users add more noise
locally, without additional improvements of the
protocol [50] comes with a significant decrease
in utility which makes the solution less practical.

6. Disparate Leakage over Model Gradients

Throughout our experiments, we observe that with the
exact same scale of noise added to all gradients, some
extracted data points have a significantly higher SNR
than others. This effect translates into different levels of
semantic similarity in the extracted data with respect to
the original data as we show in Figure 3. In this section,
we explain this observation and sketch how it can be
leveraged by the adversary to better extract data in the
presence of noise.
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Figure 10: Gradient Norm vs. SNR. Norm of the clipped
and noised gradients of 1000 weight rows against SNR
in corresponding extracted data point, i.e. the rescaled
gradients. With higher gradient norms, the SNR in the
extracted data increases. DDP setup: c = 1, σ = 0.1, and
M = 100.

6.1. Impact of Gradient Norm

We find that the SNR of an extracted data point is
tightly bound to the magnitude, i.e. the norm, of the
respective gradients. In Figure 10, we depict the SNR
in the rescaled clipped and noised gradients, i.e., the
extracted data points, against their respective gradient
norms. The figure shows that with higher magnitude
gradients, the same amount of noise has less impact on
the signal, whereas, with smaller magnitude gradients,
the same amount of noise largely dominates the signal.
Therefore, increased magnitude of model gradients results
in an increased data leakage.

The norm of a weight row’s gradients in the model
depends on the model’s loss. In general, higher loss re-
sults in higher magnitude gradients, in particular for the
weight rows that most contribute to the loss. Intuitively,
to increase data leakage from noisy gradients, the server
could, therefore, manipulate the shared model to produce
higher loss. In the best case, the loss would be caused
by all weight rows in the fully-connected layer used
for extraction with the trap weights. This ensures high-
magnitude gradients at all the weight rows’ gradients and,
thereby, enables enhanced extraction at all of them.

6.2. Global vs. Local Effect of Clipping

However, in DDP, before noise addition, users perform
a clipping step, bounding the maximum per-layer gradient
norm, and hence the extractable signal from a gradient
update. More precisely, clipping bounds the total norm
of a model layer’s gradients to the clipping parameter
c. If all weight rows have high gradients, their joint
norm will exceed c, and therefore, all of them will have
to be scaled down to reduce the total norm to c. The
effect is visualized in the middle row of Figure 11. It
shows that in this scenario, the extracted data over all
gradients has a relatively low signal, which yields low-
fidelity reconstruction.

Even though with DP and clipping, it is not possible
to have high magnitude gradients over all weight rows,
we note that the clipping is performed globally per-model
layer. Hence, if only a few weight rows locally have a

Figure 11: Extraction Success with Additional Model
Manipulations. Row 1 (top): Under trap weights only
(baseline), gradients at different weight rows have varying
SNRs under the same amount of added noise, depending
on their magnitudes. Row 2 (middle): When the shared
model is further manipulated (Section 6.3) and all weight
rows contribute equally to a high loss, their gradients will
be clipped, which results in equal information loss for all
of them. Row 3 (bottom): When only a few weight rows
contribute to a high loss, their gradients preserve a high
magnitude over clipping, which allows for higher fidelity
extraction. DDP setup: c = 1, σ = 0.1, and M = 10.
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Figure 12: Amplification of Gradient Magnitudes. The
misclassification of an example to the added class in-
creases the magnitude of its gradient for weight rows that
contribute to the loss.

high magnitude gradient but all other weight rows have
a low magnitude gradient, then their joint norm can be
below c. As a consequence, no clipping will be performed.
The effect of this scenario is visualized in the bottom
row of Figure 11. It highlights that while most gradients
yield pure-noise reconstruction, a few gradients contain a
very high-fidelity reconstruction of the input data. These
gradients correspond to individual neurons whose gra-
dients were less affected by the clipping operation due
to the local vs. global effect we described. This higher
vulnerability of certain neurons is desirable for improved
data reconstruction under DDP.

6.3. Exploiting Global Clipping for Increased Ex-
tractability

The previous section highlights that the global per-
layer clipping in DP still allows local parts of the gradients
to be large. This can be exploited for higher-fidelity data
extraction from neurons corresponding to these gradients.
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In this section, we sketch the idea for a possible model
manipulation that gives an attacker the control on local
gradient magnitudes to amplify this effect.

