
SoK: Data Sovereignty

Jens Ernstberger †‡‡, Jan Lauinger †, Fatima Elsheimy ‡, Liyi Zhou §‡‡,
Sebastian Steinhorst †, Ran Canetti ¶, Andrew Miller ‖, Arthur Gervais ∗∗‡‡, Dawn Song ††‡‡

†Technical University of Munich, Germany
‡Yale University, United States

§Imperial College London, United Kingdom
¶Boston University, United States

‖University of Illinois at Urbana-Champaign, United States
∗∗University College London, United Kingdom

††University of California, Berkeley, United States
‡‡Berkeley Center for Responsible, Decentralized Intelligence (RDI)

Abstract—Society appears to be on the verge of recogniz-
ing the need for control over sensitive data in modern
web applications. Recently, many systems claim to give
control to individuals, promising the preeminent goal of
data sovereignty. However, despite recent attention, research
and industry efforts are fragmented and lack a holistic
system overview. In this paper, we provide the first tran-
secting systematization of data sovereignty by drawing from
a dispersed body of knowledge. We clarify the field by
identifying its three main areas: (i) decentralized identity,
(ii) decentralized access control and (iii) policy-compliant
decentralized computation. We find that literature lacks a
cohesive set of formal definitions. Each area is considered
in isolation, and priorities in industry and academia are not
aligned due to a lack of clarity regarding user control. To
solve this issue, we propose formal definitions for each sub-
area. By highlighting that data sovereignty transcends the
domain of decentralized identity, we aim to guide future
works to embrace a broader perspective on user control. In
each section, we augment our definition with security and
privacy properties, discuss the state of the art and proceed
to identify open challenges. We conclude by highlighting
synergies between areas, emphasizing the real-world benefit
obtained by further developing data sovereign systems.

1. Introduction

Administering and protecting user-affiliated data is an
undeniable burden. In the physical world, the importance
of ownership over confidential documents is well under-
stood — secrecy, shredding, and limiting access have
been common practice for decades. Unfortunately, privacy
is less practiced in the digital domain, and users are
often unaware of privacy violations [1]. In the current
version of the Web (Web 2.0), user data is managed by
centralized entities through a wide range of web plat-
forms. Service providers generate, store and analyze large
amounts of user data. In essence, they remain in control
over the personal data of their users. Simultaneously,
implementing regulations to protect user data is labor-
intensive and expensive [2], diminishing utility for users
and service providers. To improve administration and
protection of user-affiliated data, recent developments aim

Identity Layer
(Section 3)

Data Layer
(Section 4)

Application Layer
(Section 5)

Verifiable 
Registry

Entities

Consumer 
Model

Section 2
1. Layers
2. Roles

3. Threats

Section 3, 4 & 5
1. Formalization

2. State-of-the-art
3. Discussion

Section 6 & 7
Discussion

Concl. Remarks

Distributed Ledger
*Consensus *P2P *Transactions *State Transition

Decentralized Access Control
* Access Policies * Secret Management

Policy Compliant Decentralized Computation
* Secure Computing * Compute Policies

Decentralized Identity
*Identifiers *Credentials

Identity
Model

Figure 1: Overview of Data Sovereignty (§ 2). Throughout
this work, we assume the existence of a verifiable registry.
We set out to systematize decentralized identity (§ 3),
decentralized access control (§ 4), and policy-compliant
decentralized computation (§ 5). In each section, we give
a formalization followed by insights & challenges.

to address two separate, yet intertwined issues — enabling
sufficiently fine-grained control of users over the use of
their data, which is pertinent (and lacking) even in a
centralized setting, and decentralization, which guarantees
the security and availability of the system without the
need to trust any single entity, even when a significant
fraction of the participants are misbehaving. These efforts
contribute to the evolution of the Web (Web 3.0), where
data is controlled through user-generated authority [3].
However, defining user control remains a challenging
task, as the predominant emphasis in current research and
development centers on decentralized identity. While a
decentralized identity allows a user to disclose sensitive
information through knowledge of a secret key, comple-
mentary solutions that enable control over how data is
accessed and processed are still underdeveloped.

In this work, we further explore the space of data
sovereignty beyond the currently discussed notion of de-
centralized identity. We set out to synthesize existing con-
cepts, highlight areas of research that demand for greater
attention, and proceed to lay out a general framework
by building upon a vast number of existing works and

122

2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P)

© 2023, Jens Ernstberger. Under license to IEEE.
DOI 10.1109/EuroSP57164.2023.00017

20
23

 IE
EE

 8
th

 E
ur

op
ea

n 
Sy

m
po

si
um

 o
n 

Se
cu

rit
y 

an
d 

Pr
iv

ac
y 

(E
ur

oS
&

P)
 | 

97
8-

1-
66

54
-6

51
2-

0/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
Eu

ro
SP

57
16

4.
20

23
.0

00
17



literature. We identify decentralized access control as an
additional, complementary key control point for a user.
Further, we observe that current technologies, and both
decentralized identity and decentralized access control,
are insufficient to provide users with control over how
their data is processed. Therefore, we introduce policy-
compliant decentralized computation as a contribution of
independent interest with the aim to mitigate and control
data non-rivalry. We are the first to propose formal defini-
tions for the novel concepts of decentralized access control
and policy-compliant decentralized computation, which
we deem essential fragments of data sovereign systems.

The contributions made in this paper are fourfold:

• We disentangle the concepts of control over data and de-
centralization, providing a comprehensive understand-
ing of their individual significance.

• We clarify the notion of decentralized identity, pro-
viding its first formalization by relying on upcoming
community standards and state-of-the-art protocols.

• We introduce the first definition and formalization of
decentralized access control and policy-compliant de-
centralized computation.

• We discuss the capabilities and limitations of each area,
and the vastness of unexplored research possibilities,
highlighting the potential for future advancements.

We follow up each formalization with a list of security &
privacy properties that a protocol should possess. Further,
we provide a Universal Composability (UC) analysis in
the appendix, detailing the security guarantees of the
proposed formalisms. We hope that our results will enable
non-experts to better understand the field, while allowing
domain specialists to identify relevant research questions.

Structure of the paper. The remainder of this paper is
organized as follows (cf. Figure 1). Section 2 introduces
the layers and entities that comprise the data sovereignty
ecosystem. In Sections 3-5, we systematize (i) decen-
tralized identity and propose the novel concepts of (ii)
decentralized access control and (iii) policy-compliant
decentralized computation. We begin each section by con-
trasting solutions for Web 2.0 and Web 3.0. Successively,
we provide a generic and formal definition. We proceed to
discuss the state-of-the-art, highlight recent achievements
through concise insights, and uncover potential synergies
and challenges by taking a birds-eye view on the overall
ecosystem. Finally, in Section 6 and 7, we emphasize the
interdependence between investigated sub-areas and con-
clude with recommendations for the Web 3.0 community.
Scope & Methodology. We aim to provide a holistic
overview, presenting the most relevant lines of work,
whilst highlighting the differences between a platform-
centric Web 2.0 and a user-centric Web 3.0. Since our
goal is to systematize a large body of work, instead of
providing a complete survey, we focus on crucial aspects
and key papers as a foundation for our systematization.
Therein, we focus on works that discuss how a user can
(i) retain unshared control over and (ii) audit any actions
on its personal data. We consider distributed key man-
agement, distributed storage solutions and calculations for
reputation and trust to be out of scope.

2. Overview - Data Sovereignty

Currently, Web 2.0 solutions remain fallible due to
their reliance on regulatory frameworks and centralized
trust [4], [5]. The overarching objective of data sovereign
tools and frameworks is to allow users to control how,
when, and where other peers in the network may utilize
their personal data. The user is able to track and suc-
cessively audit operations performed on its personal data
to either detect or prevent privacy violations. Ultimately,
fulfilling these goals is motivated by the desire for a
decentralized society, solely governed by users [6]. To
explicitly define data sovereignty, we develop a system
model which introduces layers upon which current sys-
tems operate, roles that participants can take, and threats
that are relevant in subsequent sections (cf. Figure 1).

2.1. Layers
Our system model consists of four layers (cf. Figure 1).
The (i) Verifiable Registry acts as a trustless third party
which ensures availability of public values and auditabil-
ity. It ensures a consistent view of registered values,
such as public identifiers and user-specified policies.
The (ii) Identity Layer enables identification of partici-
pants, whereas the (iii) Data Layer holds the personal data
of a user and provides authorization accordingly. The (iv)
Application Layer refers to programs used to process
confidential data according to user-specified policies.

Verifiable Registry A verifiable registry is an append-
only data structure, which is collaboratively maintained
by a network of mutually distrustful parties. The verifi-
able registry represents a digital bulletin board, whose
current state is publicly verifiable and agreed upon by
a set of validator nodes through a consensus algorithm.
In the remainder of this work, we consider the verifiable
registry to be a distributed ledger L, as it constitutes the
most commonly used data structure that fulfills the needs
of a verifiable registry [7]. Unless otherwise stated, we
consider a permissionless distributed ledger where users
can join and leave at any given point in time.

Identity Layer. Each user in a system is associated with
an identifier. To join, a user has to generate a key pair
(sk, pk), where the identifier is derived from the generated
public key. In a permissionless distributed ledger, each
user can obtain multiple pseudonymous identifiers. It de-
pends on the underlying distributed ledger whether a user
can derive multiple identifiers from the same key pair, or
needs to generate a new key pair per identifier. Identifiers
and key pairs are collectively maintained through wallets.

Data Layer. The Data Layer holds the personal data that
is associated with an identifier. We consider personal data
to exist in the form of data items dUi ∈ DU , where each
data item is controlled by a user U . Unless otherwise
specified, we make no assumptions about the underlying
structure of a data item. Data items may either be stored
locally or in an outsourced, distributed data storage [8],
e.g., if the size of the data item prohibits local storage in
a wallet. If a data item is attested by a third party, we
refer to it as credential. A credential consists of a set of
claims made about the subject of the respective data item.
Throughout this work, we focus on how a data item can
remain confidential through user-specified policies.

123



Application Layer. Applications may process personal
data if they fulfill the policies specified by the user. We
assume applications in the form of programs, which are
executed locally, on a user’s machine, or externally, on
an dedicated compute node. The correctness of program
execution remains auditable via the verifiable registry.

2.2. System Roles
Roles of participants differ in the three surveyed sub-areas.
A user either presents statements on its personal data in
the case of decentralized identity, or gives access to its
personal data for decentralized access control and policy-
compliant decentralized computation. For clarity, we de-
fine system roles in the (a) decentralized identity model
for decentralized identity and (b) data consumer model for
decentralized access control and policy-compliant decen-
tralized computation. The user is a common role between
both models, and hence, defined first.

User. A user can be identified by (i) a unique identifier,
or (ii) the semantics of its personal data. In general,
we consider the user to be a person or an organization.
For decentralized identity, the user is the holder of a
credential. A credential, in this context, refers to a digital
document containing verifiable claims about the user’s
identity attributes, signed by an issuing authority.

2.2.1. Decentralized Identity Model
In our model of decentralized identity, we assume that an
entity can either act as an issuer, a verifier, or a user. Any
entity may take more than one of the introduced roles.

Credential Issuer. The issuer asserts claims about a
user ’s attributes in the form of a credential. Therein,
an issuer vouches for the validity of claims about user-
specific attributes. For example, issuers can be corpora-
tions, governmental authorities, and individuals.
Verifier. The verifier determines whether or not to provide
a service to the user based on the validity of the presented
information. For confidentiality, the verifier needs to verify
a proof as presented by the user. For example, verifiers
can be websites, security personnel, and data consumers.

2.2.2. Data Consumer Model
In the data consumer model, we assume that an entity can
either act as a user, an access controller, a compute node
or a data consumer. The user intends to limit access to its
personal data. Any entity may take more than one of the
introduced roles.

Access Controllers. An access controller maintains the
secret key encrypting the user’s personal data. The ac-
cess controller can either be represented as a distributed
committee or as a centralized entity, which e.g. runs
trusted hardware. An access controller disseminates the
decryption secrets of an owner’s confidential data to data
consumers based on the user-specified access policy.
Compute Nodes. A compute node executes a computa-
tion on a user’s personal data, according to a program
supplied by the data consumer. The execution of the
program needs to abide with the privacy requirements as
specified by the data owner. The compute node further
updates policies upon successful program execution.
Data Consumers. A data consumer intends to either (i)
access encrypted personal data or (ii) execute a program

Distributed Ledger 

Issuer User VerifierCredential
Issuance

Credential
Presentation

C
re

at
e

Re
so

lv
e

Wallet

Storage

D
ec

en
tr

al
iz

ed
 Id

en
tit

y
 M

an
ag

em
en

t
D

ec
en

tr
al

iz
ed

An
on

ym
ou

s C
re

de
nt

ia
ls

Figure 2: Overview of the Decentralized Identity Model.
Each entity is identified by a pseudonymous DID. The
issuer I issues a credential to the user U . Upon presenta-
tion of the credential, the verifier V can verify its validity
without interacting with I by resolving the issuer DID
to obtain the issuer metadata MDI .

on a user provided data item. To successfully access or
process user data, the data consumer needs to ensure that
its actions comply with the user’s policy.

2.3. Threat Model & Assumptions

We consider a variety of adversarial objectives and capa-
bilities for our definitions and properties. We emphasize
that the core motivation behind decentralization is the
assumption that all entities are potentially corruptible,
while still requiring security and availability in the system.

• Arbitrarily deviating adversary: In the remainder of this
work, we assume that any entity may deviate from the
protocol to maximize its own benefit. Participants may
act maliciously or abort at any time. In the decentralized
identity model, we assume that an adversarial issuer
may collude with a user to issue a forged credential,
in an attempt to impersonate another user. Further, a
user may attempt to convince the issuer to issue invalid
credentials. We assume that verifiers and users do not
collude, such that only valid credential presentations
are treated as such. In the data consumer model, we
assume that an access controller may attempt to evaluate
a program without regarding the user’s policy. A data
consumer may attempt to access a resource without ad-
hering to the user-specified policy. And, an adversarial
user may intend to withhold resources after successful
authentication of the data consumer. Compute Nodes
may attempt to execute an arbitrary program that is not
validated by the access controllers.

• Distributed Ledger: We assume that the distributed
ledger is entrusted for correctness, but not privacy, and
includes transactions with a bounded delay. The current
state is publicly exposed to all participants.

• Network & Primitives: We assume the security of stan-
dard cryptographic primitives and secure channels for
message transmission. An adversary can observe the
network traffic between any of the above-mentioned
parties and may arbitrarily delay messages.

Following definitions and formalizations, as in Ap-
pendix B, account for the described threat model.

124



3. Decentralized Identity

Web 2.0 — Centralized Identity. In conventional iden-
tity systems, users can authenticate to service providers by
recalling their combination of username and password [9].
To increase usability for the user, web service providers
rely on identity providers [10]. The service provider trusts
the identity provider with the authentication of the user.
As a result, the identity provider serves as an intermediary,
maintaining user identities for numerous online services.
In conventional systems [11], [12], a user’s personal data
is stored with either the identity provider or the service
provider, leaving little protection to internal misuse and
targeted attacks [1]. Note, that when a service provider
does not employ an identity provider, the service provider
takes over user authentication itself. As a consequence, a
user’s identity is controlled by third parties in Web 2.0.