We base our manipulation on a fully-connected neural
network with two layers. The first layer is initialized with
the trap weights for extraction and has a ReLU activation
function. The second classification layer is modified to
yield high loss (without knowledge of the user data).
Therefore, we add an additional neuron to the classifi-
cation layer, i.e., an additional class that does not occur
in the data distribution. Then, we set most of the weights
connecting the output of the previous layers’ neurons to
this additional class to very small values, e.g. zero, and the
weights for a few neurons’ output to high values, e.g. one.

Due to the ReLU activation of the first layer, this
layer’s outputs are positive. High weights, connecting
neurons to the added class in the second layer, ”attribute”
the loss of the misclassification to a few trap weight rows.
As a consequence, only the gradients of these few trap
weight rows obtain a high magnitude (as illustrated in Fig-
ure 12 for the Trap Weight Row 2). All other trap weight
rows (row 1 and n in Figure 12) have low-magnitude
gradients. The overall norm of the layer’s gradients will
stay below the clipping parameter c, hence no clipping will
be applied, enabling high-fidelity data extraction from the
Trap Weight Row 2.

We instantiated the above construction with a fully-
connected neural network consisting of 1000 neurons in
the first layer and eleven neurons in the second layer for
experimental evaluation. The first layer’s weights were
initialized with trap weights, while the second layer was
initialized with a Glorot uniform distribution. We then ma-
nipulated the weights connecting to the eleventh (added)
class and set varying fractions (10%, 30%, 50%, and
100%) of them to one and the rest to zero. Using the
CIFAR10 dataset, we performed data reconstruction.

In Figure 11, we visualize the extracted data. For the
top row, all weights of the second layer are initialized
at random. In the middle row, 100% of the weights
connecting to the added class are set to one, and in the
bottom row, 10% of these weights are set to one and the
rest to zero.

We furthermore measured the SNRs of the extracted
data and depict the results in Figure 13. The results are
consistent to the observations from Figure 11: When few
weight rows contribute to the high loss, their respective
rescaled gradients, i.e. the extracted data points, have a
higher SNR. This allows for higher-fidelity extraction. In
contrast, when all weight rows contribute equally to the
high loss, all their rescaled gradients have a similar (lower)
SNR. This is because of all their gradients being (equally)
affected by the clipping. In general, the more weight rows
contribute to a high loss, the lower their individual SNRs.

Our two-layer construction naturally integrates with
other architectures starting with convolutional and embed-
ding layers described in this work. We leave fine-tuning
and the extension of our construction to architectures that
end with more than two fully-connected layers for future
work. However, the approach highlights that even when
DDP is in place, the server can initialize a model to
increase the likelihood of reconstructing points with high
fidelity.

(a) 100 (b) 300

(c) 500 (d) 1000

Figure 13: SNRs of Rescaled Clipped and Noised
Gradients, i.e. the extracted data points. The first fully-
connected layer used for extraction consists of 1000 neu-
rons. The respective weight rows are initialized with our
trap weights. The second layer is manipulated by adding
an additional class neuron, and setting {100, 300, 500,
1000} of the 1000 weights that are connected to this neu-
ron to one. The remaining weights that go to this neuron
are set to zero. The original baseline consists in randomly
initialized weights for second fully-connected model layer.
Noise with scale 0.001 is added to all gradients; clipping
parameter c = 1. When fewer weight rows (in this case
100) contribute to the high loss, the data points extracted
from the respective rescaled gradients have the highest
SNR (> 1.5), which allows for higher fidelity extraction
(compare to Row 3 (bottom) in Figure 11).

7. Related Work

We survey related work on privacy attacks against
model gradients, in particular in the setup of FL.

Passive Attacks against Vanilla FL. Phong et al. [43]
were the first to show how gradients leak information that
can be used to recover training data at single neurons or
linear layers. Recent work [18], [43], [55], [60], [62], [63]
proposed exploiting this leakage for data reconstruction,
for example, through Generative Adversarial Networks
[23] (GANs), or by solving a second order optimization
problem.

Active Attacks against Vanilla FL. Melis et al. [36] pro-
posed membership [48] and property inference [4] attacks
based on periodically analyzing the model updates in an
FL setup. They consider both passive and active attackers
in vanilla FL. Nasr et al. [39] assume active attackers (both
users and server) for membership inference. Similarly to
Melis et al., their attackers do not directly alter the shared
model, but rather manipulate it through model updates
(users through gradients, and the server by modifying the
aggregated model update). Recent work [8], [16], [57],
have shown that manipulating the shared model allows
a malicious server to extract user data perfectly from
the model gradients. In contrast to all these attacks that
consider vanilla FL, our work attacks FL with additional
extension for dedicated privacy protection through DDP
and SA. As we discussed in Section 4.3, the extraction
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attacks for vanilla FL can be integrated into our attack
flow for improved data extraction. We show this using
[8]’s trap weights.

Attacks against Hardened FL. To our knowledge, the
only prior work in this vein is due to Pasquini et al. [41].
This work noticed that in SA the server has the ability to
dispatch inconsistent models to different users, and used
this to circumvent SA entirely. As we note in Section 4.1,
their attack against SA is not able to circumvent DDP
since even when all users’s models but the target user’s
model produce zero gradients, benign users would still add
their share of noise. Thereby, privacy guarantees through
DDP can still be achieved. Finally, while Pasquini et al.
focuses on leveraging a specific capability of the server
to circumvent a specific mechanism, we systematically
study the server’s capabilities arising from FL’s pervasive
centralization, and consequently offer a rich breadth of
contributions over this work. We suggest a simpler and
more powerful attack that relies on sybils introduced
by the server to circumvent SA, compose this attack
with other attacks relying on other capabilities to extract
individual data points (the attack by [41] only extracts
updates, not individual user data points) and attack a
variant that also includes DDP.

8. Discussion: Privacy-Preserving FL

In this section, we discuss the following three main
questions:

• Q1: What is the core reason behind FL’s vulner-
ability to privacy attacks as the one of this work?

• Q2: How can the vulnerability be fixed?
• Q3: What privacy guarantees can, as of now, be

provided to FL users?

8.1. Q1: What is the Root Cause of Vulnerability?

We posit that the root cause of FL’s vulnerability to
attacks, like the one introduced in this work, is the power
imbalance in the centralized design of FL. At its core, FL
is a highly centralized protocol where the server makes
the final decisions. For example, DDP+SA is commonly
regarded as a privacy-enhancing solution in modern FL,
adding local noise and decentralizing the aggregation step
of the original design, however, the server can circumvent
the defense by controlling users and manipulating the
shared model. In this paper, we demonstrate that even
though the protocols behind DDP+SA and their funda-
mental cryptographic primitives are correct, the underly-
ing assumptions are not met when the server is malicious.

We detail the factors enabling the different aspects of
the attack presented in this work:

1) The server is able to control a fraction of users.
2) The server provisions users for participation in

each protocol-round.
3) The server holds the power to manipulate the

shared model.
4) The users have no inherent way of verifying each

other’s correctness.
5) The users cannot meaningfully validate model

updates.

Decentralization can indeed help balance the power
disparity, but it should be introduced very carefully and
consider the system as a whole [42]. Next, we elaborate
more on decentralization and other methods that can ad-
dress the vulnerability.

8.2. Q2: How to Fix the Vulnerability?

We analyze how to fix the vulnerability by considering
the following three approaches: (1) decentralization, (2)
verification on the user-side to decrease trust assumptions
made about the server, and (3) application of external
hardware and (cryptographic) protocols that implement
guarantees under the presence of an untrusted server.

Decentralizing FL. Several approaches were introduced
to decentralize parts of FL, or the entire protocol. We
survey them and discuss their practical applicability.

Decentralized methods for selecting a protocol round’s
participants are available [5], [20], [47], [59]. For example,
mechanisms where the users perform a self-sampling,
such as [20], have been put forward. These allow users to
decide about their participation and, thereby, reduce the
power of the server. Anarchic FL [59] goes even further
and lets users choose an arbitrary point in time to update
the shared model with fully-individualized training pa-
rameterization; the server observes user updates directly,
but each user can individually determine their required
privacy level and act accordingly (for example, train on a
lot of data, or add a lot of noise). This does not only
mitigate the attack vector where the server samples a
target user along with sybil devices. If the users implement
enough protection locally, the server cannot extract their
private data. Yet, such mechanisms come with a significant
increase in operational complexity and are faced with the
major challenge of motivating users to provide truthful
private data, compromising overall system utility.

An interesting decentralized-FL attempt, Biscotti [47],
addresses the issue of sybil attacks by offering a block-
chain based protocol that selects users in a decentralized
fashion based on past behavior that appears to demonstrate
honesty. This is called Proof-of-Federation (PoF), and
honesty is indicated by contributing updates to the model
that appear close to many other updates (and are thus
assumed to be of high quality). However, users can try
to appear honest and yet act maliciously in ways that
will not affect the update-quality metric, for example,
by not performing their role when they are supposed to
noise or verify updates (roles for round participants in
the Biscotti protocol which have no performance quality
metric). Biscotti would have to be extensively audited for
vulnerabilities to this and other attacks before it can be
safely and widely deployed. Ultimately, the designs of
these decentralized FL systems are very different from
FL’s original design, and usually from each other’s de-
signs. At the time of writing, we are not aware of any
prominent real-world FL deployments that adopt such
decentralization.