Web 3.0 — Decentralized Identity. Decentralized Iden-
tity aims to provide the technical foundations to eliminate
the shortcomings of centrally managed digital identities.
A system for decentralized identity ensures that (i) digital
identities can be maintained without a centralized entity,
and that (ii) a user can authenticate without relying on a
third party. A decentralized identity provides a solution
to both challenges through decentralized identifiers [13]
and publicly verifiable credentials [14]. With publicly
verifiable credentials, users can decide what information
is shared to requesting third parties. However, the de-
centralized identity ecosystem can be hard to grasp due
to a lack of formal and concise definitions. To establish
clarity, we divide approaches to decentralized identity into
its two main areas [13], [14] — (i) decentralized identity
management, which decouples identifiers from centralized
registries, and (ii) decentralized anonymous credentials,
which expand on (i) by introducing publicly verifiable cre-
dentials. Note that that standardization of the World-Wide-
Web Consortium (W3C) for credentials mainly considers
non-private credentials (i.e., Web Tokens [14], [15]). In
this work, we explicitly focus on decentralized anonymous
credentials.

3.1. Decentralized Identity Management
In this section, we discuss the creation of, and critical
operations on, decentralized identifiers. In the following,
we provide the first formal definition that specifies the rel-
evant components for decentralized identity management.

3.1.1. Formalization
We assume the existence of a public, permissionless
distributed ledger L and data items dUi as specified in
Section 2. Therein, we consider data items in the form
of attribute value pairs (a, v) (e.g., (age, 18)). Each De-
centralized Identifier (DID) is associated with metadata,
MDDID = {(a1, v1), (a2, v2), ..., (ai, vi)}. The meta-
data contains cryptographic material (e.g., to verify cre-
dentials), and specific service endpoints (e.g., URL). By
maintaining metadata on-chain, anybody may inspect an
identifier’s information, ensuring that user statements are
publicly verifiable.

Definition 1. (Decentralized Identity Management.) A
system for decentralized identity management employs the

following algorithms:

1) SETUP: 1λ −→ pp : Given a security parameter λ the
system outputs a set of public parameters pp.

2) GENERATE: KeyGen(pp) −→ (pk, sk), A pair of
keys is generated using a randomized algorithm. The
keypair consists of a public key pk and a private key
sk, which is known only to the owner. For GENERATE,
different key generation protocols can be applied.

3) CREATE: (sk, pk) −→ (DID,MDDID). Given pk, the
protocol checks the sk for valid ownership. It outputs
a globally unique persistent identifier DID and the
associated metadata MDDID ∈ L (widely known as
DID document). If the identifier is public, the metadata
is registered on-chain, otherwise it remains local.

4) RESOLVE: (DID) −→ MDDID. Given a DID, the
resolution protocol outputs MDDID for DID.

5) UPDATE:(DID,MDDID) −→ M̂DDID. The holder
of the identifier DID may invoke an update function
on the existent associated metadata MDDID.

6) DEACTIVATE: (DID), The holder of a DID may
deactivate the DID and the associated MDDID by
calling deactivate. DID, and MDDID will be unus-
able and non-retrievable from that point onwards.

3.1.2. Security & Privacy Properties

• Uniqueness: Each entity has a globally unique identi-
fier. Identifiers can be derived from cryptographic key-
pairs or the address of a user’s wallet.

• Pseudonymity: A system provides pseudonymity, if a
user can generate several pseudonymous identifiers to
hide its identity. No entity may identify the user through
one or more of its pseudonyms, nor link different
pseudonyms together.

• Persistence: Each identity is long-lasting, unless the
user deactivates it. Persistence is fundamental for
achieving portability and interoperability.

3.1.3. SOTA — Decentralized Identity Management

Decentralized Identity Management is defined in the stan-
dardization of the W3C [13], which most recently got
adopted as an official W3C recommendation. The stan-
dardization defines the format of globally unique identi-
fiers, and outlines their implementation in practice. While
the general format of a decentralized identifier is specified
by the standardization for decentralized identifiers, the
method for creation and resolution of a decentralized
identifier is application specific [16]–[18]. At the time of
writing, there exist more than 130 methods that specify
the creation of decentralized identifiers in their ecosys-
tem [19]. We identify three dimensions with regard to
Decentralized Identity Management that are to be consid-
ered when developing a DID method.

Identifier Creation. In each method, the creation of a
decentralized identifier is specified either explicitly or
implicitly. As an example, the most popular method for
creation of identifiers on Ethereum [20], specifies identi-
fier creation implicitly by expanding existing Ethereum
addresses into the format of decentralized identifiers
(e.g., did:ethr:0xb9...). To create an identifier ex-
plicitly, a method may specify a key derivation algorithm,
which determines the direct derivation of an identifier
from a public key [16].

125



Identifier Resolution. Decentralized Identifiers improve
upon existing globally unique identifiers by ensuring cryp-
tographic verifiability without an intermediary through
decentralized resolution [13]. Decentralized resolution de-
scribes the resolution of an identifier to its associated
metadata. The metadata contains cryptographic material
for signature verification, and service endpoints associated
with the owner of the identifier. Hence, decentralized
resolution is one of the core improvements of decentral-
ized identity. Every resolution mechanism demands for a
resolver that resolves an identifier to its metadata. The
resolver is operated by a user, or as an off-chain API
service to enhance usability [21], [22]. The resolution of
an identifier to its metadata can be conducted locally or
ledger-based. While local resolution allows for determin-
istic decoding of an identifier to its metadata [16], ledger-
based resolution requires the publication of metadata on a
publicly available distributed ledger [20]. Local resolution
is applied in peer-to-peer messaging, where communica-
tion with a public registry incurs a significant overhead.

Metadata Storage. By themselves, identifiers are no
means to ensure the authenticity of an identity. For a
user, the utility of its decentralized identity is directly
proportional to the information that is associated with
it. The metadata of an identifier may describe verifica-
tion methods for credentials and service endpoints, to
e.g. websites and external storage. A common use of
service endpoints is referencing a public and content-
addressable distributed storage, which holds further data
associated with the owner of the identifier [8], [18],
[23]. In general, one can distinguish storage solutions
for decentralized identity into (i) on-chain storage, where
data associated with an identifier is maintained through a
smart-contract [24]–[26], and (ii) off-chain storage, where
sensitive data is maintained in either an external or local
storage [18], [23]. Choosing a suitable solution for storage
of identity related data is both dependent on the type of
information shared and for which use-case it is needed. In
contrast to on-chain storage, external storage provides an
affordable solution for storing large amounts of personal
data and users can also store encrypted data off-chain.

3.1.4. Discussion — Dec. Identity Management

Remark — When do you need a decentralized iden-
tifier? A DID is beneficial in a system with distributed
trust, where participants intend to represent themselves
without relying on a centralized registry for creation,
resolution and deactivation of identifiers. As such, first
applications emerged that make use of DIDs in practice.
Ceramic makes use of DID to identify data streams written
to IPFS [18]. Gitcoin leverages this system to create a
user-specific “passport” (i.e. datastream), where users can
add “stamps” (i.e., credentials) based on social profiles
to their datastream to enhance trust and sybil-resistance.
A user can prove that a passport belongs to themselves
without having to ask a central system for permission.

Remark — What are existing limitations? One major
limitation of the current state of decentralized identity
is interoperability. When a user with an ETH DID in-
tends to communicate with a user that is registered with
a Ceramic DID, resolution mechanisms of either DID
methods need to be known to both parties. The prevalent

solution for interoperability between DID methods is a
universal resolver, which has been developed as part of a
community effort to enhance usability [21]. However, the
universal resolver reintroduces centralization to a certain
extent. Whereas anyone can theoretically run a resolver,
it is common practice for platforms to provide resolution
services for enhanced usability. A resolution mechanism
that is universal and scalable, yet rooted in distributed
trust, is yet to be proposed in the community.

Use-Case — Decentralized Web Applications. In Web
2.0, personal data is distributed in centralized data si-
los, diminishing privacy and limiting usability. Cross-
corporational data silos are uncommon due to regula-
tions and non-existent cooperations [4]. With decentral-
ized identity management, users can enable services to
access their Decentralized Web Node (DWN) (i.e. per-
sonal data store) [27]. Applications that instantiate DWNs
rely on content-based distributed storage solutions (i.e.,
IPFS) [18], [23]. Importantly, a DID is essential to locate
the DWN without relying on an intermediary. Whereas
currently, a user’s data is dispersed in data silos controlled
by corporations, a DWN acts as a user’s personal and con-
trollable data silo. In a practical scenario, multiple services
may access the same DWN to rely on the same data (i.e.
different services based on the same travel itinerary). With
DWNs, one can facilitate a novel set of decentralized web
applications, which rely on DWNs rather than dispersed
data silos to provide personalized web experiences.

Use-Case — On-Chain Account Management. On-
chain accounts are smart contracts, which may contain
arbitrary logic to e.g., handle social recovery or multisig-
nature authorization [28]. In this case, the identifier is the
address created when creating the smart contract. This in-
creases the flexibility in designing secure wallet solutions,
which can even be controlled by multiple secret keys.
Further, users may whitelist specific accounts, such that
unaware reception of arbitrary tokens becomes infeasible.

Arguably, there is not yet a one-shot solution for
decentralized identity management that covers both use-
cases as outlined above. Weyl et. al introduce soulbound
tokens & information [6], which provide a generalized
notion for non-transferable data items that are bound to
an individual’s identity. Their definition applies regardless
of whether a data item is stored on-chain, in the form of
non-transferable tokens, or off-chain, in the form of a non-
transferable credentials.

3.2. Decentralized Anonymous Credentials
Although credentials are well researched from a cryp-
tographic perspective, they are under-analyzed in a de-
centralized context. The common baseline understanding
is that a credential is a signed, non-transferable digital
document, where the signature of a credential issuer attests
to the validity of the credential’s content. Decentralized
Anonymous Credentials pursue the goal of associating
unforgeable attestations (credentials) with an identifier,
such that its owner is enabled to authenticate without
relying on an intermediary. In the following, we aim to
uncover synergies and deficiencies of varying proposals
for decentralized anonymous credentials.

126



3.2.1. Formalization
In a system for decentralized anonymous credentials, each
user is in control of a list of credentials, where each
credential consists of a set of attribute-value pairs. The
credential is computed with the issuer’s secret key and
can be non-interactively proven by the user to any ver-
ifier without the need to communicate with the issuer.
Our definition does not assume any specific choice of
cryptographic primitives, as we aim to enable general
applicability of our definition.

Definition 2 (Decentralized Anonymous Credentials.).
For decentralized anonymous credentials, a system for
dec. identity management is augmented with the following
participants,
1) I is the set of issuing authorities.
2) U is the set of users.
3) V is the set of verifiers.

a tuple of spaces (CU ,RI),
1) CU is a set of credentials of U ,
2) RI is the set of credentials revoked by I.

and the following algorithms:
1) REQUEST: U × (pp, dUi , aux, skU ) −→ REQ. This al-

gorithm is executed by the user U . On input public
parameters pp, a data item dUi , auxiliary data aux
justifying the granting of the credential, and the user’s
secret key skU , this algorithm outputs a credential
request REQ.

2) ISSUE: I × (pp, REQ, skI) −→ cred. This algorithm is
executed by the issuer I. Given public parameters pp,
the credential request REQ, and the secret key skI of
the issuer, the issuance protocol outputs a credential
cred ∈ CU .The issuer vouches for the validity of
attributes in cred. The user stores the credential locally
or on a distributed ledger. Not knowing the user’s
secret key ensures that the issuer cannot forge a proof
without the consent of U .

3) PROVE: U × (pp, cred, skU , φcred) −→ (π). This algo-
rithm is executed by the user U . Given public parame-
ters pp, the credential cred, the secret of the user skU ,
and a predicate φcred, this algorithm outputs a proof
π, which proves that cred is well-formed with regard
to the user-specified predicate φcred.

4) VERIFY: V × (pp,RI , cred, φcred, π,DIDI) −→
{0, 1} This algorithm is executed by the verifier V .
Given public parameters pp, the set of credentials re-
voked by the issuerRI , the credential of the user cred,
the predicate φcred, the proof π and the identifier of
the I, the algorithm outputs a binary value, indicating
the success of verification.

5) REVOKE: I× (pp, cred, skI ,RI) −→ RI′ ∪{⊥} This
algorithm is executed by the issuer I. Given public
parameters pp, a previously issued credential cred ∈
CU , the issuer’s secret key skI and the set of revoked
credentials RI of an issuer I, the revocation protocol
outputs the set of revoked credentialsRI′

= RI∪cred.
If cred is not issued by I, the protocol returns ⊥.

3.2.2. Security & Privacy Properties
• Unforgeability: A system for decentralized identity is

unforgeable, if it is infeasible for any malicious user to
present a poof π that VERIFY would accept. Unforge-
ability is typically assured through the unforgeability

of the underlying cryptographic primitive used for the
issuance of a credential.

• Selective Disclosure: A user U should be able to show
proof of a subset of claims in a credential. A naive
approach to selective disclosure is the issuance of a new
credential for each proof presentation. Selective disclo-
sure can be enabled with a Zero Knowledge Proof [29].

• Predicate Provability: Predicate Provability allows the
user to make an assertion about attributes in a credential.
To achieve predicate provability, the predicate φcred

specifies the expressivity of the proof π. The predicate
may specify a range proof for an attribute value pair
(a1, v1), such that (age ≥ 18). See [30] for in-depth
treatment of predicate proofs for anonymous credentials.

• Non-Transferability: A system supports non-
transferability if the credential issued is bound to a
single holder, and cannot be presented by another user
as its own. Non-Transferability prevents lending of
credentials. It is either achieved by encoding highly
sensitive information into the secret key, so that the
user will be reluctant to share it [31], or by embedding
the public key of the user in the credential.

• Anonymity: Requires that an adversary identifies a
user U from a set of users U with negligible proba-
bility when observing the presentation or issuance of a
credential. Accordingly, the proof π should not reveal
the identity of U . In this case, even the issuer cannot
identify the user when observing a credential proof.

• Unlinkability: Given at least two executions of PROVE
or ISSUE by at least two users U1.U2 ∈ U, the system
supports unlinkability, if it is infeasible for an adver-
sary to distinguish which proof presentation belongs
to whom. If credentials are unlinkable, the system is
considered to be multi-show [32].

• Credential Revocation: A system supports revocation,
if a credential issued at time t1 can be invalidated at
time t2 > t1. Revocation can be achieved through short
validity periods or public credential revocation lists. The
revocation status should be auditable by any verifier
and credential holder. We refer readers to [33] for an
introduction to revocation for anonymous credentials.

• Anonymity Revocation: A system supports anonymity
revocation if the issuer I may disclose the identity
of the user upon misbehavior. In practice, anonymity
revocation is an additional agreement between the user
and verifier which defines conditions under which a
verifier is able to request the identity of users from the
issuer [31], [34], [35].

3.2.3. SOTA — Decentralized Anonymous Credentials

In recent years, there has been a plethora of proposals
for anonymous credentials, varying in specifications and
system objectives [29], [31], [32], [36]–[48]. Yet, only
few of them are specified for decentralized identity [38],
[46]–[48]. A credential can be proven without violating
the user’s privacy rights by predicating statements on
attested attributes. The W3C standard for verifiable cre-
dentials (VCs) intends to provide a standard interface for
decentralized anonymous credentials [14]. Therein, two
primitives are considered for implementation — anony-
mous credentials based on CL signature and BBS+ signa-
tures [14]. CL signatures [29], which are the basis for

127



the first practical anonymous credential scheme, suffer
from a proof size linear in the number of attributes
in a credential. BBS+ signatures [29], [49] enable the
same functionality as CL signatures, with the benefit of
shorter key and signature sizes for a comparable level of
security. Commonly, all anonymous credentials rely on
the public key of the issuer to verify the authenticity
of a credential presented by the user. This motivates
the link between decentralized identity management and
decentralized anonymous credentials, to ensure that the
verifier obtains the public key of the issuer without an
intermediary (cf. Figure 2). However, not all solutions
for decentralized anonymous credentials follow the W3C
verifiable credential specification [36], [50]. We further
dissect the current state of the art in academia and industry
by identifying issues and solutions for the issuance and
verification of a credential and associated proofs.

Credential Issuance. Typically, a credential is issued
through a single issuer, which applies a group signature on
a committed value [29]. Sonnino et. al identify the issuer
as a single point of failure, and propose an anonymous
credential scheme with threshold issuance [48]. Doerner
et. al propose a similar protocol for threshold issuance for
BBS+ signatures [51]. However, this does not alleviate the
need for auxiliary data, which is used by the issuer to val-
idate claims asserted by the user. Rosenberg et. al pursue
a similar goal and eliminate the need for an issuer that is
trusted for cryptographic keys by constructing a credential
without signatures [50]. In their construction, credentials
are on-chain commitments. The user proves the opening
of the commitment and the fulfillment of access criteria in
zero-knowledge. Maram et. al use decentralized oracles
to bootstrap credentials without explicit authorization of
the issuer by providing a proof of data provenance [52].
They ensure sybil resistance by deduplicating credentials
over a unique identifier (i.e., SSN).

Credential Presentation and Proof. Once issued, a de-
centralized anonymous credential is commonly stored in
a user-owned wallet. The user can present a proof that the
claims are valid with respect to a user chosen predicate.
Therein, proofs can either be verified off-chain [46], [47],
[53], through an off-chain verifier program, or on-chain,
through a smart contract [48], [54]. Note that many appli-
cations deem non-fungible tokens (NFTs) as a valid option
for gathering evidence of experiences in non-digital and
digital environments (i.e., metaverse) [55]. Nevertheless,
NFTs are transferable, while, in reality, experiences and
attendance are not. Associating experiences, attendance
and attributes with a digital identity requires for non-
transferable tokens and credentials. Credentials for on-
chain verification can significantly broaden the scope of
applications for Web 3.0 (e.g., using an identity as collat-
eral to facilitate undercollateralized lending), whereas it
is to be shown that they can be sufficiently efficient.

3.2.4. Discussion — Dec. Anonymous Credentials

Remark — Trustless credential verification demands
for decentralized identity management. In general, all
implementations of decentralized anonymous credentials
(DACs) follow a similar rationale. To receive a credential,
the user commits to its personal data with a hiding and
binding commitment. The issuer stores its public key and

metadata on a public distributed ledger (i.e., on-chain)
for verifiability. To issue a credential, the issuer attests to
the attributes of the user. To remain anonymous, a user
can prove in zero-knowledge to any entity that (i) it is
in possession of the corresponding secret key included in
the credential, and that (ii) the disclosed attributes in the
credential satisfy a specified predicate [29]. Upon verifi-
cation, a service provider does not communicate with the
issuer because the public key of the authority is obtainable
through decentralized resolution.

Remark — Legacy Compatibility can increase the
adoption of decentralized anonymous credentials. Ver-
ification demands for trust in the issuer, which vouches
for the validity of the user’s attributes. Assuming the
existence of an issuer is a strong assumption, as authorities
might not comply with novel architectures in the years
to come. Connecting the decentralized identity ecosystem
to legacy architectures is therefore indispensable. Issuing
credentials from legacy data requires proving where the
data comes from without explicitly relying on an issuer.
However, accessing and proving possession of legacy data
is challenging because the user needs the permission of an
authority to export its personal data. Maram et. al propose
to use Transport Layer Security (TLS) to port credentials
to a decentralized context [52], [56], [57]. By providing
legacy compatibility, adoption of the DID ecosystem can
be increased without demanding for server-side changes.

Challenge — On-chain verification for credentials. In
general, anonymous credentials are costly to verify due to
their strong privacy guarantees and the computationally
expensive Zero Knowledge Proof (ZKP)s that are applied
for predicate provability [30]. Sonnino et. al [48] present
anonymous credentials that enable verification through a
smart contract with capabilities for predicate provability.
However, their construction is yet too expensive for on-
chain verification, primarily due to the costly proof ver-
ification (i.e., verifying a credential from their Coconut
scheme would cost an equivalent of approx. $950 at the
time of writing). Rathee et. al reduce the cost of on-
chain verification by composing SNARKs with two layers
of recursion [54]. Efficient verification of decentralized
anonymous credentials is a nascent area, where general-
purpose ZKPs are a promising alternative to special pur-
pose anonymous credentials [50], [54], [58]–[60]. We
expect that future works will apply general-purpose ZKPs
in constructions for decentralized anonymous credentials.

Challenge — Issuing sybil resistant credentials at scale.
To be resistant against a sybil attack, an issuer should
ensure that no user can obtain two different identities.
Sybil Resistance can be addressed with credential dedu-
plication [52]. Deduplication of a credential by relying
on unique real-world identifiers is only possible during
issuance, because tracking duplicates after issuance is dif-
ficult due to anonymity and unlinkability. Note that sybil
resistant credentials can further prove the personhood of
a user, when being issued through a per-person unique
identifier (i.e. SSN). Otherwise, a Proof of Personhood can
only be obtained through biological traits or pseudonym
parties [61]. However, an inherent limitation is that issuers
are oblivious to credentials issued by other equivalent issu-
ing authorities. So far, there is no discussion or proposal

128



Distributed Ledger 

Se
t P

ol
ic

y

Au
th

en
tic

at
e

User
Access

Controller
Data

Consumer
Share Secret Access

Re
tr

ie
ve

Au
di

t

St
or

e

S

Authorization Access

Storage

Figure 3: Overview of Decentralized Access Control. U
sets a policy p, stores its personal data and shares its secret
with access controllers AC. The data consumer C can only
retrieve the plaintext if it can prove compliance with p.

in the literature on how authorities may coordinate for
sybil-resistant attribute attestation.

Use-Case — DACs can ensure AML and KYC for
decentralized applications. With support for anonymity
revocation, solutions for efficient on-chain verification of
decentralized anonymous credentials can realize novel ap-
plications in decentralized finance by providing identity as
collateral [6]. Protocol participants can use their identity
and reputation as collateral, such that their identity is
disclosed to authorities upon misbehavior. By adopting
this paradigm, credentials with on-chain verification can
be a solution for privacy-preserving Know Your Customer
(KYC) in decentralized applications to comply with Anti-
Money Laundering (AML) regulations [62].

4. Decentralized Access Control

Web 2.0 — Centralized Access Control. Access control
allows disclosure of personal data by authorizing and
authenticating data consumers [63]. To date, Web 2.0
access control systems rely on federated protocols, where
centralized access controllers handle data protection and
access management on behalf of users [11], [12], [64],
[65]. Users control data access by configuring access
policies at access controllers, which disclose personal data
to policy-compliant data consumers. Key issues of Web
2.0 access control are that (i) users have to fully trust third-
party access controllers to protect personal data, (ii) users
are limited in specifying their policies as access controllers
adopt pre-defined configurations of access policies, and
(iii) users trust access controllers to transparently and
correctly disclose regulation-enforced access audit logs.
The fundamental disadvantage of Web 2.0 access control
is that users have to trust access controllers in providing
access and handling data faithfully.

Web 3.0 — Decentralized Access Control. Decentral-
ized access control intends to remove the reliance of users
on centralized access controllers [66]. In Web 3.0, de-
centralized access control should allow users to verifiably
control who gets access to personal data. As such, users
should be able to conditionally control access based on
presented credentials, token ownership or Decentralized
Autonomous Organization (DAO) membership [67]. We
identify the main building blocks of decentralized access

control to be on-chain access policies and decentralized
secret management. On-chain policies can govern de-
centralized access management through transaction-based
authentication of users. A committee of access controllers
enforces the policy-based decision and releases the secret
accordingly. By obtaining the secret, data consumers can
decipher encrypted personal data. Based on this insight,
we propose the first formal framework for decentralized
access control in the following.

4.1. Decentralized Access Control
In this section, when referring to access control, we
specifically mean how a data consumer can obtain access
to raw data given a ciphertext. We assume that a data
consumer can obtain the ciphertext from a personal data
store by referring to its decentralized identifier (cf. § 3.1).

4.1.1. Formalization

In a decentralized access control system, we consider
that each ciphertext cUi of a data item dUi is decrypted
using a secret k . Each secret k is maintained by a set of
secret managers in terms of secret shares. A ciphertext is
associated with a user-defined access policy p. The policy
p of a data item dUi contains statements specified by the
predicate φ. The entities that fulfill the policy is denoted
as the subset of authorized data consumers CA ⊂ C.

Definition 3 (Decentralized Access Control System). A
dec. access control system has the following participants:
1) U is the set of users.
2) C is the set of data consumers.
3) AC is the set of access controllers.

Further, a system for decentralized access control
employs the following protocols:
1) SETUP: 1λ −→ pp : Given a security parameter λ the

system outputs a set of public parameters pp.
2) SETUP SHARES: U × (pp, k) −→ (kAC

i ). Given the
public parameters pp and a secret k , it outputs secret
shares kAC

i to each member in AC.
3) SET POLICY: U × (pp, dUi , k, φ) −→ (p, cUi ). This

algorithm is executed by the user U . Given the public
parameters pp, a data item dUi , a secret k , and the
user-specified predicate φ. It outputs a ciphertext cUi ,
which is the encrypted data item dUi under the secret k .
The algorithm outputs an on-chain policy p ∈ L, which
defines the set of authorized data consumers CA.

4) AUTHENTICATE: C × (pp, p, aux) −→ (πA) ∪ {⊥}.
This algorithm is executed by the data consumer C.
Given public parameters pp and the policy p ∈ L,
and auxiliary data aux, it outputs a proof πA ∈ L,
which publicly proves the authorization of C. If the
data consumer C /∈ CA does not satisfy the policy, it
returns {⊥}.

5) ACCESS: AC×(pp, πA) −→ (kAC
i )∪{⊥}. Given public

parameters pp and a proof πA, access controllers
outputs secret shares kAC

i , to the data consumer C if
πA ∈ L and C ∈ CA, otherwise it outputs {⊥}.

6) RECONSTRUCT: C× (pp, kAC
i , cUi ) −→ (k, dUi ). Given

public parameter pp, secret shares kAC
i and a cipher-

text cUi , the data consumer C first reconstructs the
secret k . C is then able to get the data item dUi by
decrypting the ciphertext cUi using the secret k .

129



7) UPDATE: U × (pp, p, φ) −→ (p′). This algorithm is
executed by U . Given public parameters pp, a policy p,
and a user-specified predicate φ, the algorithm outputs
an updated on-chain policy p′ ∈ L, which defines an
updated set of authorized consumers C′

A.

4.1.2. Security & Privacy Properties
We introduce security & privacy properties of a decentral-
ized access control system as follows:

• Data Confidentiality: A system for decentralized ac-
cess control ensures confidentiality if it is infeasible for
an unauthorized adversary to obtain information about
dUi from the ciphertext cUi .

• Anonymity: Anonymity requires that no adversary
should be able to distinguish which consumer C ∈ CA

accessed the data item dUi , unless requested by an
audit. Accordingly, the data consumer C should remain
anonymous during AUTHENTICATE and ACCESS.

• Auditability: A system for decentralized access control
supports auditability if any invocation of AUTHENTI-
CATE and ACCESS is publicly observable. In practice,
this is achieved by emitting a transaction on the ledger L
upon invocation of either AUTHENTICATE or ACCESS,
which yields an auditable trace for auditability.

• Policy Confidentiality: A system for provides policy
confidentiality, if the policy is only observable by the
authorized set of data consumers CA. When an access
policy p is stored on-chain in plaintext, the system does
not support policy confidentiality [66].

• Fair access: Fairness is essential to prevent at-
tacks that rely on information asymmetry (e.g., front-
running [68]). Fair access indicates that data consumers
simultaneously obtain the secret from access controllers.

• Access Revocation: A system for decentralized access
control supports access revocation, if an authorized data
consumer may be revoked at any time.

4.1.3. SOTA — Decentralized Access Control
As a primitive, decentralized access control has thus far
not been formally defined in previous works. Several
surveys on blockchain-based solutions for access control
uncover that most works focus on a specific setting rather
than a generic definition [69]. Our formal definition is
based on the insight that user-control requires separation
of data consumer authorization and decentralized secret
management. We cover the state-of-the-art as follows.

Access Policies. An access policy specifies conditions
under which a data consumer can access a specific re-
source. Besides the confidentiality of access conditions,
a core property of interest is the expressivity of the lan-
guage through which a policy can be specified. Kokoris
Kogias et. al propose a system for decentralized access
control that supports anonymity at the cost of low expres-
sivity [66]. Shafagh et. al specify decentralized access
control for IoT data streams, providing high granularity
in an application specific domain [63]. Either solution
yields policies that are observable in plain. Steffen et.
al specify a language through which a user can specify
access conditions as an arithmetic proof circuit, such that
access conditions remain confidential [70], [71]. Naturally,
this gain in privacy comes at the cost of computational
efficiency. Most recently, Spruce [22] presented an exper-
imental version of an access policy language that is able

to authorize data consumers based on token or credential
ownership [72]. Whilst not supporting policy confidential-
ity, their proposal serves as a first notion of industry efforts
in developing decentralized, conditional access control.