User-Side Verification. Alternatively to decentralization,
or in addition to it, we can try to reduce the trust that users
have to place in the server by performing verification on
the user side.
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First, we discuss the verification of the shared model.
Giving users the ability to verify the shared model’s
integrity can prevent malicious manipulations against it,
such as the ones of the trap weights that we integrated
into our attack flow. Unfortunately, without any changes
to FL, there is no full-proof way to distinguish weight
manipulation from model weights resulting from legit-
imate previous training. Users have no insights on the
data of other users, updates are affected by stochasticity
including sampling [49], non-deterministic hardware ele-
ments [28], and large-scale FL applications with control
flow mechanisms [9] that do not sample every user in
every round [45]. Ultimately, this makes it impossible to
track how the model evolves over time since a user gets
only intermittent views of the shared model. Given these
difficulties, we might consider solutions that modify FL
to make manipulation-detection easier.

Second, we discuss the option of users verifying other
users. Privacy guarantees in DDP result from all users
adding their share of noise to protect the aggregate of all
gradients. If only one user does not add their share of
noise, the claimed theoretical overall privacy guarantees
cannot be reached. Our attack exploits this effect and
exposes the gradients of a target user by omitting noise
addition of all other users sampled in the protocol round.

To prevent this attack vector, users have to verify
that other users calculate their gradients correctly and
add the correct amount of noise. However, due to the
centralization in standard FL protocols, users do not have
direct communication channels with each other. The cen-
tral party acts as an intermediary in their interactions. As
an alternative, FL could be deployed within a Public Key
Infrastructure (PKI) [6]. However, a server that behaves
semi-honestly is required during the key collection phase
of PKI. Hence, users rely again on their trust in the server
while nothing in the protocol prevents this server from
acting maliciously and registering their introduced sybil
devices to the PKI prior to training.

In fact, protocols like SA rely on the assumption that
users participating in the protocol are actual users and no
sybil devices controlled by the server [6]. Yet, nothing in
the integration of the protocol into FL verifies or enforces
this assumption. As a consequence, users who do not trust
the server will have to verify that other users participat-
ing with them in a protocol round follow the protocol,
correctly calculate their gradients, and add their share
of noise. Verifying correct gradient calculations without
users having to reveal their private data to each other,
can, in principle, be implemented through zero knowledge
proofs (ZKPs) where users commit to their private data
and prove correct gradient calculation. However, in our
attack, the sybil devices are controlled by the server. As a
consequence, even when they compute correct gradients,
the server will be able to subtract these from the aggregate
gradient to obtain the target user’s gradients and conduct
extraction as described in this work. The same argument
can be applied to correct noise addition.

This motivates the need for users to verify that other
users are no sybil devices. Prior sybil device detection in
FL relies on analyzing gradients [17] under the assumption
of a non-malicious server. This approach fails to prevent
our attack where sybils are controlled by the server and
can, as mentioned above contribute meaningful gradients,

as long as the server can subtract these from the aggregate.
Yet, if users in FL have a way to confidently determine if
other users are sybil devices, and if users have a chance
to refrain from contributing to the protocol under their
presence, our attack can be mitigated.

Finally, it is desirable to enable users to verify the
whole FL application and its local execution. This allows
them to make sure that their local client handles their data
correctly, adds enough local noise, and is not manipulated
by the server. However, in modern FL ecosystems the FL
client applications are proprietary software encapsulated
in dedicated partitions [54] largely inaccessible to users.
Additionally, the developers of verification software are
usually the same entity acting as the server, bestowing
it with even more power. Therefore, we recommend that
applications of purportedly privacy-preserving protocols
should be open-source so that they are available for audits
and verification by the community.

Hardware and Protocol Support. As the last approach
to fixing the vulnerability of FL, we discuss the support
of dedicated hardware and (cryptographic) protocols to
implement guarantees for the users.

By relying on protocols that are based on trusted
execution environments (TEE), e.g. [38] the server can be
prevented from manipulating the shared model. This re-
duces the success of data extraction as the one underlying
our attack. Additionally, to make sure that users always
receive a well-controlled and no a manipulated model, we
suggest releasing the shared model publicly, for example,
in a block-chain. This makes it impossible to manipulate
and change a shared model after release.