Decentralized Secret Management. Users rely on a dis-
tributed committee to securely manage a secret without a
centralized intermediary [66], [73]. Distributed commit-
tees receive secrets from users and disclose secrets to
data consumers if access policy conditions are fulfilled.
Alternatively, secure enclaves can be used to disseminate
secrets, which comes at the cost of additional trust as-
sumptions [74]. In general, two strategies can be employed
when disseminating a secret with a committee of access
controllers, either based on (i) Verifiable Secret Sharing
(VSS) or (ii) Distributed Key Generation (DKG) [66].
VSS can be used to disseminate a secret to a user-chosen
committee. To ensure consistency of shares, the VSS
algorithm needs to be publicly verifiable. This paradigm
is commonly applied in several orthogonal works, mainly
improving upon efficiency and proactivity of the commit-
tee of access controllers [75]–[77]. Alternatively, a fixed
set of committee nodes may perform DKG to obtain a
keypair (pk, ski), where each node holds a share of the
secret key. The user then encrypts its data encrypting key
under pk, such that access controllers can obtain their
secret share. Even though this paradigm is beneficial from
a user perspective, it received less attention than the VSS-
based approach for decentralized access control.

4.1.4. Discussion — Decentralized Access Control

Remark — Decentralized access control is the miss-
ing complementary to decentralized identity. Decen-
tralized Identity specifies how users can employ decen-
tralized anonymous credentials to retain privacy when
presenting their personal data [14]. The verifier creates
a request, which specifies the requirements of the pred-
icate applied by the user when presenting its credential.
This approach, however, is not applicable for automated
verification through a user specified policy, as requests
need to be individually re-created for each new proof.
Coull et. al describe how policies for pre-specified and
fine-grained verification can be facilitated through policy
graphs [78], [79]. Even though this approach facilitates
expressive access control policies, all existing approaches
are either (i) native to the applied anonymous credential
or (ii) not applicable to a decentralized environment, and
hence lack auditability. Ideally, decentralized access con-
trol serves as a complementary to decentralized identity
by relying on user-owned credentials for policy-based
authorization [67]. Combining their synergies for end-
to-end decentralized identity and access management for
personal data remains to be explored in future work.

Challenge — Expressive and confidential policies. Ac-
cess Control for web applications is well-researched and
there are several languages to formulate access control
policies [80]. Expressivity is a core property of an access
policy, which enables the specification of fine-grained
permissions for data consumers. Several works aim to
adopt existing languages to enable auditable access control
through blockchains [81], [82]. Because existing policy
languages do not consider confidentiality, they fall short
of achieving strong privacy guarantees. Zyskind et. al

130



are the first to propose the usage of distributed ledgers
for privacy-preserving decentralized access control to per-
sonal data stored by an external storage provider [83],
[84]. Recent work expands on this paradigm by identi-
fying the essential separation of consumer authorization
and key management to grant access to personal data
in a distributed storage [63], [66], [85]. Goyal et. al
suggest formulating the policy as a public condition for
decryption, which can be fulfilled by the data consumer
by submitting a proof of knowledge [75]. A prevalent,
unresolved, tension in recently proposed systems occurs
between privacy, expressivity and efficiency. An access
policy language that specifies expressive access policies,
that provide confidentiality in efficiently verifying condi-
tions set by the user, remains an item of future work.

Remark — Cryptographically binding secrets to poli-
cies prevents replay attacks. Replay attacks apply in-
dependent of the encryption scheme that is used to dis-
seminate a secret of a user to the committee. In a replay
attack on decentralized access control, the attacker tries to
trick the system into disclosing the secret associated with
a ciphertext to herself [66]. The attacker takes the publicly
accessible ciphertext and creates a policy which announces
itself as the legitimate data consumer. To counteract the
attack, current systems cryptographically bind the user se-
cret to the policy [66]. Additionally, transactions updating
the policy expect a proof of knowledge of the secret. This
way, an attacker is never able to create valid policies which
map to the same secret.

Remark — Exploring efficiency improvements for se-
cret dissemination. A straight forward approach for a
user to share a secret with a committee of access con-
trollers is VSS, a special form of secret-sharing which
enforces verifiable consistency of secret shares [86], [87].
Recent work shows how to enhance this baseline for
decentralized secret management with proactivity [73],
[75], [77], [88] and scalability [76]. However, having the
user directly disseminate shares to a chosen committee
introduces a linear overhead in the transaction size, as
all encrypted shares need to be published on-chain upon
definition of the policy. Note that all encrypted shares
need to be published for data consumers to verify that
shares have been correctly decrypted by the committee
nodes [66]. Improving upon this drawback can be a
valuable direction for future work. By demanding for a
static committee of access controllers, that maintains a
single public key and a shared secret key, this deficiency
can be alleviated [66]. The user can encrypt its secret
under the committee’s public key, such that each access
controller can calculate its share on its own. This way, the
transaction size of policy updates is independent of the
number of committee members. However, proactivizing
the scheme requires for round-based re-instantiation of
committee members. Exploring efficiency improvements
for large, dynamic committees remains an open problem.

Challenge — Enhancing security guarantees by se-
lecting blockchain nodes as access controllers. Recent
work proposes a natural extension for decentralized secret
management by selecting blockchain validator nodes as
access controllers [75], [77]. Next to running a consensus
protocol, each validator node participates in Dynamic

Distributed Ledger

Compute
Node

Access
Controller

Storage

User Data
Consumer

Share Secret AccessAccess

Policy Specification Sec. Computation Output Distribution

S

Figure 4: Overview of Policy-Compliant Decentralized
Computation (PCDC). U sets a policy p, stores its personal
data cin in storage and shares its secret. The access
controller receives the program Θ, analyzes if it fulfills
the policy and forwards the program and the secret to
the compute node, who executes the computation and
atomically updates the policy. The output is successively
distributed to the data consumer.

Proactive Secret Sharing (DPSS) to maintain secrets on
behalf of users. However, the verification time of DPSS
schemes grows linear in the number of committee mem-
bers. Gentry et. al reduce the size of the committee by
differentiating between honest and malicious committee
members [76]. We are not aware of any analysis of the
practicability of similar solutions. We expect that choosing
committee nodes to enhance security for decentralized
secret management will gain attention in the future.

Use-Case — Conditional Access to Decentralized Web
Nodes. Decentralized access control ensures the release
of secrets under arbitrary conditions. By default, it repre-
sents a powerful primitive for various applications. How-
ever, decentralized access control excels in applications
that demand for a stronger notion of fairness and auditabil-
ity. As such, recent industry efforts aim to develop access
control languages that specify policies allowing access
upon presentation of tokens, certificates, or anonymous
credentials [67], [72]. Looking ahead, decentralized access
control can be applied to facilitate user-controlled access
to DWN’s holding user-affiliated personal data. Consider
an advertising campaign that analyzes social media data
of users who have used a smart contract. Upon receiving
payment from the advertiser, the user can disclose their
social media identifier to enable the analysis. However,
once access is granted through plain decentralized access
control, data consumer’s may arbitrarily copy and dissem-
inate personal data due to its non-rival nature.

5. Policy-Compliant Decentralized Computation

We now turn our attention to policy-compliant decen-
tralized computation, which approaches the elusive goal
of protecting personal data beyond the blanket access
to a data item. As such, Policy-Compliant Decentralized
Computation (PCDC) improves upon decentralized access
control as data consumers only gain access to the compu-
tation result rather than the personal data in plain.

Web 2.0 — Centralized Computation. The rapid expan-
sion of the web over the past few decades was coupled

131



with increased centralization. Few large companies own
most systems and servers, and consequently, gather large
amounts of data. The accompanied lack of transparency
leads to frequent exploits and data breaches [89]. The
raw data is either (i) not used and remains in data silos or
(ii) copied, rendering data usage control and auditability
infeasible [90]. As a result, users are neither in control
over how their data is stored, nor are they reimbursed for
the commercial utility their data yields.

Web 3.0 — Policy Compliant Computation. Current
approaches to confidential smart contracts for Web 3.0 en-
able users to confidentially invoke decentralized applica-
tions [70], [71], [74], [91]–[95]. However, they solely fo-
cus on how users can invoke programs with locally main-
tained data, without accounting for third-party program in-
vocation, combinations of data sources, and policy-based
data governance. We argue that the gap between how
Web 3.0 applications are envisioned, and how Web 2.0
applications are currently operating, demands for a novel
description of user-governed computation. To account for
this dichotomy, we propose the notion of PCDC, which
allows users to govern the execution of arbitrary external
programs. PCDC enables a new class of protocols, where
users put their data to use whilst obtaining previously
unattainable guarantees for privacy and computational
correctness. To achieve privacy and protect data beyond
access, PCDC relies on secure computation. The data
consumer therefore only observes the result, whereas
the personal data, which is used as an input, can only
be observed by the user. To ensure auditability, PCDC
demands for proofs of computational correctness. At
a high level, PCDC follows as a natural extension to
decentralized access control (cf. Figure 4). The access
controller analyzes the compliance of a program with
regard to a user-specified policy. Upon validation, the
access controller sends the program, the data decrypting
key and the corresponding residual policy to the compute
nodes. Once executed, compute nodes deliver the result
and update the residual policy. In the following, we pro-
pose the first formal definition of PCDC and outline its
relevant security and privacy properties.

5.1. Policy-Compliant Decentralized Computation

5.1.1. Formalization

We assume that a data consumer C intends to perform a
computation on a data item dUi by executing a program Θ.
The user-specified policy p defines whether a computation
can be executed (cf. Figure 3). Each program execution
updates the hidden on-chain policy from p to p′ ( p′
is the residual policy). The residual policy includes the
updated privacy budget of dUi after the execution of the
program. The proof of correct computation and policy
update is verified by nodes maintaining the ledger. In our
abstraction, a policy is specified by three predicates —
an access predicate φacc, which specifies access to dUi ,
an input predicate φin, which specifies the constraints for
consumption of a data item, and an output predicate φout,
which determines constraints on the computation output,
such as the set of data consumers eligible to observe the
result. For ease of abstraction, we assume a single policy
that contains all predicates. However, note that predicates

may be specified by different parties in distinct policies
(i.e., data-use, privacy, and output consumption policies).
Further, access controllers analyze the policy-compliance
of Θ, publish a computation commitment ctcomp and a
proof of program compliance πA. The access controllers
send information needed for program execution to the
compute node. Note that access controllers and compute
nodes can be the same entity. We separate them in our
definition for semantic clarity — compute nodes execute
the program when instructed by the access controllers.

Definition 4 (Policy-Compliant Decentralized Computa-
tion). A policy-compliant decentralized computation sys-
tem consists of a set of participants, where
1) U is the set of users.
2) C is the set of data consumers.
3) AC is the set of access controllers.
4) CN is the set of compute nodes.

and the following algorithms:
1) SETUP: 1λ −→ pp. Given a security parameter λ, the

system outputs a set of public parameters pp.
2) COMMIT: U×(pp, dUi , kin, s, φacc, φin, φout)→(cin, p).

This algorithm is executed by the user U . Given public
parameters pp, a symmetric key kin, a policy en-
crypting secret s, a data item dUi and the predicates
(φacc, φin, φout), it outputs the ciphertext cin, which
encrypts dUi under the key kin, and an on-chain policy
p ∈ L, where p is a concatenation of a pointer to cin,
and the associated predicates. Only the entity with the
policy encrypting key s can update the policy.

3) ANALYZE: AC × (pp, p,Θ) −→ (ctcomp, πA). This
algorithm is executed by AC. Given public parameters
pp, the user-specified policy p and the program Θ
provided by the data consumer, it outputs an on-chain
computation commitment ctcomp, which commits to the
concatenation of the program Θ and the policy p. Also
it outputs a proof πA ∈ L that asserts the program-
compliance with the user specified policy.

4) COMPUTE: CN× (pp, s, p, cin, kin,Θ) −→
(p′, cout, kout, πC) ∪ {⊥}. This algorithm is executed
by the compute nodes CN. The input is the public
parameters pp, the policy encrypting secret s, the
current state policy p, the input ciphertext cin, the
symmetric key kin and the program Θ. The algorithm
outputs the updated residual policy p′ ∈ L, the output
ciphertext cout, the output key kout and the proof of
correct computation πC ∈ L.

5) CLAIM: C × (pp, cout, kout) −→ (dout) ∪ {⊥} This
algorithm is executed by the data consumer C. Given
public parameters pp, the ciphertext cout and the
output hiding secret kout, the algorithm outputs dout.

5.1.2. Security & Privacy Properties
We introduce security & privacy properties for PCDC as
follows:

• Confidentiality: Confidentiality is ensured, if (i) only
the entities with with the correct encryption key can
observe the data item dUi , (ii) only the authorized set of
data consumers can observe the policy, (iii) only autho-
rized participants can observe the invoked function, and
(iv) dout is only visible to authorized data consumers.

• Anonymity: User-anonymity describes that an adver-
sary cannot identify the user U ∈ U which provides data

132



items as input to the program Θ. Consumer-anonymity
describes that an adversary cannot identify the data con-
sumer C ∈ C, which receives the output of Θ [91]. Note
that anonymity can be optional for certain applications.

• Computation Correctness: Compute nodes generate a
proof πC ∈ L which attests to the correct computation
of a program. Any entity should be able to verify πC ,
and the correctness of the updated policy.

• Atomic Data Delivery: Ensures that once a program
has been executed, the policy is updated to reflect the
new policy state p′. The data consumer is unable to
claim the output dout without a previously updated
policy. Once the policy is updated, the data consumer
should always be able to claim the output.

• Differential Privacy: A system supports differential
privacy, if the presence or absence of one user’s infor-
mation in a dataset, only has a small effect on the output
distribution of the computation [96]. In the context
of PCDC, privacy consumption is monitored through
the residual policy p’, which accounts for the updated
policy state after the execution of a program.

5.1.3. SOTA — Policy-Compliant Decentralized Computation

We outline the state-of-the-art for PCDC and orthogonal
technologies. We discuss the following dimensions:

Policy Specification & Analysis. Prior to executing a
computation, it’s crucial to specify an on-chain policy
that outlines acceptable program execution. Bowman et.
al propose sharing and processing data according to pre-
agreed policies in trusted hardware [97]. Wang et al. de-
scribe a user-configurable data analysis framework, where
policies describe privacy requirements for data items [98].
GDPR [99] or CCPA [2] compliance is achieved by
providing a baseline policy upon which the user can add
additional conditions. They suggest using static analysis
to detect privacy violations and quantify privacy degra-
dation through differential privacy. The program analysis
can either be done by the entity controlling access, or
by the provider of the program. If the program provider
conducts the analysis, policy compliance can be proven
through a verifiable proof of differential privacy [100].

Computation. Note, that PCDC is different from sys-
tems for confidential smart contracts. Confidential smart
contracts do not have a notion of user-defined policies
that govern usage of personal data. In both PCDC and
confidential smart contracts, only the entity that initial-
ized the state can successively update it. With PCDC,
compute nodes may further execute arbitrary stateless
programs. Khosba et. al proposed confidential smart con-
tracts through dedicated off-chain compute nodes [101].
In optimizing for efficiency, most subsequent approaches
rely on trusted hardware to instantiate off-chain compute
nodes [74], [97], [102]–[104]. Several other works ap-
ply either Multi-Party Computation (MPC) [105]–[107]
, Fully Homomorphic Encryption (FHE) [71], [91] or
ZKPs [94], [108] to alleviate the need for trusted hard-
ware, with differing notions of privacy concerning the
input, output, and the function of each computation. For a
comprehensive overview of confidential smart contracts,
we refer the interested reader to [109]. We highlight
that PCDC is distinctly different from techniques for
secure computation (i.e., MPC) and solutions for confi-

dential smart contracts. PCDC focuses on policy-based
governance of computation and auditing for compliance,
confidential contract execution does not have the notion
of policy-compliance, it ensures that the execution of the
smart contract and its data is confidential and does not
reveal sensitive information to attackers.