A drawback of this solution is that it offers outside
attackers access to several intermediate model states. We
argue that this is not too restricting, though, since the
shared model is also sent out to a few hundreds or
thousands of users during each round. Hence, there exists
the possibility of the internal model states being leaked,
anyways. Yet, [8] has shown that even non-manipulated
ML models, under certain conditions, leak their private
training data. Moreover, when it comes to TEEs, they
are prone to side-channel attacks, e.g. [27]. Hence, we
conclude that even under such hardware protection some
privacy risk for users remains.

Homomorphic encryption (HE) is a candidate solu-
tion to protect user gradients against leakage to a ma-
licious server. However, existing instantiations [61] do
not prevent our attack since, for efficiency in training,
users decrypt the aggregated gradients and apply them
to their (unencrypted) local model. In our attack, the
server controls sybil devices, hence, it obtains access to
the decrypted aggregate and can extract the target user’s
gradient by subtracting the sybil devices’ contributions.

Finally, a cryptographic protocol that always adds
enough noise to user gradients in an aggregation step
would mitigate the privacy leakage of the attack presented
in this work. The protocol should offer DP, but without
making any questionable trust assumptions on other users.
We envision a secure multiparty computation (SMPC)
protocol that performs update aggregation, much like SA,
but also ensures that the output is added with a sufficient
amount of noise to implement DP before it is dispatched
to the server. As long as within this protocol users do
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not learn about each others’ inputs, and the server only
learns the aggregated (and noised) output, the protocol
may be able to offer a comparatively favorable privacy-
utility trade-off. To the best of our knowledge, so far, no
protocol for jointly adding sufficient amounts of noise to
user gradients in SMPC exists and given the gradients’
high dimensionality, the costs of any such approach will
most likely not be practical, yet.

8.3. Q3: What Users Can Do Today?

Let us assume that a user wishes to attain DP guaran-
tees, and with good reason, as DP is the most viable and
protective form of privacy guarantee in use today. Our
study of FL under SA and DDP demonstrates that the
mere inclusion of a DP mechanism does not necessarily
provide protection if this mechanism makes assumptions
that are inaccurate in the context of the given system.

We currently see two promising directions for users to
attain strong privacy guarantees.

Local Differential Privacy. The first one consists of
implementing their full privacy protection locally, without
trusting any other participant of the protocol, neither the
server nor other users to contribute to their protection. One
way to implement such protection is LDP with conserva-
tive parameterization, and while ensuring that data point
reuse is accounted for and prevented when needed [51].
While LDP comes at cost of the utility of the shared
models, approaches to successfully improve the trade-offs
exist for FL deployments with large numbers of partic-
ipants [50]. We think that improving LDP to desirable
privacy-utility trade-offs is a promising direction.

FL Protocols with Trusted Servers. The second option
for users to obtain privacy guarantees is to opt-out of FL
altogether, if they do not trust the server, potentially while
trying to hide this, for example, by providing randomized
“garbage” updates to the server. However, this approach
comes with a corresponding utility cost and undermines
the purpose of collaborative learning to produce a perfor-
mant model that fits many diverse individuals.

Finally, these options are only available if users can
control the local FL application software, which is usually
not the case (unless an opt-out option is provided).

9. Conclusion

Truly privacy-preserving ML must defend itself from
attackers that are malicious and hence do not follow
protocol. In this work, we presented a highly efficient data
reconstruction attack against FL in a strongly protected
deployment, namely with SA and DDP. Our attack adds
sybil devices to the pool of users who are provisioned and
sampled by the server. Such sybils return model updates
that are known to the server, thus can be easily subtracted
from the total aggregate to expose model updates provided
by targeted individual users. By including trap weights
into our attack, we are able to reconstruct individual users’
data points of high quality. Based on the attack’s success,
we analyzed the question of the minimum trust model that
is required to obtain meaningful privacy guarantees for the
users. We showed that FL can provide privacy guarantees
if the users trust the server, or if they rely on adequate

cryptographic protocols, and if relevant additional pro-
tection methods are in place. Most of the methods for
protection aim at shifting power from the server to the
conglomerate of users and come with significant costs
or overhead. Therefore, such systems are often not yet
practically in place. As a consequence, we recommend
that, currently, users only participate in FL protocols that
are orchestrated by a trusted server.
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A. Differential Privacy and DPSGD

DP [14] formalizes the idea that no data point should
significantly influence the results of an analysis conducted
on a whole dataset. Therefore, the analysis should yield
roughly the same results whether or not any particular
dataset is included in the dataset or not. Formally, this is
expressed by the following definition.