Output Distribution. Once the computation is executed,
the compute node encrypts the output under the re-
cipient(s) public key(s), and updates the on-chain pol-
icy. Wang et. al focus on multi-step analyses by re-
encrypting the computation output with a residual policy,
such that privacy requirements can be satisifed in multiple
steps [98]. There are several sub-problems that demand
consideration — atomic delivery of computation results
and policy updates, ensuring well-behavior of rational
participants and adequate incentivization of protocol par-
ticipants. Cheng et al. propose a protocol with atomic
output delivery by restricting the key release to the con-
sumer only after the state update has been verified on-
chain [74]. Das et. al achieve financial fairness with a
collateral system that punishes malicious parties and TEE
operators if they deviate from the protocol [110].

5.1.4. Discussion — PCDC

Remark — Policy selection can be delegated to a fidu-
ciary. Setting a policy for compliant program execution
enables user control over data processing. In practice,
there are many type of policies that vary in complexity.
Users may require complex attribute dependencies and
privacy budgets, or resort to a simple whitelist of publicly
known programs. However, choosing the appropriate pol-
icy can be challenging, as users may struggle in determin-
ing appropriate privacy protection. To enhance usability,
users can resort to data fiduciaries to choose a policy [98],
[125]. Relying on a fiduciary does not limit control, as
it does not restrict the degree of programmable privacy.

Remark — An auditable privacy budget ensures user–
controlled degradation of privacy. Validating the com-
pliance of programs with respect to data privacy regula-
tions may seem enough to preserve privacy. Unfortunately,
this is not the case, as an attacker can accumulate com-
putation results [102]. With differential privacy, a user
can set a privacy budget (quantified by the parameter ε)
to prevent information leakage over multiple observations.
In our definition, we require user-controlled privacy degra-
dation. Access controllers analyze the submitted program,
update the privacy budget, and generate a residual policy.

Remark — Analyzing a program yields a dichotomy
between function privacy and policy confidentiality.
Analysis of a program for conformity with the user-
specified privacy budget can either be conducted by the
provider of the program, or the access controller. How-
ever, either approach has yet to be explored, and either
approach has its unique pitfalls to consider. When the
program provider creates a proof of differential privacy,
knowledge of the policy is a necessity. When the access
controller analyzes the program, the program must be
known for analysis. Further, this shows the relevance of
function privacy for PCDC during both program execution
and program analysis for updating the policy. Proposing
a solution which unravels the dichotomy between func-

133



Layers Functionality Academia Solutions Industry Solutions

Candid
�,�

Coconut�
,�

DAC
�

Zk-creds
�,�

Calypso

SIW
E

(E
RC-4361)

SpruceID
�,�

iden3 (go-id
en3-core)

�,�

PolygonID
�,�

Mattr
�,�

,�

Trin
sic

�,�
,�

Veramo
�,�

Arie
s (A

CA-Py)
�,�

,�

Sism
o
�,�

SemaphoreID
�,�

Verite
�,�

Gitc
oin

Passp
ort

�,�

Serto
�,�

PAD
Protocol

Ocean Protocol

Oasis
Parcel

iExec

[5
2

]

[4
8

]

[1
1

1
]

[5
0

]

[6
6

]

[1
1

2
]

[2
2

]

[5
9

]

[6
0

]

[1
1

3
]

[1
1

4
]

[5
3

]

[1
1

5
]

[1
1

6
]

[1
1

7
]

[1
1

8
]

[1
1

9
]

[1
2

0
]

[1
2

1
]

[1
2

2
]

[1
2

3
]

[1
2

4
]

Decentralized
Identity Management

(Definition 1)

Generate � � � � � � � � � � � � � � � � � � � �
Create � � � � � � � � � � � � � � � � � � � �
Resolve � � � � � � � � � � � � � � � � � � � �
Update � � � � � � � � � � � � � � � � � � � �
Deactivate � � � � � � � � � � � � � � � � � � � �

Decentralized
Anonymous Credentials

(Definition 2)

Request �� � � � �� � � � � �� � � � �� �� ��
Issue �� � � � �� � � � � �� � � � �� �� ��
Prove �� � � � �� � � � � �� � � � �� �� ��
Verify �� � � � �� � � � � �� � � � �� �� ��
Revoke �� � � � � � � � � � � � � �� � �

Decentralized
Access Control
(Definition 3)

Setup Shares � � �
Set Policy � � � � �
Authenticate � � � � �
Access � � � � �
Reconstruct � � �
Update � � � � �

Policy-Compliant
Decentralized Computation

(Definition 4)

Commit � �
Analyze � �
Compute � �
Claim � �

TABLE 1: Functionality provided by industry and research solutions with regard to definitions as in sections 3 — 5.
A functionality is either addressed �, not addressed � or not applicable. For decentralized identity: � = compliant
with W3C DID; � = compliant with W3C VC; � = supports on-chain verification; � = supports privacy-preserving
credentials. If a solution supports credentials without anonymity, we denote it with ��.The methodology for inclusion
and exclusion of a solution is outlined in Appendix A.

tion privacy and policy confidentiality, without relying on
trusted hardware, remains an open problem.

Challenge — Concurrent policy updates. Concurrency
describes asynchronous out-of-order evaluation of a pro-
gram [126]. When executing a program, compute nodes
need to update the policy, including the associated privacy
budget. Policy updates can lead to the occurrence of race
conditions, when more than one entity tries to commit a
state update to the ledger simultaneously. All solutions for
concurrent smart contracts are applicable to public pro-
grams — supporting concurrent updates for confidential
policies is equally an issue yet to be addressed for PCDC.
However, several approaches have shown the viability
of concurrent execution for confidential smart contracts
through atomic delivery of computation outputs and state
updates [74], pre-ordering the computation before execu-
tion [126], and rejecting any state update based on a stale
view of the ledger [102]. For PCDC, concurrently tracking
a privacy budget is difficult, because a decrease of the
privacy budget for multiple computations is equivalent
to the addition of privacy budgets consumed in indi-
vidual computations [127], [128]. Achieving concurrent
and replay-attack resistant policy updates of confidential
policies and privacy budgets is an open problem.

Challenge — Tracking privacy budgets for dataset
composition. Orthogonally to executing multiple pro-
grams on a single input, one may intend to execute a
single program with more than one input. The latter may
be especially relevant for decentralized data science. It
remains an open problem how to coordinate and quantify
the privacy loss for individual datasets that are merged
and consumed by a computation with multiple inputs. An
additional complexity is presented when datasets are fre-

quently updated, and computation outputs are further re-
used in a secondary step of the computation. Addressing
this complexity by quantifying the privacy loss and gain
of complex setups remains equally relevant in practice.

Remark — PCDC enables provable data lineage.
PCDC achieves an auditable history of applied compu-
tations on a specific data item through on-chain commit-
ments. The immutable property of blockchains, and data-
access restrictions by PCDC, facilitates data lineage — a
problem that is hard to solve beyond isolated environ-
ments [129]. Data lineage tools track the data lifecycle,
including its origin, destination and each successive trans-
formation in-between. Verifiable data lineage can help in
solving key problems pertaining to data-sovereignty. By
identifying data that is most critical to the end-result of
a multi-step computation, data consumers can determine
individual contributions and incentivize accordingly [130].
Data Provenance, which proves the origin of data, and
presents a sub-problem of data lineage, has received no-
table attention in recent years [56], [57], [131], [132].
Using PCDC to achieve verifiable data lineage is sparsely
explored and yields an interesting problem for research.

Use-Case — Decentralized Data Science. The abun-
dance of data has fueled the emergence of artificial intelli-
gence and machine learning algorithms with practical ap-
plications. To enhance data availability, various protocols
propose decentralized data marketplaces, where datasets
can be published, discovered and consumed [122]. How-
ever, they typically trade raw data and user control takes
a secondary role due to data non-rivalry. PCDC serves as
an additional layer of governance, where users specify
policies to restrict the conducted analyses. This way,
PCDC approaches a responsible data economy, where

134



users can monetize their data without surrendering privacy.
Yet, there are many open challenges to be addressed
in reaching a practical implementation. It is yet to be
addressed how users can control data processing for data
in a DWN (cf. § 3.1), e.g., by whitelisting programs.

Use-Case — Data Co-Ownership. Many use-cases are
already sufficiently covered through PCDC with a single
user that governs a single dataset. However, consolidating
datasets of multiple users can increase the utility as com-
pared to each individual dataset. Solving this problem
demands for governance solutions for data co-ownership.
Users, which merge their data for enhanced co-utility, may
govern program executions through a Data DAO (Decen-
tralized Autonomous Organization). PCDC can enforce
decisions through a shared policy, that is governed by the
DAO. Developing governance structures by applying multi
secret-sharing schemes [133], and determining the shared
value of datasets are equally open research areas.

6. Discussion

Comparison — Strengths, weaknesses and connec-
tions. Table 1 identifies the key functionalities provided
by each solution and indicates those that are missing. It
is clearly shown that industry has put a particular focus
on technologies for decentralized identity. This is natural,
as, in many ways, decentralized identity is a return to
the internet’s roots, favoring decentralization over siloed
web services. Further, we observe that recent work on
decentralized anonymous credentials primarily relies on
SNARKs for efficient on-chain verification [50], [54],
[58]. Meanwhile, decentralized access control and PCDC
have not received widespread attention. We expect that
recent improvements for SNARKs can further improve
the practicality of applications for data sovereignty. We
encourage further work in this space and hope this analysis
clarifies missing features and open research areas.

Transparency Technologies. Transparency technologies
offer an alternative solution to reduce trust in service
providers by requiring them to append requests to an
append-only log, such that entities are held accountable
upon misbehavior. Transparency logs have been applied
to many problem areas in the past, such as for key
transparency [134] or certificate transparency [135]. Sim-
ilarly, transparency logs can augment technologies for
data sovereignty. A decentralized identifier can be re-
solved with a key transparency log, credentials can be
transparently managed by third parties through credential
transparency logs [136], and the committee of access
controllers can record access attempts to secret keys
with transparency logs [137], [138]. Whereas, a verifi-
able registry enhances security and privacy, transparency
logs can provide enhanced performance by offering a
middle ground between Web 2.0 centralization and Web
3.0 decentralization. We encourage further research on
transparency logs for data sovereignty.

Data Authenticity and Provenance. Although users may
achieve data sovereignty through the previously mentioned
technologies, the challenge of proving the authenticity of
data remains. Data Consumers care about the validity of
the data that they are provided with, whereas users fail to

convince data consumers without further attestations. To
effectively address this problem, each data item should be
accompanied with a claim and an independently verifiable
proof. We find that there are three possible pathways to
overcome this challenge — acquiring an attestation from
a reputable third party, proving data provenance, or ob-
taining an attestation directly from the data source. At the
time of writing, these approaches can be implemented by
issuing credentials [14], using TLS oracles to prove data
provenance [52], [56], [57], or using content provenance
as e.g., recently proposed in the C2PA standard [139]. We
hope to witness a graceful transition from the first to the
third solution in the coming years.

7. Concluding Remarks

In summary, we adhere that simultaneously achieving
privacy, transparency and efficiency is a challenging task
without further trust assumptions. Our findings suggest,
that data sovereignty is an important step towards the next
generation of the web, where all actions on personal data
are controlled by the user. We believe that research on
efficiency in privacy preserving technologies, and tooling
for interoperability between the sub-areas studied in this
work, will allow the community to bridge the gap between
platform-centric and user-centric web technologies.

Acknowledgement. We thank Deevashwer Rathee, Sriram
Sridhar and Bryan Ford for their valuable comments. This
work is partially supported by the Center for Responsible,
Decentralized Intelligence at Berkeley (Berkeley RDI),
Chainlink Labs, and the Algorand Centres of Excellence
programme managed by Algorand Foundation and the
Federal Ministry of Education and Research of Germany
in the programme of “Souverän. Digital. Vernetzt.”. Joint
project 6G-life (project number 16KISK002).

References

[1] H. Saleem and M. Naveed, “Sok: Anatomy of data breaches.”
Proc. Priv. Enhancing Technol., vol. 2020, no. 4, pp. 153–174,
2020.

[2] S. of California Department of Justice, “The california consumer
privacy act of 2018 (ccpa),” Department of Justice, 2018.

[3] “Web3 is self-certifying,” https://jaygraber.medium.com/
web3-is-self-certifying-9dad77fd8d81.

[4] A. Krotova, A. Mertens, and M. Scheufen, “Open data and data
sharing: An economic analysis,” IW-Policy Paper, Tech. Rep.,
2020.

[5] “Gaia-x: Driver of digital innovation in europe,” https://www.
data-infrastructure.eu/GAIAX/.

[6] E. G. Weyl, P. Ohlhaver, and V. Buterin, “Decentralized society:
Finding web3’s soul,” Available at SSRN 4105763, 2022.

[7] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll,
and E. W. Felten, “Sok: Research perspectives and challenges
for bitcoin and cryptocurrencies,” in 2015 IEEE symposium on
security and privacy. IEEE, 2015, pp. 104–121.

[8] J. Benet, “Ipfs-content addressed, versioned, p2p file system (draft
3),” arXiv preprint arXiv:1407.3561, 2014.

[9] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The
quest to replace passwords: A framework for comparative evalu-
ation of web authentication schemes,” in 2012 IEEE Symposium
on Security and Privacy. IEEE, 2012, pp. 553–567.

135



[10] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal
security analysis of oauth 2.0,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
2016, pp. 1204–1215.

[11] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague,
“Oauth demystified for mobile application developers,” in Pro-
ceedings of the 2014 ACM SIGSAC conference on computer and
communications security, 2014, pp. 892–903.

[12] D. Hardt et al., “The oauth 2.0 authorization framework,” 2012.

[13] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, and
M. Sabadello, “Decentralized identifiers (dids) v1. 0 core data
model and syntaxes,” W3C First Public Working Draft, https:
//www.w3.org/TR/did-core/ , 2019.

[14] W. W. W. Consortium et al., “Verifiable credentials data model
v1.1,” W3C First Public Working Draft, https://www.w3.org/TR/
vc-data-model/?#core-data-model, 2019.

[15] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),”
Tech. Rep., 2015.

[16] “Peer did method,” https://identity.foundation/
peer-did-method-spec/.

[17] “Polygon did implementation,” https://docs.polygon.technology/
docs/develop/did-implementation/getting-started/.

[18] “Ceramic network,” https://ceramic.network/.

[19] W. W. W. Consortium, “W3C DiD Method registry,” https://w3c.
github.io/did-spec-registries/#did-methods, 2021.

[20] “Ethr-did library,” https://github.com/uport-project/ethr-did.

[21] “Did universal resolver,” https://dev.uniresolver.io/.

[22] “Spruce id,” https://www.spruceid.com/.

[23] “Web5: An extra decentralized web platform,” https://developer.
tbd.website/projects/web5/.

[24] “Lukso,” https://www.lukso.network/.

[25] “Erc725 v.2,” https://github.com/ethereum/EIPs/issues/725.

[26] “Erc735,” https://github.com/ethereum/EIPs/issues/735.

[27] “Dif decentralized web node,” https://identity.foundation/
decentralized-web-node/spec/.

[28] “Erc-4337: Account abstraction using alt mempool,” https://eips.
ethereum.org/EIPS/eip-4337.

[29] J. Camenisch and A. Lysyanskaya, “Signature schemes and
anonymous credentials from bilinear maps,” in Annual interna-
tional cryptology conference. Springer, 2004, pp. 56–72.

[30] S.-Y. Tan and T. Groß, “Monipoly—an expressive q-sdh-based
anonymous attribute-based credential system,” in International
Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2020, pp. 498–526.

[31] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revo-
cation,” in International conference on the theory and applications
of cryptographic techniques. Springer, 2001, pp. 93–118.

[32] L. Hanzlik and D. Slamanig, “With a little help from my friends:
Constructing practical anonymous credentials,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2021, pp. 2004–2023.

[33] J. Camenisch, M. Drijvers, and J. Hajny, “Scalable revocation
scheme for anonymous credentials based on n-times unlinkable
proofs,” in Proceedings of the 2016 ACM on Workshop on Privacy
in the Electronic Society, 2016, pp. 123–133.

[34] M. Schaffer and P. Schartner, “Anonymous authentication with
optional shared anonymity revocation and linkability,” in Inter-
national Conference on Smart Card Research and Advanced
Applications. Springer, 2006, pp. 206–221.

[35] R. Li, D. Galindo, and Q. Wang, “Auditable credential anonymity
revocation based on privacy-preserving smart contracts,” in Data
Privacy Management, Cryptocurrencies and Blockchain Technol-
ogy. Springer, 2019, pp. 355–371.

[36] “Espresso systems,” https://www.espressosys.com/.

[37] Hyperledger, “Hyperledger Indy,” https://www.hyperledger.org/
use/hyperledger-indy, 2017.

[38] Evernym, “BBS+ for Verifiable Credentials,” https://www.
evernym.com/blog/bbs-verifiable-credentials/, 2021.

[39] J. Camenisch and E. Van Herreweghen, “Design and implementa-
tion of the idemix anonymous credential system,” in Proceedings
of the 9th ACM Conference on Computer and Communications
Security, 2002, pp. 21–30.

[40] F. Baldimtsi and A. Lysyanskaya, “Anonymous credentials light,”
in Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, 2013, pp. 1087–1098.

[41] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn,
“Malleable signatures: New definitions and delegatable anony-
mous credentials,” in 2014 IEEE 27th Computer Security Foun-
dations Symposium. IEEE, 2014, pp. 199–213.

[42] G. Fuchsbauer, C. Hanser, and D. Slamanig, “Structure-preserving
signatures on equivalence classes and constant-size anonymous
credentials,” Journal of Cryptology, vol. 32, no. 2, pp. 498–546,
2019.

[43] J. Camenisch, M. Dubovitskaya, K. Haralambiev, and
M. Kohlweiss, “Composable and modular anonymous credentials:
Definitions and practical constructions,” in International
Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2015, pp. 262–288.

[44] D. Deuber, M. Maffei, G. Malavolta, M. Rabkin, D. Schröder,
and M. Simkin, “Functional credentials.” Proc. Priv. Enhancing
Technol., vol. 2018, no. 2, pp. 64–84, 2018.

[45] O. Sanders, “Efficient redactable signature and application to
anonymous credentials.” in IACR International Conference on
Public-Key Cryptography. Springer, 2020, pp. 628–656.

[46] Hyperledger, “Hyperledger Indy specification Anonymous
Credentials,” https://github.com/hyperledger-archives/
indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf,
2018.

[47] ——, “Hyperledger specification Anonymous Credentials 2.0,”
https://lists.hyperledger.org/g/ursa/topic/30142553, 2020.

[48] A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn, and
G. Danezis, “Coconut: Threshold issuance selective disclosure
credentials with applications to distributed ledgers,” in 26th
Annual Network and Distributed System Security Symposium
(NDSS), 2019.

[49] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-
taa,” in International conference on security and cryptography
for networks. Springer, 2006, pp. 111–125.

[50] M. Rosenberg, J. White, C. Garman, and I. Miers, “zk-creds:
Flexible anonymous credentials from zksnarks and existing iden-
tity infrastructure,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2023.

[51] J. Doerner, Y. Kondi, E. Lee, L. Tyner et al., “Threshold bbs+
signatures for distributed anonymous credential issuance,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2022, pp. 2095–2111.

[52] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell,
T. Lobban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do
decentralized identity with legacy compatibility, sybil-resistance,
and accountability,” in 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 2021, pp. 1348–1366.

[53] “Veramo,” https://veramo.io/.

[54] D. Rathee, G. V. Policharla, T. Xie, R. Cottone, and D. Song,
“Zebra: Anonymous credentials with practical on-chain verifica-
tion and applications to kyc in defi,” Cryptology ePrint Archive,
2022.

[55] “Get protocol,” https://www.get-protocol.io/.

[56] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
crier: An authenticated data feed for smart contracts,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 270–282.

136



[57] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels,
“Deco: Liberating web data using decentralized oracles for tls,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 1919–1938.

[58] M. Chase, E. Ghosh, S. Setty, and D. Buchner, “Zero-knowledge
credentials with deferred revocation checks,” Tech. Rep, Tech.
Rep., 2020.

[59] “iden3.io,” https://iden3.io/.

[60] “polygon id,” https://polygon.technology/polygon-id/.

[61] B. Ford, “Identity and personhood in digital democracy: Eval-
uating inclusion, equality, security, and privacy in pseudonym
parties and other proofs of personhood,” arXiv preprint
arXiv:2011.02412, 2020.

[62] “Proposal for a regulation of the european parliament and of
the council on information accompanying transfers of funds
and certain crypto-assets,” https://data.consilium.europa.eu/doc/
document/ST-10290-2021-INIT/en/pdf.

[63] H. Shafagh, L. Burkhalter, S. Ratnasamy, and A. Hithnawi,
“Droplet: Decentralized authorization and access control for en-
crypted data streams,” in 29th USENIX Security Symposium.

[64] “User managed access,” https://kantarainitiative.org/confluence/
display/LC/User+Managed+Access.

[65] M. P. Andersen, S. Kumar, M. AbdelBaky, G. Fierro, J. Kolb,
H.-S. Kim, D. E. Culler, and R. A. Popa, “{WAVE}: A decen-
tralized authorization framework with transitive delegation,” in
28th {USENIX} Security Symposium ({USENIX} Security 19),
2019, pp. 1375–1392.

[66] E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta,
and B. Ford, “Calypso: Private data management for decentralized
ledgers,” Proceedings of the VLDB Endowment, vol. 14, no. 4, pp.
586–599, 2020.

[67] “Kepler data storage,” https://docs.kepler.xyz/.

[68] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-
frequency trading on decentralized on-chain exchanges,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021,
pp. 428–445.

[69] S. Rouhani and R. Deters, “Blockchain based access control
systems: State of the art and challenges,” in IEEE/WIC/ACM
International Conference on Web Intelligence, 2019, pp. 423–428.

[70] S. Steffen, B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov,
and M. Vechev, “zkay: Specifying and enforcing data privacy
in smart contracts,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019,
pp. 1759–1776.

[71] S. Steffen, B. Bichsel, R. Baumgartner, and M. Vechev, “Zeestar:
Private smart contracts by homomorphic encryption and zero-
knowledge proofs,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE Computer Society, 2022, pp. 1543–1543.

[72] “Spruceid cryptoscript,” https://github.com/spruceid/cryptoscript.

[73] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels,
and D. Song, “Churp: dynamic-committee proactive secret shar-
ing,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 2369–2386.

[74] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson,
A. Juels, A. Miller, and D. Song, “Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart con-
tracts,” in 2019 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2019, pp. 185–200.

[75] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song,
“Storing and retrieving secrets on a blockchain,” in IACR Interna-
tional Conference on Public-Key Cryptography. Springer, 2022,
pp. 252–282.

[76] C. Gentry, S. Halevi, and V. Lyubashevsky, “Practical non-
interactive publicly verifiable secret sharing with thousands of
parties,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2022, pp.
458–487.

[77] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk,
C. Lin, T. Rabin, and L. Reyzin, “Can a public blockchain keep a
secret?” in Theory of Cryptography Conference. Springer, 2020,
pp. 260–290.

[78] S. Coull, M. Green, and S. Hohenberger, “Controlling access to
an oblivious database using stateful anonymous credentials,” in
International Workshop on Public Key Cryptography. Springer,
2009, pp. 501–520.

[79] J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivious trans-
fer with access control,” in Proceedings of the 16th ACM confer-
ence on Computer and communications security, 2009, pp. 131–
140.

[80] P. Kumaraguru, L. Cranor, J. Lobo, and S. Calo, “A survey of
privacy policy languages,” in Workshop on Usable IT Security
Management (USM 07): Proceedings of the 3rd Symposium on
Usable Privacy and Security, ACM, 2007.

[81] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access
control services,” in 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData).
IEEE, 2018, pp. 1379–1386.

[82] ——, “A blockchain based approach for the definition of auditable
access control systems,” Computers & Security, vol. 84, pp. 93–
119, 2019.

[83] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using
blockchain to protect personal data,” in 2015 IEEE Security and
Privacy Workshops. IEEE, 2015, pp. 180–184.

[84] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized
computation platform with guaranteed privacy,” arXiv preprint
arXiv:1506.03471, 2015.

[85] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy,
“Towards blockchain-based auditable storage and sharing of iot
data,” in Proceedings of the 2017 on cloud computing security
workshop, 2017, pp. 45–50.

[86] M. Stadler, “Publicly verifiable secret sharing,” in International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 1996, pp. 190–199.

[87] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[88] T. Yurek, Z. Xiang, Y. Xia, and A. Miller, “Long live the honey
badger: Robust asynchronous dpss and its applications,” Cryptol-
ogy ePrint Archive, 2022.

[89] J. Isaak and M. J. Hanna, “User data privacy: Facebook, cam-
bridge analytica, and privacy protection,” Computer, vol. 51,
no. 8, pp. 56–59, 2018.

[90] C. I. Jones and C. Tonetti, “Nonrivalry and the economics of
data,” American Economic Review, vol. 110, no. 9, pp. 2819–58,
2020.

[91] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards
privacy in a smart contract world,” in International Conference
on Financial Cryptography and Data Security. Springer, 2020,
pp. 423–443.

[92] R. Solomon and G. Almashaqbeh, “smartfhe: Privacy-preserving
smart contracts from fully homomorphic encryption.” IACR Cryp-
tol. ePrint Arch., vol. 2021, p. 133, 2021.

[93] T. Kerber, A. Kiayias, and M. Kohlweiss, “Kachina–foundations
of private smart contracts,” in 2021 IEEE 34th Computer Security
Foundations Symposium (CSF). IEEE, 2021, pp. 1–16.

[94] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu,
“Zexe: Enabling decentralized private computation,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 947–
964.

[95] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and
A. Miller, “Honeybadgermpc and asynchromix: Practical asyn-
chronous mpc and its application to anonymous communication,”
in Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, 2019, pp. 887–903.

137



[96] C. Dwork, “Differential privacy: A survey of results,” in In-
ternational conference on theory and applications of models of
computation. Springer, 2008, pp. 1–19.

[97] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data
objects: an overview,” arXiv preprint arXiv:1807.05686, 2018.

[98] L. Wang, U. Khan, J. Near, Q. Pang, J. Subramanian, N. Somani,
P. Gao, A. Low, and D. Song, “Privguard: Privacy regulation
compliance made easier,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022.

[99] H. Bitar and B. Jakobsson, “Gdpr: Securing personal data in
compliance with new eu-regulations,” 2017.

[100] A. Narayan, A. Feldman, A. Papadimitriou, and A. Haeberlen,
“Verifiable differential privacy,” in Proceedings of the Tenth Eu-
ropean Conference on Computer Systems, 2015, pp. 1–14.

[101] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving
smart contracts,” in 2016 IEEE symposium on security and pri-
vacy (SP).

[102] R. Sinha, S. Gaddam, and R. Kumaresan, “Luciditee: A tee-
blockchain system for policy-compliant multiparty computation
with fairness,” Cryptology ePrint Archive, 2019.

[103] G. Kaptchuk, I. Miers, and M. Green, “Giving state to the
stateless: Augmenting trustworthy computation with ledgers,”
Cryptology ePrint Archive, 2017.

[104] “Hyperledger private data objects,” https://github.com/
hyperledger-labs/private-data-objects,.

[105] C. Cordi, M. P. Frank, K. Gabert, C. Helinski, R. C. Kao,
V. Kolesnikov, A. Ladha, and N. Pattengale, “Auditable, available
and resilient private computation on the blockchain via mpc,” in
Cyber Security, Cryptology, and Machine Learning: 6th Interna-
tional Symposium, CSCML 2022, Be’er Sheva, Israel, June 30–
July 1, 2022, Proceedings. Springer, 2022, pp. 281–299.

[106] D. Demirag and J. Clark, “Absentia: Secure multiparty computa-
tion on ethereum,” in Financial Cryptography and Data Security.
FC 2021 International Workshops: CoDecFin, DeFi, VOTING,
and WTSC, Virtual Event, March 5, 2021, Revised Selected Papers
25. Springer, 2021, pp. 381–396.

[107] C. Baum, J. H.-y. Chiang, B. David, and T. K. Frederiksen,
“Eagle: Efficient privacy preserving smart contracts,” Cryptology
ePrint Archive, 2022.

[108] S. Steffen, B. Bichsel, and M. Vechev, “Zapper: Smart contracts
with data and identity privacy,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security,
2022, pp. 2735–2749.

[109] G. Almashaqbeh and R. Solomon, “Sok: Privacy-preserving com-
puting in the blockchain era,” in 2022 IEEE 7th European Sym-
posium on Security and Privacy (EuroS&P). IEEE, 2022, pp.
124–139.

[110] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “{FastKitten}: Practical smart con-
tracts on bitcoin,” in 28th USENIX Security Symposium.

[111] C. Garman, M. Green, and I. Miers, “Decentralized anonymous
credentials,” Cryptology ePrint Archive, 2013.

[112] “Sign-in with ethereum,” https://login.xyz/.

[113] “Mattr global,” https://mattr.global/.

[114] “trinsic.id,” https://trinsic.id/.

[115] “Hyperledger aries,” https://github.com/hyperledger/aries.

[116] “Sismo,” https://www.sismo.io/.

[117] “Semaphoreid,” https://semaphore.appliedzkp.org/.

[118] “Verite,” https://docs.centre.io/verite/.

[119] “Gitcoin passport,” https://passport.gitcoin.co/.