Definition 1 ((ε, δ)-Differential Privacy). Let A : D∗ →
R a randomized algorithm. A satisfies (ε, δ)-DP with ε ∈
R+ and δ ∈ [0, 1] if for all neighboring datasets D ∼ D′,
i.e. datasets that differ on only one element, and for all
possible subsets R ⊆ R

P [A(D) ∈ R] ≤ eε · P [M(D′) ∈ R] + δ . (3)

In ML, DP formalizes the idea that any possible
training data point in a training dataset cannot significantly
impact the resulting ML model [1], [40]. One notable ap-
proach to achieve this is Differentially Private Stochastic
Gradient Descent (DPSGD) [1]. DPSGD alters the train-
ing process to introduce DP guarantees for weight update
operations, and thereby protects underlying individual data
points. Particularly, the gradient computed for each data
point or a mini-batch of data points is first clipped in
their �2-norm to bound influence. Clipping of the gradient
g({xi}b) for mini-batch b of data {xi}b is performed
according to a clipping parameter c, by replacing g({xi}b)
with g({xi}b)/max(1, ||g({xi}b)||2

c ). This ensures that if
the �2-norm of the gradients is ≤ c, the gradients stays
unaltered, and if the norm is > c, the gradient get scaled
down to be in norm of c. After the clipping, Gaussian
noise with scale σ is applied to the gradients of each mini-
batch before performing the model updates.

B. Extended Experimental Evaluation

We present an extended experimental evaluation on
two additional image and two textual datasets for spam
classification.

B.1. Datasets

We describe the additional datasets used for our ex-
tended experimentation.

MNIST [32] is a vision dataset consisting of 70,000 gray-
scale images and corresponding labels for ten classes. The
images are of size 28x28 pixels and depict the hand-
written digits zero to nine. The dataset is divided into
a training set consisting of 60,000 images and a test set
consisting of 10,000 images.

ImageNet [13] is a large and complex vision dataset con-
taining color images with 224x224x3 pixels that belong
to 1,000 different classes. The dataset contains 1,281,167
training, 50,000 validation, and 100,000 test images.

Spam Mails Dataset. The Enron-Spam datasets [37] con-
tains 5,170 emails in English language which are tagged as
legitimate or spam. We used the the dataset from Kaggle6.

6. https://www.kaggle.com/datasets/venky73/spam-mails-dataset
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SMS Spam Collection Dataset. We used the SMS Spam
Collection dataset [3] from Kaggle7 which consists of a
set of SMS messages in English language. In total, it holds
5,574 SMS messages, tagged as legitimate or spam.

B.2. Experimental Results on Image Data

Figure 14: MNIST: Directly Extracted Data under
DDP. Rescaled clipped and noised gradients from a mini-
batch with 20 data points from CIFAR10 dataset. DDP
setup: c = 1, σ = 0.1, and M = 100.

Figure 15: ImageNet: Directly Extracted Data under
DDP. Rescaled clipped and noised gradients from a mini-
batch with 20 data points from CIFAR10 dataset. DDP
setup: c = 1, σ = 0.1, and M = 100.

We first analyze the fraction of noisy data points that
can be extracted from the gradients for MNIST and Ima-
geNet. With a mini-batch size of 20, for MNIST roughly
95% and for ImageNet roughly 59% of noisy data points
can be extracted. We depict the rescaled extracted data
points from gradients for MNIST in Figure 14 and for
ImageNet in Figure 15.

B.3. Experimental Results on Textual Data

Figure 16: Email Data Extraction under Noise. Extrac-
tion performance under noise for DDP from language
model on the Enron-Spam dataset. Extraction remains
successful, even in presence of noise.

We present the results of extraction under noise for the
Enron-Spam dataset and the SMS Spam Collection dataset

7. https://www.kaggle.com/datasets/uciml/sms-spam-collection-
dataset

Figure 17: SMS Data Extraction under Noise. Extrac-
tion performance under noise for DDP from language
model on the SMS Spam Collection dataset. Extraction
remains successful, even in presence of noise.

in Figure 16 and Figure 17, respectively. For both datasets
we observe a degrease in the fraction of recovered tokens
with increased noise scale. The performance in the SMS
Spam Collection dataset drops faster than in the email-
based Enron-Spam dataset. This effect is most likely to the
limited number of token in SMS messages in comparison
to emails or the reviews in the IMDB dataset.
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