[120] “Serto,” https://www.serto.id/.

[121] “Pad protocol,” https://www.padprotocol.org/.

[122] “Ocean protocol,” https://oceanprotocol.com/.

[123] “Oasis labs,” https://www.oasislabs.com/.

[124] “iexec,” https://iex.ec/.

[125] J. M. Puaschunder, “Data fiduciary in order to alleviate principal–
agent problems in the artificial big data age,” in Information for
Efficient Decision Making: Big Data, Blockchain and Relevance,
2021.

[126] K. Wüst, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun,
“Ace: asynchronous and concurrent execution of complex smart
contracts,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp. 587–600.

[127] N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song, “A demonstra-
tion of sterling: a privacy-preserving data marketplace,” Proceed-
ings of the VLDB Endowment, vol. 11, no. 12, pp. 2086–2089,
2018.

[128] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “Gupt:
privacy preserving data analysis made easy,” in Proceedings of the
2012 ACM SIGMOD International Conference on Management of
Data.

[129] P. McDaniel, “Data provenance and security,” vol. 9, 2011, pp.
83–85.

[130] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel,
B. Li, C. Zhang, D. Song, and C. J. Spanos, “Towards efficient
data valuation based on the shapley value,” in The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics. PMLR,
2019, pp. 1167–1176.

[131] S. Capkun, E. Ozturk, G. Tsudik, and K. Wüst, “Rosen: Robust
and selective non-repudiation (for tls),” in Proceedings of the 2021
on Cloud Computing Security Workshop, 2021, pp. 97–109.

[132] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Capkun, “Tls-
n: Non-repudiation over tls enabling-ubiquitous content signing
for disintermediation,” in 25th Annual Network and Distributed
System Security Symposium (NDSS), 2018.

[133] C. Blundo, A. D. Santis, G. D. Crescenzo, A. G. Gaggia, and
U. Vaccaro, “Multi-secret sharing schemes,” in Annual Interna-
tional Cryptology Conference. Springer, 1994, pp. 150–163.

[134] M. Chase, A. Deshpande, E. Ghosh, and H. Malvai, “Seemless:
Secure end-to-end encrypted messaging with less trust,” in Pro-
ceedings of the 2019 ACM SIGSAC conference on computer and
communications security, 2019, pp. 1639–1656.

[135] B. Laurie, “Certificate transparency,” Communications of the
ACM, vol. 57, no. 10, pp. 40–46, 2014.

[136] M. Chase, G. Fuchsbauer, E. Ghosh, and A. Plouviez, “Credential
transparency system,” in Security and Cryptography for Networks:
13th International Conference, SCN 2022, Amalfi (SA), Italy,
September 12–14, 2022, Proceedings. Springer, 2022, pp. 313–
335.

[137] “Privacy preserving accountable decryption - pad tech,” https://
www.padprotocol.org/.

[138] M. Chase, H. Davis, E. Ghosh, and K. Laine, “Acsesor: A new
framework for auditable custodial secret storage and recovery,”
Cryptology ePrint Archive, 2022.

[139] L. Rosenthol, “C2pa: the world’s first industry standard for con-
tent provenance,” in Applications of Digital Image Processing
XLV, vol. 12226. SPIE, 2022, p. 122260P.

[140] “did:web method specification,” https://w3c-ccg.github.io/
did-method-web/.

[141] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” Cryptology ePrint Archive, 2000.

[142] M. Chase and A. Lysyanskaya, “On signatures of knowledge,”
in Annual International Cryptology Conference. Springer, 2006,
pp. 78–96.

[143] J. Brorsson, B. David, L. Gentile, E. Pagnin, and P. S. Wagner,
“Papr: Publicly auditable privacy revocation for anonymous cre-
dentials,” Cryptology ePrint Archive, 2023.

138



Appendix A.
Inclusion & Exclusion Criteria

We compare the functionality supported by (i) research
papers and (ii) industry solutions in Table 1. To systemat-
ically collect the body of relevant works, we only include
works based on the following criteria:

• Inclusion — The tool/research clearly intends to solve
either a problem concerning (i) decentralized identity,
(ii) decentralized access control or (iii) PCDC.

• Inclusion — The tool leverages techniques from one
of the sub-areas (e.g., decentralized identity) to solve
problems in another (e.g., decentralized access control).

• Exclusion — The tool does not provide sufficient doc-
umentation and supporting information to prove that it
fulfills a claimed functionality.

• Exclusion — The research is not peer-reviewed at the
time of writing.

We further provide an explanation of Table 1, which
provides an overview of the functionalities supported by
different solutions in academia and industry. We evaluate
Table 1 with regard to the functionality of systems as
introduced in the formal definitions in Sections 3 — 5.
We aim to objectively analyze the support of different
solutions to the best of our knowledge, without favor-
ing one scheme over another. For decentralized identity
management, we note that if a paper or system implicitly
relies on a decentralized identifier infrastructure (e.g.,
CanDID [52]), we say it fulfills the properties for de-
centralized identity management with respect to the refer-
enced concrete implementation. Certain systems [48], [50]
do not explicitly mention the reliance on an infrastructure
for decentralized identity management and solely rely on
pseudonymous public keys for their proposed construc-
tion. SpruceID [22] provides a library for decentralized
identity management and verifiable credentials. Whether
an implementation relying on SpruceID supports all func-
tionalities for decentralized identity management depends
on the DID method (e.g., did-web [140]).

For decentralized anonymous credentials, some sys-
tems focus on credentials without explicitly supporting
anonymity. We denote this in Table 1 with ��. Further,
certain systems provide libraries for issuance, proving and
verification of credentials. We say that they provide the
“Request” functionality if they provide tools for agent
to agent communication. Note that Semaphore [117] is
a signaling protocol, which does not issue traditional
credentials. An identity in Semaphore is a commitment,
and users can prove membership of certain groups, which
are represented as binary Merkle Trees. In this case, we
refer to issuance as adding a member to the group and
revocation as deleting a member to the group.

For decentralized access control, some systems rely
on trusted hardware rather than a secret-sharing ap-
proach [123], [124]. In this case, we say that “Setup
Shares” and “Reconstruct” does not apply. The PAD pro-
tocol presents a solution for decentralized access control
that uses a transparent log to record access attempts [121].
They do not have a direct notion of a policy, access is
delegated by explicitly sending an access token. Note that
while Ocean Protocol [122] does support computation on
user data, technologies for secure computing are seen as
orthogonal and not explicitly supported.

Appendix B.
Supplementary Formalism

In this section, we formally present the properties
and security goals of the definitions as introduced in
previous sections for decentralized identity, decentralized
access control, and policy-compliant computation, in the
ideal-world/real-world paradigm (UC model [141]).The
UC model is widely recognized as the gold standard for
establishing security in various cryptographic applications,
such as for example MPC and ZKPs, providing a unified,
“ideal”, description that satisfies all desired properties.
Successively, a protocol designer can prove that a concrete
instantiation of a protocol “emulates” this ideal descrip-
tion, such that all security flaws in the concrete instantia-
tion would also be possible in the ideal description (i.e.,
the ideal functionality). At the time of writing, definitions
for protocols as described in Sections 3, 4 and 5 exist in
various different formats. In the following, we provide
a set of ideal functionalities that fulfill the properties
we deem essential in for the previous definitions. The
functionalities presented are intended to serve as templates
for the formalization of data sovereign systems. It should
be noted that specific implementations may incorporate
additional restrictions or variations in the manner in which
identities and data are managed and controlled. Further-
more, the conditions under which the security properties
of these systems may be compromised can vary.

B.1. Ideal Functionalities
An ideal functionality represents an ideal protocol that
carries out the desired task. All parties send their inputs
to the ideal functionality. The ideal functionality computes
the output and returns the output to all parties. The
security of a protocol φ is examined by comparing the
view of an environment Z when φ is executed in the
real world against that of Z in the ideal world defined
in Fφ. In both worlds, the environment Z chooses the
inputs of the parties and collects their outputs. In the ideal
world, Z interacts with dummy parties, that send messages
between Z, ideal functionality Fφ, and a simulator. In
the real world, the environment Z interacts freely with
any adversary, who can corrupt any party. We say a
protocol is secure (UC realizes the ideal functionality)
if the environment Z can’t distinguish between the real
world and ideal world executions.

In the UC model [141], parties, functionalities, the
adversary, and environment are (instances of) interactive
Turing machines (ITMs) running in probabilistic polyno-
mial time (PPT). Unless stated otherwise, we assume syn-
chronous communication over point-to-point channels.To
start an execution of the protocol φ, the environment ini-
tiates a protocol execution session, identified by a session
identifier sid , and activates all session participants. The
environment Z invokes all parties and assigns a unique
identifiers to each.

B.2. Dec. Identity Management Ideal Functional-
ity (FDIM )

We express the security goals of the decentralized identity
model in terms of an ideal functionality FDIM defined in
Figure 5. We further give an explanation and intuition

139



behind our design. First, the functionality maintains a list
of registered parties Lreg, and a list of identity tuples
Ltup, initially set to empty. Upon initialization, the
adversary A chooses the Generate() algorithm. When
the functionality receives a “generate” message from a
party P , the functionality generates a secret identifier
pk using Generate(). We assume the generate algorithm
supplied by the adversary randomly samples a unique
random key for every request to fulfill the uniqueness
property. Once the functionality receives the public key,
it records it in list Lreg and returns the pk to the party.
FDIM successively does not check the ”system identity”
of the caller, but rather identifies the calling party by
pk. Once the functionality receives a “create” message
from a party, it checks if the party is already registered
in Lreg. If it is not, it ignores the request. Else, it lets the
adversary pick a random DID before returning it to the
party. In “generate” and “create”, parties can call them an
unlimited amount of times. Protecting against sybil attack
is out of scope for this work. To retrieve metadata MDDID

for some pseudonymous identifier, any party can send
“resolve” to FDIM . FDIM returns the MDDID if the
identifier and metadata exists. A party can “update” its
MDDID by sending the a requests to the functionality,
modifies the lists maintained accordingly.

The ideal functionality encompasses the following
properties from Sec. 3:

• Uniqueness: Each user receives a unique identifier as
it is assumed to be generated using a random sampling
technique with negligible collision probability.

• Persistence: The user is the one in control of generat-
ing, creating and deactivating any of its identity tuples,
and it will continue to exist unless the user deactivates
it. The FDIM checks if any of the “create”, “update”,
and “deactivate” comes from a user with the correct
associated public key before honoring the request.

• Pseudonymity: There is no restriction on how many
times a user can call “create” to generate pseudonymous
identifiers. By enabling the creation of more than one
identifier, it impedes linkability while allowing entities
to present themselves differently in different contexts.

We model the correption of FDIM through a set of
constituent identities, which represent the identities that
realize the functionalities services — in this case the
verifiable registry modeled as an internal, append-only list.
If the set of corrupted constituent identities is sufficiently
large, FDIM gets corrupted and returns random strings
when queried for entries in Ltup.

B.3. Decentralized Anonymous Credentials Ideal
Functionality (FDAC)

Likewise, we express the security goals of the decentral-
ized anonymous credentials in terms of an ideal func-
tionality FDAC defined in Figure 6.We assume that each
party is registered with FDIM and has an identifier DID.
We build upon previous UC-functionalities that propose
the issuance of credentials and proofs thereof. We ex-
tend the proposed approaches to align with the previ-
ously introduced functionality for decentralized identity
management, which provides a functionality to manage
pseudonyms in a decentralized fashion. In line with related
works that propose UC-functionalities that output crypto-

FDIM (κ, P) with adversary A
1: The functionality is parameterized by a list L of constituent identities.

(These are the identities of the parties that realize the functionality’s
services). It also maintains lists Lreg,Ltup, Initially set to ∅, and set
corruption state to uncorrupted.

2: // Initialization
3: On receive (“init”):
4: send “init” to A, obtain algorithm Generate() from A
5: // Generate secret identifier
6: On receive ( “generate”) from P :
7: send (“generate”) to A
8: sample pk = Generate() and add (pk) to Lreg .
9: (If pk already appears in Lreg , set pk to be the first unused string.)

10: output (“generated”, pk) to P
11: // Create a new public identifier DID

12: On receive (“create”, pk) from some party:
13: check if pk ∈ Lreg , else return ⊥ to the caller
14: send (“create”) to A, receive (DID) from A
15: (If DID already appeared, set DID to be the first unused string.)
16: set MDDID := ∅; Ltup[DID] := (MDDID)

17: send (DID) to the caller

18: // Resolve an identifier to its metadata
19: On receive (“resolve”, DID) from some party:
20: check that Ltup[DID] �= ∅, else return ⊥
21: notify A of (“resolve”, DID), wait for (ok)
22: set (MDDID) := Ltup[DID]

23: output (MDDID) to the caller

24: // Update the associated metadata
25: On receive ( “update”, pk, MDDID) from some party:
26: if pk /∈ Lreg or Ltup[DID] = ∅, return ⊥
27: notify A of (“update”, MDDID)
28: set Ltup[DID] := (MDDID)

29: On receive ( “corrupted”) from P :
30: If P is in the set L of constituents
31: add P to the set C of corrupted constituents
32: If the set C is [sufficiently large]
33: set state to corrupted and return an element randomly sampled
34: from {0, 1}κ when being queried for Ltup.

Figure 5: Ideal functionality for Dec. Identity Manage-
ment FDIM

graphic values [43], [142], the adversary hands a number
of cryptographic algorithms to FDAC . The functionality
needs to run these algorithms itself to guarantee privacy
of the underlying personal data towards the adversary
in the ideal world. We now describe the functionalities
inner workings. First, the functionality is initialized by
the issuer. When initialized, the functionality asks the
adversary to provide the algorithms necessary. Note that
Validate() and Verify() are deterministic ITMs whereas
Prove() is a PPT ITM. Further, the list of requests and
the list of issued credentials is initialized. The user creates
a credential request by providing a set of claims c(dUi ).
The proof specifies auxiliary data necessary to verify the
correctness of the claims. Upon receiving (sid, “issue”,
cred, c(dUi ), πreq,DIDU ) from the issuer, the functionality
first checks whether the identity of the issuer agrees with
the identity encoded in the session ID. Note, that we
model the issuance of a credential as a single session,
such that for multiple credentials multiple sessions of
FDAC need to be run in parallel. Once the functionality
further checked that the user has previously invoked the
“request” subroutine, it proceeds to inform the adversary
and adds the relevant values for issuance in the list of

140



issued credentials Lcred. The cred in this case defines the
attributes that are issued to the user. Thereafter, FDAC

sends the issued credential to the user. To prove the
credential, the functionality takes the credential, a predi-
cate specifying the predicates to prove, the pseudonymous
identifier and the pseudonymous identifier of the issuer
as an input from the user. It checks that the credential
has indeed been issued and invokes Prove() to create a
prove that is handed back to the user. Note that in this
step no private or linkable information is associated with
proving the credential. Lastly, upon verifying a credential
the functionality first checks that the presented tuple is
in the list of issued credentials and then invokes the
Verify() algorithm to actually verify the proof. Note that
this ensure that 1) no private information is disclosed
to the verifier and 2) that no arbitrary user can present
a valid proof for a credential that doesn’t belong to it.
To revoke a credential, an issuer of a specific credential
can remove the tuple from the list of issued credentials.
Note, that Brorsson et. al [143] concurrently proposed
an ideal functionality for (non-decentralized) anonymous
credentials that further supports anonymity revocation. In
detail, FDAC encompasses the following properties from
Sections 3:

• Unforgeability: FDAC only returns “success” in
“verify” if a proof πcred has previously been issued.
The proof πcred will only be granted if the credential
satisfies φcred.

• Anonymity: The functionality relies on pseudonymous
identifiers. FDAC uses pseudonyms instead of the
user’s identity U when forwarding user’s requests to
issuers or verifiers.

• Predicate Provability / Selective Disclosure: FDAC

supports predicate provability and selective disclosure
by building a valid proof π for the presentation state-
ment. For predicate provability, Prove() constructs the
proof from the credential. For selective disclosure,
Prove() describes a disclosure index to the set of at-
tributes in a credential cred.

• Credentials Revocation: FDAC supports credential re-
vocation by removing a tuple from the list of issued
credentials.On receiving “revoke” by the issuer, FDAC

removes the credentials from Lcred.
• Non-Transferability: FDAC supports non-

transferability by associating each credential with
the the identity U of the requesting user. Hence, the
credential is bound to a single holder.

• Unlinkability: FDAC ensures unlinkability as the user
creates a pseudonym DIDU ′ to generate proofs with
respect to the pseudonym.

B.4. Decentralized Access Control Ideal Func-
tionality (Faccess)

Decentralized access control allows for the user-controlled
authorization of a set of data consumers and ensures
automated access to the resource in question. We detail the
functionality Faccess, which describes the above scenario
for a single resource, protected by a user-specified policy,
in the following. We designate P as any party which the
functionality is parameterized with. Once initialized, the
functionality receives the algorithms used for verifiable
secret sharing and reconstruction from the adversary. The

FDAC (κ, U , I, V) with adversary A
1: Maintain lists Lreq,Lcred initially set to ∅
2: // Initialization by the issuer I
3: On receive (“init”) from I:
4: send (sid, “init”, I) to A;
5: wait for A to respond with (sid, “init”, Validate(), Prove(), Verify())
6: store the returned algorithms

7: // User requests credential from issuer
8: // Produce request for a credential (proof that claims are valid)
9: On receive (sid, “request”, c(dU

i ), DIDU , aux(U), DIDI ) from U :
10: notify A of ( sid, “request”, c(dU

i ), DIDU , aux(U), DIDI )
11: set πreq := aux(U) ‖ DIDI , and add πreq to Lreq

12: send (sid, c(dU
i ), πreq, DIDU ) to I

13: // Validate the claims given by the user
14: On receive (sid, “validate”, c(dU

i ), πreq) from I:
15: check sid = (I, sid′), else return ⊥
16: notify A of (sid, “validate”, c(dU

i ), πreq)

17: check Validate(c(dU
i ), πreq) = 1, else return ⊥

18: send (sid, “success”) to I
19: // Issue the credential to the user
20: On receive (sid, “issue”, cred, c(dU

i ), πreq, DIDU ) from I:
21: check sid = (I, sid′), else return ⊥
22: and check that πreq ∈ Lreq, else return ⊥
23: notify A of (sid, “issue”, cred, c(dU

i ), πreq, DIDU )

24: add (U , cred) to Lcred

25: send public delayed output (sid, “success”, cred) to U
26: // Prove the credential, return proof to user
27: On receive (sid, “prove”, cred, φcred, DIDU ′, DIDI ) from U :
28: notify A of (sid, “prove”, cred, φcred, DIDU ′, DIDI)
29: check that (U , cred) ∈ Lcred, else return ⊥
30: set πcred ←− Prove(cred, φcred, DIDU ′)
31: check that Verify(cred, πcred, DIDU ′) = 1

32: Send output (sid, cred, πcred) to U
33: // Publicly verify a credential + proof
34: On receive (sid, “verify”, cred, πcred, DIDU ′, DIDI ) from V :
35: check that (U , cred) ∈ Lcred

36: notify A of (sid, “verify”, cred, πcred, DIDU ′, DIDI)
37: set result := Verify(cred, πcred, DIDU ′, DIDI)
38: Send output (sid, result, cred) to V
39: // Revoke a credential
40: On receive (sid, “revoke”, cred, DIDU ) from I:
41: check sid = (I, sid′), else return ⊥
42: check that (U , cred) ∈ Lcred, else return ⊥
43: notify A of (sid, “revoke”, cred, DIDU )

44: Remove (U , cred) from Lcred

45: Send output (“revoked”, cred, DIDU ) to I

Figure 6: Ideal Functionality for Decentralized Anony-
mous Credentials FDAC .

algorithms are available to any party P , as there is no sin-
gle entity governing the access. The functionality further
maintains a list of authenticated data consumers Lauth,
a list of shares Lshare and a list of policies Lpol. The
functionality behaves fairly simple, in a way that ensures
that only authenticated data consumers can access a data
item. First, upon receiving a request to “deal” the shares
for a certain key, Faccess applies the Share() algorithm
and stores the shares in an internal list indexed by the kid.
The functionality stores the shares for each of the access
controllers respectively. Further, the functionality stores
the policy p provided by the user. To “authenticate”, a data
consumer presents a valid proof, and its pseudonymous
identifier is added to the list of authenticated data con-
sumers. Upon receiving “access”, Faccess checks whether

141



the calling data consumer is authenticated. Hence, only
data consumers who previously authenticated can access
the secret maintained by the access controllers. To model
that access controllers may behave maliciously, we let A
return the shares for each AC ∈ [0,m], that the adversary
corrupted, where m < N . To “reconstruct” the secret,
Faccess takes the relevant shares as input, checks whether
they have been correctly shared, and reconstructs the se-
cret given the individual shares with Reconstruct(). Note,
that Faccess does not demand for internal decryption.

The ideal functionality encompasses the following
properties:

• Data Confidentiality: Faccess supports data confiden-
tiality by only allowing authenticated data consumers
to access the secret.

• Anonymity: Anonymity requires that no adversary
should be able to distinguish which consumer C ac-
cessed the data item dUi , unless requested by an audit.
Faccess provides pseudonymity, by only returning the
pseudonymous identifier upon request of an audit.

• Auditability: For auditability, any invocation of
“authenticate” and “authorize” should be publicly ob-
servable. Faccess supports auditability for authentica-
tion by allowing read access to the list of authenticated
consumers.

• Policy Confidentiality: The policy is maintained by
Faccess. The data consumer only gains knowledge about
whether the provided proof satisfies the policy.

• Fair access: Faccess supports fair access by sending the
secret k to data consumers simultaneously, such that all
participants are treated equally.

• Access Revocation: Faccess supports access revocation
by allowing U to call “revoke” to remove the data
consumer in question.

B.5. Functionality Wrapper for Policy Compliant
Decentralized Computation (Wcomp)

We formally represent policy-compliant decentralized
computation in terms of a functionality wrapper Wcomp

shown in Figure 8. The wrapper further ensures that data
may not be copied and reused after giving access to it, pre-
cluding the problem of data nonrivalry. Wcomp specifies
the following security and privacy guarantees. The data
provided in “commit” by U remains confidential towards
C. Likewise, the program Θ provided by C is inaccessible
to U . However, U can obtain the pseudonymous identifier
of C, observing that C has executed a computation on
dUi . The consumer discloses the program Θ to “analyze”
whether it is compliant with a policy p set by U . To ensure
the correctness of computations,Wcomp only computes on
the data, if the program provided has previously been ana-
lyzed for the data in question. Note that we model Wcomp

with a single compute node, forfeiting decentralization
for semantic clarity. The functionality additionally updates
the residual policy given the execution of the program to
model degradation of privacy. A consumer C can always
“claim” the output of a program, given that the program
has been analyzed and complies with the policy.

In detail, Wcomp works as follows. Wcomp is param-
eterized by users U , data consumers C, access controllers
AC, compute nodes CN and a leakage function l. The
functionality maintains a list of policies Lpol, a list of

Faccess (κ,l, U , C) with adversary A
1: The functionality maintains Lauth,Lshare,Lpol initially set to ∅
2: // Initialization
3: On receive (“init”) from P :
4: send (sid, “init”,P) to A
5: wait for A to respond with
6: (sid, “init”, Share(), Verify(), Reconstruct())
7: store the returned algorithms

8: // Deal the shares to the access controllers and set the policy
9: On receive (sid, “deal”, p, k) from U :

10: set kid $←− {0, 1}κ

11: notify A of (sid, “deal”, l(p), U )
12: set kAC

i := Share(k)
13: set Lpol[kid] := p

14: set Lshare[kid] := {sid, {kAC
i }i∈[0,N]}

15: send (sid, “success”, kid) to U
16: // Authenticate by providing a proof π
17: On receive (sid, “authenticate”, π, kid, DID) from C:
18: notify A of (sid, “authenticate”, π, DID)
19: set p := Lpol[kid], check that p(π) = 1, else return ⊥
20: add tuple (DID, π) to list Lauth[kid]
21: send public delayed output (sid, “success”) to C
22: // Obtain access
23: On receive (“access”, DID, kid) from C:
24: check that (DID, π) is in list Lauth[kid], else return ⊥
25: set kAC

i := Lshare[kid] for i ∈ [0, N ]

26: if AC is corrupted, send (sid, “access”, DID, kid, {kAC
i }i∈[0,m]);

27: wait for A to respond with (sid, {k̂AC
i }i∈[0,m])

28: update kAC
i with shares received from A for i ∈ [0,m]

29: send public delayed output (sid, kAC
i ) to C for i ∈ [0, N ]

30: // Consumer reconstructs the key and decrypts the ciphertext
31: On receive (sid, “reconstruct”, {kAC

i }i∈[0,N]) from C:
32: check that Verify(sid, kAC

i ) = 1 for i ∈ [0, N ], else return ⊥
33: notify A of (sid, “reconstruct”, DID)
34: set k = Reconstruct(sid, kAC

i ) for i ∈ [0, N ]

35: send (sid, k) to C
36: // Allow public read to list of auth. consumers for auditability
37: On receive (sid, “read”,kid) from P :
38: check that (DID, π) is in Lauth[kid], else return ⊥
39: send public delayed output (sid, DID) to P
40: // Revoke access
41: On receive (sid, “revoke”, kid, DID) from U :
42: check that (DID, π) ∈ Lauth[kid], else return ⊥
43: notify A of (sid, “revoke”, kid, DID)

44: remove (DID, π) from Lauth[kid]
45: send output (“revoked”, kid, DID) to U
46: // Update the policy
47: On receive (sid, “udpate”, kid, p′) from U :
48: check that U has called “deal” before
49: set Lpol[kid] := p′

50: notify A of (sid, “update”, kid, p′)
51: send (“success”, kid, DID) to U

Figure 7: Ideal Functionality for Decentralized Access
Control Faccess.

user data Ldata, a list of computation requests Lcomp, and
a list of computation output and correctness proofs Lout

that are initially set to empty. Wcomp relays messages
between Faccess and other parties. If Wcomp receives
requests from a user to commit its data and policy, it
relays the message without restriction. On initialization,
we ask the adversary to provide the Analyze() algorithm.
Once receiving “commit” from U , the wrapper forwards
a “deal” request to Faccess. Before computing a program

142



Wcomp(F) (κ, l, U , C, CN , AC) with adversary A
1: The functionality maintains Lpol,Ldata,Lcomp,Lout initially set ∅
2: // Initialization
3: On receive (“init”) from P :
4: send (sid, “init”,P) to A
5: wait for A to respond with
6: (sid, “init”, Analyze())
7: store the returned algorithms
8: forward (sid, “init”) to F
9: // Share data and policy with Access Controllers

10: On receive (sid, “commit”, dU
i , p, k) from U

11: notify A of (sid, “commit”, l(dU
i ), l(p));

12: set Lpol[kid] := p and Ldata[kid] = dU
i

13: forward (sid,“deal”, p, k) to F
14: wait to receive (sid, “success”, kid) from F
15: send (sid, “success”, kid) to U
16: // Analyze if the program is compliant
17: On receive (sid, “analyze”, kid, Θ) from C
18: notify A of (sid, “analyze”, l(Θ),C)
19: set p := Lpol[kid]
20: if AC is corrupted, send (sid, “analyze”, kid,Θ, p) to A
21: set πA := Analyze(Θ, p)

22: forward (sid, “authenticate”, πA, kid, DID) to F
23: set Lcomp[kid] := Θ

24: send (sid, “success”, kid) to U
25: // Program execution request on some user’s data
26: On receive (sid, “compute”, kid, Θ) from CN
27: set Θ′ := Lcomp[kid], if Θ′ �= Θ return ⊥
28: forward (sid, “access”, DID, kid) to F
29: wait to receive (sid, {kAC

i }i∈[0,N]) from F, else return ⊥
30: forward (sid, “reconstruct”, {kAC

i }i∈[0,N]) to F
31: wait to receive (sid, k) from F, else return ⊥
32: set dU

i := Ldata[kid]
33: compute cout, πC , p′ := Θ(dU

i )

34: If CN is corrupted, send (sid, “compute”, kid,Θ, dU
i ) to A

35: set Lpol[kid] := p′ and Lout[kid] := cout, πC

36: send (sid, “computed”) to CN

37: // Claiming program output
38: On receive (sid, “claim”, kid,Θ) from C:
39: check that C has called “analyze” and Lout[kid] is not empty
40: notify A of (“claim”, l(cout), C, sid)
41: set cout, πC := Lout[kid]
42: send (sid, “claimed”, cout, πC ) to C
43: // Managing all other requests between parties

Any other request from any participant or the adversary is simply
relayed to the underlying functionality without any further action and
the output is given to the destination specified by the functionality

Figure 8: Wrapper for Policy-compliant decentralized
computation Wcomp.

on a certain user’s data, C has to prove that the program
abides by the user’s associated policy. In “analyze”, a
consumer C tells the functionality to analyze the program
Θ for the data item identified by kid. The functionality
fetches the policy for the respective kid and analyzes
the program with Analyze(), returning a proof of policy
compliance. On receiving ”compute” from CN , Wcomp

only proceeds if the program provided by CN has previ-
ously been analyzed. The wrapper first forwards “access”
and “reconstruct” on behalf of CN to obtain access to
dUi . If the wrapper receives “success” from Faccess, it
runs the program Θ and generates πC , which proves the
correctness of the computation. We emphasize that the
functionality doesn’t support concurrent execution. We

assume that the user’s data state gets frozen during a
program execution request, preventing the acceptance of
any concurrent requests. We model the output claiming
by querying methodology. The consumer keeps asking for
the computation result until the program is executed, and
the output is available. Once the program is executed, the
policy is updated. In “claim”, the consumer submits the
kid and Θ for which the computation result should be
claimed. The wrapper then returns the program output and
the computation proof.

143


